• Türkçe
    • English
  • Türkçe 
    • Türkçe
    • English
  • Giriş
Öğe Göster 
  •   DSpace Ana Sayfası
  • ARAŞTIRMA ÇIKTILARI (WoS-Scopus-TR-Dizin-PubMed)
  • WoS İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
  •   DSpace Ana Sayfası
  • ARAŞTIRMA ÇIKTILARI (WoS-Scopus-TR-Dizin-PubMed)
  • WoS İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
JavaScript is disabled for your browser. Some features of this site may not work without it.

Renewable energy management in smart home environment via forecast embedded scheduling based on Recurrent Trend Predictive Neural Network

Thumbnail
Tarih
2023
Yazar
Nakip, Mert || Copur, Onur || Biyik, Emrah || Guzelis, Cuneyt
Üst veri
Tüm öğe kaydını göster
Özet
Smart home energy management systems help the distribution grid operate more efficiently and reliably, and enable effective penetration of distributed renewable energy sources. These systems rely on robust forecasting, optimization, and control/scheduling algorithms that can handle the uncertain nature of demand and renew-able generation. This paper proposes an advanced ML algorithm, called Recurrent Trend Predictive Neural Network based Forecast Embedded Scheduling (rTPNN-FES), to provide efficient residential demand control. rTPNN-FES is a novel neural network architecture that simultaneously forecasts renewable energy generation and schedules household appliances. By its embedded structure, rTPNN-FES eliminates the utilization of separate algorithms for forecasting and scheduling and generates a schedule that is robust against forecasting errors. This paper also evaluates the performance of the proposed algorithm for an IoT-enabled smart home. The evaluation results reveal that rTPNN-FES provides near-optimal scheduling 37.5 times faster than the optimization while outperforming state-of-the-art forecasting techniques.
Bağlantı
0
https://dspace.yasar.edu.tr/handle/20.500.12742/19711
Koleksiyonlar
  • WoS İndeksli Yayınlar Koleksiyonu





Creative Commons License
DSpace@YASAR by Yasar University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace software copyright © 2002-2016  DuraSpace
İletişim | Geri Bildirim
Theme by 
Atmire NV
 

 




| Politika | Rehber | İletişim |

sherpa/romeo

Göz at

Tüm DSpaceBölümler & KoleksiyonlarTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre göreYayıncıya göreDile göreBu KoleksiyonTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre göreYayıncıya göreDile göre

Hesabım

GirişKayıt

DSpace software copyright © 2002-2016  DuraSpace
İletişim | Geri Bildirim
Theme by 
Atmire NV