dc.contributor.author | Safari, M.J.S. | |
dc.date.accessioned | 2021-01-25T20:48:16Z | |
dc.date.available | 2021-01-25T20:48:16Z | |
dc.date.issued | 2019 | |
dc.identifier | 10.2166/wst.2019.106 | |
dc.identifier.issn | 02731223 | |
dc.identifier.uri | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85065777183&doi=10.2166%2fwst.2019.106&partnerID=40&md5=6f82d0f6752f99726d04c97e37ad48b7 | |
dc.identifier.uri | https://dspace.yasar.edu.tr/xmlui/handle/20.500.12742/9844 | |
dc.description.abstract | Sediment deposition in sewers and urban drainage systems has great effect on the hydraulic capacity of the channel. In this respect, the self-cleansing concept has been widely used for sewers and urban drainage systems design. This study investigates the | |
dc.language.iso | English | |
dc.publisher | Water Science and Technology | |
dc.title | Decision tree (DT), generalized regression neural network (GR) and multivariate adaptive regression splines (MARS) models for sediment transport in sewer pipes | |
dc.type | Article | |
dc.relation.firstpage | 1113 | |
dc.relation.lastpage | 1122 | |
dc.relation.volume | 79 | |
dc.relation.issue | 6 | |
dc.description.affiliations | Department of Civil Engineering, Yaşar University, Izmir, Turkey | |