Show simple item record

dc.contributor.authorSafari, M.J.S.
dc.date.accessioned2021-01-25T20:48:16Z
dc.date.available2021-01-25T20:48:16Z
dc.date.issued2019
dc.identifier10.2166/wst.2019.106
dc.identifier.issn02731223
dc.identifier.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85065777183&doi=10.2166%2fwst.2019.106&partnerID=40&md5=6f82d0f6752f99726d04c97e37ad48b7
dc.identifier.urihttps://dspace.yasar.edu.tr/xmlui/handle/20.500.12742/9844
dc.description.abstractSediment deposition in sewers and urban drainage systems has great effect on the hydraulic capacity of the channel. In this respect, the self-cleansing concept has been widely used for sewers and urban drainage systems design. This study investigates the
dc.language.isoEnglish
dc.publisherWater Science and Technology
dc.titleDecision tree (DT), generalized regression neural network (GR) and multivariate adaptive regression splines (MARS) models for sediment transport in sewer pipes
dc.typeArticle
dc.relation.firstpage1113
dc.relation.lastpage1122
dc.relation.volume79
dc.relation.issue6
dc.description.affiliationsDepartment of Civil Engineering, Yaşar University, Izmir, Turkey


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record