Basit öğe kaydını göster

dc.contributor.authorDanandeh Mehr, A.
dc.contributor.authorSafari, M.J.S.
dc.date.accessioned2021-01-25T20:48:05Z
dc.date.available2021-01-25T20:48:05Z
dc.date.issued2020
dc.identifier10.1007/s10661-019-7991-1
dc.identifier.issn01676369
dc.identifier.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85076389966&doi=10.1007%2fs10661-019-7991-1&partnerID=40&md5=fe358773b370d2a3b26707fe051fe2ca
dc.identifier.urihttps://dspace.yasar.edu.tr/xmlui/handle/20.500.12742/9727
dc.description.abstractIt is well documented that standalone machine learning methods are not suitable for rainfall forecasting in long lead-time horizons. The task is more difficult in arid and semiarid regions. Addressing these issues, the present paper introduces a hybrid ma
dc.language.isoEnglish
dc.publisherEnvironmental Monitoring and Assessment
dc.titleMultiple genetic programming: a new approach to improve genetic-based month ahead rainfall forecasts
dc.typeArticle
dc.relation.volume192
dc.relation.issue1
dc.description.affiliationsDepartment of Civil Engineering, Antalya Bilim University, Antalya, Turkey; Department of Civil Engineering, Yaşar University, Izmir, Turkey


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster