dc.contributor.author | Danandeh Mehr, A. | |
dc.contributor.author | Safari, M.J.S. | |
dc.date.accessioned | 2021-01-25T20:48:05Z | |
dc.date.available | 2021-01-25T20:48:05Z | |
dc.date.issued | 2020 | |
dc.identifier | 10.1007/s10661-019-7991-1 | |
dc.identifier.issn | 01676369 | |
dc.identifier.uri | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85076389966&doi=10.1007%2fs10661-019-7991-1&partnerID=40&md5=fe358773b370d2a3b26707fe051fe2ca | |
dc.identifier.uri | https://dspace.yasar.edu.tr/xmlui/handle/20.500.12742/9727 | |
dc.description.abstract | It is well documented that standalone machine learning methods are not suitable for rainfall forecasting in long lead-time horizons. The task is more difficult in arid and semiarid regions. Addressing these issues, the present paper introduces a hybrid ma | |
dc.language.iso | English | |
dc.publisher | Environmental Monitoring and Assessment | |
dc.title | Multiple genetic programming: a new approach to improve genetic-based month ahead rainfall forecasts | |
dc.type | Article | |
dc.relation.volume | 192 | |
dc.relation.issue | 1 | |
dc.description.affiliations | Department of Civil Engineering, Antalya Bilim University, Antalya, Turkey; Department of Civil Engineering, Yaşar University, Izmir, Turkey | |