Show simple item record

dc.contributor.authorDanandeh Mehr, A.
dc.contributor.authorSafari, M.J.S.
dc.date.accessioned2021-01-25T20:48:05Z
dc.date.available2021-01-25T20:48:05Z
dc.date.issued2020
dc.identifier10.1007/s10661-019-7991-1
dc.identifier.issn01676369
dc.identifier.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85076389966&doi=10.1007%2fs10661-019-7991-1&partnerID=40&md5=fe358773b370d2a3b26707fe051fe2ca
dc.identifier.urihttps://dspace.yasar.edu.tr/xmlui/handle/20.500.12742/9727
dc.description.abstractIt is well documented that standalone machine learning methods are not suitable for rainfall forecasting in long lead-time horizons. The task is more difficult in arid and semiarid regions. Addressing these issues, the present paper introduces a hybrid ma
dc.language.isoEnglish
dc.publisherEnvironmental Monitoring and Assessment
dc.titleMultiple genetic programming: a new approach to improve genetic-based month ahead rainfall forecasts
dc.typeArticle
dc.relation.volume192
dc.relation.issue1
dc.description.affiliationsDepartment of Civil Engineering, Antalya Bilim University, Antalya, Turkey; Department of Civil Engineering, Yaşar University, Izmir, Turkey


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record