• Türkçe
    • English
  • Türkçe 
    • Türkçe
    • English
  • Giriş
Öğe Göster 
  •   DSpace Ana Sayfası
  • ARAŞTIRMA ÇIKTILARI (WoS-Scopus-TR-Dizin-PubMed)
  • WoS İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
  •   DSpace Ana Sayfası
  • ARAŞTIRMA ÇIKTILARI (WoS-Scopus-TR-Dizin-PubMed)
  • WoS İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
JavaScript is disabled for your browser. Some features of this site may not work without it.

Air quality management using genetic algorithm based heuristic fuzzy time series model

Thumbnail
Tarih
2023
Yazar
Bhagat, Lalit || Goyal, Gunjan || Bisht, Dinesh C. S. || Ram, Mangey || Kazancoglu, Yigit
Üst veri
Tüm öğe kaydını göster
Özet
PurposeThe purpose of this paper is to provide a better method for quality management to maintain an essential level of quality in different fields like product quality, service quality, air quality, etc.Design/methodology/approachIn this paper, a hybrid adaptive time-variant fuzzy time series (FTS) model with genetic algorithm (GA) has been applied to predict the air pollution index. Fuzzification of data is optimized by GAs. Heuristic value selection algorithm is used for selecting the window size. Two algorithms are proposed for forecasting. First algorithm is used in training phase to compute forecasted values according to the heuristic value selection algorithm. Thus, obtained sequence of heuristics is used for second algorithm in which forecasted values are selected with the help of defined rules.FindingsThe proposed model is able to predict AQI more accurately when an appropriate heuristic value is chosen for the FTS model. It is tested and evaluated on real time air pollution data of two popular tourism cities of India. In the experimental results, it is observed that the proposed model performs better than the existing models.Practical implicationsThe management and prediction of air quality have become essential in our day-to-day life because air quality affects not only the health of human beings but also the health of monuments. This research predicts the air quality index (AQI) of a place.Originality/valueThe proposed method is an improved version of the adaptive time-variant FTS model. Further, a nature-inspired algorithm has been integrated for the selection and optimization of fuzzy intervals.
Bağlantı
0
https://dspace.yasar.edu.tr/handle/20.500.12742/19704
Koleksiyonlar
  • WoS İndeksli Yayınlar Koleksiyonu





Creative Commons License
DSpace@YASAR by Yasar University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace software copyright © 2002-2016  DuraSpace
İletişim | Geri Bildirim
Theme by 
Atmire NV
 

 




| Politika | Rehber | İletişim |

sherpa/romeo

Göz at

Tüm DSpaceBölümler & KoleksiyonlarTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre göreYayıncıya göreDile göreBu KoleksiyonTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre göreYayıncıya göreDile göre

Hesabım

GirişKayıt

DSpace software copyright © 2002-2016  DuraSpace
İletişim | Geri Bildirim
Theme by 
Atmire NV