Basit öğe kaydını göster

dc.contributor.authorMeshram, S.G.
dc.contributor.authorSafari, M.J.S.
dc.contributor.authorKhosravi, K.
dc.contributor.authorMeshram, C.
dc.date.accessioned2021-05-31T11:59:27Z
dc.date.available2021-05-31T11:59:27Z
dc.date.issued2021-03
dc.identifier.urihttps://pubmed.ncbi.nlm.nih.gov/33125681/en_US
dc.identifier.urihttps://dspace.yasar.edu.tr/xmlui/handle/20.500.12742/11240
dc.description.abstractSuspended sediment load is a substantial portion of the total sediment load in rivers and plays a vital role in determination of the service life of the downstream dam. To this end, estimation models are needed to compute suspended sediment load in rivers. The application of artificial intelligence (AI) techniques has become popular in water resources engineering for solving complex problems such as sediment transport modeling. In this study, novel integrative intelligence models coupled with iterative classifier optimizer (ICO) are proposed to compute suspended sediment load in Simga station in Seonath river basin, Chhattisgarh State, India. The proposed models are hybridization of the random forest (RF) and pace regression (PR) models with the iterative classifier optimizer (ICO) algorithm to develop ICO-RF and ICO-PR hybrid models. The recommended models are established using the discharge and sediment daily data spanning a 35-year period (1980–2015). The accuracy of the developed models is examined in terms of error; by root mean square error (RMSE) and mean absolute error (MAE); and based on a correlation index of determination coefficient (R2 ). The proposed novel hybrid models of ICO-RF and ICO-PR have been found to be more precise than their stand-alone counterparts of RF and PR. Overall, ICO-RF models delivered better accuracy than their alternatives. The results of this analysis tend to claim the appropriateness of the implemented methodology for precise modeling of the suspended sediment load in rivers.en_US
dc.language.isoEnglishen_US
dc.publisherSpringeren_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectHybrid techniqueen_US
dc.subjectIterative classifier optimizeren_US
dc.subjectPace regressionen_US
dc.subjectRandom foresten_US
dc.subjectRiveren_US
dc.subjectSuspended sediment loaden_US
dc.titleIterative classifier optimizer-based pace regression and random forest hybrid models for suspended sediment load predictionen_US
dc.typeArticleen_US
dc.relation.journalEnvironmental Science and Pollution Researchen_US
dc.identifier.doi10.1007/s11356-020-11335-5en_US
dc.contributor.departmentFaculty of Engineeringen_US
dc.contributor.yasarauthor0000-0003-0559-5261: Mir Jafar Sadegh Safarien_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster