dc.contributor.author | Asyali, M.H. | |
dc.date.accessioned | 2021-01-25T20:52:07Z | |
dc.date.available | 2021-01-25T20:52:07Z | |
dc.date.issued | 2007 | |
dc.identifier | 10.1016/j.compbiomed.2007.04.001 | |
dc.identifier.issn | 00104825 | |
dc.identifier.uri | https://www.scopus.com/inward/record.uri?eid=2-s2.0-35348882637&doi=10.1016%2fj.compbiomed.2007.04.001&partnerID=40&md5=cb8959feb925e56f7822171c80874e48 | |
dc.identifier.uri | https://dspace.yasar.edu.tr/xmlui/handle/20.500.12742/10752 | |
dc.description.abstract | Due to recent advances in DNA microarray technology, using gene expression profiles, diagnostic category of tissue samples can be predicted with high accuracy. In this study, we discuss shortcomings of some existing gene expression profile classification | |
dc.language.iso | English | |
dc.publisher | Computers in Biology and Medicine | |
dc.title | Gene expression profile class prediction using linear Bayesian classifiers | |
dc.type | Article | |
dc.relation.firstpage | 1690 | |
dc.relation.lastpage | 1699 | |
dc.relation.volume | 37 | |
dc.relation.issue | 12 | |
dc.description.affiliations | Department of Computer Engineering, Yasar University, Kazim Dirik Mah. 364 Sok. No: 5, Bornova, 35500 Izmir, Turkey | |