Show simple item record

dc.contributor.authorAsyali, M.H.
dc.date.accessioned2021-01-25T20:52:07Z
dc.date.available2021-01-25T20:52:07Z
dc.date.issued2007
dc.identifier10.1016/j.compbiomed.2007.04.001
dc.identifier.issn00104825
dc.identifier.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-35348882637&doi=10.1016%2fj.compbiomed.2007.04.001&partnerID=40&md5=cb8959feb925e56f7822171c80874e48
dc.identifier.urihttps://dspace.yasar.edu.tr/xmlui/handle/20.500.12742/10752
dc.description.abstractDue to recent advances in DNA microarray technology, using gene expression profiles, diagnostic category of tissue samples can be predicted with high accuracy. In this study, we discuss shortcomings of some existing gene expression profile classification
dc.language.isoEnglish
dc.publisherComputers in Biology and Medicine
dc.titleGene expression profile class prediction using linear Bayesian classifiers
dc.typeArticle
dc.relation.firstpage1690
dc.relation.lastpage1699
dc.relation.volume37
dc.relation.issue12
dc.description.affiliationsDepartment of Computer Engineering, Yasar University, Kazim Dirik Mah. 364 Sok. No: 5, Bornova, 35500 Izmir, Turkey


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record