dc.contributor.author | Mehr, A.D. | |
dc.contributor.author | Safari, M.J.S. | |
dc.date.accessioned | 2021-01-25T19:32:42Z | |
dc.date.available | 2021-01-25T19:32:42Z | |
dc.date.issued | 2020 | |
dc.identifier | 10.1007/s10661-019-7991-1 | |
dc.identifier.issn | 0167-6369 | |
dc.identifier.uri | https://dspace.yasar.edu.tr/xmlui/handle/20.500.12742/7352 | |
dc.description.abstract | It is well documented that standalone machine learning methods are not suitable for rainfall forecasting in long lead-time horizons. The task is more difficult in arid and semiarid regions. Addressing these issues, the present paper introduces a hybrid ma | |
dc.language.iso | English | |
dc.publisher | SPRINGER | |
dc.title | Multiple genetic programming: a new approach to improve genetic-based month ahead rainfall forecasts | |
dc.type | Article | |
dc.relation.volume | 192 | |
dc.relation.issue | 1 | |
dc.description.woscategory | Environmental Sciences | |
dc.description.wosresearcharea | Environmental Sciences & Ecology | |
dc.identifier.wosid | WOS:000511311100010 | |