Show simple item record

dc.contributor.authorMehr, A.D.
dc.contributor.authorSafari, M.J.S.
dc.date.accessioned2021-01-25T19:32:42Z
dc.date.available2021-01-25T19:32:42Z
dc.date.issued2020
dc.identifier10.1007/s10661-019-7991-1
dc.identifier.issn0167-6369
dc.identifier.urihttps://dspace.yasar.edu.tr/xmlui/handle/20.500.12742/7352
dc.description.abstractIt is well documented that standalone machine learning methods are not suitable for rainfall forecasting in long lead-time horizons. The task is more difficult in arid and semiarid regions. Addressing these issues, the present paper introduces a hybrid ma
dc.language.isoEnglish
dc.publisherSPRINGER
dc.titleMultiple genetic programming: a new approach to improve genetic-based month ahead rainfall forecasts
dc.typeArticle
dc.relation.volume192
dc.relation.issue1
dc.description.woscategoryEnvironmental Sciences
dc.description.wosresearchareaEnvironmental Sciences & Ecology
dc.identifier.wosidWOS:000511311100010


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record