• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace Home
  • ARAŞTIRMA ÇIKTILARI (WoS-Scopus-TR-Dizin-PubMed)
  • Scopus İndeksli Yayınlar Koleksiyonu
  • View Item
  •   DSpace Home
  • ARAŞTIRMA ÇIKTILARI (WoS-Scopus-TR-Dizin-PubMed)
  • Scopus İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Sediment transport modeling in non-deposition with clean bed condition using different tree-based algorithms

Thumbnail
View/Open
Makale_Article (1.300Mb)
Date
2021
Author
Gul, E.
Safari, M.J.S.
Haghighi, A.T.
Mehr, A.D.
Metadata
Show full item record
Abstract
To reduce the problem of sedimentation in open channels, calculating flow velocity is critical. Undesirable operating costs arise due to sedimentation problems. To overcome these problems, the development of machine learning based models may provide reliable results. Recently, numerous studies have been conducted to model sediment transport in non-deposition condition however, the main deficiency of the existing studies is utilization of a limited range of data in model development. To tackle this drawback, six data sets with wide ranges of pipe size, volumetric sediment concentration, channel bed slope, sediment size and flow depth are used for the model development in this study. Moreover, two tree-based algorithms, namely M5 rule tree (M5RT) and M5 regression tree (M5RGT) are implemented, and results are compared to the traditional regression equations available in the literature. The results show that machine learning approaches outperform traditional regression models. The tree-based algorithms, M5RT and M5RGT, provided satisfactory results in contrast to their regression-based alternatives with RMSE = 1.184 and RMSE = 1.071, respectively. In order to recommend a practical solution, the tree structure algorithms are supplied to compute sediment transport in an open channel flow. © 2021 Gul et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
URI
https://dspace.yasar.edu.tr/xmlui/handle/20.500.12742/18555
Collections
  • Scopus İndeksli Yayınlar Koleksiyonu





Creative Commons License
DSpace@YASAR by Yasar University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV
 

 




| Politika | Rehber | İletişim |

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsBy TypeBy PublisherBy LanguageThis CollectionBy Issue DateAuthorsTitlesSubjectsBy TypeBy PublisherBy Language

My Account

LoginRegister

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV