dc.contributor.author | Taşdemir, K. | |
dc.contributor.author | Merényi, E. | |
dc.date.accessioned | 2021-01-25T20:51:54Z | |
dc.date.available | 2021-01-25T20:51:54Z | |
dc.date.issued | 2009 | |
dc.identifier | 10.1109/TNN.2008.2005409 | |
dc.identifier.issn | 10459227 | |
dc.identifier.uri | https://www.scopus.com/inward/record.uri?eid=2-s2.0-67349242966&doi=10.1109%2fTNN.2008.2005409&partnerID=40&md5=aa16fff68677524bae851a44f4ddcfd5 | |
dc.identifier.uri | https://dspace.yasar.edu.tr/xmlui/handle/20.500.12742/10721 | |
dc.description.abstract | The self-organizing map (SOM) is a powerful method for visualization, cluster extraction, and data mining. It has been used successfully for data of high dimensionality and complexity where traditional methods may often be insufficient. In order to analyz | |
dc.language.iso | English | |
dc.publisher | IEEE Transactions on Neural Networks | |
dc.title | Exploiting data topology in visualization and clustering of self-organizing maps | |
dc.type | Article | |
dc.relation.firstpage | 549 | |
dc.relation.lastpage | 562 | |
dc.relation.volume | 20 | |
dc.relation.issue | 4 | |
dc.description.affiliations | Electrical and Computer Engineering Department, Rice University, Houston, TX 77005, United States; Computer Engineering Department, Yasar University, Bornova, Izmir 35100, Turkey | |