Show simple item record

dc.contributor.authorTaşdemir, K.
dc.contributor.authorMerényi, E.
dc.date.accessioned2021-01-25T20:51:54Z
dc.date.available2021-01-25T20:51:54Z
dc.date.issued2009
dc.identifier10.1109/TNN.2008.2005409
dc.identifier.issn10459227
dc.identifier.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-67349242966&doi=10.1109%2fTNN.2008.2005409&partnerID=40&md5=aa16fff68677524bae851a44f4ddcfd5
dc.identifier.urihttps://dspace.yasar.edu.tr/xmlui/handle/20.500.12742/10721
dc.description.abstractThe self-organizing map (SOM) is a powerful method for visualization, cluster extraction, and data mining. It has been used successfully for data of high dimensionality and complexity where traditional methods may often be insufficient. In order to analyz
dc.language.isoEnglish
dc.publisherIEEE Transactions on Neural Networks
dc.titleExploiting data topology in visualization and clustering of self-organizing maps
dc.typeArticle
dc.relation.firstpage549
dc.relation.lastpage562
dc.relation.volume20
dc.relation.issue4
dc.description.affiliationsElectrical and Computer Engineering Department, Rice University, Houston, TX 77005, United States; Computer Engineering Department, Yasar University, Bornova, Izmir 35100, Turkey


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record