
(MASTER THESIS) 

 

 

 

DISTRIBUTIONS OF THE PARAMETERS IN  

VASICEK MODEL 

 

Gönül AYRANCI 

Supervisor: Yrd. Doç. Dr. Banu ÖZGÜREL 

Department of Actuarial Science 

 

 

 

 

 

 

Bornova-İZMİR 

2013 



i 
 

 
YASAR UNIVERSITY 

GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCE 

 

 

DISTRIBUTIONS OF THE PARAMETERS IN 

VASICEK MODEL 

 

 

 

Gönül AYRANCI 

Supervisor: Yrd. Doç. Dr. Banu ÖZGÜREL 

Department of Actuarial Science 

 

 

 

 

 

Bornova-İZMİR 

2013 



ii 
 

 

 

This study titled “ Distributions of the Parameters in Vasicek Model” and 

presented as Master Thesis by Gönül Ayrancı has been evaluated in compliance 

with the relevant provisions of Y.U Graduate Education and Training Regulation 

and Y.U Institute of Science Education and Training Direction and jury members 

written below have decided for the defence of this thesis and it has been declared 

by consensus / majority of votes that the candidate has succeeded in thesis 

defence examination dated May 13, 2013. 

Jury Members:       Signature:  

Yrd. Doç. Dr. Banu ÖZGÜREL    ………………...  

 Yrd. Doç. Dr. Serkan ALBAYRAK    …………………  

 Doç. Dr. Özlem Ege ORUÇ     ………………… 



iii 
 

 

 

ÖZET 

 

VASICEK MODELİNDE PARAMETRELERİN 

 DAĞILIMLARI 

 

AYRANCI, Gönül 

 

Yüksek Lisans Tezi, Aktüerya Bilimleri Bölümü 

Tez Danışmanı: Assist. Prof. Dr. Banu ÖZGÜREL 

Mayıs 2013 

 

Bu çalışmada LIBOR TR faiz oranı verilerinin 2 Ocak 2008 – 5 Aralık 2012 

tarihleri arasındaki günlük zaman serilerinin stokastik davranışlarını incelemek için 

Vasicek faiz oranı modeli kullanılmıştır. Modelde yer alan parametrelerin 

tahimininde en küçük kareler tahmin yönteminden faydalanılmıştır. Monte Carlo 

simulasyonu kullanılarak parametrelerin dağılımları incelenmiştir. Bu metod 

sayesinde sadece parametre tahmini yapılmamış, parametrelere ilişkin güven 

aralıkları elde edilmiştir. 

Anahtar Kelimeler: Vasicek modeli, En Küçük Kareler Yöntemi, Monte Carlo 

Simülasyonu 
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ABSTRACT 

 

DISTRIBUTIONS OF THE PARAMETERS IN VASICEK 
MODEL 

 

AYRANCI, Gönül 

 

MSc in Actuarial Science 

Supervisor: Assist. Prof. Dr. Banu ÖZGÜREL 

Mayıs 2013 

 

In this study time series of TRLIBOR interest rates in different maturities are 

modeled with Vaiscek Model. OLS method is used for calibrating the model 

parameters of Vasicek to TRLIBOR rates data which is between 2.01.2008 and 

5.12.2012. Then distributions of parameters are obtained by using Monte Carlo 

Simulation ragarding the Vaicek Model. Thus, not only parameters are estimated but 

also confidience intervals are given.  

Keymords: Vasicek Model, Ordinary Least Square Method, Monte Carlo 

Simulation 
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1 INTRODUCTION 

Interest rates are an indicator for the global cost of the money. There are 

financial instruments which directly link with interest rates in portfolio of 

financial institutions and especially of insurance companies. Interest rates and the 

volatility of interest rates play a crucial role in estimation of losses which is 

caused for holding the money. Moreover there are some government regulations 

about estimation of those losses for insurance companies (Solvency II). Insurance 

companies have to calculate the capital requirement for the market risk under the 

Solvency II requirements. There is a committee that is established by Treasury on 

2009 for inform the sector about Solvency II directives and assess the impact of 

these directives on the insurance sector. Ten insurance companies, of which 5 

operate in life, 4 non-life and 1 in reinsurance, participated in these studies. The 

Solvency Capital Requirement (SCR) is the new solvency standard for firms in 

Solvency II directives. SCR is based on the idea that an insurance firm should 

have the amount of capital that is sufficient with a 99.5% confidence-level to 

guarantee that the firm will have enough assets to cover its liabilities at the end of 

one year period. In other words, SCR calibrated to the Value-at-Risk of basic own 

funds subject to a confidence level 99.5% over a 1 year time horizon. The SCR is 

intended to reflect all quantifiable risks that the firm might face. A basic SCR 

calculation divided into modules per risks, with adjustment for the loss-absorbing 

capacity of technical provisions and deferred taxes. These calculations must be 

done at least once per year using a standard formula or an internal model. But 

internal models improve risk sensivity of SCR and provide better risk 

management, which also improves policyholder protection (CP20 final advice1). 

Martin (2012) applies the model of Gatzert and Martin (2012) for deriving a 

partial internal model for the market risk module regarding the underlying interest 

rate process and parameters. Solvency II Directive gives an option to model only 

certain risk modules or business units and to use the standard formula for the 

remaining parts.  

 

                                                 
1 CP20 is a consaltation process initiated by CEIOPS (Committee of European Insurance and 
Occupational Pensions Supervisors) on the “advice to the European Commision in the Framework 
of the Solveny II” 
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There is a figure below that shows the risk modules of SCR (Figure 1.1).  

Figure 1.1 Risk Modules of SCR 

 

As we can see in the Figure 1.1, interest rate risk plays a significant role 

for calculating SCR (Martin, 2012). The aim of this study is to evaluate model 

with focus on market risk module of Solvency II regarding the interest rate risk. 

Already it is an inevitable fact that insurance companies must have fitting interest 

rate model while they estimate the value at risk (VaR) on a specific portfolio of 

financial assets. Also Martin (2012) shows that the change in SCR is sustainable 

when changing the underlying interest rate model.  

 Modeling of interest rates is especially used for investment and financial 

decisions, portfolio management and insurance. Future interest rates can be 

predicted with a suitable interest rate model and those interest rates predictions 

can be used for the estimation of price of the financial instruments. An increasing 

number of insurance companies and other financial institutions are using 

stochastically generated interest rates to measure interest rate risk and to value 

financial assets. The use of stochastic interest rates for insurance system is both 

appropriate— given the stochastic nature of interest rates— and increasingly 

mandated by regulators at the larger more complex financial institutions. An 

interest rate model is a probabilistic description of the future evolution of interest 

rates. It characterizes the uncertainty involved in interest rates. Interest rate 

modeling is a very important part of any insurance. This is because the valuation 

of the assets and liabilities of insurance companies depends crucially on interest 
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rates. Also enormous literature in finance such as Vasicek (1977) and Cox, 

Ingersoll and Ross (CIR) (1985) have documented that interest rate should be 

followed by a stochastic process.  

In the literature various models have been proposed such as Merton 

(1973), Vasicek (1977), Dothan (1978), Richard (1979), Brennan and Schwarz 

(1979, 1982), Cox, Ingersoll and Ross (1985), Rendleman and Bartter (1980), 

Longstaff (1989), Hull and White (1990), Pearson and Sun (1994). These models 

can be used to value all interest rate contingent claims in different cases. Major 

difficulty in the modeling process is to provide parameters that fit to the initial 

term structure of interest rates. In that case several papers focused on the 

estimation of the parameters in a consistent way. Chan et al. (1992) estimate and 

compare continuous time models of the short term riskless rate using the 

Generalized Method of Moments. Kladivko (2007) investigates Maximum 

Likelihood Estimation of the CIR process for interest rate time series. While 

comparing the Vasicek and CIR models, Munnik and Schotman (1992) used 

Ordinary Least Square Estimation method. Berg (2011) describe OLS and MLE 

methods calibrating the model parameters of Vasicek. Also Zeytun and Gupta 

(2007) analyze Vasicek and CIR models to give results for the parameters.  

Carriere (2000) investigate long-term yield rates for valuing a life insurance and 

used OLS method parameter estimation of the models such as Vasicek (1977), 

CIR (1985), Nelson-Siegel (1987). Önalan (2009) explains the structure of 

Vasicek and CIR models, then give parameter estimation methods OLS for 

Vaiscek, Matingale method for CIR. Moreover Şahin and Genç (2009) investigate 

which short term interest rate model appropriate for Turkish data.  

In this paper we examine the application of the Vasicek Model with 

TRLIBOR data to study the term structure of interest rates. Simply the aim of this 

study is to determine parameters of the Vasicek model and give confidence 

intervals regarding to estimation of parameters. After model parameters are 

estimated by using OLS method, the distribution of these estimated parameters is 

obtained by using the Monte Carlo Simulation.  
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The rest of this thesis is organized as follows. Chapter 2 describes our 

model and methods that we used. This chapter is explained in three main sections. 

First general diffusion model description for interest rates is given and Vasicek 

Model examined in detail. Then OLS and MLE methods are applied for the 

parameters of the Vasicek Model. Last section in chapter 2 Monte Carlo method is 

explained with examples. Chapter 3 shows an application of parameter estimation 

of Vasicek Model for TRLIBOR rates. Chapter 4 summarizes the paper and gives 

results that we obtain. 
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2 METHODS  

2.1 Model Description 

Interest rate processes have been defined with stochastic differential 

equations. Generally models divided into equilibrium models and no-arbitrage 

models. We only focus on equilibrium models and from those only the Vasicek 

model describe here. The equilibrium models based on some assumptions about 

economic variables and give us process for the short rate, . (Hull and White 

1993). To achieve a balance between supply of bonds rate and demand of the 

investors is the aim of the equilibrium models. The most well-known equilibrium 

models are Merton(1973), Vasicek(1977) and CIR(1985).  

There are also single or multi-factor models for the interest rate modeling 

and the Vasicek model is classified as one-factor model and the interest rate is 

called instantaneous interest rate.  In one-factor models it is accepted that there is 

only one source of the risk. These models may be preliminary among the recent 

multi-factor models but they provide a good introduction to the study of interest 

rates. Moreover they can be easily solved and Sorwar (2007) states that the 

existence of analytical solutions leads to quick valuation of the bond, option, 

prices, and the hedge parameters such as delta for risk management purposes. 

The general formula for one-factor diffusion model is: 

 (1)

where  is a Brownian motion  process. Different forms of functions  and  

give various diffusion models.  
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2.1.1 Vasicek Interest Rate Model 

Vasicek model is a one-factor model describing an evolution of interest 

rates. It describes movements of interest rates as driven by source of market risk. 

Also it can be used for the derivatives of interest rates. It was introduce in 1977 by 

Oldrich Vasicek. The spot rate  follows so-called Ornstein-Uhlenbeck process 

and the equation has following form 

  (2)

 (3)

where Wt is a Wiener process (also called Brownian Motion) under the risk 

neutral measure modelling the random market risk factor. With , 

corresponding to the choice ,  in equation (1). This 

description of the spot rate process has been proposed by Merton (1971). 

 According to the Vasicek O. (1977), Journal of Financial Economics, 5, 

177-188, “The Ornstein-Uhlenbeck process with  is sometimes called the elastic 

random walk. It is a Markov process with normally distributed increments. In contrast to 

the random walk (the Wiener process), which is an unstable process and after long time 

will diverge to infinite values, the Ornstein-Uhlenbeck process possesses a stationary 

distribution. The instantaneous drift  represents a force that keeps pulling the 

process towards its long-term mean  with magnitude proportional to the deviation of the 

process from the mean. The stochastic element, which has a constant instantaneous 

variance, causes the process fluctuate around the level  in an erratic, but continuous, 

fashion” 

 The most important feature which this model exhibits and explained by 

Vasicek is the mean reversion, which means that if the interest rate is bigger than 

the long run mean (  then the coefficient  makes the drift become 

negative so that the rate will be pulled down in the direction of . Similarly, if 

the interest rate is smaller than the long run mean ( , then the coefficient 

 makes the drift term become positive so that the rate will be pulled up in 
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the direction of . Therefore, the coefficient  is the speed of adjustment of the 

interest rate towards its long run level.  

Figure 2.1 Mean reversion process 

 

 One of the most attractive feature of the Vasicek Model is that there is 

close form solution for . We start solution of the Stochastic Differential 

Equation (2) by taking the derivative of , which yields: 

 (4)

Substitute equation (2) into equation (4) yields; 

 (5)

Rearrange the equation (5) gives: 

 (6)

 

Taking integral from  to  for both sides of the equation (6): 

 
(7)
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(8)

 
(9)

If we multiply both sides of the equation with  the solution of the differential 

equation (2) is: 

 
(10)

 process given in equation (10) follows a Gaussian Distribution with mean:2 

 (11)

and variance: 

 
(12)

If time increases the mean tends to the long-term value  and the variance 

remains bounded, implying mean reversion. The long-term distribution of the 

Ornstein-Uhlenbeck process is stationary and is Gaussian with mean  and 

variance . (Sypkens 2010) 

 

                                                 
2 Önalan Ö., Vasicek ve CIR Modelleri Kullanılarak Oynaklık ve Faiz Oranlarının Modellenmesi, 
Marmara Üniversitesi, İİBF dergisi, II, S. 329-344, 2009. 
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2.2 Parameter Estimation 

2.2.1 Ordinary Least Square Estimation for Vasicek Model 

The explicit solution of the Ornstein-Uhlenbeck SDE is obtained in 
previous section, namely: 

 
(13)

 is a random variable with mean and variance  and 

 respectively. It is assumed that  follows a  process as 
follow: 

 (14)

The discrete version of the equation (13) on time grid 

(equal time intervals) and  

 (15)

where  is a Gauission white noise ( . 

Parameters of eqaution (14) is: 

 (16)

 (17)

 
(18)

Rearrange equations (16), (17) and (18) in terms of the parameters α, β, and  

which yield: 
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 ,  ,    
(19)

The formulas for the least squares estimates a, b, and  are: 

 
(20)

 
(21)

 

(22)

2.2.2 Maksimum Likelihood Estimation for The Vasicek Model 

MLE method is consistent for the Vasicek model since its error term is 

normally distributed (Ren Raw Chen, 1996). So, the likelihood function can be 

derived for the MLE. We need to define the likelihood function and find the 

paremeters that maximize the likelihood function. There is different methods in 

literature for maximize the methods likelihood function (Sypens, 2010). 

Optimization method is explained for this problem. The conditional probability 

function is derived by combining the solution of our model with the normal 

distribution function (Calibrating the Vasicek Thijs Von den Berg, 2011). 

 
(23)

 

If  is given, the conditional density function of  on the time grid 

 ,   with equal time step  by using equation (11) and 

(12).  
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(24)

 

Since the logarithmic function is monotonically increasing, maximizing the log-

likelihood function also maximizes the likelihood function. The log-likelihood 

function is; 

 
(25)

 

 

We can find the maximum likelihood estimates  of parameter vecor  by 

maximizing maximizing the log likelihood function (Equation 25): 

 
(26)

2.3 Monte Carlo Simulation 

Monte Carlo means using random numbers in scientific computing. More 

precisely, it means using random numbers as a tool to compute something that is 

not random. One of the first uses of this method is suggested by Buffon (1777) 

with an experiment that calculates the probability that the needle intersect one of 

the lines on a horizontal plane, now known as the famous Buffon’s Needle 

Problem. Later Laplace (1886) suggested the idea of evaluating  with Monte 
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Carlo Simulation. Also it is used in kinetic theory of gases by Kelvin (1901). But 

the method today labeled as “Monte Carlo Method” is formally introduced to the 

literature by Ulam (1940) where he advocated the use of computers in an 

integration problem related to Manhattan Project which has no formal solution.  

  

The process of method can be explained as follows: During a Monte Carlo 

Simulation, values are chosen randomly from the input probability distributions. 

These generated samples are called iterations and results from the samples are 

recorded for each iteration. Through Monte Carlo simulation, this process can be 

done hundreds and thousands times. In this way, Monte Carlo simulation provides 

much more extensive information about what may happen and how likely it is to 

happen.  

We can explain Monte Carlo method further with a nice and well-known 

example of  value estimation.  is a constant that is the ratio of a circle’ 

circumference to its diameter. It is simply accepted as 3.14 but true value cannot 

represent as a finite decimal fraction. Let us consider a unit circle with a radius 1. 

If  is a point on the unit circle, by the Pythagorean Theorem, that satisfy the 

following equation; 

 (27)

By choosing random points on the plane, we need to decide each point that we 

have chosen whether is within the circle or not. The quarter unit circle is 

considered as shown in the following figure. 
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Figure 2.2 Quarter circle of radius r=1 

 

Since we know the area of a circle with radius . 

 (28)

The unit circle area is equal to  and the area of the quarter circle that we 

interested is equal to . We have to look at the unit circle (radius = 1) within a 

square with sides equal to 1 (see Figure 2.2). Now if we pick a random points 

 where both  and  are between from 0 to 1. The probability of that this 

random point lies inside the unit circle is given as the proportion between the area 

of the unit circle and the square : 

 
(29)

If we pick a random point  times and  of those times the point lies 

inside the unit circle, the probability of that a random point lies inside the unit 

circle is given as : 

 
(30)
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where the dot indicates that this is a discreet distribution (because M and N are 

integers). But if N becomes very large (theoretically infinite), the two 

probabilities will become equal and we can write : 

 
(31)

Monte Carlo method applied and simulation run 10000 times to 

approximating the value of . Obtaining results and the codes relating to the 

process are given (Figure 2.3). 

n=10000 

x=runif(n) 

y=runif(n) 

counter=0 

plot(NA,type="n",xlim=c(0,1),ylim=c(0,1), 
xlab="n=10000",ylab="") 

for (i in 1:n){ 

  if ((x[i]^2+y[i]^2)<=1) { 

    counter=counter+1 

    points(x[i],y[i],type="p") 

  } 

} 

4*counter/n 
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Figure 2.3 value estimation with Monte Carlo Method 

 

Monte Carlo simulation can be used to approximate probability distributions 

of functions of random variables. For example, let  be a random variable and its 

expected value be  If we generate  independent random 

variables from the same distribution then we can approximate  by 

 
(32)

The strong law of large numbers states that . Albeit 

the generated random numbers  would be different each time and therefore so 

does the sample average, , the target number, , is fixed and nonrandom. 

Using thousands of Monte Carlo runs one can approximate the distribution of , 

around  

Monte Carlo Methods allows us to account for risk in quantitive analysis 

and decision making. The technique is used in various fields such as finance 

(Haugh, 2004), project management (Kwak and Ingall, 2007), manufacturing 

(Pica et al., (2006), engineering (Amar, 2006), insurance (Collins, 1962), the 

environmental and resource economics (Scarpa and Alberini, 2005). 

 

 

( )
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3 APPLICATION 

In this thesis, we are going to use TRLIBOR data with different time to maturities. 

The Turkish Lira Interbank Offered Rate, or TRLIBOR, is the average interest 

rate at which term deposits are offered between prime banks in the Turkish 

wholesale money market or interbank market.  
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TRLIBOR initiated on August 1, 2002 by the Banks Association of Turkey and 

has resulted in the formation of benchmark interest rates that the economic agents 

base their projections. The formation of benchmark interest rates is an important 

development as they will increase transparency of the markets, form a sound yield 

curve in money markets and improve forward transactions by pricing financial 

assets more effectively.  

Our study sample from the web page of the Banks Association of Turkey 

TRLIBOR3 data period is from 2.01.2008 to 5.12.2012 and contains 1230 daily 

observations for each time maturity. The rates are shown in the following figures 

in different maturities, 1 month (Figure 3.1), 6 month (Figure 3.2), 1 year (Figure 

3.3) and overnight (Figure 3.4). 

Figure 3.1 Time series of TRLIBOR 1M from 2.01.2008 to 5.12.2012 

 

 

Figure 3.2 Time series of TRLIBOR 6M from 2.01.2008 to 5.12.2012 

 

                                                 
3 http://www.tbb.org.tr 
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Figure 3.3 Time series of TRLIBOR 1Y from 2.01.2008 to 5.12.2012 

 

It can clearly be seen from the figures (Figure 3.1, Figure 3.2 and Figure 3.3) in 1 

month, six month and 1 year maturities same pattern is observed. TRLIBOR rates 

were extremely high at the start of monitored period, especially in last months of 

2008. After that there is a dramatic fall occurred in earlier months of 2009 and 

then it seems stable from 2010 to 2011. Finally, there is an increasing trend 

between the year 2011 and 2012. 

 

Figure 3.4 Time series of TRLIBOR overnight from 2.01.2008 to 5.12.2012 

 

In the case of overnight maturity, we observed a pattern that more sensitive than 

the others especially on the last interval from 2011 to 2012. So to estimate the 

parameters of Vasicek Model we use the daily TRLIBOR data with overnight 

maturity.  
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The time series plots of our sample data is shown in the figures above. Since we 

can observe from the figures, modeling interest rates is a very complex and hard 

task. So Vasicek Model parameters will be estimated using TRLIBOR data. 

 (33)

 (34)

where  speed of mean reversion  long run mean 

 instantaneous volatility   Weiner process 

In order to estimate the development of the instantaneous interest rate the Euler-

discretisation of the Vasicek Model (Equation 33) is used and is given: 

 (35)

where is generated random number from  (Josef, 2009). 

 In the simulation process, the most important step is to estimate the parameters of 

our model accurately. Parameter estimation methods regarding the 

Vasicek Model are described in Chapter 2. Estimation of parameters with OLS 

method gives very similiar results to MLE (Sypkens, 2010). To estimate the 

parameters of our model we use OLS method and run the R code below which 

estimates required parameters (Table 3.1) 

Vasicek.OLS = function(data,dt){ 

  N = length(data) 

  rate = data[2:N] 

  lagrate= data[1:(N-1)] 

  a=(N*sum(rate*lagrate)-sum(rate)*sum(lagrate))/ 

    (N*sum(lagrate^2)- sum(lagrate)^2) 

  alphahat = -log(a)/dt 

  betahat = sum(rate-a*lagrate ) / (N*(1-a)) 
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  v2hat=sum((rate-lagrate*alpha-betahat*(1-a))^2)/N 

  sigmahat=sqrt(2*alpha_hat*v2hat/(1-a^2)) 

  c(betahat,alphahat,sigmahat)} 

 

Table 3.1 Summary of Vasicek Estimators 

    
OLS  0.0799080219842794 1.55095522339525 0.0635675446843325 

To estimate distribution of the parameters that fits Vasicek Model, Monte Carlo 

Simulation explained in Chapter 2 is used and the codes of process are given: 

init.value=test.data[sizedata[1]] 

sizeofsim=1000 

sizeofMonteCarlo=1000 

delta.t=1/260 

set.seed(1) 

TEZ=matrix(data=NA,nrow=sizeofMonteCarlo,ncol=3) 

for (j in 1:sizeofsim){ 

  r=init.value 

  for (i in 2:sizeofsim){ 

    delta.r=(outt[2]*(outt[1]-r[(i-
1)])*delta.t)+(outt[3]*rnorm(1)*sqrt(delta.t)) 

    tempo=r[(i-1)]+delta.r 

    r=c(r,tempo) 

  } 

  TEZ[j,]=Vasicek.OLS(data=r,dt=1/260) 

} 

 

In each run of the Monte Carlo Simulation process, new parameter values are 

estimated from the interest rate observations. Each run initiates from a different 
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random point. Furthermore at each step randomized variates enter the model 

distinguishing each run. Monte Carlo does this process thousands of times. This 

process runs with two simulation steps. The histograms and plots of the 

simulation results are given. 

Figure 3.5 Plots of the parameters ( ) in  simulation step 

 

Figure 3.6 Histograms of the parameters ( ) in  simulation step 

 

As we can see in the Figure 3.5 observations of estimation, which of long run 

mean from simulated values of interest rate, have extreme values (outliers) 

relative to other observations. Ghosh and Vogt (2012) states that there is three 

main approaches to eliminate outlier problems: 
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1. To keep the outlier and treat it like any other data point 

2. To modify its value  

3. To eliminate it  

Also they state that method 2 and 3 introduce statistical bias and may undervalue 

the outlier.  

To obtain distribution of parameters, increase our sample size the simulation step 

is increased to 10000 times. 

Figure 3.7 Plots of the parameters ( ) in  simulation step 
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Figure 3.8 Histograms of the parameters ( ) in  simulation step 

 

Now after the simulation with time step n=10000, parameters are normally 

distributed as it can be observed in the Figure 3.7 and Figure 3.8. We give our 

results in Table 3.2 %95 confidence intervals and Table 3.3 %99 confidence 

intervals for the estimated parameters.   

 

 

Table 3.2 %95 Confidence Intervals for the parameters 

Parameters %95 Confidence Interval 

Long Term Mean  0.06697832 
 

0.09310074 
 

Speed of Reversion  1.126175 
 

2.326765 
 

Volatility  0.06288429 
 

0.06465596 
 

 

Table 3.3 %99 Confidence Intervals for the parameters 
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Parameters %99 Confidence Interval 

Long Term Mean  0.06288056 
 

0.09721137 
 

Speed of Reversion  1.015408 
 

2.585334 
 

Volatility  0.06265065 
 

0.06454089 
 

 

As we can see from Table 3.2 , there is a significant difference between the 

confidence interval borders for the long term mean and speed of reversion 

parameters. Also increasing confidence level (%99) caused increase in interval 

length. Any chosen parameter ignores the confidence intervals may cause over 

estimation or under estimation of the model parameters and interest rates. 

 

 

 

 

4 CONCLUSION 

This study has been focuses on the distribution of the Vasicek Model 

parameters. First we emphasized the importance of interest rate modeling 

especially in insurance sector. As we indicate in introduction, with the new 

regulations about capital requirements (Solvency II) modeling interest rates arise 

one of the most important problem in that field. First we gave a general form of 

the stochastic differential equation for the interest rate modeling. The focus is on 

the Vasicek Model. The solution of the stochastic differential equation of Vasicek 

Model is given and it is shown that two different parameter estimation methods, 
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Ordinary Least Square and Maximum Likelihood estimation, can be applied to the 

model. Then Monte Carlo Simulation Method is explained.  

In the third part of this study is the application of the model on a data set from 

TRLIBOR rates. We simulated new data set that is approximated by Euler 

discretization with parameters from OLS estimators. This process applied with 

Monte Carlo Method for 1000 time steps and 10000 time steps. First simulation 

gave us distribution of the long term mean with outliers and also high variance. In 

order to achieve greater accuracy, we increased the sample size to 10000. After 

we clearly saw that our estimated parameter values from simulations are normally 

distributed, we gave our results with the %95 and %99 confidence intervals for 

the parameters.   

In this study our aim is observing the distribution of the Vasicek Model 

parameters. There are already various studies about parameter estimation of the 

Vasicek and other diffusion models. But we used Monte Carlo Method for 

obtaining the distribution of the estimated parameters. Through this technique we 

observed probability distributions of parameters and we also got confidence 

intervals. It can be clearly seen major difference between the borders of the 

intervals for long term mean and mean reversion parameters. So during the 

parameter estimation process confidence intervals are necessary for more 

accuracy. This step is the key element of our study because probability 

distributions are much more realistic way describing uncertainty in variables of 

risk analysis. 
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