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ÖZET

KESİKL İ GRAFLARIN S ÜREKL İ HALE

DÖNÜŞTÜRÜLMESİ İÇ İN YAZILIM GEL İŞTİRME
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Yüksek Lisans Tezi, Bilgisayar Mühendisliği Bölümü

Tez Danışmanı: Doç. Dr. Ahmet Hasan KOLTUKSUZ

Haziran 2012, 75 sayfa

Güncel bilgi modelleri bilgiyi oluşturan kelimelerin veharflerin frekansları,

kelime uzunlukları ve bilginin sıkıştırılması gibi bilginin sözdizimsel özelliklerin

incelenmesiyle ilgilenmektedir. Bilginin analizini ve elde edinimini geliştirmek için

semantik özellikler üzerinde çalışan yeni hesaplama modelleri tanımlanmalıdır.

Bu çalışmada bilginin ve yeni hesaplama modellerinin tanımlanmasına elverişli

yapılar olarak türevlenebilir manifoldlara yer verilmis¸tir. Tanımları gereği mani-

foldlar global ölçekte bakıldığındäOklidyen olmayan özellikler gösterirken lokal

ölçeklerde öklidyen uzaylara benzemektedirler. Bu özellikleri sayesinde öngörülen

yeni modellerinÖklidyen modeller üzerinde çalışan güncel modelleri de kapsaması

söz konusudur.

Bilginin bilgisayar bilimlerindeki en yaygın modellerinden biri graf yapılarıdır.

Graf yapıları tanımları itibariyle ayrık ve hesaplanabilirlerdir. Bu tezin temel amacı

graflardan manifoldlara bağıntılar kurulmasını araştırarak graf olarak tanımlanan

bilginin yeni ve sürekli modellere taşınabilirliğini sınamaktır. Bu amaç dahilinde

bilginin geometrik özelliklerinin tanımlanmasına bir adım daha yaklaşılmış ola-

caktır.

Anahtar Kelimeler: Bilgi, Bilginin modellenmesi, Laplacian, Laplace - Bel-

trami Operatorü, Graf, Manifold, Türevlenebilir Geometri, Öklidyen olmayan ge-

ometri.
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SOFTWARE DEVELOPMENT FOR TRANSITIONS OF
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The contemporary information model deals only with syntactics of informa-

tion, such as frequency of the occurances of characters, length of words and com-

pression amount of documents. Computable models targetingsemantic properties

of information, such as relations between words, should be defined and studied in

order to improve the analysis and the retrieval of information.

Manifolds are suitable differentiable mathematical objects for information to

be defined on. By their very definition they are non-euclideanin the global view

but in local scales they resemble euclidean spaces. This property provides that the

contemporary models can also be defined within the previsioned new models of

information models.

One of the most basic representation of information is through graphs. They

are discrete and highly computable mathematical bojects. In this thesis, the main

aim is to investigate methods of embedding this simple pieceof information onto

manifolds. This aim is supposed to lead us to defining the geometrical aspects of

information.

Keywords: Information, Information Modeling, Laplacian, Laplace - Bel-

trami Operator, Graph, Manifold, Differential Geometry, Non - Euclidean Geome-

try.
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Chapter 1

Introduction

The information model is the representation of informationin a way that it can

be analyzed, measured, processed and transferred. The contemporary information

model can deal only with the syntactics of information, suchas frequency of the

occurances of characters, length of words and compression percentage of plain texts.

The model was introduced by Claude E. Shannon in his 1948 famous paper “A

Mathematical Theory of Communication” [5].

In this information model, the definition of information is based on probabil-

ity theory and statistics.The Shannon Entropy, the most striking concept within this

model, is given by the quantification of the expected value ofinformation contained

in a message. This model contains nothing about the semantics of information. For

the semantic properties to be modeled, ontology based semi-automatic information

retrieval models have been proposed. These models rely mostly on the human in-

teraction to define the relations between words, in order to derive their meanings

[6].
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Information Retrieval (IR) is the process of searching specific information

either as

• text, sound, image, video, data or metadata in some document, or

• specific documents within a collection.

IR systems are designed with the objective of providing, in response to a query,

references to documents that would contain the informationdesired by the user [7].

In IR systems, documents and queries are represented in a mathematical model

where an operation regarding to the closeness of documents are formally defined.

There must be a conversion of documents and queries into the element set of the

system to retrieve which documents the user should read withrespect to the query

user provided.

The process begins when user enters a query into the system. The system

converts this query into an element in the model and relates it with some other

elements with the closeness function of the system. Closeness functionf is defined

as:

f : V ×Q→ U (1.1)

where V is the mathematical model of document collection, Q is the set of queries

for the information needs of the user and U is the subset of V relevant to the query

of the user.

The Vector Space Models (VSM’s) has been the standard model for informa-

tion retrieval since 1975. In this model, each unique word orsome subset of unique

words within document collection represents a dimension inspace and called terms.

Choosing the terms depends on the application. Each document and query repre-

sents a vector within that multi-dimensional space [8].
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1.1 Motivation and Aims

VSM terms are assumed to be orthogonal. This assumption, leaves out the semantic

relationship between terms. The terms which represents thecoordinate system of

the document space, can be related and the angles between them can vary depending

on the relation instead of being orthogonal. This problem iscalled “The Problem

of Dimensionality” [9]. Regarding the coordinate system as constant is yet another

problem in addition to the problem of dimensionality. The angles between terms

can vary depending on the document. This variation among documents leads to

new document spaces defined by different sets of basis vectors.

The aforementioned problems lead to the assumption that thestructure of in-

formation is non-linear, and should be defined in continuousmathematical objects

instead of vector spaces. Therefore the models related to the manifolds are studied

in this research. Manifolds are suitable differentiable mathematical objects for in-

formation to be defined on. By their very definition they are non-euclidean in the

global view but in local scales they resemble euclidean spaces. AS a consequence,

the contemporary models can also be defined within the previsioned new models of

information models.

One of the most basic representation of information is through graphs. Graphs

are discrete and highly computable. In this thesis, the mainaim is to investigate

methods of embedding information onto manifolds using graohs. The methodology

is constructed as follows;

• The graph should be constructed from points which are believed to be samples

from a manifold, so that the geometry of information is preserved.

• The relation between the properties of the graph and the manifold should be

defined.

• And finally, the embedding map should be constructed.

Transition of graphs onto manifolds enables a series of applications such as

graph matching and dimensionality reduction to be done using graphs along with
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the manifold properties. Image, text and sound analysis examples can be found at

[3], [2], [4].

For the aim of examining graph embedding methods, python script program-

ming language based software are developed in this thesis. It is important to state

that the transition methods can be useful after the non-linear information properties

are inputted.

1.2 Outline

The rest of this thesis is structured as follows.

Chapter2 consists of the definitions of mathematical structures. In this chap-

ter, manifolds and graphs are defined and their properties are presented.

Chapter3 defines the relation between manifolds and graphs using the Lapla-

cian Operator.

Chapter4 and Chapter5 present the graph embedding methods.

Chapter6, the final chapter, concludes the thesis and summarize future works

in the direction of this research.
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Chapter 2

Mathematical Background

In this chapter the necessary definitions including manifolds and graphs are given.

The structure of this chapter is as follows:

• Vectors, basis vectors, tensors and transformation law is explained briefly.

• The notion of maps, its properties, and more importantly thenotion of conti-

nuity are stated.

• Definition of coordinate charts, manifolds, and their properties are presented.

• Definition of graphs and properties of graphs are provided.

The notations used in this chapter is from the “Einstein’s Summation Nota-

tion” [10].

2.1 Vectors, Basis Vectors, Tensors and Transforma-

tion Law

2.1.1 Vectors, Vector Spaces and Vector Fields

In euclidean spaces, vectors are the line elements equippedwith a direction. Each

vector has a magnitude and a definite direction. A vector can be represented as a
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graphical arrow which has an initial and terminal point.

• A vector may possess a constant initial point and terminal point. Such a vector

is called a bound vector.

• When only the magnitude and direction of the vector matter and the vector is

called a free vector.

Definition 2.1. Let v1, v2, v3 be vectors andn1, n2, s ∈ R. A vector space over a

field F is a set with two binary operations (+,*) satisfying

• v1 + (v2 + v3) = (v1 + v2) + v3(Associativity)

• v1 + v2 = v2 + v1 (Commutativity)

• There exists an element0 ∈ V , s.t.v + 0 = v for all v ∈ V (Identity)

• s.(v1 + v2) = s.v1 + s.v2

• (n1 + n2)v = n1v + n2v

• n1.(n2.s) = (n1.n2).s

• For all v ∈ V , there exists−v s.t.v + (−v) = 0 (Inverse)

• For all s ∈ F , 1s = s, 1 ∈ F is the multiplicative identity

Definition 2.2. Although the terms “scalar field” and “vector field” containsthe

term “field”, the definitions below should not be mixed up withthe algebraic defi-

nition of fields.

• A scalar field is an assignment of a scalar to each point in the euclidean sub-

space.

• A vector field is an assignment of a vector to each point in the euclidean

subspace.
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2.1.2 Basis Vectors and Vector Expansion on Basis

Definition 2.3. A basis of a vector space is the set of linearly independent vectors

which can be used to generate every vector in that space. Whenthe angles between

them are not perpendicular, they are called skew-angular basis. Orthogonal other-

wise.

Definition 2.4. A coordinate system is a basis complemented with a fixed point

called origin.

When our vectors reaching to infinity and perpendicular to each other, the

space is called aCartesian Coordinate System. Whenever the angles different than

perpendicular, then the space is still calledEuclidean Coordinate Systembut the

basis is no more orthogonal. If the angles between basis vectors are changing at

every point, more precisely if instead of lines as basis vectors, there are curves then

the space is said to be incurvilinear coordinatesystem.

A vector in curvilinear coordinates is not curved as it can beincorrectly inter-

pretted. Instead we have different basis vectors at each point, determined by partial

derivatives of the curves at the point. In that case, at everypoint there exists a vec-

tor space called tangent space. Tangent spaces will be detailed in the properties of

manifolds in section2.2.3. The Figure2.1illustrates the definition of basis vectors.

Let e1, e2, . . . , en be the basis vectors anda1, a2, . . . , an be the coefficients of

the components of a vector. Once we have the basis vectors, any vector within the

space that the basis vectors span can be represented as

a = a1e1 + a2e2 + a3e3 + . . .+ anen = aiei (2.1)

where n is the dimension of the space. This notation is calledvector expansion

over the basis e.
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FIGURE 2.1: The basis vectors of the tangent space at the point p.

2.1.3 Basis Transformations

Every vector has a unique vector expansion on any basis. Let say we have three basis

vectorse1, e2 ande3 in R
3. These three basis vectors define all the three dimensional

vectors in the spaceR3 in the form ofaiei.

In order to have simple coefficients for your vectors in your vector space, it is

needed to change the basis. Changing the basis is the same as expanding a vector

on a basis.

Let’s define new basis vectors asê1, ê2 and ê3. The old basis vectors can be

defined on the new space that is constructed by the new basis vectors. Let’s take one

of the old basis vectorse1.

e1 = s11ê1 + s21ê2 + s31ê3

The second and third vector can be expanded as well;

e2 = s12ê1 + s22ê2 + s32ê3
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e3 = s13ê1 + s23ê2 + s33ê3

When considered jointly, these three formulas called transition formulas. They

can be grouped and called astransition matrixor direct transition matrix[11];

S =

∥

∥

∥

∥

∥

∥

∥

∥

∥

s11 s21 s31

s12 s22 s32

s13 s23 s33

∥

∥

∥

∥

∥

∥

∥

∥

∥

We can also define a transition from the new basis to the old one.

ê1 = t11e1 + t21e2 + t31e3

ê2 = t12e1 + t22e2 + t32e3 (2.2)

ê3 = t13e1 + t23e2 + t33e3 (2.3)

This time the matrix is calledinverse transition matrix[11].

T =

∥

∥

∥

∥

∥

∥

∥

∥

∥

t11 t21 t31

t12 t22 t32

t13 t23 t33

∥

∥

∥

∥

∥

∥

∥

∥

∥

Theorem 2.5. The inverse transition matrix T is the inverse of the direct transition

matrix S.

2.1.4 Vectors - Covectors or Contravariant - Covariant Vectors

A vector does not change when the basis of the vector changed but their coordinates

change according to the change of the basis [11].

Suppose we have a vectora expanded on the basis setei and let’s try to change

the basis.

a = a1e1 + a2e2 + a3e3 + . . .+ anen = aiei (2.4)
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Basis is changed according to our previous formula??, written again, this time

stating the Einstein summation indices also.

ei = T j
i êj (2.5)

Substituting2.5into 2.4yields:

aiei = ai(T j
i êj) = (aiT j

i )êj = âiêj

Hence,the direct vector transition formulais as below[11]:

âi = aiT j
i

As it can be seen easily,the inverse vector transition formulais:

ai = âiSj
i

Mathematically, we can construct a vectorial object in two ways: one that

transforms as (vectors) and one that transforms oppositelyas (covectors) aforemen-

tioned transformations.

For a vector to be coordinate system invariant, the coordinates of the vector

must contravary under a change of basis. That is, the coordinates must vary in

the opposite way (with the inverse transformation) as the change of basis. For this

being so, they are also called contravariant vectors. Note that, In Einstein’s notation,

contravariant components are stated as upper indices.

Definition 2.6. A geometric objecta in each basis by a set of coordinatesa1, a2, . . . , an

and such that its coordinates obey the below transformationrules under a change of

basis is called avector (contravariant vector)[11]:

âi = aiT j
i
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and

ai = âiSj
i

For a covector, (such as a gradient) to be coordinate system invariant, the

coordinates of the vector must covary under a change of basisto maintain. That is,

the coordinates must vary by the same transformation as the change of basis. For

this being so, they are also called covariant vectors. In Einstein’s notation, covariant

components are stated as lower indices.

Definition 2.7. A geometric objecta in each basis by a set of coordinatesa1, a2, . . . , an

and such that its coordinates obey the below transformationrules under a change of

basis is called acovector (covariant vector)[11]:

âi = aiSj
i

and

ai = âiT j
i

2.1.5 Tensors and Their Properties

Before giving the general definition of tensors, it is important to give the definition

of the linear operators for understanding the concept.

Definition 2.8. A geometric objectF in each basis represented by a square matrix

F i
j and such that components of its matrix obeys the below transformation rules

under a change of basis is called alinear operator[11]:

F̂ i
j = T i

p · Sq
j · F p

q

F i
j = Si

p · T q
j · F̂ p

q

As stated in the definition, there is one covariant index and for that being so,

there is one inverse transition matrix in the transformation law and the same applies

to the contravariant index.
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Generalizing that idea will lead through the tensor definition.

Definition 2.9. A geometric objectX in each basis represented by a(r + s) di-

mensional arrayX i1,i2,...,ir
j1,j2,...,js

and such that components of its multidimensional array

obeys the below transformation rules under a change of basisis called atensorof

rank(r, s)[11]:

X i1,i2,...,ir
j1,j2,...,js

= Si1,i2,...,ir
h1,h2,...,hr

T k1,k2,...,ks
j1,j2,...,js

X̂h1,h2,...,hr

k1,k2,...,ks

X̂ i1,i2,...,ir
j1,j2,...,js

= T i1,i2,...,ir
h1,h2,...,hr

Sk1,k2,...,ks
j1,j2,...,js

Xh1,h2,...,hr

k1,k2,...,ks

2.1.5.1 Tensor Addition and Multiplication by a Scalar

Tensor addition and multiplication by a scalar are the most primitive operations.

The addition formula is as below:

Z i1,i2,...,ir
j1,j2,...,js

= X i1,i2,...,ir
j1,j2,...,js

+ Y i1,i2,...,ir
j1,j2,...,js

As it can be seen from the formula that tensors must be of the same rank in

order to perform an addition. The tensor multiplication by ascalar is given by the

formula:

X i1,i2,...,ir
j1,j2,...,js

= αY i1,i2,...,ir
j1,j2,...,js

Scalar multiplication doesn’t change the rank of the tensor.

2.1.5.2 Tensor Product

Tensor productis given by the formula:

Z i1,i2,...,ir+p
j1,j2,...,js+q = X i1,i2,...,ir

j1,j2,...,js
⊗ Y ir+1,ir+2,...,ir+p

js+1,js+2,...,js+q
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This formula is denoted by the symbol⊗. As can be seen from the formula, it takes

two tensors with rank respectively(r, s), (p, q) and generates a new tensor with rank

(r + p, q + s). This operation increases the rank of the tensors. [11]

2.1.5.3 Contraction

This operation reduces the rank of a tensor of rank(r, s) to (r−1, s−1). Contraction

is performed by summing over one contravariant and one covariant index. So the

formula is:

Z i1,i2,...,ir−1
j1,j2,...,js−1 = X i1,i2,...,k,...,ir

j1,j2,...,k,...,js

Replacing an upper and a lower index with the summation indexk let us sum

all free indices and reduce the summation index.

2.1.5.4 Raising and Lowering Indices

Raising and lowering indices includes two operations: tensor product and contrac-

tion. Before explaining these two concepts, it is importantto understand what the

metric tensor is.

The metricgpq is the tensor that defines the inner geometry of the space. The

metric is used when calculation of the shortest path betweentwo vectors or points

needed and also it allows the computation of the shortest path between two points

in a certain geometry. This concept will be considered in detail in the Section2.2.5.

The raising procedureis as below, the first tensor product by the metric is

taken and then the second index and the index to be raised is contracted. For that

operation being so, the covariant indices are increased by and the contravariant in-

dices decreased by one.

Y ...,p,q,...
...,k,... = gpq ⊗X ...

...,k,...

X ...,p,...
... = gpkY ...

...,k,...



14

The inverse operation is calledthe lowering procedureand it is using the

inverse metric.

Y ...,k,...
...,p,q,... = gpq ⊗X ...,k,...

...

X ...
...,p,... = gpkY

...,k,...
...

More information about tensors and tensor operations can befound at [11], and in

the first two chapters of [12]. Tensor’s properties and their differentiation will be

given after the definition of manifold and the smoothness of manifolds are under-

stood. The following section constructs the definition of manifolds.

2.2 Manifolds

2.2.1 Maps and Continuity

To construct the definition of the manifold and its properties of being smooth and

locally euclidean, some preliminary definitions are required. One of the most basic

definitions is the definition of map notion.

Definition 2.10. Given two sets M and N, a mapφ:M → N is a relationship that

assigns each element of M to exactly one element of N.

The composition of given two mapsφ, ψ is defined below:

Definition 2.11. Given two mapsφ:M → N , ψ: N→ K, the composition (ψ ◦ φ):

M → K is defined by the operation (ψ ◦ φ)(a) = (ψ ( φ))(a).

A mapφ is called one-to-one or injective if each element of N has at most one

element of M mapped into it and a map is called onto or surjective if each element

of N has at least one element of M mapped into it.

In the case of the mapφ the set M is calleddomain and the set N is called

image.
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The notion ofcontinuityof a map given here is the notion of continuity in

ordinary functions which are maps defined fromR toR. One can extend the idea to

the higher dimensional euclidean spaces,R
m.

Definition 2.12. A mapφ in R is continuous at x = a if and only if;

1. φ(a) is defined.

2. limx→a φ(x) exists.

3. limx→a φ(x) = φ(a)

The left hand derivative ofφ is given bylimh→0−
φ(a+h)−φ(a)

h
provided that

this limit exists and the right hand derivativelimh→0+
φ(a+h)−φ(a)

h
, again, provided

that this limit exists. We say that a mapφ is differentiableat x = a if the left hand

derivative equals the right hand derivative. Any calculus book can be checked in

order to understand this notions therefore no references will be provided for this

notions.

To extend these notions towards more general euclidean spaces, linear map

notion must be given.

Definition 2.13. A linear mapφ : Rm → R
n takes a point(x1, x2, . . . , xm) in R

m to

a point(y1, y2, . . . , yn) in R
n while preserving the operations of addition and scalar

multiplication. The mapφ : Rm → R
n can be thought as collection of following

maps [12]:

y1 = φ1(x1, x2, . . . , xm)

y2 = φ1(x1, x2, . . . , xm)

˙̇̇

yn = φ1(x1, x2, . . . , xm)

If pth derivative of a map exists and is continuous, that map is calledCp. A

linear map is calledCp if all of its component’spth derivative exists and is contin-

uous. AC0 map is continuous but not differentiable and aC∞ map is continuous

and can be differentiated infinitely.C∞ maps are calledsmooth[12].



16

With the definition of smoothness, we can now definediffeomorphisms.

Definition 2.14. Two sets M and N are called diffeomorphic if there exists aC∞

mapφ : M → N with an inverseφ−1 : N → M which is alsoC∞. Here, the map

φ is calleddiffeomorphism[12].

The notion of diffeomorphisms is useful when considering the equivalence of

manifolds.

2.2.2 Coordinate charts and manifold definition

Definition 2.15. An open ball is a set of all pointsx in R
n such that|x− y| < r for

some fixedy ∈ R
n andr ∈ R, where|x− y| is euclidean distance.

In other words, an open ball is the interior of ann-sphere with a radiusr

centered aty. This definition directly inherits the meaning of a metric space. Here,

the metric is the euclidean distance.

Definition 2.16. A setV is called an open set if for anyy ∈ V , there is an open ball

centered aty such thaty ∈ V.

An open set can be thought as an interior of some(n− 1) dimensional closed

surface [12]. Along with a map onto an open set inRn leads to a definition of charts.

Definition 2.17. A chart or coordinate systemis a one-to-one map

φ : U → V (2.6)

whereU is a subset ofM andV is an open set inRn.

Since any map is onto its image, U is an also open set inM . Finally, with

these ingredients in hand, manifold definition can be given.

Definition 2.18. An atlas for a setM is an indexed collection(Uα, φα) of charts

onM such that
⋃

Uα = M . If the images of charts aren-dimensional Euclidean

spaces, then M is said to be ann-dimensional manifold[12].
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The manifold definition comprises two important properties. The first one is

being locally euclidean. The images of charts are euclideanspaces and since all the

charts are consisting of an open set and a map, the chart resembles the euclidean

space of the same dimension. This property is called being locally euclidean.

The other important property among charts is being smoothlysewn together.

The meaning of this property is smooth maps can be defined between the inter-

sectioned parts between the euclidean spaces that the localparts of the manifold

resembles.

2.2.3 Directional Derivatives and Tangent Spaces

A tangent space at pointp can be imagined as the collection of vectors that is tangent

to all the curves passingp. A derivative definition of manifolds on curves should be

given next in order to define the concept of “being tangent on manifolds”.

Definition 2.19. Let F be the space of all curves through a pointp on a manifold.

For each differentiable curvef in F , there is an operator calleddirectional deriva-

tivesuch that:

f → df/dλ

whereλ is the parameter along the curve.

Being differentiable for a curve on a manifold means that thecurve is dif-

ferentiable at every chart of the manifold. With the definition of a derivative on

manifolds, we can claim that a tangent space is the space of directional derivative

operators along the curves throughp [12]. The tangent space definition is as the

following:

Definition 2.20. Tangent space is a real vector spaceR
n tangentially attached to a

point p of a differentiablen-manifoldM , denoted byTpM . If γ is a curve passing

throughp then the derivative ofγ atp is a vector inTpM .
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FIGURE 2.2: Tangent space of a manifoldM

2.2.4 Riemannian Manifolds and The Metric Tensor

At every point of a manifold, there is a tangent space that defines the tangent vectors

of that point. The tangent space at a pointp has the same dimensionality as the

manifold. There are two properties for a manifold to beRiemannian: it should have

an inner product defined in every tangent space of the manifold such that one can

compute the norm of a vector and the distance between two vectors from that space.

The other property is that the inner product should vary smoothly and inner product

of two tangent spaces should specify a smooth function onM . This inner product

property is allowed bythe metric tensor.

Since the basis vectors of the tangent space can be constructed using the par-

tial derivatives of the manifold at a pointp, the metric can also be different at every

point on the manifold and the metric should vary smoothly from point to point on

the manifold as the coordinate system changes. That means precisely, given any

open subsetU on manifoldM , at each pointp in U , the metric tensor assigns a

metricgµ,ϑ and this assignment is a smooth mapping onM . Furthermore, it can be

seen as a bilinear operator on vectorsV µ, Uϑ and also denoted asgp(V µ, Uϑ).

The properties of the metric are provided as follows:

• The metric is symmetric. WhereU andV are vectors in a tangent space.

gµϑV
µUϑ = gϑµU

ϑV µ
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• The metric is bilinear. Where a, b are scalars,

gµϑ(aV
µ + bUϑ)W α = a · gµϑV µW α + b · gµϑUϑW α

gµϑW
α(aV µ + bUϑ) = agµϑW

αV µ + bgαϑW
αUϑ

• The metric is non-degenarate. That means the determinant ofthe metric does

not vanish, therefore we can calculate the inverse metric bythe formula:

gµϑg
ϑσ = gλσgλµ = δµσ = δσµ

Further reference can be found at [12], [13].

2.2.5 Length of Curves on a manifold and Geodesics

Assume that there exists a curveγ(t) : [0, 1] → M . On each pointp on the curve

γ, there exists a tangent vectordγ(t)
dt

. Since we have the metric in each tangent

space, we can calculate each tangent vectors norm. Moving around the curve by

infinitesimal steps and summing up this vectors as in figure2.3gives us the length

of the curve. We can denote the length of the curveγ asL(γ).

L(γ) =

∫ 1

0

||dγ(t)
dt
||dt (2.7)

Although the geometry is curved, the notion of the straight line remains.

The generalization of straight line is calledgeodesics. A Riemannian manifold

is geodesicaly complete. This means that for every pointa, b on manifoldµ, there

exists a geodesic joining them. This theorem is calledHopf - Rinow theorem. The

details on this theorem can be found at [14].

Geodesic distances are shortest paths between two points ona manifold. To

give the mathematical definition of the geodesic,covariant derivativeshould be

defined first.
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FIGURE 2.3: Tangent vectors of a curve on a manifoldM .

2.2.6 Affine Connection, Covariant Derivative and Geodesics

Covariant derivatives are important in this study since thedefinition of geodesic

depends on this notion. Given a parametric curveγ(t) onM , asγ(t) moves onM ,

the tangent spaceTγ(t)M changes. This change can be defined with the notion of

covariant derivatives[15].

Definition 2.21. Let (M, g) be a Riemannian ManifoldM equipped with a smooth

metric g and letV be the set of all vector fields inM and letf : M → R is any

smooth function.

A connection onM is an operator∇ : V ×V → V that satisfies the following

conditions:

• ∇X1+X2
Y = ∇X1

Y +∇X2
Y

• ∇XY1 + Y2 = ∇XY1 +∇XY2

• ∇fXY = f∇XY

• ∇XfY = X(f)Y + f∇XY

In addition to those properties, if a connection satisfied the properties below,

it becomesconnection with respect to the metricg.

• X(g(Y, Z)) = g(∇XY, Z) + g(Y,∇XZ) for anyX, Y, Z ∈ V

• ∇XY −∇YX = [X, Y ], the lie bracket ofX, Y
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Theorem 2.22 (The Fundamental Theorem of Riemannian Geometry). For any

smooth manifoldM with a smooth Riemannian metricg there exists a unique Rie-

mannian connection onM corresponding tog. This connection is namedLevi -

Civita Connection.

For the proof of this theorem, see [14].

The unique connection given above can be constructed from the metric, and it

is encapsulated in an object called theChristoffel Symbol, given by

Γλ
µυ =

1

2
gλσ(∂µgυσ + ∂υgσµ + ∂σgµυ)

The use of this symbol is fundamentally for taking covariantderivatives∇µ.

The covariant derivative of a vector fieldV υ is given by [12]:

∇µV
υ = ∂µV

υ + Γυ
µσV

σ

This notion is the generalization of the partial derivatives on manifolds. The

formula can be interpreted as the partial derivative plus a correction specified by a

set ofn matricesΓρ
µσ. The covariant derivative of a tensor of rank(k, l) is given by

the formula [12]:

∇σT
µ1µ2...µk
υ1υ2...υl

= ∂σT
µ1µ2...µk
υ1υ2...υl

+Γµ1

σλT
λµ2...µk
υ1υ2...υl

+ Γµ2

σλT
µ1λ...µk
υ1υ2...υl

+ . . . (2.8)

−Γλ
συ1
T µ1µ2...µk

λυ2...υl
− Γλ

συ2
T µ1µ2...µk

υ1λ...υl
− . . . (2.9)

The concept ofparallel transportis moving a vector or tensor along a path

while keeping it constant. In the flat space, there is no need to consider the point

that the vector or tensor to be moved on. However, In a curved space, the result of

parallel transport depends on the underlying path between points that the vector or

tensor to be moved.
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For a tensor to be constant on a given curveγ(λ) is given by the formula:

D

dλ
T µ1µ2...µk
υ1υ2...υl

=
dγσ

dλ
∇σT

µ1µ2...µk
υ1υ2...υl

= 0

Specifying this formula for vectors yields [12]:

d

dλ
V µ + Γµ

σρ

dγσ

dλ
V ρ = 0

As stated in the previous section,geodesicsare the generalized notion of

straight line in the curved space. A straight line is the pathof the shortest dis-

tance between two points. Also, a straight line can be seen asa path that parallel

transports its own tangent vector [12].

The tangent vector to a pathγ(λ) is:

dxµ

dλ
.

The condition that it is parallel transported is as below andthis equation is

calledgeodesic equation[12]:

d2γµ

dλ2
+ Γµ

ρσ

dγρ

dλ

dγσ

dλ
= 0

2.2.7 Gradient and Exponential Map

The gradient of a scalar function onM is the vector directed at the greatest rate of

change and has magnitude of the greatest rate of change at thepointp.

grad(fp) =

(

∂f

∂x1
, . . . ,

∂f

∂xn

)
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Gradients can also be applied to tensor fields. Applying gradient to a tensor

field with rank(k, l) yields a tensor with rank(k, l + 1)

Y i1,i2,...,ik
q,j1,j2,...,jl

= gradq(X
i1,i2,...,ik
j1,j2,...,jl

)

Another definition should be given in order to defineLaplace - Beltrami Operator

which is the main object of study in this thesis. With the use of the definition of

geodesics we can define the exponential map of a vector in a tangent space of a

manifold.

Definition 2.23. The exponential mapExpp at a pointp in M maps the tangent

spaceTpM into M by sending a vectorv in TpM to the point inM a distance|v|
along the geodesic fromp in the direction ofv [16].

The exponential map takes a vector from the tangent space andmap it onto

another point on the manifold using the geodesic along the direction fo the vector.

Figure2.4depicts the map from the tangent space atp onto the pointq.

FIGURE 2.4: Exponential mapExpp of a vectorv at pointp

2.2.8 Laplace-Beltrami Operator

The Laplace Operator, named after Pierre Simon Laplace and Eugene Beltrami,

is the operator on surfaces that maps functions to functions. It can be defined as

exponential map of the gradient of a scalar function defined on some manifoldM .
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In euclidean spaces, this operator can geometrically be interpreted as the map

from a pointp to another pointq so that from the pointp, the direction of the greatest

rate of change with a magnitude of the greatest rate of changeis the pointq.

Exponential maps are defined on tangent spaces. From the scalar functionf at

pointp the tangent vector is defined naturally by thegrad operator. After obtaining

this tangent vector, we can apply exponential map and move along with the geodesic

in the direction of this tangent vector.

Definition 2.24. The Laplace-Beltrami operator is denoted as△ and defined in

euclidean spaces as

△M f(p) =
∑

i

∂2f(expp(v))

∂x2i

and on any manifold as

△M f(p) =
1

√

det(g)
·
∑

j

∂

∂xj

(

√

det(g) ·
∑

i

gij · ∂f
∂x2i

)

wheref :M → R is a scalar function,gij is the metric of the manifold.

2.2.9 Curvature and Sectional Curvature

The curvature of a manifold is defined by theRiemann Curvature Tensor. Parallel

transportation of a vector defined in a tangent space of the manifold, will linearly

transform the vector. The Riemann curvature tensor directly measures the trans-

formation in a general Riemannian manifold. This transportation is known as the

holonomyof the manifold. [14]

Assume that we have vectorv, a andb, a andb are direction vectors andv

is the vector that we want to calculate the curvature of. Parallel transport it in the

direction ofa and then in the direction ofb. When the vectorv comes back to its

original point, there will be a linear transformation reflecting the curvature around

a andb of the vectorv. For that being so, the curvature tensor should be represented

by a tensor of rank(1, 3) [12].
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The Riemann Curvature Tensor is given by the formula:

Rρ
σµυ = ∂µΓ

ρ
υσ − ∂υΓρ

µσ + Γρ
µλΓ

λ
υσ − Γρ

υλΓ
λ
µσ

The sectional curvature can be defined as the deviation in curving of the

geodesic to the euclidean distance between these two points. The sectional of a

surface can be defined using the Riemann Curvature Tensor andtwo vectors. These

two vectors are for constructing the surface. Sectional curvature is denoted withK

[17].

K(S) = K(ua, vb) =
Rµρυσ · uµa · vρa · uυa · vσa
Gpqrs · upa · vqa · ura · vsa

whereGpqrs = gprgqs − gpsgqr.

2.3 Graphs and Their properties

2.3.1 Graphs

Definition 2.25. A graphG is a finite nonempty set of objects calledverticesto-

gether with a set of unordered pairs of distinct vertices ofG called edges. The

vertex set is denoted byV and the edge set is denoted byE.

The edgee = u, v of a graph is said to join the verticesu andv and they are

calledadjacentif they are joined by an edge.

A weighted graphis a graph where each edge has a real number associated to

it. A directed graphis a graph where each edge has a direction.

Degreeof a vertex is the number of vertices that it connects and being incident

to an edge means that vertex is connected to the edge. Two vertices that is connected

by an edge is calledadjacent[18].
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2.3.2 Matrix Structures of Graphs

Another way of representing a graph isadjacency matrix. The definition is as fol-

lows:

Definition 2.26. Let n be the number of vertices. Adjacency matrix is ann × n

matrix where

aij =











1 if υiυj ∈ E

0 if υiυj /∈ E

Also one can define the Incidence matrix.

Definition 2.27. Let n be the number of vertices andm be the number of edges.

Incidence matrix is ann×m matrix such that:

bij =











1 if υiej are incident

0 otherwise

Weight matrixis similar to the adjacency matrix but instead of 1’s the value of

the matrix is decided by the weight of the edges.

Definition 2.28. Let n be the number of vertices. Weight matrix is ann× n matrix

where

wij =











W (eij) if υiυj ∈ E

0 if υiυj /∈ E

Diagonal Weight Matrixof a graph is a matrix whose sums are row-sums of

W.

Dii = σjwij (2.10)

Degree matrixis a diagonal matrix where the diagonal represents the degrees of

vertices.

di,j :=







deg(vi) if i = j

0 otherwise
(2.11)
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2.3.3 Graph Laplacian

Laplacian of a graph is another matrix representation of graphs, mainly used in

spectral graph theory.

The Laplacian can be defined asL = D −W :

Definition 2.29.

L(u, v) =



























dv − wuv if u = v

−wuv if aij 6= 0

0 otherwise

(2.12)

In this study, the Laplacian carries an important role for the transitions of

them, which is explained in detail in the next section.
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Chapter 3

Convergence of Graph Laplacian to

Laplace-Beltrami Operator

In this chapter, the convergence and relation between Laplacian and Laplace-Beltrami

operator is inspected. This intuition will be the key concept in the process of transi-

tion of the graphs to the manifolds. The theorems and concepts given in this chapter

forms a solid ground to the applications and algorithms implemented in this study.

Mentioned theorems and proofs are provided by the studies ofMikhail Belkin and

Partha Niyogi [19]. Briefly, in this chapter:

• The Heat Kernel which is a solution for Heat Equation is givenin terms of

Laplacian.

• The convergence for the uniform distribution is provided.

• The convergence for an arbitrary probability distributionis provided.

3.1 Heat Equation

The Heat Equationis a partial differential equation which describes the distribution

of heat in a given region or surface over time.
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Definition 3.1. Letx1, x2, . . . , xn be the spatial variables andt is time variable. The

heat equationfor Rn is:

∂u

∂t
− (

∂2u

∂x21
+
∂2u

∂x22
+ . . .+

∂2u

∂x2n
) = 0

or alternatively:

∂u

∂t
−△u = 0

where△ is the Laplace-Beltrami operator forRn andu(x1, x2, . . . , xn, t) is the heat

function inRn.

The Laplace-Beltrami operator as can be seen in the definition closely related

to the heat flow over a space.

Let f : M → R be the initial heat distribution. The valueu(x, t) is the heat

distribution at the timet. In this case,u(x, o) = f(x). The heat kernel solution(Ht)

is one of the main solution to the heat equation problem. The solution is given by

the formula:

u(x, t) =

∫

M

Ht(x, y)f(y)

and in a local coordinate system on a manifold, the solutionHt is approxi-

mately the Gaussian [19].

Ht(x, y) = (4πt)
n
2 e−

|x−y|2

4t (f(x, y) +O(t)) (3.1)

wheref(x, y) is a smooth function on manifold withf(x, x) = 1 andO(t) is

the error value. Whenx, y are close, i.e. in the same neighbourhood, andt is small,

Ht is approximately [2]:

Ht(x, y) ≈ (4πt)
n
2 e−

|x−y|2

4t .
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So for euclidean spaces, the heat kernel is typically given by:

H tf = (4πt)
n
2

∫

Rn

e−
|x−y|2

4t f(y)dy

where the limit ofH tf whent→ 0 is given by

f(x) = lim
t→0

H tf(x).

We know that this equation satisfies the heat equation∂u
∂t
−△u = 0, leaving

the Laplace-Beltrami alone yields:

△ u(x, t) = −∂u(x, t)
∂t

At t = 0

△f(x) = − ∂

∂t
u(x, t)

∣

∣

∣

∣

t=0

= − ∂

∂t
H tf(x)

∣

∣

∣

∣

t=0

= lim
t→0

1

t
(f(x)−H tf(x))

The Heat Kernel is Gaussian and integrates to 1

= lim
t→0
−1
t

(

(4πt)−
n
2

∫

Rn

e−
|x−y|2

4t f(y)dy − f(x)(4πt)−n
2

∫

Rn

e−
|x−y|2

4t dy
)

The integrals can be approximated using summations over a set of points

(x1, x2, . . . , xk) which are assumed to be sampled on a manifold, then the Laplace-

Beltrami operator becomes:

△ f(x) =
1

t

(4πt)
n
2

k

(

f(x)
∑

i

e−
|xi−x|2

4t −
∑

i

e−
|xi−x|2

4t f(xi)
)
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If the weights of the graph which is constructed from sample points are chosen

to bewij = e−
|xi−xj |

2

4t , then the above expression simplifies to:

1

t(4πt)
n
2

Lt
nf(x)

whereL is the Graph Laplacian of identical points [19]. These set of equations and

convergence construct the mathematical basis for the graphembeddings to mani-

folds. The heat kernel provides us a smooth approximation ofedges between sam-

pled discrete points of manifolds.

3.2 Convergence Theorems

3.2.1 Convergence for Points from a Uniform Distribution

Consider a manifold embedded inRn. Given data pointsSn = x1, x2, . . . , xn sam-

pled i.i.d. from a uniform distribution. The Laplacian can be constructed from this

sample point by takingx1, x2, . . . , xn as vertices and taking edges by the formula

wij = e−
|xi−xj |

2

4t . The below theorem shows that for a fixed functionf ∈ C∞(M)

and for a fixed pointp ∈ M , after appropriate scaling (according to the heat equa-

tion, explained in the previous section)L converges to Laplace-Beltrami Operator (

△).

Theorem 3.2.Let data pointsx1, . . . , xn be sampled from a uniform distribution on

a manifoldM ⊂ Rn. Put tn = n−
1

k+2+α , whereα > 0 and letf ∈ C∞(M). Then

the following equation holds:

lim
n→∞

1

t(4πt)
n
2

Ltn
n f(x) =

1

vol(M)
△M f(x)

where the limit is taken in probability andvol(M) is the volume of the manifold

with respect to the canonical measure.

The proof of this theorem is in [19].
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3.2.2 Convergence for Points from an Arbitrary Probability Dis-

tribution

Above theorem for an arbitrary probability distributionP of a set of sampled points

can be stated as follows:

Theorem 3.3. Let P : M → R be a probability distribution function onM ac-

cording to which data pointsx1, . . . , xn are drawn in independent and identically

distrubuted fashion. Then fortn = n−
1

k+2+α , α > 0, we have

lim
n→∞

1

t(4πt)
n
2

Ltn
n f(x) =

1

vol(M)
P (x)△P 2 f(x)

where△P 2 is the weighted Laplacian.

In the algorithms in this study, the intuition is always thatthe graph is a proxy

to the manifold. Therefore, to justify this intuition, these theorems are provided in

this section. For further reference about Laplacian and Laplace - Beltrami operator,

see [19], [20], [21], [22].
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Chapter 4

Constructing Graphs from Point

Clouds

This chapter aims to describe the methods used to construct graphs fromn dimen-

sional data. In this thesis, two methods are used for the construction:

• k-Nearest Neighbours

• ∈-Neighbourhoods

This chapter contains the analysis of these two methods, their ramifications

and advantages in the process. At the end of this chapter, 3D visualizations of the

graphs constructed using these methods from random datasets are provided.

4.1 k-Nearest Neighbours Method (k − nn)

This method has been studied and widely used in the fields of pattern recognition,

statistical classification, computer vision and machine learning. As the name sug-

gests, this method produces a graph in which every point is connected to itsk nearest

neighbors. The distance function used in this study is Euclidean Distances of the

data points.
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Algorithm 1 Computation ofk − nn Graphs

Input: X: Dataset of n dimensions, k: The parameter ofk − nn
Output: Undirected graph in whichk-nearest neighbours are connected

Euc← [n][n] ⊲ Calculate Euclidean Distances
for i← 1 to n do

for j ← 1 to n do
Euc[i][j]← Distance(X [i], X [j])

end for
end for

for i← 1 to n do
for j ← 1 to k do ⊲ Findk minimum for each node inX

minindex= min{Euc[i]}
Adj[i][minindex] = 1
Euc[i][minindex]= maxint

end for
end for

The Algorithm is given below:

This is the brute force version of this algorithm and its asymptotic tight bound

isO(kn2). There are many optimizations and parallel implementations that can be

applied on this algorithm. Whenk = 1, the nearest neighbor for each data point

is connected. This particular case is called the all nearestneighbors problem. The

optimization for the1 − nn problem can be found in the reference numbered [23].

Furthermore, relaxation based versions of this algorithm can be inspected in order

to approximatek − nn. The optimizations and parallel implementations are not

included in this research. For further reading for optimizations refer to [24], [25],

[26].

Thek−nn algorithm does not make any geometrical assumptions on the data.

The only assumption is that the data lies on a metric space.

4.1.1 Parameter Selection

The parameter of thek − nn guarantees that there will bek edges for each node

in the graph. Therefore, wrong choice of the parameter does not lead to significant
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geometrical mistakes in this algorithm. The best choice of the parameter generally

depends on the data. However, smaller values generate sparse graphs.

4.1.2 Visualization

This chapter includes visualizations of thek − nn algorithm with respect to the

different choices ofk in the random datasets for 20, 30 and 40 nodes. The generated

random numbers are within the open interval of(0, 1). These visualizations intends

to give intuitive notion about constructed graphs.

FIGURE 4.1: Graph constructed from 20 nodes and with a parameterk = 3.

FIGURE 4.2: Graph constructed from 20 nodes and with a parameterk = 5.

Even though it is a small possibility to construct separatedgraphs with this

method, as can be seen in the Figure4.1.2, two discrete graphs are constructed as a

result of this algorithm with the parameter choice ofk = 3.
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FIGURE 4.3: Graph constructed from 20 nodes and with a parameterk = 7.

FIGURE 4.4: Graph constructed from 20 nodes and with a parameterk = 10.

4.2 ∈ - neighbourhoods

∈-graph is a graph where pairwise nodes are connected if the distance in between is

less than a predefined parameter∈. The∈-graph is more geometrically motivated

than thek − nn algorithm since the choice of the parameter is more geometrically

dependent on the data set.

The∈ - graph algorithm with wrong choice of parameter∈ with respect to the

data may yield to disconnected graphs [2]. However, if chosen wisely, this algorithm

yields to graphs that are geometrically symmetric.
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Algorithm 2 Computation of∈ - Graphs

Input: X: Dataset of n dimensions,∈: The parameter ofk − nn
Output: Undirected graph in which pairwise points are connected if the distance
in between less than or equals to∈.

for i← 1 to n do
for j ← 1 to n do

if Distance(X[i], X[j]) ≤∈ then ⊲ Calculate Euclidean Distances and
connect

Adj[i][j] = 1
end if

end for
end for

The∈-graph method is studied extensively in the literature. Forfurther opti-

mizations and literature points, see [27], [28].

4.2.1 Visualizations

FIGURE 4.5: Graph constructed from 20 nodes and with a parameter∈= 0.5.

In the Figure4.2.1, there is a dangling node which is not connected to any

other node in the graph.
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FIGURE 4.6: Graph constructed from 20 nodes and with a parameter∈= 0.6.

FIGURE 4.7: Graph constructed from 20 nodes and with a parameter∈= 0.7.
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Chapter 5

Transition to Manifolds

The justification of the relation between graph Laplacian and Laplace-Beltrami op-

erator is given in Chapter 3. The methods of calculating the Laplacian of a graph

is given in Chapter 4. This chapter introduces the methods oftransitions of graphs

onto manifolds. With this aim, there are 4 methods to be described next.

1. ISOMAP (Tenenbaum, de Silva, Langford, 2001)

2. Locally Linear Embeddings (Roweis, Saul, 2001)

3. Laplacian Eigenmaps (Belkin, Niyogi, 2002)

4. Riemannian Approach (Antonio Robles-Kelly, 2007)

Each of these methods are based on different key ideas.Isomaptries to im-

plement the shortest path algorithm for calculating the distances and it does not

depend on the Laplacian matrix to transit the nodes of the graph. Laplacian Eigen-

mapsmethod is making use of the heat equation method and the method of Locally

Linear Embeddingmethod also comprises a relation with the Laplacian [2]. In the

Riemannian Approachmethod, the distances between nodes are calculated with the

predefined constant curvature and points are mapped according to these distances

[4].
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The first three algorithm aims to reduce the dimensionality of the data lies on

a nonlinear manifold. Yet, the relation of these algorithmsand this study is about

the graph mappings of these algorithms. These algorithms create mappings from

graphs onto manifolds in the process of reducing the dimensionality. Therefore,

these algorithms constitutes a framework for the aim of representing data on mani-

folds.

5.1 Software Development and Technologies Used

The following part of this thesis contains information about the methods of trans-

mission and the visualizations of the aforementioned methods in 3-dimensional

space.

In this study, these methods are coded in the programming language ofPython

version 2.7. Pythonlanguage is chosen because of the fastn-dimensional matrix

manipulation libraryNumPyand the scientific library of PythonSciPy. The versions

of NumPyandSciPyare respectively 1.6.1 and 0.9.0.

The integrability of the open source mathematical softwareSAGEis also one

of the reasons of choosing the Python language. Graph visualizations of this study

is from the graph library of theSAGE. The version ofSAGEused in this thesis is

version 4.8. The3-dimensional manifold visualizations are from the surfaceinter-

polation library ofSAGE. All the manifold visualizations in this study have the aim

of providing a geometrical idea of these methods.
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5.2 Graph Embedding Methods

5.2.1 ISOMAP

Isomap algorithm, as mentioned in the introduction of this chapter, uses shortest

path algorithm to compute the distances between nodes. The main aim of this al-

gorithm to reduce the dimensionality of the data on non-linear manifold. The algo-

rithm tries to find a low dimensional representation covering the geometrical aspects

of the data. Isomap tries to combine the major algorithmic features of Principal

Component Analysis (PCA) and Multi-Dimensional Scaling (MDS) with the flexi-

bility to learn a broad class of nonlinear manifolds. PCA finds a low-dimensional

embedding of the data with respect to the variance of the dataset while MDS tries

to find a appropriate embedding with respect to the interpoint euclidean distances.

PCA and MDS, are simple to implement, efficiently computable, and guaranteed to

discover the true structure of data lying on or near a linear subspace of the high-

dimensional input space [29].

As explained in the introduction of this chapter, the algorithm creates a graph

from the data set and maps it onto manifolds. The interpoint distances are calcu-

lated as euclidean distances and the shortest paths netweennodes constitutes the

embedding.

The first part of the algorithm is the construction of graphs in one of the two

methods explained in Chapter4. After generating the graph, the graph structure

for the embedding is constructed. The initialization is done by definingdg(i, j) =

dg(j, i) and if nodei and nodej are linked,dg(i, j) =∞.

The second phase is to define the shortest paths. For each value of k in the

interval of0, . . . , N , whereN the number of nodes, replace all entriesdg(i, j) by

min(dg(i, j), dg(i, k)+dg(k, j)). The matrix of final values will contain the shortest

paths in the graph. Those values are regarded as the geodesics of two points on the

manifold.

The final phase the algorithm is to compute the embeddings on amanifold. Let

λp be thepth eigenvalue of the matrixτ(dg)whereτ(D) = −HSH/2whereS is the
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square of the matrixdg andH is the centering matrix defined asHij = δij − 1/N .

Let vip be theith component of thepth eigenvector. Thepth component of thed

dimensional data vectoryi is computed as
√

λpvip.

Algorithm 3 ISOMAP

Input: X: Dataset of n dimensions.

1. Compute the graph using one of the methods in Chapter4.

2. Compute the shortest path distances between all the nodesin graph.

3. Returned data pointsyi on manifold computed as
√

λpvip.

The Isomap Method may not be stable according to the geometryof the un-

derlying data since the curvature and the metric of the manifold is not regarded in

this method. However, this method is very efficient. For thatreason, this algorithm

is mentioned in this thesis as one of the methods that provides an isometric trans-

mission of graphs onto manifolds. Yet, the distances between nodes are calculated

as shortest path in the graph and these distances are regarded as geodesic. How-

ever, the shortest path distance concept is not equivalent of geodesic definition on a

smooth manifolds. Therefore, the link between geodesic andshortest path is weak

in this method of transmission.

5.2.2 Laplacian Eigenmaps Method

Laplacian Eigenmaps method considers the construction of geometric representa-

tion of data on a low dimensional manifold. The geometrical intuition behind this

method is inspired by the convention of heat in the nature. This method constructs

a natural link between the Graph Laplacian and the Laplace Beltrami Operator by

the heat equation.

In this method, locality of the nodes with respect to their euclidean distances

are preserved. Locality property means that the embedding keeps the local points

near on the manifold. The neighbourhood information also plays a key role in the

construction of the graph from datasets. The graph is constructed by one of the two

methods described in Chapter4, which arek − nn or ∈-neighbourhood. In either
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case the locality is tried to be preserved and the near pointsare tried to be connected,

which ensures the neighbourhood information also to be preserved.

Algorithm 4 explains the method explicitly. The heat kernel weight selec-

Algorithm 4 Laplacian Eigenmaps [2].

1. Constructing the adjacency graph using

• k −NN or

• ∈ − Neighbourhood.

2. After constructing the adjacency graph. The graphs weights should be chosen.
Two ways defined in the Laplacian Eigenmaps method. These are:

• Simple minded weight selection:

wij =

{

1 if node i and j are connected

0 otherwise

• The heat kernel weight selection, which is:

wij =

{

e−
|xi−xj |

2

4t if node i and j are connected

0 otherwise

3. Construct the Graph Laplacian and compute the eigenvalues and eigenvectors
for the problem of:

L · f = λ ·D · f (5.1)

Let f0, f1, . . . , fk−1 be the solutions of the problem5.1. The solutions are
ordered according to their eigenvalues:

L · f0 = λ0 ·D · f0
L · f1 = λ1 ·D · f1

. . .

L · fk−1 = λk−1 ·D · fk−1

0 = λ0 ≤ λ1 ≤ λ2 ≤ . . . ≤ λk−1

The embedding is constructed by omitting thef0 since it is the trivial solution
of the problem5.1. [2]

tion naturally provides us a smooth approximation of edges between the sampled

discrete points of the manifolds. Heat kernel, as explainedin the Chapter3, is

the smooth convention of heat between two discrete points bya geodesic. Conse-

quently, the intuition of defining geodesic provides the approximation.
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This method also related with the spectral clustering problem. Since, the

Laplacian and its eigenvalues can be used to describe geometrical properties of

graphs, they also bares information about connectedness and clusters of graphs.

The justification of this relation is explained in [2].

The method of Laplacian Eigenmaps is also a reduction of the next method

Locally Linear embedding (LLE). The problem that the LLE attemps to minimize

is an equivalent of finding the eigenfunctions of the Graph Laplacian in return. The

detailed justification is also given in [2].

5.2.3 Locally Linear Embedding (LLE)

LLE method is one of the dimensionality reduction methods with a different ap-

proach. LLE, instead of estimating pairwise distances, globally reconstructs the

embedding using an error function on linear weights. This error function is used to

keep local points near in the embeddings. The linear weightsare computed as the

minimal value of the following error function:

ε(W ) =
∑

i

|Xi −
∑

j

WijXj|2 (5.2)

The weights of the graph from the sample points are constructed by min-

imizing these least square problem in (5.2). In this computation, there are two

constraints: only the connected points are accounted for the least square problem

and sum of all edge weights of each node is always 1. By these two constraints,

the constructed graph presents invariant information about the underlying geometry

[1].

The method is provided in Algorithm5and Figure5.1depicts the LLE method.

What makes this method different than other methods in this study is that LLE

tries to assign each node a weight that fits best among its neighbours with respect to

the cost function. The second important point of this methodis that the embedding
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Algorithm 5 Locally Linear Embedding [3]

1. For each node in the dataset, the edges are defined by eitherk −NN or∈ −
neighbourhood.

2. Each edge given a weight in the interval of[0, 1] by minimizing the function
∑

i |Xi −
∑

j WijXj |2 such that the sum of all weights of each node is 1.

3. Embedding is computed by takingk lowest eigenvectors of the matrix:

E = (I −W )T (I −W )

FIGURE 5.1: Steps of Locally Linear Embedding [1]

is invariant under linear operations such as rotating and scaling. The weights are

calculated under the assumption that the sum of linear weights is 1 for each node.

This assumption creates an equivalence between linearly modified versions of the

data set. Therefore, any kind of linear operations do not change the embedding.

5.2.4 A Riemannian Approach for Graph Embedding

In this method the same relationship between Laplacian and Laplace - Beltrami

operator is used. However, the edge weights are chosen as sectional curvatures of a

manifold with constant curvature. This method uses the properties of Jacobi fields
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to compute an edge-weight matrix in which the elements are connected by curved

geodesics on the manifold between nodes [4].

In general, manifolds can have rather complex structures than the constant

curved ones. However, the approach of this method is the mostgeometrically in-

tuitive one. Finding a manifold which encapsulates the underlying geometry of

information is the main aim of this method. The embedded manifold assumed to

be of constant curvature. The curvature is represented by a parameterK, such that

K ∈ R. By altering this parameter, one can try to approach the geometry of under-

lying manifold of information. This method is proposed in [4] for the aim of graph

matching.

The eigenvalue decomposition of Laplace - Beltrami operator provides many

useful information about the underlying geometry such as the sectional curvature,

volume or Euler characteristics of the geometry [4]. However, this method tries to

find a corresponding manifold given a constant curvature andthe Laplacian with the

edge weights chosen to be that of the curvature.

The method first computes the edge weights between two nodes by the fol-

lowing formulation.

Wij =



























∫ 1

0
(a(u, v)2 + κ(sin(

√
κa(u, v)t)2))dt κ > 0

∫ 1

0
a(u, v)2dt κ = 0

∫ 1

0
(a(u, v)2 − κ(sinh(

√
−κa(u, v)t)2))dt κ < 0

(5.3)

The formulation (5.3) is the representation of the geodesics on the manifold

with the constant curvatureκ. The functiona(u, v) is the Euclidean distance of the

two nodesu andv. Whenκ = 0, that means the space is flat. On that ground,

the edge weights are equal to the weights of an Euclidean space. If κ 6= 0 then

the corrections which reflects the diversion from euclideanspace is included in the

formulation. This corrections are calculated as the Jacobian Field of a geodesic

from a manifold of constant curvature [4].

The algorithm is summarized below:
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Algorithm 6 A Riemannian Approach for Graph Embedding [4].

1. For each node in the dataset, the edges are defined by eitherk −NN or∈ −
neighbourhood.

2. Each edge given a weight by the function:

Wij =











∫ 1

0
(a(u, v)2 + κ(sin(

√
κa(u, v)t)2))dt κ > 0

∫ 1

0
a(u, v)2dt κ = 0

∫ 1

0
(a(u, v)2 − κ(sinh(

√
−κa(u, v)t)2))dt κ < 0

(5.4)

3. The embedding is calculated as the eigenvalues of the Graph Laplacian as
explained in the third step of the Algorithm4.

After the calculation of edge weights the procedure is very similar to the

Laplacian Eigenmaps method. The embedding is calculated asthe eigenvalues of

the Graph Laplacian. However, this method constitutes a more geometrical intuition

since the sectional curvature between the nodes of the graphis taken into account.

The graph matching applications and discussions of this method can be found

in [4]. However this study is only interested in the procedure of transforming nodes

of the graphs into the points of the manifold. In the AppendixA the visualizations

of these methods in3d is provided.
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Chapter 6

Conclusion

This thesis aims to provide a framework for embedding graphsonto manifolds.

As stated in the introduction, the author claims that this compilation of manifold

methods will be useful when the regarded non-Euclidean information model and

computable non-Euclidean properties of information are defined.

The point of origin of this thesis is that the information model should be

smooth and nonlinear. To define a new information model, the properties and analo-

gies between discrete and continuous worlds is inspected via this thesis.

In this thesis, the link between one of the main data structures of computation

and smooth manifolds is investigated. Several methods are focused on for the pur-

pose of finding the link and the methods in Chapter5 are implemented to develop a

software for this aim.

Graphs, the very common data structure of computation, are mapped onto

manifolds in this thesis. Yet, it is important to state that to create a mapping of a

graph, one should have the assumption that the data points which will be consti-

tuting the graph are sampled from a manifold. The link and theapproximation to

continuous states then becomes meaningful in this study.

The link between Discrete Laplacian and Continuous Laplace- Beltrami op-

erator is studied in Chapter3. This link is the main connection between two states.



52

Methods using this link are presented in Chapter5. Though, the methods in Chap-

ter 5 are borrowed from the areas of pattern recognition or manifold learning, the

perception of these methods in the process of modeling information is novel. This

study leads to further directions and they are discussed in the next section.

One hidden outcomes of this thesis is to gain knowledge aboutthe theory

of differential geometry. That is also one of the reasons that any application is

not included in this study. Grasping the theory to find new theoretical basis for

information is the key in this study. This key is important for the aims stated in the

future directions.

6.1 Further Directions

One of the future directions emerged from this study is to develop a non - Euclidean

information retrieval framework. The current Vector SpaceModels (VSM) can be

expanded by the assumption that the vector space they are in is tangent space of a

point on a manifold. This assumption leads to create geodesic distances between

data points on manifold and with the geodesic distances being transformations on

data points, there may be present optimizations on queries.

The second direction, which also makes this thesis meaningful, is to define

the geometry of information with the rather complex structures than manifolds of

constant curvature. The timeliness, validity and such properties of information can-

not be modeled through static geometries. Geometry of information should evolve

with time to model those properties. The current computational models which are

all based on the Turing’s model do not enclose the role of timein the information.

Though the time and space based evolving geometries is within the enclosure of

differential geometry, there is no computational models with such properties.

The third and final direction is to find different features of information which

one cannot find when the information is in the discrete state.Again to find such

features, the theory should be investigated to find similar links to that of Laplacian

and Laplace - Beltrami.
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Appendix A

Visualizations of the Graph

Embedding Methods

In this part of the thesis, the visualizations of the methodsin Chapter5 are included.

This visualizations are only surface interpolations for the data points generated by

these methods and by no means they are representing the real geometry of mani-

folds. They are included in this thesis to provide an intuition about the methods

explained in Chapter5.

Datasets generated in this part is random data sets in Euclidean space. They

are tried to be embedded into manifolds using the methods in Chapter5. Sage

version 4.8 uses GMP based random number generators for the functions used to

create datasets.
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A.1 Visualizations of Laplacian Eigenmaps

FIGURE A.1: Graph embedding using Laplacian Eigenmaps with 20 nodes

FIGURE A.2: Graph embedding using Laplacian Eigenmaps with 30 nodes

FIGURE A.3: Graph embedding using Laplacian Eigenmaps with 40 nodes



55

A.2 Visualizations of Locally Linear Embedding

FIGURE A.4: Graph embedding using LLE with 20 nodes

FIGURE A.5: Graph embedding using LLE with 30 nodes

FIGURE A.6: Graph embedding using LLE with 40 nodes
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A.3 Visualizations of Riemannian Approach

FIGURE A.7: Graph embedding using the Riemannian Approach with 20 nodes

FIGURE A.8: Graph embedding using the Riemannian Approach with 30 nodes

FIGURE A.9: Graph embedding using the Riemannian Approach with 40 nodes



57

Bibliography

[1] Sam T. Roweis and Lawrence K. Saul. Nonlinear dimensionality reduction by

locally linear embedding.Science, 290(5500):2323–2326, December 2000.

[2] Mikhail Belkin and Partha Niyogi. Laplacian eigenmaps for di-

mensionality reduction and data representation. Neural Compu-

tation, 15(6):1373–1396, June 2003. ISSN 0899-7667. URL

http://dx.doi.org/10.1162/089976603321780317.

[3] Sam T. Roweis and Lawrence K. Saul. Nonlinear dimensionality reduction by

locally linear embedding.Science, 290(5500):2323–2326, 2000.

[4] Antonio Robles-Kelly and Edwin R. Hancock. A riemannianapproach to

graph embedding.Pattern Recognition, 40(3):1042–1056, 2007.

[5] Claude E. Shannon. A mathematical theory of communication. Mobile Com-

puting and Communications Review, 5(1):3–55, 2001.

[6] David Vallet, Miriam Fernández, and Pablo Castells. The semantic web: Re-
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