
YAŞAR UNIVERSITY

GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

(MASTERS THESIS)

AUDIO CAPTURE AND PLAYBACK IN REAL-TIME

EMBEDDED LINUX SYSTEM USING ARM

POWERED i.MX53 BOARD

Thesis Author: Sa’id Muhammad SA’ID

Thesis Advisor: Prof. Dr. Mustafa GÜNDÜZALP

Department of and Electronic Engineering

Presentation Date: 13 June, 2014

Bornova, Izmir

June, 2014

This study titled “AUDIO CAPTURE AND PLAYBACK IN REAL-TIME

EMBEDDED LINUX SYSTEM USING ARM POWERED i.MX53 BOARD”

and presented as Master Thesis by Sa’id Muhammad SA’ID has been evaluated in

compliance with the relevant provisions of Y.U. Graduate Education and Training

Regulation and Y.U Institute of Science Education and Training Direction. The

jury members below have decided for the defense of this thesis and it has been

declared by consensus / majority of votes that the candidate has succeeded in his

thesis defense examination dated 13/06/2014.

Jury Members: Signature:

Head: ………………………………....................... …………………………

Rapporteur Member: ……………………...…….. …………………………

Member: ……………………………………..…… …………………………

iv

ABSTRACT

AUDIO CAPTURE AND PLAYBACK IN REAL-TIME EMBEDDED

LINUX SYSTEM USING ARM POWERED i.MX53 BOARD

Sa’id Muhammad SA’ID

MSc. in Electrical and Electronic Engineering

Supervisor: Prof. Dr. Mustafa GÜNDÜZALP

June, 2014, 72 pages

In this thesis, audio capture and playback is achieved on embedded ARM

system. Audio handling technique in conventional desktop computers is employed

to handle audio operations in real-time on embedded systems with limited

memory.

A Linux host system is used to develop a driver based on ALSA (Advanced

Linux Sound Architecture), a software framework that provides an API

(Application Programming Interface) for sound cards. A graphical user interface is

developed using GTK (GIMP Tool Kit) for the driver operations. C programming

language is used throughout the driver development. It is then cross compiled for

the ARM processor embedded in a tablet machine.

The various tools used in coding, debugging and cross compiling are

explained with clear description of their roles in the project. The project is

summarized and suggestions for further work are also detailed.

Keywords: Embedded system, ALSA, GTK, ARM Processor, real-time,

audio capture and playback

v

ӦZET

ARM i.MX53 KULLANARAK GÖMÜLÜ LINUX SISTEMINDE GERÇEK

- ZAMANLI SES YAKALAMA VE OYNATMA

SA’ID, Sa’id Muhammad

Yüksek Lisans Tezi, Elektrik Elektronik Mühendisliği

Tez Danışmanı : Prof. Dr. Mustafa Gündüzal p

Haziran 2014, 72 sayfa

Bu tezde gömülü ARM sistemlerinde, ses yakalama ve oynatma

gerçekleştirilmiştir. Ses işleme tekniği, sıradan masaüstü bilgisayarlar

kullanılarak, gerçek zamanlı olarak sınırlı hafızalı gömülü sistemlerde ses işlemek

için kullanıldı.

Ses kartları için arayüz sağlayan, sürücü tabanlı ses mimarisi (ALSA) geliştirmek

için Linüx host sistemi kullanıldı. Sürücü işlemleri için, GTK (GMIP Tool kit)

kullanarak kullanıcı arayüzü geliştirildi. Sürücünün geliştirilmesi aşamasında C

dili kullanıldı.Daha sonra tablet makine kullanarak, ARM işlemci için derlendi.

Kodlama, hata ayıklama, çapraz derlemede kullanılan türlü metodlar,projedeki

roller ile birlikte açıklandı.Proje özetlendi ve ilerideki çalışmalar için öneriler

anlatıldı.

Anahtar Kelimeler : Gömülü sistem , ALSA , GTK , ARM İşlemci , gerçek

zamanlı ses yakalama, gerçek zamanlı ses oynatma

vi

ACKNOWLEDGEMENT

I would like to express my profound gratitude to my supervisor and academic

advisor, Prof. Dr. Mustafa Gündüzalp who despite his tight schedules has

tirelessly provided me with his support and guidance throughout this research. He

continually and convincingly conveyed a spirit of patience and hard work despite

numerous obstacles we overcame.

 I will also like to thank all staff and faculty members especially Asst. Prof.

Dr. Erginer Ungan, Prof. Dr. Coşkun İsci, and Res. Assist. Gӧkhan Demirkıran,

Asst. Prof. Dr. Nalan Ozkurt who was also part of the defense jury with my

supervisor and Dr. Tuncay Ercan, among many others I may not be able to

mention, for their advises and assistance in various ways.

 This work wouldn’t have been possible without the great assistance I enjoyed

from KENTKART Research and Development Unit, who left all their resources at

my disposal during the research. I will like to personally thank Veli Demirel and

Ercüment Türk for their technical support.

 Above all, I thank and praise God for his sustenance and blessings which I

enjoy every day, best of which He bless me with the best parents and family I can

ever wish for. My deepest appreciation goes to my parents whose prayers,

guidance and support of all kinds are beyond mention.

 Finally, my gratitude also goes to all friends around me here in İzmir and

beyond for their loving company. To everyone, I say a big thank you. Without you

all, this work wouldn’t have been possible.

vii

TEXT OF OATH

I declare and honestly confirm that my study titled “Audio Capture and Playback

in Real-Time Embedded Linux System using ARM Powered i.MX53 Board” and

presented as a Master’s Thesis, has been written without applying to any

assistance inconsistent with scientific ethics and traditions, that all sources from

which I have benefitted are listed in the bibliography, and that I have benefitted

from these sources by means of making references.

13/06/2014

 Sa’id Muhammad SA’ID

viii

TABLE OF CONTENTS

ABSTRACT iv

ӦZET v

ACKNOWLEDGEMENT vi

TEXT OF OATH vii

TABLE OF CONTENTS viii

INDEX OF FIGURES xi

INDEX OF ABBREVIATIONS xiii

CHAPTER 1: INTRODUCTION 1

1.1 SCOPE 4

1.2 OUTLINE 4

CHAPTER 2: LITERATURE REVIEW 6

2.1 EMBEDDED SYSTEMS 6

2.2.1 Embedded system characteristics 6

2.1.2 Bootloader 7

2.2 REAL TIME OPERATING SYSTEM 8

2.3 LINUX ON EMBEDDED SYSTEMS 8

2.4 AUDIO AND LINUX AUDIO DRIVERS 8

2.5 ALSA 10

ix

TABLE OF CONTENTS (continue)

2.5.1 ALSA basics 11

2.5.2 ALSA architecture 11

2.6 GTK 13

2.7 GNOME TERMINAL 13

2.8 SETTING UP THE HOST AND GUEST MACHINES 14

2.9 SOFTWARE AND ACCESSORIES 15

2.9.1 PuTTY 15

2.9.2 Eclipse CDT (C/C++ Development Tooling) 15

2.9.3 GCC 16

2.9.4 Network File System (NFS) 16

2.10 ARM PROCESSOR ARCHITECTURE 17

2.11 i.MX53 17

CHAPTER 3: SOFTWARE UTILITIES 19

3.1 SETTING UP AN NFSv4 SERVER 19

3.1.1 NFSV4 server 19

3.1.2 File permissions 20

3.1.4 Superuser access 21

3.1.5 Mounting the NFS directory on the client machine 21

3.2 GTK+ 3.12 INSTALLATIONS AND UPDATE 24

x

TABLE OF CONTENTS (continue)

3.2.1 GTK programming: C- coding 25

3.2.2 Cross compiling GTK 27

3.3 ALSA 29

3.3.1 Listing ALSA sound cards 30

3.3.2 Setting hardware parameters 31

CHAPTER 4: DRIVER AND USER INTERFACE DEVELOPMENT 33

4.1 DRIVER DEVELOPMENT LIBRARIES 33

4.2 INITIALIZATION 33

4.2.1 Listing sound devices 34

4.2.2 Opening device and setting parameters 36

4.3 AUDIO PLAYBACK 38

4.4 AUDIO CAPTURE 41

4.5 GTK INTERFACE 44

CHAPTER 5: GENERAL CONCLUSION 47

RECOMMENDATIONS 49

APPENDIX A: SECREEN SHOTS 50

APPENDIX B: HEADER FILES 53

REFERENCES 71

xi

INDEX OF FIGURES

FIGURE PAGE

1.1 Sound card driver concept (alsa-project.org August 2010) ….……. …… 1

1.2 Basic Structure and Flow of ALSA System …………………………… 3

2.1 Some devices with embedded processors ………………………………... 7

2.2 ISA sound card ………………………..………………………………… 9

2.3 PCI Sound Card ………………………………………………………….. 10

2.4 Structure of ALSA...………………………..……………………………. 12

2.5 i.MX53 Powered Tablet ………………………………………………….. 18

2.6 Posterior outline of i.MX53 Tablet machine ……………………………. 18

3.1 Sample GTK file properties…………………..…………………………... 27

3.2 Sample-gtk application…………………..……………………………….. 28

3.3 ALSA Application flow-chart…………………..………………..………. 29

4.1 Audio capture and playback GTK interface …………………..………… 46

4.2 Experimental Setup ………………………………………………………. 46

A.1 NFS repository installation ……………………………………………….. 50

A.2 ifconfig secreenshot …………………………………………………….. 51

xii

A.3 Eclipse CDT Environment……………………………………………….. 51

A.4 PuTTY emulator ……………………..………………………………….. 52

A.5 PuTTY emulator in tablet console……………………………………….. 52

xiii

INDEX OF ABBREVIATIONS

ALSA Advanced Linux Sound Architecture

API Application Programming Interface

ARM Advanced RISC Machine

GCC Gnu Compiler Collection

GIMP Gnu Image Manipulation Program

GTK GIMP Tool Kit

ISA Industry Standard Architecture

MIDI Musical Instrument Digital Interface

NFS Network File System

OS Operating System

OSS Open Sound System

PCI Peripheral Component Interconnect

PCM Pulse Code Modulation

RISC Reduced Instruction Set Computing

RTOS Real Time Operating System

1

CHAPTER 1: INTRODUCTION

Importance of sound in computer systems cannot be over emphasized. It is

therefore relevant to dwell into audio application in the growing field of real-time

embedded systems.

Sound, consisting of waves of varying air pressure, is converted to its

electrical form by a transducer, such as a microphone. An analog-to-digital

converter (ADC) converts the analog voltages into discrete values called samples

at regular intervals in time, known as the sampling rate. By sending the samples to

a digital-to-analog converter and an output transducer, such as a loudspeaker, the

original sound can be reproduced. This is performed on a computer system by the

sound card or any chip with audio processing capability.

 Figure 1.1 Sound card driver concepts (alsa-project.org August 2010)

 In digital audio, the size of the samples, expressed in bits, is one factor

that determines how accurately the sound is represented. The other major factor

affecting sound quality is the sampling rate. [8]

2

Many embedded systems do not have audio capability other than emitting

beep sound. Even the very graphic-rich avionics and factory automation systems

don’t have major sound output, except maybe in terms of decibel level. Sound-rich

embedded systems are, however, becoming more and more popular with the

proliferation of consumer- and service-oriented devices. Consumer-oriented

devices feature complex audio and video codec support—including MP3, Ogg

Vorbis, AAC, MPEG, MPEG4, and H264—and demand good support for audio,

that is the capability to multiplex multiple audio streams out to the same device

simultaneously in real-time.

Linux, however, was never designed to accommodate sound. Over the years,

a number of schemes appeared to provide support for sound devices. These

include the previously dominant Open Sound System (OSS) which allows

applications like media players or web browsers to access the audio driver

directly, and later the Advanced Linux Sound Architecture (ALSA) that has

replaced it. [3]

ALSA have better hardware support. It allows improved user control and

better support for multiple audio devices.

3

Figure 1.2 Basic Structure and Flow of ALSA System (Takashi, 2003)

Sound implementation on Linux is always a complex task with variant

hardware and software demands. Documentation remains scanty with regards to

audio implementation on Linux. With the increasing demand of embedding

computers into devices, it is important that audio implementation is well

understood. Accomplishing this in real-time on embedded Linux system will

provide a clear understanding of the Linux sound system.

In this research, an ALSA driver will be developed using Eclipse C

Development Tool for both coding and debugging. It shall then be cross-compiled

for an ARM machine. A Gnu Image Manipulation Program (GIMP) tool kit, the

GTK shall be used to design the user interface for which the driver control will be

implemented graphically.

4

Due to lack of published resources in the on-going research area, a lot of on-

line publications, forums and blogs shall be utilized for information and guides

during the cause of the project. However, only trusted sources will be used and

shall be well referenced at the end of the report.

1.1 SCOPE

The aim of this research is to exploit the mechanism involved in Linux

desktop sound architecture and develop a similar more composite sound capture

and playback capability in real-time embedded systems using ALSA. Both the

device driver and the audio application will be designed and implemented.

1.2 OUTLINE

The outline of this project shall be as follows. Definition and evolution of

real time and embedded systems shall be given in chapter two. The basic utility

tools used like ALSA, GTK and Network File System (NFS) will also be

explained.

Chapter three will explain the procedure of setting up the Linux system for

development of the project. It shall also entail details of setting up the NFS server

and client, mounting drives, installing GTK repositories, including ALSA libraries

and running some basic applications on the various platforms.

In chapter four, details of developing an ALSA driver for the ARM system

will be described. The process of coding in Eclipse CDT, the debugging and cross

compilation will all be detailed out. Transferring the compiled program to the

5

client machine over NFS shall be detailed also. Finally, chapter five will

summarize the entire project. Recommendations for further works shall also be

given at the end.

6

CHAPTER 2: LITERATURE REVIEW

2.1 EMBEDDED SYSTEMS

An embedded system is a special-purpose computer which is completely

encapsulated by the device it controls to increase intelligence and provide better

functionality and efficiency. An embedded system development involves both the

software and hardware co-development.

Unlike general-purpose computers, embedded systems have specific

requirements and perform pre-defined tasks. They can satisfy the strict

requirement of functionality, reliability, cost, volume, and power consumption of

particular applications. They are integrated into technical environments intended

to execute internal functions as responses to certain input values and process

technical information.

2.2.1 Embedded system characteristics

Embedded systems come in a variety of shapes and sizes, from the largest

multiple-rack data storage or networking powerhouses to tiny modules such as

personal MP3 player or cellular handset. Following are some of the usual

characteristics of an embedded system: [6]

• Contains a processing engine, such as a general-purpose microprocessor.

• Typically designed for a specific application or purpose.

• Includes a simple (or no) user interface, such as an automotive engine ignition

7

controller.

• Often is resource-limited. For example, it might have a small memory footprint

and no hard drive.

• Might have power limitations, such as a requirement to operate from batteries.

• Not typically used as a general-purpose computing platform.

• Generally has application software built in, not user-selected.

• Ships with all intended application hardware and software pre-integrated.

• Often is intended for applications without human intervention.

Figure 2.1: Some devices with embedded processors

2.1.2 Bootloader

A unique feature of an embedded system is its startup. For a desktop

computer, when power is first applied, a piece of software known as the BIOS is

loaded, which has basic knowledge of the hardware, and also initializes the

activities of the processor. However, in embedded systems, this routine is carried

out by the bootloader.

8

The bootloader initializes major hardware components like the memory and

I/O controllers, allocate system resources to peripheral controllers and provide

mechanism for locating and loading operating system image.

2.2 REAL TIME OPERATING SYSTEM

Operating system is any software that manages computer hardware. It

basically makes the hardware works. Common examples of operating systems are

Windows, Linux and Mac OS. Operating systems intended to serve real-time

application request are real-time operating systems (RTOS)

RTOS processes data quickly enough so that further action can be taken

based on the results; therefore, scheduling, resource allocation, interrupt handling,

real-time response, multitasking and predictability are key features for its

operation.

2.3 LINUX ON EMBEDDED SYSTEMS

Linux is a free and open source operating system that runs on the Linux

kernel. Operating systems based on the Linux kernel are mostly used in embedded

systems due to their versatility. There are multiple suppliers for software

development and support. Also free licensing, stable kernel and ability to read,

modify and redistribute source code also make Linux more desirable.

2.4 AUDIO AND LINUX AUDIO DRIVERS

There are two basic components which build the sound system: the sound

device driver and the sound server. The former is the hardware abstraction in the

9

lower level, while the latter gives more high-end capabilities like multiplex access

and mixing. In other OS like Windows, the boundary between these two

components is not clear. The driver does some heavy jobs like mixing in the

kernel, too. On the Linux system, however, these are regarded still separately.

In earlier computers sound cards were usually ISA (Industry Standard

Architecture) cards that handle 16 bit stereo PCM (pulse code modulation)

playback and capture. However, lack of multiple channels and digital I/O

interfaces led to the migration to PCI (Peripheral Component Interconnect). PCI

have versatility especially with regards to higher level audio processing, therefore

the need to go beyond the OSS arise.

Figure 2.2: ISA sound card

The core part of the sound system is the sound device drivers. On the Linux

kernel, the OSS (Open Sound System) has been employed as the standard sound

10

driver. With the variation of compressions used for different sound formats, the

OSS has lots of limitations regarding audio hardware support. This paved way for

the development of the Advanced Linux Sound Driver (ALSA) which operates

most PCI cards.

Figure 2.3: PCI Sound Card

2.5 ALSA

The Advanced Linux Sound Architecture (ALSA) is the audio framework

used in newer (current) Linux kernels for audio support. It consists of a set of

kernel drivers, an application programming interface (API) library and utility

programs for supporting sound in Linux. It is backwards compatible with the older

OSS. [2]

The ALSA Project was started because the sound drivers in the Linux kernel

(OSS) were not being maintained actively and were lagging behind the capabilities

of new sound technology. Jaroslav Kysela, who previously had written a sound

card driver, started the project. Over time, more developers joined, support for

11

many sound cards was added and the structure of the API was refined.

During development of the 2.5 series of Linux kernel, ALSA was merged

into the official kernel source. With the release of the 2.6 kernel, ALSA became

part of the stable Linux kernel and is widely used. [8]

2.5.1 ALSA basics

ALSA consists of a series of kernel device drivers for many different sound

cards (or sound chips in case of smaller and or embedded systems), and it also

provides an API library, libasound, which provides a higher-level and more

developer-friendly programming interface.

In contrast, OSS drivers are programmed at the kernel system call level and

require the developer to specify device filenames and perform many functions

using ioctl calls. For backward compatibility, ALSA provides kernel modules that

emulate the OSS sound drivers, so most existing sound applications continue to

run unchanged. An emulation wrapper library, libaoss, is available to emulate the

OSS API without kernel modules.

ALSA has a capability called plugins that allows extension to new devices,

including virtual devices implemented entirely in software. ALSA provides a

number of command-line utilities, including a mixer, sound file player and tools

for controlling special features of specific sound cards/chips. [8]

2.5.2 ALSA architecture

The ALSA API can be broken down into the major interfaces it supports:

12

 Control interface: a general-purpose facility for managing registers of sound

cards/chips and querying the available devices.

 PCM interface: the interface for managing digital audio capture and playback.

 Raw MIDI interface: supports MIDI (Musical Instrument Digital Interface), a

standard for electronic musical instruments. This API provides access to a

MIDI bus on a sound card.

 Timer interface: provides access to timing hardware on sound cards used for

synchronizing sound events.

 Sequencer interface: a higher-level interface for MIDI programming and sound

synthesis than the raw MIDI interface. It handles much of the MIDI protocol

and timing.

 Mixer interface: controls the devices on sound cards that route signals and

control volume levels. It is built on top of the control interface.

Figure 2.2: Structure of ALSA [9]

13

2.6 GTK

GTK (GIMP Toolkit) is a free licence library for creating graphical user

interfaces. GTK is authored by Peter Mattis, Spencer Kimball and Josh

MacDonald. It's called the GIMP toolkit because it was originally written for

developing the GNU Image Manipulation Program (GIMP), but GTK has now

been used in a large number of software projects, including the GNU Network

Object Model Environment (GNOME) project. GTK is built on top of GDK

(GIMP Drawing Kit) which is basically a wrapper around the low-level functions

for accessing the underlying windowing functions (Xlib in the case of the X

windows system).

GTK is essentially an object oriented Application Programmer Interface

(API). Although written completely in C, it is implemented using the idea of

classes and callback functions (pointers to functions). It also has a third

component called GLib which contains a few replacements for some standard

calls, as well as some additional functions for handling linked lists, etc. [15]

2.7 GNOME TERMINAL

GNOME Terminal is a terminal emulator for the GNOME desktop

environment that allow users to execute commands using a real UNIX shell while

remaining on graphical desktop. The GNOME Terminal comes pre-installed with

GNOME desktop installation like Ubuntu.

The terminal emulator is handy in Linux OS. Most activities in this project

were done through the terminal emulator. It provides easy access to file systems,

14

directories, and other activities with root user permissions.

2.8 SETTING UP THE HOST AND GUEST MACHINES

The host computer is an HP655 64-bit AMD laptop. It has 64-bit windows 7

OS. Since all platforms for the project has to be Linux, a 64-bit Ubuntu 12.04 LTS

was installed to run alongside Windows. The choice of Ubuntu 12.04 is due to its

stability and Long Time Support (LTS) as well as regular system and security

updates available like in no other Linux OS before.

After Ubuntu installation, the following steps are followed to restore GRUB

(Grand Unified Bootloader) for dual booting option menu. GRUB is a universal

boot-loader for Linux distributions which allows multiple operating systems

accessibility.

The terminal was accessed as root user after booting the machine with a

USB flash drive containing Ubuntu LTS. The following commands to mount the

drive containing the Linux OS, set it as default bootloader partition and install

grub for boot menu option are ran sequentially.

sudo su

fdisk –l

mount /dev/sda1 /mnt

mount --bind /dev /mnt/dev

mount --bind /proc /mnt/proc

15

cp /etc/resolv.conf /mnt/etc/resolv.conf

chroot /mnt

grub-install --recheck /dev/sda

reboot

After reboot, the dual boot option appears and both Ubuntu and windows

can be accessed.

2.9 SOFTWARE AND ACCESSORIES

For the development of this project, some software and accessories will be

utilized. Some are just for connectivity like terminal console, other for code

development, and some for cross compiling for the various platforms to be used.

2.9.1 PuTTY

PuTTY is free software for terminal emulation, serial console and network

file transfer. PuTTY is open source software developed by Simon Tatham and

supported by a group of volunteers.

PuTTY is used in this project as serial console to access the ARM machine

from the host computer.

2.9.2 Eclipse CDT (C/C++ Development Tooling)

The Eclipse CDT project, a product of the Eclipse Foundation is a platform

that provides a fully functional C and C ++ Integrated Development Environment.

Both ALSA and GTK programs development will be carried out on Eclipse.

16

Debugging and cross compilation are also features of Eclipse to be utilized.

2.9.3 GCC

The GNU Compiler Collection, originally the Gnu C Compiler, is a

compiler system produced by the GNU Project supporting C, C++, Fortran, Java,

Ada and various other programming languages.

GCC has been ported to a wide variety of processor architecture. Therefore

the GCC library will be used in the project to cross-compile the C program

developed in the Eclipse CDT for running on the targeted ARM machine.

2.9.4 Network File System (NFS)

Network File System developed by Sun Microsystems in the 1980s is a

means for UNIX to share files and applications across a network. It allows file

sharing between computers running different UNIX variants, as well as UNIX

systems connected to non-UNIX systems such as windows machines. [7]

NFS allows the attachment of a remote drive or directory to a virtual file

system and work with it as if it were a local drive. The computer 'sharing' the

directory is called the server and the computers or devices connecting to that

server are called clients. The client mounts the shared directory making it part of

its own directory structure.

In this research work, NFS is used to share the directory in which the C

program is crossed compiled in the host computer, which is the workspace

directory of Eclipse CDT so that it can be accessed directly from the client which

17

is an ARM powered Tablet machine.

2.10 ARM PROCESSOR ARCHITECTURE

ARM is a processor architecture based on reduced instruction set

computing (RISC). It was developed by a British company, ARM Holdings.

A RISC-based computer design approach means ARM processors require

significantly fewer transistors than typical CISC x86processors in most personal

computers. This approach reduces costs, heat and power usage. These are

desirable traits for light, portable, battery-powered devices—including smart

phones, laptops, tablet and notepad computers, as well as other embedded systems.

A simpler design facilitates more efficient multi-core CPUs and higher core counts

at lower cost, providing improved energy efficiency. All these are perfect features

for an embedded system which explains the wide usage of ARM processors in

most embedded devices.

2.11 i.MX53

I.MX53 is a SoC (System on Chip) processor for multimedia application

based on ARM Cortex-A8 core. It is optimized for both performance and power to

meet the demands of high-end, advanced applications. It includes an integrated

display controller, full HD capability, enhanced graphics and connectivity

features.

18

Figure 2.5: i.MX53 Powered Tablet

Figure 2.6: Posterior outline of i.MX53 Tablet machine

19

CHAPTER 3: SOFTWARE UTILITIES

3.1 SETTING UP AN NFSv4 SERVER

The host machine is a HP 655 64-bit laptop computer run by Linux, Ubuntu

12.04 LTS. The client is a tablet machine with an ARM Cortex A8 processor and a

Linux OS.

3.1.1 NFSV4 server

The required packages available through debian file management tool are

installed through terminal with root permission.

apt-get install nfs-kernel-server

This will install NFS server on the host machine, a laptop running Ubuntu

12.04LTS.

NFSv4 exports exist in a single pseudo filesystem, where the real directories

are mounted with the --bind option.

To export the home directory of the host system, the export file system is

first created.

 mkdir –p /export/users

The real users directory is mounted with

 mount –bind /home/users /export/users

20

To avoid retyping this after every reboot, the following line is added

to /etc/fstab

 /home/users /export/users none bind 0 0

Both /export and /export/users directories must have 777 permissions so that

the NFS could be accessed from the client without LDAP/NIS authentication. [7]

3.1.2 File permissions

Files and directories in Linux system are assigned access rights to the file

owner or the members of a group of related users. Rights can be assigned to read a

file, write to a file, and to execute a file (i.e., run the file as a program).

The following command shows the permission settings for a file sample-gtk

said@said-VirtualBox:~$ ls –l sample-gtk

-rwxrwxr-x 1 said said 7491 May 8 16:20 sample-gtk

said@said-VirtualBox:~$

This shows that the file sample-gtk is owned by user “said” and group

“said”. Both the user and the group have right to read (r), write (w) and execute

(x) this file. Everyone else can only read or execute the file without write

permission.

The permission settings are series of bits with each r, w or x in the series as

a binary digit.

For the sample-gtk file, it is translated as

21

rwx rwx r-x

111 111 101

7 7 5

Both /export and /export/users directories have 777 permissions so that the

NFS could be accessed from the client without LDAP/NIS authentication.

3.1.3 Changing file/directory permission

The chmod (change mode) command is used to change the permissions of a

file or directory.

 chmod 777 <file/directory>

3.1.4 Superuser access

The substitute user command su gives superuser (root) access which grants

permissions to access files, directories and applications without restriction.

However, password is required to get into the su mode. To exit the superuser

mode, exit command suffices

In some distributions like Ubuntu, the sudo command is used instead, for

one or more users when the need arises. A command is preceded by the su

command and a user’s password request follows. However, it is better to change

the file permission permanently with chmod.

3.1.5 Mounting the NFS directory on the client machine

The /export/user directory is mounted on the client, the tablet machine.

22

First, the IP address of the host machine is looked up with ifconfig

command.

This returns the result

said@said-VirtualBox:~$ ifconfig

eth0 Link encap:Ethernet HWaddr 08:00:27:12:49:c9

 inet addr:10.0.2.15 Bcast:10.0.2.255

Mask:255.255.255.0

 inet6 addr: fe80::a00:27ff:fe12:49c9/64

Scope:Link

 UP BROADCAST RUNNING MULTICAST MTU: 1500

Metric:1

 RX packets:100 errors:0 dropped:0 overruns:0

frame:0

 TX packets:165 errors:0 dropped:0 overruns:0

carrier:0

 collisions:0 txqueuelen:1000

 RX bytes:33555 (33.5 KB) TX bytes:19789 (19.7

KB

Lo Link encap:Local Loopback

23

 inet addr:127.0.0.1 Mask:255.0.0.0

 inet6 addr: ::1/128 Scope:Host

 UP LOOPBACK RUNNING MTU:16436 Metric:1

 RX packets:58 errors:0 dropped:0 overruns:0

frame:0

 TX packets:58 errors:0 dropped:0 overruns:0

carrier:0

 collisions:0 txqueuelen:0

 RX bytes:5228 (5.2 KB) TX bytes:5228 (5.2 KB)

Using the system IP returned above, that is 10.0.2.15; the drive is mounted

with the command

Mount 10.0.2.15:/export/users /mnt/data -o rsize=1024, wsize=1024, intr,

nolock

Mount This will mount the directory /export/users from the host

machine with the network inet address 10.0.2.15 on /mnt/data of the client

-o Options are specified with a -o flag followed by a comma-separated

string of options. The above command will mount the drive with the following

options

The mount command options rsize and wsize specify the size of the chunks

of data that the client and server pass back and forth to each other. If no rsize and

24

wsize options are specified, the default varies by which version of NFS we are

using. [13]

rsize rsize=n The number of bytes NFS uses when reading files from an

NFS server. The default value is dependent on the kernel, currently 1024 bytes.

rsize=1024

wsize wsize=n The number of bytes NFS uses when writing files to an NFS

server. The default value is dependent on the kernel, currently 1024 bytes.

wsize=1024.

Intr If an NFS file operation has a major time-out and it is hard mounted,

then allow signals to interrupt the file operation and cause it to return EINTR to

the calling program. The default is to not allow file operations to be interrupted.

[1]

3.2 GTK+ 3.12 INSTALLATIONS AND UPDATE

GTK+ requires Glib, GObject-Introspection, Pango, Gdk-Pixbuf, GTK and

GTK+ packages to build. However, binary packages of GTK+ prebuilt for Ubuntu

are available. This gets programming with GTK+ much faster than building it

from scratch. GTK+ 3.12 (the latest version available) is installed via terminal as

sudo apt-get install libgtk-3-dev

This installs GTK library files (header etc) in /usr/include/gtk-3.0/gtk

directory. Other linkedfiles are searched in Ubuntu Packages website whenever

necessary. [17]

25

On UNIX-like systems like Ubuntu, GTK+ uses the standard GNU build

system, using autoconf for package configuration and resolving portability

issues, automake for building makefiles that comply with the GNU Coding

standards, and libtool for building shared libraries on multiple platforms.

3.2.1 GTK programming: C- coding

A simple program to generate an empty 200x200 pixel window is used to

test the library and cross compilation of GTK.

The code is written in a text editor and saved as sample-gtk.c

#include <gtk/gtk.h>

int

main (int argc,

char *argv[])

{

 GtkWidget *window;

 gtk_init (&argc, &argv);

 window = gtk_window_new (GTK_WINDOW_TOPLEVEL);

 gtk_widget_show (window);

 gtk_main ();

 return 0;

26

}

The GTK header gtk/gtk.h, which declares functions, types and macros is

included for the compiler and proceeds to the main() function of the application,

a window variable is declared as a pointer of type GtkWidget.

The following line will call gtk_init(), which is the initialization function

for GTK+; this function will set up GTK+, the type system, the connection to the

windowing environment, etc. The gtk_init() takes as arguments, the pointers to

the command line arguments counter and string array; this allows GTK+ to parse

specific command line arguments that control the behavior of GTK+ itself. The

parsed arguments will be removed from the array, leaving the unrecognized ones

for the application to parse.

The call to gtk_window_new() will create a new GtkWindow and store it

inside the window variable. The type of the window is

GTK_WINDOW_TOPLEVEL, which means that the GtkWindow will be

managed by the windowing system: it will have a frame, a title bar and window

controls, depending on the platform, in this case, the Ubuntu 12.04 LTS.

GtkWidgets is hidden by default. By

calling gtk_widget_show(), GtkWidget is asking GTK+ to set the visibility

attribute to display. This continues within the main loop of the program and goes

on until the close icon on the frame title bar is clicked, which terminates the

program. [18]

27

3.2.2 Cross compiling GTK

To compile a GTK+ application, the compiler is told where to find the

GTK+ header files and libraries. This is done with the pkg-config utility using the

GCC compiler.

gcc ‘pkg-config –cflags gtk+-3.0’ -o sample-gtk

sample-gtk.c ‘pkg-config –libs gtk+-3.0’

This outputs an executable (application/x-executable) file “sample-gtk” in

the home directory.

Figure 3.1: Sample GTK file properties

28

Running the file will open an empty 200x200 pixel window as shown below

Figure 3.2: Sample-gtk application

29

3.3 ALSA

When writing an ALSA audio application, the following flowchart shows

the typical structure followed:

Figure 3.3: ALSA Application flow-chart

Open Device

Set Device
Parameters

Instruction

Start

Device
Open?

Yes

Receive audio data
from device

Deliver audio
data to device

Audio capture
request?

No

No Yes

End

30

3.3.1 Listing ALSA sound cards

The first thing to do in developing an ALSA application is to list all the

available sound cards/devices on the machine. ALSA has some functions to list all

available sound cards/devices. One of such functions is snd_card_next().

Therefore, a loop is created with the pointer at an integer value of -1. The

function will then change the value of int to the number of the first card/device in

the system. This continue to increment until there is no more sound cards to show,

then ALSA sets int back to -1.

“#include <stdio.h>

#include <string.h>

#include <alsa/asoundlib.h>

Int main (int argc, char **argv)

{

register int err;

int cardNum, totalCards;

totalCards = 0;

cardNum = -1;

for (;;)

{

 if ((err = snd_card_next(&cardNum)) < 0)

 {

printf(“Next card not available: %s\n”,

snd_strerror(err));

31

break;

 }

 If (cardNum < 0) break; ++totalCards;

 }

printf(“ALSA found %i cards\n”, totalcards);

snd_config_update_free_global();

}[8]

After including all necessary libraries, that’s the stdio, string and asoundlib

headers, variables were then defined. cardNum is the card number at the instance

initially set at -1 and totalCards is the total number of cards found set to 0.

An “if” block is used for the snd_card_next function. When card number is

-1, ALSA will fetch the first card. This continues untill there are no more cards,

then it sums up all cards found and print out totalCards found.

ALSA allocates memory space to load its configuration file when a handle is

called. To free the memory and unload the information, the funtion

snd_config_update_free_global is called with null value.

3.3.2 Setting hardware parameters

The following parameters can be set for audio application based on card type

or audio chip capabilities.

Sample rate (8Khz, 22Khz or 44.1Khz)

Playback bit resolution (8 bit, 16 bit, 32 bit)

32

Channels (mono, stereo or multi-channel)

ALSA has a function that enables the direct settings of hardware parameters,

that is the snd_pcm_set_params()

With the device parameters set, a Linux audio driver can be developed using

ALSA for various applications which will be detailed in the next chapter. A

comprehensive GUI designed with GTK will also accompany the driver for easy

access.

33

CHAPTER 4: DRIVER AND USER INTERFACE DEVELOPMENT

4.1 DRIVER DEVELOPMENT LIBRARIES

The driver development required the following packages that provide

libraries and utilities for the program:

libasound2: The shared library package for ALSA that contains the ALSA

library and its standard plug-ins. It is provided by liboss-alsa-asound2 (OSS to

ALSA compatibility library)

libasound2-dev: The shared library package for ALSA that contains files

required for developing software that makes use of libasound2, the ALSA library.

It is provided by liboss4-salsa-dev (OSS to ALSA compatibility library

development files)

With the asoundlib.h header file included in the program, all required

ALSA files will be included and cross linked accordingly.

4.2 INITIALIZATION

To initialize the ALSA program, three steps are involved

i. Opening the sound device

 Creating structure to hold the parameters to be used

ii. Instructing sound device to use the settings

34

4.2.1 Listing sound devices

As discussed in previous chapter, the sound devices on the machine can be

listed with

“#include <stdio.h>

#include <string.h>

#include <alsa/asoundlib.h>

Int main (int argc, char **argv)

{

register int err;

int cardNum, totalCards;

totalCards = 0;

cardNum = -1;

for (;;)

{

if ((err = snd_card_next(&cardNum)) < 0)

 {

printf(“Next card not available: %s\n”,

snd_strerror(err));

break;

 }

 If (cardNum < 0) break;

 ++totalCards;

 }

35

 printf(“ALSA found %i cards\n”, totalcards);

 snd_config_update_free_global();

}” [8]

A more direct way to get information on the capture and playback devices

on the host computer on which the driver will be written and tested is through the

terminal as below described below;

said@said-HP-655-Notebook-PC:~$ aplay –l

**** List of PLAYBACK Hardware Devices ****

card 0: Generic [HD-Audio Generic 3: HDMI 0 [HDMI 0]

 Subdevices: 1/1

 Subdevice #0: Subdevice #0

Card 1: Generic_1 [HD-Audio Generic], device 0: ALC269VC

Analog [ALC269VC Analog]

 Subdevices: 1/1

 Subdevice #0: Subdevice #0

The device is plughw:0,0. 0,0 are for the Device 0 and Subdevice #0

said@said-HP-655-Notebook-PC:~$ arecord –l

**** List of CAPTURE Hardware Devices ****

Card 1: Generic_1 [HD-Audio Generic], device 0: ALC269VC

Analog [ALC269VC Analog]

 Subdevices: 1/1

36

 Subdevice #0: Subdevice #0

This device is also plughw:0,0. 0,0, the default.

4.2.2 Opening device and setting parameters

The following opens the default PCM device for playback and set some

parameters using newest ALSA API

“#define ALSA_PCM_NEW_HW_PARAMS_API

#include <alsa/asoundlib.h>

int main() {

 int rc;

 snd_pcm_t *handle;

 snd_pcm_hw_params_t *params;

 unsigned int val;

 int dir;

 snd_pcm_uframes_t frames;

// to open PCM device for playback

 rc =

snd_pcm_open(&handle,"default",SND_PCM_STREAM_PLAYBACK,

0);

 if (rc < 0) {

 fprintf(stderr,"unable to open pcm device:%s\n",

snd_strerror(rc));

37

 exit(1);

 }

// Allocating default hardware parameters object

 snd_pcm_hw_params_alloca(¶ms);

 snd_pcm_hw_params_any(handle, params);

//changing to desired hardware parameters

 snd_pcm_hw_params_set_access(handle, params,

SND_PCM_ACCESS_RW_INTERLEAVED);

 snd_pcm_hw_params_set_format(handle, params,

SND_PCM_FORMAT_S16_LE);

 snd_pcm_hw_params_set_channels(handle, params, 2);

 val = 44100;

 snd_pcm_hw_params_set_rate_near(handle,params, &val,

&dir);

 frames = 32;

 snd_pcm_hw_params_set_period_size_near(handle,

params, &frames, &dir);

// Writing the parameters to the driver

 rc = snd_pcm_hw_params(handle, params);

 if (rc < 0) {

 fprintf(stderr,"unable to set hw parameters:

%s\n",snd_strerror(rc));

 exit(1);

 }

38

return 0;

}” [8]

This will open a default playback device, initially with default hardware

parameters, the change them to [interleaved – stereo (2-channel) – signed 16 bit

little endian – 44100 bit rate – 32 frame size]. This completes the device

initialization. [22]

4.3 AUDIO PLAYBACK

Audio playback is achieved by reading stream audio data from memory and

writing it to the PCM device. For this section, a 5sec data is read from input and

written to the default PCM device. This follows after opening the device and

setting its parameters as shown above.

“#define ALSA_PCM_NEW_HW_PARAMS_API

#include <alsa/asoundlib.h>

int main() {

 long loops;

 int rc;

 int size;

 snd_pcm_t *handle;

 snd_pcm_hw_params_t *params;

 unsigned int val;

 int dir;

 snd_pcm_uframes_t frames;

39

 char *buffer;

// *****************

 snd_pcm_hw_params_get_period_size(params, &frames,

&dir);

 size = frames * 4; /* 2 bytes/sample, 2 channels */

 buffer = (char *) malloc(size);

 snd_pcm_hw_params_get_period_time(params,&val,

&dir);

// 5 seconds in microseconds/period time

 loops = 5000000 / val;

 while (loops > 0) {

 loops--;

 rc = read(0, buffer, size);

 if (rc == 0) {

 fprintf(stderr, "end of file on input\n");break;

 }

 else if (rc != size) {

 fprintf(stderr, "short read: read %d bytes\n", rc);

 }

 rc = snd_pcm_writei(handle, buffer, frames);

 if (rc == -EPIPE) {

 fprintf(stderr, "underrun occurred\n");

 snd_pcm_prepare(handle);

 }

40

 else if (rc < 0) {

 fprintf(stderr,"error from

writei:%s\n",snd_strerror(rc));

 }

 else if (rc != (int)frames) {

 fprintf(stderr,"short write, write %d rames\n", rc);

 }

 }

 snd_pcm_drain(handle);

 snd_pcm_close(handle);

 free(buffer);

 return 0;

 }” [8]

The error code EPIPE means xrun (underrun for playback or overrun for

capture). Underrun happens when an application does not feed new samples in

time to alsa-lib while overrun happens when an application does not take new

captured samples in time from alsa-lib. [21]

After initialization, sound samples are written to the sound card to produce

playback. Bytes are read from standard input for one period, then written to sound

card continuously for 5sec.

Default period size is used and made size of the buffer for storage. The

period is found so that the number of periods the program has to process in order

to run for 5sec is determined.

41

While constantly looking for errors, a loop is created to manage the data to

read from standard input and fill the buffer with a sample period.

snd_pcm_writei call is used to send data to the PCM device. The return

code is checked for a number of error conditions like EPIPE, etc.

To recover from the EPIPE error, snd_pcm_prepare function call is used to

put the stream in the PREPARED state so it can start again the next time data is

written to the stream. Any other error received, the program will display the error

code and continue.

The program is looped until 5sec length of data frames is transferred or end

of file is reached. snd_pcm_drain is then called to transfer pending sound

samples before closing the stream. The dynamically allocated buffer is then freed.

[22]

4.4 AUDIO CAPTURE

The same initialization procedure applies for audio capture or sound

recording, but instead of opening the device for playback, it is opened for capture

with the syntax

rc = snd_pcm_open(&handle,"default",

SND_PCM_STREAM_CAPTURE, 0)

The audio capture program is also similar to the playback, the program is as

below

#define ALSA_PCM_NEW_HW_PARAMS_API

42

#include <alsa/asoundlib.h>

int main() {

 long loops;

 int rc;

 int size;

 snd_pcm_t *handle;

 snd_pcm_hw_params_t *params;

 unsigned int val;

 int dir;

 snd_pcm_uframes_t frames;

 char *buffer;

// *****************

 snd_pcm_hw_params_get_period_size(params, &frames,

&dir);

 size = frames * 4; /* 2 bytes/sample, 2 channels */

 buffer = (char *) malloc(size);

 snd_pcm_hw_params_get_period_time(params,&val,

&dir);

 loops = 5000000 / val;

 while (loops > 0) {

 loops--;

 rc = snd_pcm_readi(handle, buffer, frames);

 if (rc == -EPIPE) {

 fprintf(stderr, "overrun occurred\n");

43

 snd_pcm_prepare(handle);

 } else if (rc < 0) {

 fprintf(stderr,"error from read:

%s\n",snd_strerror(rc));

 } else if (rc != (int)frames) {

 fprintf(stderr, "short read, read %d frames\n",rc);

 }

 rc = write(1, buffer, size);

 if (rc != size)

 fprintf(stderr,"short write: wrote %d bytes\n", rc);

 }

 snd_pcm_drain(handle);

 snd_pcm_close(handle);

 free(buffer);

 return 0;

}” [8]

When the PCM stream is opened, the capture mode is specified as

SND_PCM_STREAM_CAPTURE. Within the main processing loop, samples are

read from the sound hardware using snd_pcm_readi and written to standard output

using write. Errors and overrun are checked like in the play program.

For both audio capture and playback, the data stream has to be directed to a

file. The mixer tool is used to set the level of the recording source. For ALSA,

44

there is an in package ALSAmixer, a textmode based mixer program for ALSA

soundcard drivers. [22]

4.5 GTK INTERFACE

For the interfacing of the ALSA driver application on a graphical user

environment, a GTK program is developed. It is made as easy as possible to avoid

complication just to record and playback sound. Other driver properties relating to

the sound card are accessed with the ALSAmixer program.

#include <gtk/gtk.h>

int

main (int argc, char *argv[])

{

GtkWidget *window;

GtkWidget *grid;

GtkWidget *button;

gtk_init (&argc, &argv);

window = gtk_window_new (GTK_WINDOW_TOPLEVEL);

gtk_window_set_title (GTK_WINDOW (window), "Grid");

g_signal_connect (window, "destroy", G_CALLBACK

(gtk_main_quit), NULL);

gtk_container_set_border_width (GTK_CONTAINER (window),

10);

grid = gtk_grid_new ();

45

gtk_container_add (GTK_CONTAINER (window), grid);

button = gtk_button_new_with_label ("CAPTURE");

g_signal_connect (button, "clicked", G_CALLBACK

(print_hello), NULL);

gtk_grid_attach (GTK_GRID (grid), button, 0, 0, 1, 1);

button = gtk_button_new_with_label ("PLAYBACK");

g_signal_connect (button, "clicked", G_CALLBACK

(print_hello), NULL);

gtk_grid_attach (GTK_GRID (grid), button, 1, 0, 1, 1);

button = gtk_button_new_with_label ("Quit");

g_signal_connect (button, "clicked", G_CALLBACK

(gtk_main_quit), NULL);

gtk_grid_attach (GTK_GRID (grid), button, 0, 1, 2, 1);

gtk_widget_show_all (window);

gtk_main ();

return 0;

}

After including the GTK library and defining variables, a window is created.

A grid container is constructed to pack the buttons to be used. The buttons are

placed in such a way that first button (CAPTURE) is in grid cell (0,0) and fill just

1 cell horizontally and vertically. The second button (PLAYBACK) is placed in

(1,0). The last button (Quit) is placed in (0,1) and spanned 2 columns so it can

appear at the center of the window. All the widgets are shown at once by calling

gtk_widget_show_all().

46

Running this program will create a window similar to following

Figure 4.1 Audio capture and playback GTK interface

This application is linked with the ALSA handle to capture and playback audio

according to default parameters. A pop-up will give directory option for both

storing and retrieving the sound files.

Figure 4.2: Experimental Setup

47

CHAPTER 5: GENERAL CONCLUSION

The mechanism involved in Linux desktop sound architecture had been

analyzed in this research work. The evolution of audio in Linux systems from the

OSS (Open Sound System) to the current ALSA (Advance Linux Sound

Architecture) had all been looked into. The properties and limitations of the OSS

were analyzed and thus, the need for the transition to ALSA.

Embedded systems that are on the rise today usually don’t have

conventional audio capability. Mostly sound in embedded system is restricted to

beeps. However with the development of more capable systems, audio

incorporation is necessary in such systems that have become vital part of today.

Majority of embedded systems are developed on Linux kernel. Therefore it

is paramount that the research centered mainly on the development of basic audio

application driver for capture and playback on such systems in similar fashion by

which audio is developed for conventional desktop computers.

The project utilizes ALSA, the Advanced Linux Sound Architecture to

develop an application on a Linux host machine running Ubuntu operating system.

The program is developed using the Eclipse C Development Tool and crossed

compiled with GCC so that it can run on ARM processor of the target machine.

The target machine is an i.MX53 powered board in a tablet PC. This ARM

machine was chosen because it is the processor used in as many embedded

systems. It has the RISC (Reduced Instruction Set Computer) architecture which

has fewer instruction commands.

48

The driver developed has the capability to find all the audio devices (cards

or chips as in most modern computing devices) for playback and capture. Once

these devices are found, the program will go on to open these devices for either

capture (sound recording) or playback (sound playing) and also set the parameters

with which either of these will be done. The parameters set are the bit rate, little

endian, and frame size.

Once these parameters are set according to the mode of operation, the driver

will use these settings to record any audio from the capturing device, e.g. a

microphone and store it in a memory directly accessible by the program. In the

playback mode, the program will go to the memory location pointed and stream

the data found through the playback device, mostly a speaker.

At the end of these audio devices are transducers that convert the digital data

sent by the program into the analog audible audio by a DAC or an ADC in the

reverse process.

For an easy user accessible interface, the GTK (GIMP Tool Kit) is used to

design a graphical user interface that provides a simple window on which buttons

are pressed to initialize the program and perform these basic sound operations.

The GTK application is also developed on the Eclipse CDT and cross compiled

for the ARM target processor.

49

RECOMMENDATIONS

This driver is developed as an application to run on an ARM based

embedded machine that already has a Linux operating system running on it. Since

most of the Linux distributions are free and open source, this application can be

introduced into the operating system kernel so that it will run come pre installed in

the OS without the necessary need to develop it separately as carried out in this

research work.

The project also targeted only ARM based processors running Linux OS. In

future works, other processors and operating systems platforms can be considered

especially with Android which is rapidly developing into the embedded system

technology.

50

APPENDIX A: SECREEN SHOTS

Figure A.1: NFS repository installation

51

Figure A.2: ifconfig secreenshot

Figure A.3: Eclipse CDT Environment

52

Figure A.4: PuTTY emulator

Figure A.5: PuTTY emulator in tablet console

53

APPENDIX B: HEADER FILES

asoundlib.h

/*file include/asoundlib.h. brief Application interface library for the ALSA driver.

Author Jaroslav Kysela perex@perex.cz, Abramo Bagnara abramo@alsa-

project.org, Takashi Iwai tiwai@suse.de, 1998-2001 */

#ifndef __ASOUNDLIB_H

#define __ASOUNDLIB_H

#include <unistd.h>

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <fcntl.h>

#include <assert.h>

#include <endian.h>

#include <sys/poll.h>

#include <errno.h>

#include <stdarg.h>

#include <alsa/asoundef.h>

54

#include <alsa/version.h>

#include <alsa/global.h>

#include <alsa/input.h>

#include <alsa/output.h>

#include <alsa/error.h>

#include <alsa/conf.h>

#include <alsa/pcm.h>

#include <alsa/rawmidi.h>

#include <alsa/timer.h>

#include <alsa/hwdep.h>

#include <alsa/control.h>

#include <alsa/mixer.h>

#include <alsa/seq_event.h>

#include <alsa/seq.h>

#include <alsa/seqmid.h>

#include <alsa/seq_midi_event.h>

#endif /* __ASOUNDLIB_H */

55

gdk.h

/* GDK - The GIMP Drawing KitCopyright (C) 1995-1997 Peter Mattis, Spencer

Kimball and Josh MacDonald */

#ifndef __GDK_H__

#define __GDK_H__

#define __GDK_H_INSIDE__

#include <gdk/gdkconfig.h>

#include <gdk/gdkversionmacros.h>

#include <gdk/gdkapplaunchcontext.h>

#include <gdk/gdkcairo.h>

#include <gdk/gdkcolor.h>

#include <gdk/gdkcursor.h>

#include <gdk/gdkdevice.h>

#include <gdk/gdkdevicemanager.h>

#include <gdk/gdkdisplay.h>

#include <gdk/gdkdisplaymanager.h>

#include <gdk/gdkdnd.h>

#include <gdk/gdkenumtypes.h>

56

#include <gdk/gdkevents.h>

#include <gdk/gdkkeys.h>

#include <gdk/gdkkeysyms.h>

#include <gdk/gdkmain.h>

#include <gdk/gdkpango.h>

#include <gdk/gdkpixbuf.h>

#include <gdk/gdkproperty.h>

#include <gdk/gdkrectangle.h>

#include <gdk/gdkrgba.h>

#include <gdk/gdkscreen.h>

#include <gdk/gdkselection.h>

#include <gdk/gdktestutils.h>

#include <gdk/gdkthreads.h>

#include <gdk/gdktypes.h>

#include <gdk/gdkvisual.h>

#include <gdk/gdkwindow.h>

#undef __GDK_H_INSIDE__

57

#endif /* __GDK_H__ */

gtk.h

/* GTK - The GIMP Toolkit. Copyright (C) 1995-1997 Peter Mattis, Spencer

Kimball and Josh MacDonald */

#ifndef __GTK_H__

#define __GTK_H__

#define __GTK_H_INSIDE__

#include <gdk/gdk.h>

#include <gtk/gtkaboutdialog.h>

#include <gtk/gtkaccelgroup.h>

#include <gtk/gtkaccellabel.h>

#include <gtk/gtkaccelmap.h>

#include <gtk/gtkaccessible.h>

#include <gtk/gtkaction.h>

#include <gtk/gtkactionable.h>

#include <gtk/gtkactiongroup.h>

#include <gtk/gtkactivatable.h>

#include <gtk/gtkadjustment.h>

58

#include <gtk/gtkalignment.h>

#include <gtk/gtkappchooser.h>

#include <gtk/gtkappchooserdialog.h>

#include <gtk/gtkappchooserwidget.h>

#include <gtk/gtkappchooserbutton.h>

#include <gtk/gtkapplication.h>

#include <gtk/gtkapplicationwindow.h>

#include <gtk/gtkarrow.h>

#include <gtk/gtkaspectframe.h>

#include <gtk/gtkassistant.h>

#include <gtk/gtkbbox.h>

#include <gtk/gtkbin.h>

#include <gtk/gtkbindings.h>

#include <gtk/gtkborder.h>

#include <gtk/gtkbox.h>

#include <gtk/gtkbuildable.h>

#include <gtk/gtkbuilder.h>

59

#include <gtk/gtkbutton.h>

#include <gtk/gtkcalendar.h>

#include <gtk/gtkcellarea.h>

#include <gtk/gtkcellareabox.h>

#include <gtk/gtkcellareacontext.h>

#include <gtk/gtkcelleditable.h>

#include <gtk/gtkcelllayout.h>

#include <gtk/gtkcellrenderer.h>

#include <gtk/gtkcellrendereraccel.h>

#include <gtk/gtkcellrenderercombo.h>

#include <gtk/gtkcellrendererpixbuf.h>

#include <gtk/gtkcellrendererprogress.h>

#include <gtk/gtkcellrendererspin.h>

#include <gtk/gtkcellrendererspinner.h>

#include <gtk/gtkcellrenderertext.h>

#include <gtk/gtkcellrenderertoggle.h>

#include <gtk/gtkcellview.h>

60

#include <gtk/gtkcheckbutton.h>

#include <gtk/gtkcheckmenuitem.h>

#include <gtk/ubuntumenuproxy.h>

#include <gtk/ubuntumenuproxymodule.h>

#include <gtk/gtkclipboard.h>

#include <gtk/gtkcolorbutton.h>

#include <gtk/gtkcolorchooser.h>

#include <gtk/gtkcolorchooserdialog.h>

#include <gtk/gtkcolorchooserwidget.h>

#include <gtk/gtkcolorutils.h>

#include <gtk/gtkcombobox.h>

#include <gtk/gtkcomboboxtext.h>

#include <gtk/gtkcontainer.h>

#include <gtk/gtkcssprovider.h>

#include <gtk/gtkcsssection.h>

#include <gtk/gtkdebug.h>

#include <gtk/gtkdialog.h>

61

#include <gtk/gtkdnd.h>

#include <gtk/gtkdrawingarea.h>

#include <gtk/gtkeditable.h>

#include <gtk/gtkentry.h>

#include <gtk/gtkentrybuffer.h>

#include <gtk/gtkentrycompletion.h>

#include <gtk/gtkenums.h>

#include <gtk/gtkeventbox.h>

#include <gtk/gtkexpander.h>

#include <gtk/gtkfixed.h>

#include <gtk/gtkfilechooser.h>

#include <gtk/gtkfilechooserbutton.h>

#include <gtk/gtkfilechooserdialog.h>

#include <gtk/gtkfilechooserwidget.h>

#include <gtk/gtkfilefilter.h>

#include <gtk/gtkfontbutton.h>

#include <gtk/gtkfontchooser.h>

62

#include <gtk/gtkfontchooserdialog.h>

#include <gtk/gtkfontchooserwidget.h>

#include <gtk/gtkframe.h>

#include <gtk/gtkgradient.h>

#include <gtk/gtkgrid.h>

#include <gtk/gtkiconfactory.h>

#include <gtk/gtkicontheme.h>

#include <gtk/gtkiconview.h>

#include <gtk/gtkimage.h>

#include <gtk/gtkimagemenuitem.h>

#include <gtk/gtkimcontext.h>

#include <gtk/gtkimcontextinfo.h>

#include <gtk/gtkimcontextsimple.h>

#include <gtk/gtkimmulticontext.h>

#include <gtk/gtkinfobar.h>

#include <gtk/gtkinvisible.h>

#include <gtk/gtklabel.h>

63

#include <gtk/gtklayout.h>

#include <gtk/gtklinkbutton.h>

#include <gtk/gtkliststore.h>

#include <gtk/gtklockbutton.h>

#include <gtk/gtkmain.h>

#include <gtk/gtkmenu.h>

#include <gtk/gtkmenubar.h>

#include <gtk/gtkmenuitem.h>

#include <gtk/gtkmenushell.h>

#include <gtk/gtkmenutoolbutton.h>

#include <gtk/gtkmessagedialog.h>

#include <gtk/gtkmisc.h>

#include <gtk/gtkmodules.h>

#include <gtk/gtkmountoperation.h>

#include <gtk/gtknotebook.h>

#include <gtk/gtknumerableicon.h>

#include <gtk/gtkoffscreenwindow.h>

64

#include <gtk/gtkorientable.h>

#include <gtk/gtkoverlay.h>

#include <gtk/gtkpagesetup.h>

#include <gtk/gtkpapersize.h>

#include <gtk/gtkpaned.h>

#include <gtk/gtkprintcontext.h>

#include <gtk/gtkprintoperation.h>

#include <gtk/gtkprintoperationpreview.h>

#include <gtk/gtkprintsettings.h>

#include <gtk/gtkprogressbar.h>

#include <gtk/gtkradioaction.h>

#include <gtk/gtkradiobutton.h>

#include <gtk/gtkradiomenuitem.h>

#include <gtk/gtkradiotoolbutton.h>

#include <gtk/gtkrange.h>

#include <gtk/gtkrecentaction.h>

#include <gtk/gtkrecentchooser.h>

65

#include <gtk/gtkrecentchooserdialog.h>

#include <gtk/gtkrecentchoosermenu.h>

#include <gtk/gtkrecentchooserwidget.h>

#include <gtk/gtkrecentfilter.h>

#include <gtk/gtkrecentmanager.h>

#include <gtk/gtkscale.h>

#include <gtk/gtkscalebutton.h>

#include <gtk/gtkscrollable.h>

#include <gtk/gtkscrollbar.h>

#include <gtk/gtkscrolledwindow.h>

#include <gtk/gtkselection.h>

#include <gtk/gtkseparator.h>

#include <gtk/gtkseparatormenuitem.h>

#include <gtk/gtkseparatortoolitem.h>

#include <gtk/gtksettings.h>

#include <gtk/gtkshow.h>

#include <gtk/gtksizegroup.h>

66

#include <gtk/gtksizerequest.h>

#include <gtk/gtkspinbutton.h>

#include <gtk/gtkspinner.h>

#include <gtk/gtkstatusbar.h>

#include <gtk/gtkstatusicon.h>

#include <gtk/gtkstock.h>

#include <gtk/gtkstylecontext.h>

#include <gtk/gtkstyleproperties.h>

#include <gtk/gtkstyleprovider.h>

#include <gtk/gtkswitch.h>

#include <gtk/gtksymboliccolor.h>

#include <gtk/gtktextattributes.h>

#include <gtk/gtktextbuffer.h>

#include <gtk/gtktextbufferrichtext.h>

#include <gtk/gtktextchild.h>

#include <gtk/gtktextiter.h>

#include <gtk/gtktextmark.h>

67

#include <gtk/gtktexttag.h>

#include <gtk/gtktexttagtable.h>

#include <gtk/gtktextview.h>

#include <gtk/gtkthemingengine.h>

#include <gtk/gtktoggleaction.h>

#include <gtk/gtktogglebutton.h>

#include <gtk/gtktoggletoolbutton.h>

#include <gtk/gtktoolbar.h>

#include <gtk/gtktoolbutton.h>

#include <gtk/gtktoolitem.h>

#include <gtk/gtktoolitemgroup.h>

#include <gtk/gtktoolpalette.h>

#include <gtk/gtktoolshell.h>

#include <gtk/gtktooltip.h>

#include <gtk/gtktestutils.h>

#include <gtk/gtktreednd.h>

#include <gtk/gtktreemodel.h>

68

#include <gtk/gtktreemodelfilter.h>

#include <gtk/gtktreemodelsort.h>

#include <gtk/gtktreeselection.h>

#include <gtk/gtktreesortable.h>

#include <gtk/gtktreestore.h>

#include <gtk/gtktreeview.h>

#include <gtk/gtktreeviewcolumn.h>

#include <gtk/gtktypebuiltins.h>

#include <gtk/gtktypes.h>

#include <gtk/gtkuimanager.h>

#include <gtk/gtkversion.h>

#include <gtk/gtkviewport.h>

#include <gtk/gtkvolumebutton.h>

#include <gtk/gtkwidget.h>

#include <gtk/gtkwidgetpath.h>

#include <gtk/gtkwindow.h>

69

#include <gtk/deprecated/gtkcolorsel.h>

#include <gtk/deprecated/gtkcolorseldialog.h>

#include <gtk/deprecated/gtkfontsel.h>

#include <gtk/deprecated/gtkhandlebox.h>

#include <gtk/deprecated/gtkhbbox.h>

#include <gtk/deprecated/gtkhbox.h>

#include <gtk/deprecated/gtkhpaned.h>

#include <gtk/deprecated/gtkhsv.h>

#include <gtk/deprecated/gtkhscale.h>

#include <gtk/deprecated/gtkhscrollbar.h>

#include <gtk/deprecated/gtkhseparator.h>

#include <gtk/deprecated/gtkrc.h>

#include <gtk/deprecated/gtkstyle.h>

#include <gtk/deprecated/gtktable.h>

#include <gtk/deprecated/gtktearoffmenuitem.h>

#include <gtk/deprecated/gtkvbbox.h>

#include <gtk/deprecated/gtkvbox.h>

70

#include <gtk/deprecated/gtkvpaned.h>

#include <gtk/deprecated/gtkvscale.h>

#include <gtk/deprecated/gtkvscrollbar.h>

#include <gtk/deprecated/gtkvseparator.h>

#undef __GTK_H_INSIDE__

#endif /* __GTK_H__ */

71

REFERENCES

 [1] John Purcell, 1997, Linux Complete Command Reference Red Hat

Software,Inc. USA

[2] Takashi Iwai, 2003, Sound Systems on Linux: From the Past to the Future

Linux Conference, Edinburgh, Scotland

[3] Karim Yaghmour, Jon Masters, Gilad Ben-Yossed, Philippe Gerum 2008

Building Embedded Linux Systems O’Reilly Media, Inc., Sebastopol,

California

[4] Remi Lorriaux, 2011, Real-time Audio on Embedded Linux Adeneo

Embedded. Embedded Linux Conference

[5] Brian Fraser (2011) Linux Audio Guide. Last update: November 15, 2011

[6] Christopher Hallinan, 2010. Embedded Linux Primer, Second Edition. A

Practical, Real-World Approach Prentice Hall, Boston, USA Pg10-11

[7] Kenneth H. Rosen, Douglas A. Host, James M. Farber, Richard R.

Rosinski, 1999, UNIX, The Complete Reference Osbourne/McGraw-Hill

Califonia USA

[8] Jeff Tranter, Sep 30, 2004 Introduction to Sound Programming with ALSA

http://www.linuxjournal.com/node/6735/print

[9] Takashi Iwai Sep, 2000. ALSA Sequencer System, SuSE GmbH,

Nuremberg, Germany

72

[10] Takashi Iwai 2002-2005 Writing an ALSA Driver. http://ftp.rz.tu-

bs.de/pub/mirror/ftp.kernel.org/people/tiwai/docs/writing-an-alsa-

driver.pdf

[11] Matthias Nagorni 24 Feb 2010 ALSA Programming HOWTO

 http://users.suse.com/~mana/alsa090_howto.html

[12] Paul Davis 2002 A Tutorial on Using the ALSA Audio API

http://equalarea.com/paul/alsa-audio.html

[13] Tavis B. Nicolai L. Seth V. Tom M., 2002 Linux NFS−HOWTO. The

Linux Documentation Project http://www.tldp.org/HOWTO/pdf/NFS-

HOWTO.pdf

[14] http://www.putty.org/

[15] http://www.gtk.org/tutorial1.2/gtk_tut-1.html

[16] http://ftp.acc.umu.se/pub/gnome/sources/

[17] http://packages.ubuntu.com/

[18] https://developer.gnome.org/gtk3/3.2/gtk-getting-started.html

[19] http://www.alsa-project.org/

[20] http://www.wikipedia.org

[21] http://www.alsa-project.org/alsa-doc/alsa-lib/pcm.html

[22] http://www.linuxjournal.com/article/7705

