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ÖZET 

BĐR AKTĐF GÜRÜLTÜ BASTIRMA SĐSTEMĐNĐN TASARIMI VE 

GERÇEKLEŞTĐRĐMĐ 

UĞUR, Erdem 

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü 

Tez Danışmanı: Yard. Doç. Dr. Mustafa SEÇMEN 

Temmuz 2012, 72 sayfa 

 

Bu tezde, araç sürücüsüne ulaşan motor gürültüsünü yok etmek için bir aktif 

gürültü bastırma sistemi önerilmektedir. En küçük ortalama kare (LMS) 

algoritması, basitliği ve gürbüz yapısı nedeniyle bu sistemde uyarlanır süzgeç 

olarak tercih edilmiştir. Ortalama kare hatasını (MSE) ve yaklaşım hızını 

etkileyen adım sayısı ve süzgeç boyutu, yaklaşım hızını artırmak ve kalıcı durum 

hatasını azaltmak amacıyla incelenmiştir. Literatür araştırmasından sonra, 

değişken adım sayısı ve değişken süzgeç boyutu algoritmaları gerçek zamanlı 

uygulamalar için en iyi gerçekleştirimler olarak seçilmişlerdir. Bu algoritmalar 

bilgisayar simülasyonları ile gerçekleştirilmiş ve sonuçları klasik LMS ile 

karşılaştırılmıştır. LMS algoritmasının çeşitlerinden olan normalize LMS (NLMS) 

ve sign-sign yapıları da sistemin hızını artırmak ve işlem karmaşıklığını azaltmak 

için kullanılmıştır. Algoritmaların sayısal işaret işlemci uygulamaları için 

uygunluğunu doğrulamak amacıyla farklı motor sesleri ve sinüs sinyalleri ile çok 

sayıda test yapılmıştır. Bu çalışmada değişken adım sayısı ve değişken filtre 

boyutlu algoritmalarının klasik LMS algoritmasına göre daha iyi performansa 

sahip olduğu ve diğer karmaşık algoritmalara göre de daha hızlı çalıştığı 

görülmüştür.  

Anahtar Sözcükler: Aktif gürültü bastırma, en küçük ortalama kare 

algoritması, normalize en küçük ortalama kare algoritması, değişken adım boylu 

en küçük ortalama kare algoritması, motor gürültüsü 
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ABSTRACT 

DESIGN AND IMPLEMENTATION OF AN ACTIVE NOISE 

CANCELLATION SYSTEM 

UĞUR, Erdem 

MSc, Department of Electrical and Electronics Engineering 

Supervisor: Asst. Prof. Dr. Mustafa SEÇMEN 

July 2012, 72 pages 

 

This thesis presents an active noise cancellation system to annihilate motor 

noise of a car belonging to driver. Least Mean Square (LMS) is used as an 

adaptive filter in this system due to its simplicity and robust characteristics. Step 

size and filter length, which affect mean-square error (MSE) and convergence 

rate, are investigated to increase speed of convergence and decrease steady state 

error. After the literature search, a variable step size algorithm and a variable tap 

length algorithm are selected as the best implementations for real time 

applications. These algorithms are realized with computer simulations and the 

corresponding results are compared with classical LMS algorithm. As being 

different types of LMS, normalized LMS (NLMS) and sign-sign structure are also 

used to increase speed of the system and decrease the computational complexity. 

Several tests are done with different motor sounds and sinusoidal signals to verify 

the availability of the algorithms for DSP implementations. In this study, it is 

shown that variable step size and variable tap length algorithms have better 

performance than classical LMS and process time is shorter than other complex 

algorithms.  

Keywords: Active noise cancellation, least mean square algorithm, 

normalized least mean square algorithm, variable step size least mean square 

algorithm, motor noise
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CHAPTER 1: INTRODUCTION 

There are two types of acoustic noise in the environment. First type is 

caused by turbulence and it is generally random. This noise is called as broadband 

noise due to distributing its energy across the frequency bands. Low frequency 

noise of a jet plane and impulse noise of an explosion can be considered as 

broadband noise examples. On the contrary to broadband noise, the second type of 

acoustic noise concentrates its energy at specific frequencies, which is called as 

narrowband noise. Most of the cases of this type are periodic since, this type of 

noise is related to repetitive machines. Noise of engines, compressors and vacuum 

pumps are the examples of narrowband noise (Kuo et al., 1996). 

With the increase in the usage of industrial equipments (engines, blowers, 

fans, transformers), acoustic noise become an important problem (Kuo, 1999). 

There are two main methods to reduce this noise. These are passive noise 

cancellation and active noise cancellation. Because, it is often cheap and simple to 

implement. Passive noise control is the mostly used one among all practical 

control methods. There are two commonly used techniques for passive noise 

control (Synder, 2000). First one uses acoustic insulation to muffle sound. The 

aim of this technique is to absorb the sound energy and this absorbed energy turns 

to heat energy. Second one reduces the volume velocity of noise source. This 

method is implemented by attenuating the vibration of the noise source frequently. 

Using rubber isolators under the motor of cars is one of the most common 

examples of this technique. Although the passive silencers are effective to 

attenuate the noise over a broad frequency range, these techniques are ineffective, 

bulky and expensive at low frequencies (Elliott and Nelson, 1993). Since, the 

wavelength of low frequency sound is large. For example, wavelength of a 100 

Hz sound wave is 3.4 meters in air. Thus, the thickness of the absorber in acoustic 

wavelengths becomes larger than a typical acoustic absorber. On the other side, 

the intervening barrier must be very heavy to attenuate the low frequency signal. 

As the result of all these reasons, it is difficult to solve acoustic noise by passive 

methods at low frequencies.  
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Active noise cancellation or equivalently active noise control (ANC) system 

contains an electroacoustic device to cancel the unwanted noise (Hansen, 2003). 

This electroacoustic device generates antinoise signal having an equal amplitude 

and opposite phase with the noise signal. Acoustic noise cancellation based on 

superposition principle works provided that the acoustic environment is linear, 

which is the validity rule of superposition principle. The noise and the generated 

antinoise are summed up and noise will be cancelled. The physical concept of 

active noise cancellation is shown in Figure 1.1.  

Figure 1.1: Physical Concept of Active Noise Cancellation (Kestell and Hansen, 1999) 

Although active noise cancellation and the passive noise cancellation seem 

to be the alternative of each other, they are complementary (Cuesta et al., 2000). 

Since the performance of these two techniques are related to frequency of noise. 

This relationship can be seen in Figure 1.2. If the environment, which includes 

active noise control, is stationary and the frequency of noise signal is low 

(especially below 200 Hz), there is no need to use an additional passive filter. 

Similarly it is not required using active control methods with passive filters when 

frequency of noise signal is high (especially above 500 Hz). 
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Figure 1.2: Active and Passive Control Attenuation (Mingues et al., 1999) 

By regarding to active noise control, there are two types of active noise 

control. First type is local cancellation. Here, antinoise signal is generated 

electronically and loudspeaker converts this electronic signal to sound. If 

cancellation only occurs at near the controller, noise level might be reduced at this 

region. However, total energy of antinoise signal and noise signal is conserved. 

The noise level will increase at other regions. Active headset is an example for the 

application of local cancellation. At active headsets, noise is cancelled near the ear 

while noise level is increased outer region. The second type of active noise control 

absorbs sound by the antinoise signal at a space such as a duct. For example, 

assume that there is a loudspeaker in a free space and other one is in front of it. If 

the first loudspeaker starts to radiate sound wave, the other loudspeaker will 

generate an antinoise by tuning amplitude and phase itself. Then, the sound wave, 

which is radiated from first loudspeaker, is cancelled. As a result, sound pressure 

is not radiated to far field while local sound field also exists in the near field of 

these two loudspeakers.   

Engine noise of a car changes approximately from 90 Hz to 150 Hz due to 

engine’s angular speed varying from 2700 rpm to 4500 rpm mostly (Wan et al., 

2008). Hence, the use of ANC is required for these low frequencies. If passive 

methods are preferred, it will be expensive and bulky for a car. 

To make ANC applicable in real system, an adaptive filter is required. Thus, 

these systems are also called as Adaptive ANC. LMS is one of the most popular 
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adaptive filtering algorithms because of its robust characteristics and simple form 

with respect to other adaptive algorithms. 

Step size and tap length are two important parameters, which affect 

performance of LMS adaptive filter. These parameters change converge speed and 

steady state error performance of the filter. However, choosing constant values for 

these parameters cause degradation in convergence speed and steady state error 

performances. Therefore, variable step size and variable tap length algorithms are 

used to overcome this drawback.   

Types of LMS such as normalized LMS and sign-sign LMS are also used 

widely in DSP applications especially to get better performance or decrease 

computational complexity. Normalized LMS changes the step size with input 

signal and it improves error performance of the system with higher convergence 

speed. On the other hand, sign-sign LMS algorithm only uses sign value of both 

error and input signal to find new tap weights of the adaptive filter. So, it provides 

huge improvement to computational complexity due to the elimination of the 

multiplications. 

1.1 Scope of the Thesis 

The aim of this study is to explore suitable LMS filtering algorithms to 

implement active noise cancellation of a motor noise with respect to the usage of 

classical LMS algorithm. Variable tap length and variable step size are aimed to 

increase efficiency of the method by changing these values by time. It is also 

aimed to show that algorithms are suitable for real time implementation with 

digital signal processors (DSP).  

1.2 Outline 

The outline of this thesis is as follows. The definition of ANC and historical 

development are given in Chapter 2. Types, advantages and disadvantages of 

ANC are also given in this chapter. 

In Chapter 3, it is introduced the adaptive filtering with Wiener filter. Then, 

the theory of Steepest Descent and LMS are given. The types of LMS are 

explained and using variable step size and variable tap length to overcome some 

conflicts are included in this chapter. 
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The system of ANC for motor noise is shown in Chapter 4, which is also 

based for all algorithms and simulations in this thesis. Methods and the algorithms 

for variable step size LMS and variable tap length LMS are also shown. 

Chapter 5 includes results of computer simulations which are done as a 

consequence of Chapter 4. In this chapter, simulation results are compared with 

classical LMS and other types of LMS. The effects of different step size values 

and different tap length values on system performance are also examined. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



6 
 

CHAPTER 2: ACTIVE NOISE CANCELLATION 

In this chapter, historical development of acoustic noise control and 

different types of active noise control methods are investigated. 

2.1 Development of Active Techniques for Acoustic Noise Control 

Basic idea of using active noise cancellations was firstly described and 

patented by German physicist Paul Lueg in 1936. The described system is shown 

in Figure 2.1 (Elliott and Nelson, 1993).  

 

Figure 2.1: Lueg’s Patent Application (Lueg, 1936) 

This prepared system is also defining the active noise control. The noise 

source A emits its sound waves in all directions because, it is placed in open 

space. Then, microphone M and loudspeaker L which are interconnected by 

amplifier V, are located. The microphone M measures the noise signal s1 and 

amplifier V generates an antinoise signal s2. Afterwards, the antinoise signal 

drives the loudspeaker L. Finally, the noise sound s1, which is produced by A, is 

cancelled by opposite phase sound s2 produced by loudspeaker L (Lueg, 1936). 

On the other hand, this system did not have applications practically due to some 

problems related the environment. Phase, velocity and amplitude of the sound and 

environment are nonstationary and therefore, it is needed to active noise 

controlling to overcome these problems (Kuo et al., 1996).  

There was no important research about Active Noise Cancelling after Lueg 

until 1950s. Then, realization of active noise control in room, duct, headset and 

earmuff were investigated by Olson in 1950s. But, his system provided very 

limited attenuation levels. He got his results for a very narrow frequency range. 

He suffered from instability, which is caused by high frequency noise (Hansen, 

2003).    

W. Conover also made experiments nearly at the same years as Olson about 

active noise cancelling for noise of transformer. Radiated noise sound by these 
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transformers includes even harmonics of line frequency. Therefore, there is no 

need to use microphone to detect noise signal because of the periodicity of sound. 

Then loudspeaker is driven by electronic controller (Elliott and Nelson, 1993). 

But, this prepared system was not practical too. Indeed, the controller was 

adjusted manually due to the changes in environmental conditions and it had to be 

adjusted periodically to eliminate effects of changing wind and temperature. The 

other restriction of this experiment was the reduction of the noise over only a very 

narrow angle subtended from the loudspeaker and microphone (Hansen, 2003). 

The Conover’s prepared system is shown in Figure 2.2. As shown in the figure, 

amplitude and phase of the antinoise signal are adjusted manually by observing 

the sound analyzer. So, it cannot be used for commercial purpose.  

 

 

 

 

 

Figure 2.2: Conover’s Manually Adaptive Feedforward Active Noise Control System (Elliott and 
Nelson, 1993) 

After Conover and Olson’s experiments, application on active noise control 

was not popular by the scientists until 1970s. After the invent of Least Mean 

Square (LMS) algorithm in 1960, rapid progress of high speed and low cost 

electronic controllers such as digital signal processor (DSP) provide applicable 

ANC system widely (Zhou et al., 2004). Hence, ANC is used in many areas of life 

such as automotive, industrial and transportation nowadays.  

2.2 Active Noise Control 

Active noise control gets attention in long wavelength sound whose 

frequency is low. Principle of active noise control is based on superposition. 

Noise sound called as primary source and other electroacoustic devices called as 

secondary source are summed up. As the result of this process, primary source is 
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suppressed and output of these secondary sources is controlled by a 

microcontroller. (Elliott and Nelson, 1993). 

An active noise cancellation system needs 

• Reference and error signals. Microphone is mostly used sensor to get 

reference signal and measure error. 

• Electronic controller system: It is needed to process adaptive algorithms at 

an active noise control system. Therefore, microcontrollers and especially Digital 

Signal Processors (DSP) are widely used in applications of ANC. 

• A loudspeaker. Generated antinoise signal is converted from electrical 

signal to sound wave whose output changes with time (Hansen, 2003).  

Selection of these sensors, controllers, loudspeakers and other components 

quite depend on type of noise source and physical environment (Kestell and 

Hansen, 1999). If noise travels through the air, microphones and loudspeakers can 

be chosen commonly. Although, microphone and loudspeaker are also valid, other 

sensors and actuators are also used especially at structure born noise. Strain 

gauges, tachometers and accelerometers are some examples of these sensors 

(Mingues et al., 1999).  

On the other hand, the location of microphone is very important for the 

efficiency of the ANC system since standing waves are generated by producing 

different frequencies and different sound levels (Kestell and Hansen, 1999). If 

location of the microphone is not selected properly, the certain frequency may be 

shifted or it might be seen as blind. Thus, location of the microphones must be 

arranged precisely and it must be also closely spaced with respect to wavelength 

of the sound signal.  

Antinoise signal is generated by microcontroller whose input is taken from 

the sensors. Steady state can be provided by supplying ideal environment. But, 

acoustic environment and the noise sound are variable in practice. For this 

purpose, controller must also have self tuning property to work at unideal 

environment efficiently (Kestell and Hansen, 1999). 

 



9 
 

2.3 Types of Active Noise Control System 

The developed active noise techniques are very effective at narrowband 

noise cancellation. Narrowband noise is caused by periodic, rotational machines 

generally. Therefore, other sensors such as tachometer can be also used instead of 

input microphone. Because repetitive noises are occurred at the harmonics of the 

machine’s rotational frequency, the controller can generate antinoise signal at 

these frequencies. This type of control system is mostly used in vehicle cabin 

because it is not affected from speech and other signals. Control of this type 

cancellation system depends on speed of the engine rotation only (Kuo et al., 

1996). 

Although higher frequency active noise control systems exist, these are 

more suitable for low frequencies which are below 500 Hz. This is because 

technical difficulties such as more complex vibration and required higher 

sampling rates limit the efficiency of higher frequency applications (Hansen, 

2003). 

Feedforward ANC and feedback ANC are the two common methods of 

active noise cancellation.   

2.3.1 Adaptive Feedforward Control 

A simple feedforward control system in enclosed environment is shown in 

Figure 2.3. Reference signal (noise signal) is sensed by an input microphone, 

which is called as reference microphone, and this signal is filtered by 

microcontroller. Then, the filtered electronic signal is converted to sound by 

loudspeaker. The effectiveness of the control system is controlled by the error 

microphone and it is used to adjust of algorithm (Kuo et al., 1996). Processing 

time of the noise cancellation algorithm must be fast as it can be possible. But, 

required amount of time depend on the application. The processing time of a 

broadband noise controller must be less than the propagation time of noise signal 

from the source to the controller. On the other hand, the permitted processing time 

can be larger at narrowband noise controlling. This flexibility occurs due to 

narrowband noises, which are composed of repetitive signals (Hansen, 2003).   
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Figure 2.3: Feedforward Active Noise Control System in a Duct (Hansen, 2003) 

 

 

 

 

 

 

Figure 2.4: Feedforward Active Noise Control System in a Space (Elliott and Nelson, 1993) 

A sample of a feedforward control system in space is shown in Figure 2.4. It 

can be easily seen that the principle of this system is same as the one in 

Figure 2.3. But, application of this system is more complicated than system in a 

duct due to physical structure of sound in space.  
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Figure 2.5: Block Diagram of Feedforward Control (Elliott and Nelson, 1993) 

Equivalent block diagram of feedforward system is also shown in 

Figure 2.5. In this figure, primary path from noise source to error microphone is 

represented with block P, while controller is represented with block W and 

secondary path from loudspeaker to error microphone is represented with block C. 

Transfer function of this block diagram is given by 

)(

)()(
1

)(

)(

sP

sCsW

sD

sE
+=                                              (2.1) 

This system gives complete cancellation of error spectrum because the 

spectrum of error signal is related with the response of electrical controller 

linearly. So, it can be adjusted at each frequency and by inverting secondary path, 

complete cancellation is occurred principally (Elliott and Nelson, 1993). 

The usage of a microphone as a reference signal in Figure 2.3, is not only 

choice for the sensor. Variable types of sensors can be used such as tachometer. A 

feedforward control system using nonacoustical sensor is shown in Figure 2.6.  

 

 

 

Figure 2.6: Feedforward Active Noise Control System with Nonacoustical Sensor (Kuo et al., 
1996). 
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There are some advantages of using nonacoustical sensors to get noise 

signal. The first advantage is the avoiding of undesired acoustic feedback from the 

cancelling speaker. The other one is the flexibility of positioning the loudspeaker 

since noise waveform is constant. Required adjustment is only at magnitude and 

frequency of the noise. Toleration of longer delays is the other advantage of this 

application (Kuo et al., 1996).  

 

Figure 2.7: Waveform Synthesis Control System (Hansen, 2003). 

A sample of tachometer used in a feedforward system is shown in Figure 

2.7, which is also called as waveform synthesis controller. In this system, a gear 

wheel is used to generate pulse signals from the tachometer. Then, coming pulses 

are converted to corresponding output amplitudes. After that, error signal is 

detected synchronously by the microphone at each incoming pulse to update 

generating signal. 

Accuracy of the output waveform shape depends on the number of pulses at 

a period. So, required number of pulses will increase if required noise reduction 

increases and vice versa (Hansen, 2003). 

Although this method is successful to attenuate the noise at the fundamental 

frequency and its harmonics, it cannot cancel the noise whose frequencies are 

along the harmonics (Hansen, 2003). 

2.3.2 Adaptive Feedback Control  

The reference signal is not used in the feedback active noise cancellation. 

There is only an error microphone and antinoise sound is generated by processing 

of error signal. Characteristics of feedback control system are selected to 
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unperturbed state quickly. Although feedforward controllers perform better than 

feedback controllers, feedback controllers are faster. Thus, this type of controller 

is selected where feedforward controllers can not response early enough (Hansen, 

2003).  

There is only a microphone at this type of controller. This microphone is 

used to get undesired noise signal as an error microphone. The detected error 

signal is returned through to controller and the antinoise signal is generated as 

shown in Figure 2.8 (Kuo et al., 1996).  

 

 

 

 

 

Figure 2.8: Feedback Active Noise Control System in a Space (Elliott and Nelson, 1993) 

In this figure, e represents signal taken from microphone, which is 

combination of noise source d (can be also described as primary disturbance) and 

output of the feedback loop (Elliott and Nelson, 1993). The feedback loop acts as 

an attenuation force to reduce e as small as possible as compared to d. In this way, 

acoustic pressure can be cancelled at the microphone.   

Equivalent block diagram of the feedback system is also shown in Figure 

2.9. Block H represents the gain of the feedback loop, block C represents the 

transfer function from loudspeaker to microphone, which is called as error path. 

The transfer function of the control block can be expressed as  
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1
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Figure 2.9: Block Diagram of Feedback Control (Elliott and Nelson, 1993) 

Location of the microphone and loudspeaker should be close to each other 

to decrease acoustic delay and improve performance and stability of control 

system. However, the sound pressure may not be reduced at large distances 

because of near field effect. Nevertheless, it is not a problem for most of the 

feedback applications such as ear muffs. If the distance between microphone and 

loudspeaker is too close, far field performance will decrease due to near field 

effects. But, noise will be cancelled within a very small area around the 

microphone (Hansen, 2003).  

Adaptive feedback control method can be only implemented by using a 

digital filter. But, this implementation causes a delay to process algorithm on 

microcontroller such as digital signal processors. This type controller is preferred 

to feedforward control only when it is not possible to get any reference signal 

(Hansen, 2003).  

2.3.3 Multiple Channel Active Noise Control 

Single channel active noise control systems use a microphone and a 

loudspeaker to cancel the noise. But, quiet zone is only produced around the 

microphone. So, single channel controller can not attenuate noise wave at far 

distances (Kuo et al., 1996). Indeed, as complexity geometry of the sound field 

increases, it is not adequate to use single error microphone and single 

loudspeaker. The multichannel active noise control system includes an array of 

sensors and actuators as shown in Figure 2.10 (Elliott and Nelson, 1993). 
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Figure 2.10: Multichannel Active Noise Control System (Design of Active Noise Control Systems 
with the TMS320 Family) 

The usage of a few error sensors are ususally needed to obtain higher 

cancellation of total noise energy. In order to get best attenuation level from this 

error microphones, microphone locations must be correct. These locations highly 

depend on the shape of enclosure. For example, they can be placed at each corner 

of the enclosure to have maximum sound pressure if the shape of enclosure is 

rectangular and the location of loudspeakers must be directly couple to the noise 

source (Kuo, 1999). 
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CHAPTER 3: ADAPTIVE FILTER 

 Adaptive processing is a system which can change its process behavior to 

maximize performance of filter where the mean square error is mostly used as a 

performance criterion (Stranneby et al., 2004). Adaptive filtering is also a time 

varying process since its coefficients are changing with input signal, output signal 

or system parameters to meet required performance (Vijaykumar et al., 2007). 

3.1 Wiener Filter 

Wiener Filters are known as the linear optimum discrete time filters (Tan, 

2008). The Wiener filter adjusts its tap weights to produce optimum filter output. 

Optimum filter output can be provided when output signal is as close as possible 

to desired signal and this optimum function is called as cost function (Poularikas 

and Ramadan, 2006). 

As shown in Figure 3.1, the input of the filter consists of time samples (u(0), 

u(1), u(2),…) and filter generates tap weights, which are characterized by itself 

(w0, w1, w2,…). Then, the filter produces an output, which is denoted by y(n). The 

aim of producing this output is to estimate the desired signal which is denoted by 

d(n). The estimation error in this figure, e(n), is the difference between the output 

and the desired response, and so, the filter tries to minimize this error as small as 

possible (Haykin, 1996). 

Figure 3.1: Block Diagram of Wiener Filtering (Haykin, 1996) 

This filter has also two important advantages. First of all, it is linear, 

therefore, it is easy to analyze mathematically. Secondly, it is a discrete time 

filter. For that reason, it can be implemented on digital hardware devices (Haykin, 

1996). 
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From Figure 3.1, the output signal for a single-weight case can be written as  

             ���� = �����                                        (3.1) 

and error signal is given by 

���� = 	��� − �����                      (3.2) 

To find best tap-weight, the square of the error is taken as 

�� = �	��� − �������                     (3.3) 

 �� = 	���� − 2	�������� + ����                           (3.4) 

The expected value of Equation 3.4 is found as 

�{��}  = �{	�} − 2��{	�������} + ���{�����}              (3.5) 
where E is expected operator. Finally, cost function is written from (3.5) as 

� = �� − 2�� + ���                                      (3.6) 
where, 

� = �{�����}  = �������� ������ ������ 
�� = �{	����} = ����� �� ��������	 � !��" 

� = �{	�������} = ���## − �����"�� �� $������ 	�����	 ���� 
� = �{�����} = %���&����"�� �� 

Since  ��, P and R are constants, the cost function (J) may be plotted as in 
Figure 3.2. 
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Figure 3.2: Mean Square Error Quadratic Function (Tan, 2008) 

According to this figure, optimum tap-weight is at minimum mean square 

error. To find optimum tap-weight, the derivative of cost function is equated to 

zero. 

'(') = 0                              (3.7) 

'(') = −2� + 2��                                        (3.8) 

Then, the best tap-weight can be finally written as (Tan, 2008) 

� = �+,�                               (3.9) 

3.2 Steepest Descent 

In order to solve the Wiener equation, which is shown in (3.9), several 

computations are required. Widrow and Stearns have described a method by using 

steepest descent algorithm. The purpose of this algorithm is to minimize the mean 

square error (MSE) by changing the filter coefficients in each sample (Tan, 2008). 

Steepest descent algorithm helps to find minimum mean square error, Jmin, 

value. The steps of steepest descent algorithm can be summarized as follows 

(Poularikas and Ramadan, 2006).  

Step-I: Algorithm starts with the initial value assignment w(0), which is 

usually equal to null vector. 

Step-II: Gradient vector  ∇����0�� is computed. 
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Step-III: To obtain w(1), −μ∇����0�� is calculated and added to w(0). 
Step-IV: After that go to Step-II and continue the process to find optimum 

coefficients (until ∇����0��  is equal to zero) 
The updated tap-weight vector can be written from the steepest descent 

algorithm as (Haykin, 1996), 

�/0, = �/ − ,� μ '(')                              (3.10) 

where μ is a real constant which is known as step size parameter at this equation. 
Here, the aim of using the factor  

,�  is to cancel the factor of 2 at the 
equation (3.8).  

The calculation of optimal tap-length value w* of the steepest descent 

algorithm is shown in Figure 3.3. 

  
a) b) 

Figure 3.3: Illustration of the Steepest Descent Algorithm (Tan, 2008) (a) Case where  '(')  is 
negative (b) Case where  '(')  is positive. 

Two different situations are shown in Figure 3.3. The first situation is the 

case, where  '(')  is smaller than zero (Figure 3.3(a)). If  '(')   is negative, it is easy 
to understand from (3.10) that − ,� μ '(') will positive and updated tap length 
coefficient �/0, will be increased. On the contrary, If  '(')   is positive 
(Figure 3.3(b)), it is understood from (3.10) that − ,� μ '(') will negative and new 
tap length coefficient �/0, will be decreased. 

If (3.8) is substituted into (3.10), the updated tap weight can be computed by 

using the simple recursive relation such as in (3.11). 
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�/0, = �/ + μ[� − ��/]                  (3.11) 

3.3 Least Mean Square  

The Least Mean Square (LMS) algorithm was invented by Widrow and 

Hoff in 1960, which is a kind of stochastic gradient algorithm (Poularikas and 

Ramadan, 2006). 

A least mean square (LMS) algorithm consists of two basic processes 

(Haykin, 1996). First one is the filtering process that output of the filter is 

computed and estimation error is found by the difference between output and 

desired signal. The other is adaptive process. It provides automatic adjustment of 

the tap weights according to estimation error. 

A feedback loop built with combination of these two processes, which are 

fundamental components of LMS algorithm and this feedback loop, is shown in 

Figure 3.4.  

 

 

 

 

 

Figure 3.4: Block Diagram of Adaptive Transversal Filter (Haykin, 1996) 

According to the Figure 3.5, tap inputs, u(n), are processed by transversal 

filter and the result will be y(n). Output of the transversal filter, y(n), is also called 

as estimation of desired response. The estimation error, e(n), can be found by 

difference between desired response, d(n), and filter output. Then, adaptive 

control mechanism adjust coefficient of the filter tap lengths according to 

estimation error values (Haykin, 1996). 
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Some of the most important properties of LMS algorithm are (Poularikas 

and Ramadan, 2006) 

• Autocorrelation and inverse matrices are not required in LMS algorithm. 

Thus, it decreases the computational complexity. 

• It has a simple structure for implementations. This property is one of the 

most important reasons why LMS algorithm is preferred in applications. 

• It has a step size parameter which controls stability and convergence rate 

of the algorithm 

• LMS algorithm is stable and robust for different conditions and it is the 

other important reason for the popularly usage of LMS algorithm. 

Based on sample values of tap input and desired response, autocorrelation, 

R(n), and the cross-correlation are given by 

���� = �����3���                           (3.12) 

���� = ����	���                           (3.13) 

If (3.8) is rewritten by using (3.12) and (3.13), instantaneous estimate of 

gradient vector is 

∇���� = −2����	��� + 2�����3�������            (3.14) 

A new recursive relation to update the tap weight can be written by 

substituting (3.14) into (3.10), which is calculated as 

��� + 1� = ���� + 5����[	��� − �3�������]              (3.15) 
According to Figure 3.5, the output of filter is 

���� = �3�������                          (3.16) 

and estimated error is  

���� = 	��� − ����                           (3.17) 
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A new form of (3.15) can be formed by substituting (3.16) and (3.17) into 

these equation that 

��� + 1� = ���� + 5��������                        (3.18) 

3.4 Types of LMS 

3.4.1 Normalized LMS 

The correction 5��������, which is added to tap weight ���� at iteration 
n+1, is directly proportional to input ����. Hence, gradient noise amplification 
problem will occur if tap input vector ���� is large. So, normalized least mean 
square (NLMS) algorithm can be used to solve this problem (Haykin, 1996). The 

normalized least mean square error (NLMS) algorithm is given (Haykin, 1996) 

��� + 1� = ���� + 6 7‖9�/�‖: ��������        (3.19) 

where 5 7  is the adaptation constant and new step size is 
2
)(

~

nu

µ
µ =      (3.20) 

The reason of using the normalized term can be seen from (3.20). Product of 

u(n) and e(n) is normalized by norm of the input u(n) (Haykin, 1996). 

This algorithm has two advantages over classical LMS algorithm. First of 

all, it has potentially-faster convergence speed. The other one is independency of 

the stable behavior (0 < 5 7 < 2) from correlation statistics of input data (Douglas, 
1994).  

NLMS algorithm has also its own gradient noise amplification problem. The 

problem may occur if input vector u(n) is small due to division of squared norm of 

a small number ‖����‖�. For that reason, a positive constant can be added to 
norm vector such as (Haykin, 1996) 

��� + 1� = ���� + 6 7<0‖9�/�‖: ��������           (3.21) 

 



23 
 

3.4.2 Sign Error 

Multipliers are primary source of complexity at implementation of digital 

filters (Rath and Chakraborty, 2010). For that reason, in design stage, it is 

essential that low number of multipliers should be used to reduce complexity. If a 

multiplier is replaced by a single signed term, the complexity of the algorithm will 

reduce enormously. Thus, sign variation of LMS algorithm is very popular 

especially at hardware implementations. Since, it requires only addition and/or 

subtraction instead of multiplication. The basic types of sign LMS are 

i) The Error Sign LMS 

The signed error algorithm can be defined as 

��� + 1� = ���� + 5 # !�=����>����                  (3.22) 

where 

# !���� = ? 1   � > 00   � = 0−1  � < 0A                                              (3.23) 
is the signum function. The use of signum function provides simplification on 

hardware implementation. Thus, only shift and add/subtract operations can be 

enough for implementation.  

ii) The Data Sign Algorithm 

The signed data algorithm can be defined as 

��� + 1� = ���� + 5 # !�=����>����                   (3.24) 

iii) The Sign Sign Algorithm 

The sign sign algorithm can be defined as 

��� + 1� = ���� + 5 # !�=����> # !�������              (3.25) 
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3.4.3 Variable step-size algorithm 

One of the most popular approaches is to use variable step size in the 

standard LMS algorithm (Aboulnasr et al., 1997). 

Four important technical targets of adaptive filtering algorithm are (Yan et 

al., 2010) 

• Convergence rate 

• Tracking performance 

• Static error 

• Complexity 

In this part, two important characteristics of an adaptive filter, convergence 

behavior and steady state mean square error (MSE), are investigated (Slock, 

1993). 

In original LMS algorithm step size is fixed. However, using fixed step size 

gives a drawback of conflict between mean square error and convergence speed. If 

step size is small, convergence time will be longer and square error will be lower 

(Kwong et al., 1992). On the contrary, convergence speed will be improved but 

square error will be higher if higher step size is selected.  

Many algorithms are proposed to solve this conflict (Liu et al., 2009). 

Although all kinds of improved algorithms are seemed to be different than each 

other, all of them have same approach. At initial stages, the square error is high. 

So, step size is selected higher to increase speed of convergence. Then step size is 

adopted a lower level at convergence stable state to decrease stable static error.  

The details about the formulation of this algorithm will be given in 

Chapter 4.   

3.4.4 Variable tap-length algorithm 

Tap length control is an effective way to improve LMS algorithm because 

the algorithm’s performance is influenced by the tap length significantly (Gu et 

al., 2004), at fixed tap length LMS algorithms selection of suitable tap length 

reflects a tradeoff between steady state error and the speed convergence (Hui et 
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al., 2010). For example, although selecting small tap length gives small steady 

state error, it increases the convergence time. On the other hand, selecting very 

long tap length causes increase in adaptation noise, but, also increase in process 

time of algorithm. 

The advantages of the variable tap length algorithm on an adaptive filter 

mainly depend on the performance of the tap-length adaptation algorithm. If tap 

length is selected so large, the computational complexity will increase 

enormously. On the other hand, the tap-length algorithm should have fast 

convergence rate and good stability in order to be effective (Yu et al., 2008). 

To find optimum result from these two contradictory situations, there is a 

commonly used method which is used mostly. Initially, the number of tap length 

is kept low to achieve fast convergence then, gradually increased to finally give 

the desired steady state performance (Pritzker and Feuer, 1991) 
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CHAPTER 4: ADAPTIVE FEEDFORWARD CONTROL SYSTEM 

4.1 Adaptive Feedforward System Used in This Thesis 

An adaptive feedforward system for the car environment is planned to use, 

which is shown in Figure 4.1 in this thesis. All simulations are done regarding to 

this control system. The reason of use of a feedforward system is the ability of 

taking reference signal from noise source, which is the main discrimination with a 

feedback system. Feedback system is generally used when it is not possible to get 

reference signal from the noise source as in headset application (Erkan, 2009). 

However, if it is able to acquire sample noise signal, which is usually possible in 

closed environment, feedforward systems should be preferred. Therefore, there 

are two microphones in the system as shown in Figure 4.1. First microphone is the 

reference microphone and sound of motor noise is collected by this microphone. 

Consequently, it must be placed near the motor. The other microphone is called as 

error microphone. The aim of this microphone is to sense difference between 

sound inside the cabin of the car and antinoise generated by the controller. Error 

microphone is used to update the coefficients of the adaptive filter via a digital 

signal processor. So, it directly changes effectiveness of the system. The error 

microphone and speakers are located near the driver in order to create a silence 

zone for driver. 

In the given system, two speakers are used in order to cancel the motor 

noise at two ears of the driver. Correspondingly, two error microphones for two 

ears should be theoretically used. However, the maximum frequency to be 

considered in this application is about 150 Hz, which corresponds to the 

wavelength of 2.26 m for a sound wave in air.  The distance between two ears of a 

people is about 25-30 cm. If one error microphone is placed between two ears, the 

distance between error microphone and speaker will be at most 15 cm, which 

belongs to 0.056 B (20 degrees) at maximum frequency. Therefore, placing one 
microphone between speakers brings no significant magnitude and phase 

difference as compared to the case where two microphones are put adjacently to 

two speakers. 
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Figure 4.1: Proposed ANC System to Cancel Motor Noise for Driver (Kuo, 1999). 

Tachometer can be also used to get information about motor sound. In this 

method, tachometer sends the data about revolution per minute to DSP. Honda is 

also used this system at their cars. There are two main differences in Honda’s 

system as compared to the one this study. They are utilized from tachometer 

instead of reference microphone, and they cancel the motor noise at every location 

inside the cabin. For this purpose, as shown in Figure 4.2 they use two 

microphones inside the car as error microphones and multiple speakers to 

generate antinoise signal. The system has carried out about 10 dB reduction the 

noise for the frequencies below 100 Hz (Honda, 2012).  
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Figure 4.2: Honda’s ANC System in the Cabin Area (Honda, 2012) 

A similar project was also performed by (Minguez et al., 1999) using 

Filtered-X LMS algorithm. A tachometer is also used in this project to get engine 

signal. Block diagram of the system is shown in Figure 4.3.  

Figure 4.3: Block Diagram of the Active Noise Control System (Minguez et al., 1999). 

4.2 Variable Length Least Mean Square Algorithm  

Different types of Variable Length Least Mean Square (VLMS) algorithms 

are investigated in this part. But, it is paid attention in this investigation that 

algorithm must not include heavy calculations such as inverse matrix. These 

calculations cause important increase in the computational complexity and reduce 

real time performance of the system. Therefore, it is tried to search algorithms 

having computational complexity as low as possible.  
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4.2.1 Novel Stochastic Gradient Adaptive Algorithm with variable 
Length 

A novel adaptive algorithm with variable tap length is proposed by (Rusu 

and Cowan, 2001). This study includes three different parts. These are adaptive 

filter length update, step size update and adaptive filter coefficient update. 

In first part of the algorithm, the estimated error is calculated and as the 

result of this calculation, new filter length is defined. 

Error estimator �̂ is computed as (Rusu and Cowan, 2001) 
�̂��� = DD0, �̂�� − 1� + ,D0, |����|                              (4.1) 

and new filter length is defined as  

  ��� + 1� = F G�/�� ;  � �̂��� >  �G2����;  � �̂��� <  IG����; ��ℎ��� #�
A                                (4.2) 

Updating step size is the second part of this algorithm. In this algorithm, 5������� is always kept constant. So, step size changes as filter length changes.  
The last part of the algorithm is the same as classical LMS equation. 

In this thesis, this algorithm is used with some modifications except the 

second part. Because step size is changing with tap length, usage of second part 

causes some problems such as increase in computational complexity and the 

determination of constant value of 5�������. 
In second part of the algorithm, the initial value of the step size must be 

entered manually. Therefore, selection of this value effects system performance 

directly and if it is not selected properly, the system will be unstable. Hence, step 

size must be controlled at each iteration to satisfy the stability condition of  0 < 5 < �KLMN . But, this situation increases the complexity enormously. On the 
other hand, error, which is caused by improper selected step size, may not be 

decreased very much. Besides, in this part, the filter lengths are selected as powers 
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of two. Because the step size changes only with tap length, these changes are 

restricted only at discrete values most of the time. 

Normalized LMS method is used instead of second part of the algorithm to 

overcome problems caused by improper selection of step size. Using Normalized 

LMS provides some advantages over constant 5������� structure. One of these 
advantages is that it is not needed to define initial value of 5 . Step size is 
calculated with the input signal. The other advantage is that since 5��� is 
independent from tap length ����, we have more flexibility about step size 
change. So, values of step size have been in a larger interval in Normalized LMS. 

For these reasons, error by using NLMS may be decreased more than the case 

where second step of the algorithm is used. 

Step size is updated as 
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4.2.2 Other Variable Tap Length LMS Algorithms 

A variable tap length algorithm is suggested for LMS structure by (Won et 

al., 1994). This paper benefits from time constant concept to find new tap length. 

But, in order to find time constant, some complex operations such as calculation 

of correlation matrix are needed. Therefore, this algorithm is not used in this 

study.  

The study given in (Alwan, 2006) uses a VLMS algorithm and it is tested in 

an echo canceller application. This algorithm includes some operations like 

factorial, and these calculations cause the increase of processing time. For these 

reasons this algorithm is not preferred.  

The study in (Zhang et al., 2007) suggests a new VLMS algorithm. 

However, this algorithm uses logarithm operant at every iterations. So, it causes 

increasing in computational complexity. Therefore, this algorithm is also not 

considered in this study. 
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4.3 Variable Step Size Least Mean Square Algorithm  

In this part, variable step size LMS algorithms are explained. Although there 

are many algorithms about step size, most of them cannot be used in this thesis 

due to their complexity.  

4.3.1 Variable Step Size LMS Adaptive Filtering Algorithm 

The variable step size algorithm used in this thesis is based on the study in 

(Li and Peng, 2009). In this study, the update equations for step size values are 

given by 

5��� =  O����1 − �+P�/�|Q�/�Q�/+,�|�                                (4.4) 
O��� =  RO�� − 1� + �1 − R�|������� − 1�|                         (4.5) 

S��� = �,, ��     (�� > �,)                                        (4.6) 
where  5��� is the step size, O��� is the parameter, which restricts step size, S��� 
is defined as hop parameter and it is randomly selected as either �, and �� in each 
iteration. R is a constant ,which is called as correlation factor. However, it can be 
easily concluded that this structure increases computational complexity 

significantly. So, another structure of the formula given in the same study is 

preferred (Li and Peng, 2009). According to this structure, step size equation is  

5��� =  O ,,0QUV|W�X�| − 0.5                                         (4.7) 
where S and O are algorithm-specific constants and both are selected as 1 in the 
following simulations.  

4.3.2 Other Variable Step Size LMS Algorithms 

In a paper given by (Won et al., 1994), a variable step size algorithm for 

LMS is introduced. This algorithm uses time constant concept to find new step 

size. But, correlation matrix must be calculated to get time constant. For this 

reason, it is not suitable to the in this thesis.  

A new variable step size algorithm is suggested at (Akhtar et al., 2006). This 

algorithm needs some pre-calculations to calculate new step size value and these 
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pre-calculations cause increasing in the computational complexity. On the other 

hand, this algorithm can be considered as an alternative since pre-calculations 

consist in only simple operations.    

(Hu et al., 2010) suggests a new and simple method to find VSLMS 

algorithm. However, the constant in the method is defined by eigenvalues at 

correlation matrix. Therefore, this algorithm is not suitable to real time 

applications.  
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CHAPTER 5: SIMULATIONS and RESULTS 

This part includes tests and their results about subjects, which are informed 

in Chapter 3 and Chapter 4, respectively. MATLAB is used at these simulations. 

The prepared Graphical User Interface (GUI) is also given in Appendix A. 

5.1 ANC Tests for Pure Sinusoidal 

Tap length and step size are two parameters that affect performance of an 

adaptive filter and, therefore effect of these two parameters are tested in this part. 

A pure sinusoidal signal, which has the frequency of 150 Hz, is used as desired 

signal. A signal, which has sinusoidal frequency of 1000 Hz, and a random noise 

are added to contaminate the desired signal. Last 20% part of desired and noisy 

signal is shown in Figure 5.1 and Figure 5.3, respectively and Fourier transform of 

desired and overall noisy signals can be seen in Figure 5.2 and Figure 5.4, 

respectively.  

Figure 5.1: Last 20% Part of the Pure Sinusoidal Signal 
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Figure 5.2: Fourier Transform of Desired Signal 

Figure 5.3: Last 20% Part of the Noisy Sinusoidal Signal  
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Figure 5.4: Fourier Transform of Noisy Signal 

There is no DC component in the original signal and DC component is 

added as a noisy signal. This is achieved by using Matlab function “rand”, which 

generates random signal between 0 and 1, and this causes an offset. Therefore, a 

DC component is seen in Figure 5.4. DC component is deliberately added to the 

original signal to show that the system can also eliminate DC noise. 

5.1.1 The Effect of Tap Length on LMS Performance 

In order to show the effect of tap length on classical LMS algorithm, several 

simulations are realized for a constant step size value of 5 = 0.007 and different 
tap lengths. The results are shown in Figure 5.5 that MSE in dB is calculated by 

(5.1). Original sinusoidal signal and noisy sinusoidal signal consist of 10000 

samples. In Table 5.1, Mean Square Error (MSE) is also calculated for first 20% 

(samples from 1 to 2000) part and last 20% (samples from 8001 to 10000) part of 

the signal to see convergence rate and ability to cancel error at the end of 

simulation.  
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It can be seen from Figure 5.5 and Table 5.1 that the efficiency of the 

adaptive filter is increasing up to a level by increasing tap length and become 

almost constant after tap length of 30.  

Figure 5.5:  Tap Length Effect on MSE 

Table 5.1: Tap Length Effect on MSE Along with First and Last 20% Part for  5 = 0.007 
Tap Length MSE (dB) MSE (for fist 20% part) MSE (for last 20% part) 

5 -4,4418 -4,1671 -4,4952 

10 -7,274 -7,2623 -7,2809 

15 -9,9012 -9,2243 -10,0075 

20 -15,8815 -14,3417 -16,3553 

25 -25,0603 -21,4577 -26,5491 

30 -28,5722 -23,4094 -31,8017 

35 -28,404 -23,3256 -31,5678 

40 -28,7175 -23,3207 -32,1697 

45 -28,8197 -23,1194 -33,3321 

50 -29,2351 -23,2259 -35,0805 

60 -27,4876 -20,9818 -36,8576 
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The effect of tap length on error and mean square error is shown in Figure 

5.6 and Figure 5.7, respectively. Step size is also selected as  5 = 0.007 for both 
of these time domain figures. For Figure 5.7, MSE for each sample is evaluated 

with (5.1).  

Figure 5.6: Error Graph of LMS for Different Tap Lengths 

The effect of tap length can be seen clearly from these figures that if tap 

length is not selected properly, performance of the system will decrease 

significantly. So, tap length must be selected sufficiently large. Nevertheless, 

assigning tap length to very large values causes some other problems that process 

time will increase and adaptation noise will increase when selecting unnecessary 

large tap length. 
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Figure 5.7: MSE Graph of LMS for Different Tap Lengths 

5.1.2 The Effect of Step Size on LMS Performance 

Step size are alters the convergence speed and error directly for an LMS 

adaptive filter. Therefore, to demonstrate the effect of step size on classical LMS 

algorithm, the simulations with different adaptive step sizes are realized. In these 

simulations, tap length is selected as 20 and results are given in Figure 5.8 and 

Figure 5.9. 

The selection of smaller step size cause slower convergence speed, which is 

shown in Figure 5.8.In fact, step size parameter causes a tradeoff between 

convergence and steady state error. If step size selected small, error could be small 

but it will have slow convergence speed and large error and fast convergence 

speed will occur when the step size selected bigger as it is shown in Figure 5.9. 
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Figure 5.8: MSE Graph of LMS for Different Step Sizes 

Figure 5.9: Weighted Tap Graph of LMS for Different Step Sizes 

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
-16

-14

-12

-10

-8

-6

-4

-2

0

2

number of sample

M
S
E
 (
d
B
)

Effect of Different Step Size Values on MSE

 

 
µ=0.001

µ=0.005

µ=0.01

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

number of sample

W
e
ig
h
te
d
 T
a
p

Weighted Tap for Different Step Size Values

 

 
µ=0.007

µ=0.0007

µ=0.00007



40 
 

5.1.3 The Effect of Sign Algorithms on LMS Performance 

Sign-sign LMS algorithm and its variants such as sign-data LMS and sign-

error LMS algorithms are used in DSP applications frequently. These algorithms 

give an improvement about decreasing computational complexity. However, they 

usually cause poorer performance for the adaptive filter. But, the effect of these 

algorithms on system performance is depending on input signal.  

Result of simulations for these three structures can be seen in Figure 5.10 

(step size is selected as 0.007 and tap length is selected as 20). It is shown from 

figure that sign-error gives best MSE performance and sign-sign provides worst 

MSE performance. On the other hand, sign-sign have minimum computational 

complexity. These results can be also seen at Table 5.2. 

Figure 5.10: Effect of Sign-Sign Algorithms on MSE Performance of LMS 
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Table 5.2: Comparison MSE Performances of Sign Algorithms 

MSE (dB) 

MSE (for first 20% 

part) 

MSE (for last 20% 

part) 

LMS -12,1861 -7,7785 -17,2591 

sign-data LMS -9,1809 -5,0618 -12,3023 

sign-error LMS -13,8528 -7,4700 -29,3749 

sign-sign LMS -10,0859 -4,7283 -16,6332 

 

As a result of Table 5.2, it can be seen that sign-error LMS algorithm has 

the best MSE performance for overall and last 20% part. Although, LMS 

algorithm has the best performance for first 20% part. But, result of sign structure 

depends on the input signal quietly. Therefore, these results can be changed for 

different input signals. 

5.1.4 Process Time Comparison 

In this part, process time of classical LMS, normalized VLMS and VSLMS 

algorithms are compared and the results are shown in Table 5.3. These results are 

in MATLAB environment obtained with a PC, which has Intel Core i3-370M 

processor and 3GB Ram. 

Table 5.3: Process Time Comparison of LMS, Normalized VLMS and VSLMS Algorithms 

LMS Normalized VLMS VSLMS 

Process Time (second) 5,766542 7,659834 7,875496 

In order to compare process times of these algorithms, a freewheeling motor 

sound is used and this signal consists of 54810 samples. Most of the DSP systems 

use a CODEC, which has 8 kHz sample frequency to get analog data to electrical 

signal from microphone and to convert electrical signal to analog signal with 

loudspeaker. Therefore, duration of the freewheeling motor sound can be 

considered as 6,85125 seconds.  

As a result of process time comparison of the algorithms, it is seen that LMS 

algorithm is suitable to use in real time applications. While, process time of 

Normalized VLMS and VSLMS algorithms exceed the duration of the input 

signal. Therefore, sign structures can be used in order to decrease the process 

time. 
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5.2 ANC Tests for Freewheeling Motor Sound 

In this part, a freewheeling motor sound, shown in Figure 5.11, is used as 

desired sound, and the motor sound polluted by different noise signals is given in 

Figure 5.12. Both of these two signals have 54810 samples. 

 

 

 

 

 

 

 

Figure 5.11: Freewheeling Motor Sound 

 

 

 

 

 

 

Figure 5.12: Noisy Motor Sound 

Frequency components of freewheeling motor sound and noisy motor sound 

can be seen in Figure 5.13 and Figure 5.14, respectively, to recognize differences 

between these two signals. 
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Figure 5.13: Fourier Transform of Freewheeling Motor Sound 

Figure 5.14: Fourier Transform of Noisy Motor Sound 
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As being initial tests, these two signals are used as inputs for classical LMS, 

Normalized – Variable length LMS (VLMS) and Variable Step Size LMS 

(VSLMS) algorithms. Tap length is selected 10 and step size is selected as 0.0007 

for classical LMS algorithm and selected parameters for VSLMS algorithm are S = 1 and O = 1. Graphs of errors belonging to these adaptive filters are shown 
in Figure 5.15, Figure 5.16 and Figure 5.17. Comparison of three algorithms is 

also shown in Figure 5.18.  

Figure 5.15: The Error Signal without and with LMS 

 

 

 

 

 

 

0 1 2 3 4 5 6

x 10
4

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

number of sample

e
rr
o
r

Error of LMS Algorithm

 

 
without LMS

LMS



45 
 

Figure 5.16: Result for Normalized VLMS algorithm 

Figure 5.17: Result for VSLMS algorithm 
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Figure 5.18: The Comparison of LMS-VLMS-VSLMS Algorithms 

As a result of the last four figures, it can be said that normalized VLMS 

algorithm has the fastest convergence speed. Although VSLMS algorithm has 

slower convergence speed than normalized VLMS, this algorithm gives the best 

error cancellation performance. Besides the LMS algorithm has the worst 

performance with respect to convergence and error cancellation.  

Table 5.4 has the numerical MSE results for freewheeling motor sound. 

Although VLMS and VSLMS algorithms have near overall MSE performance and 

MSE performance for first 20% part of signal, MSE performance for last 20% part 

is best for VSLMS algorithm. So, selecting VSLMS algorithm is the best option 

because last performance is important for this application. 

Table 5.4: Comparison of LMS Algorithms for Motor Sound 

MSE (dB) MSE (for fist 20% part) MSE (for last 20% part) 

LMS -19,2143 -14,8737 -25,6833 

VLMS -33,8604 -29,5623 -36,3915 

VSLMS -34,8728 -28,2665 -50,1812 
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The performance of normalized LMS and normalized VLMS are also 

compared in Figure 5.19 to see the effect of VLMS. VLMS is superior to NLMS 

with respect to convergence speed but, they have similar error filtering 

performance. 

The change in step size values throughout the whole signal is also 

investigated for both algorithms. The results are given in Figure 5.20 that step size 

changes within a larger interval for VSLMS algorithm. At initial part of 

algorithm, VSLMS filter have biggest step size values and it provides fast 

convergence speed. Then, value of step size decreases and gets minimum value at 

the end of process. Minimum error can be obtained with this step size reduction. 

Figure 5.19: The Comparison of Normalized LMS and Normalized VLMS 

 

 

 

0 1 2 3 4 5 6

x 10
4

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

number of sample

E
rr
o
r

Comparison Error of Normalized LMS and Normalized VLMS

 

 
Normalized LMS

Normalized VLMS



48 
 

Figure 5.20: The Comparison of Step Size Changes for Normalized LMS and VSLMS 

For VLMS algorithm, the tap length values as time progresses are also 

examined which is shown in Figure 5.21. According to this figure, tap length is 

mostly alternating between 128 and 256 mostly for the freewheeling motor sound. 

Figure 5.21: Tap Length Changing during VLMS Algorithm 
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As the last results for the test of freewheeling motor sound, MSE 

performance of VSLMS algorithm for different tap length values is studied. The 

results can be seen from Table 5.5 that VSLMS algorithm is almost not affected 

from tap length.  

 Table 5.5: Tap Length Effect on VSLMS Algorithm 

Tap Length MSE (dB) MSE (for fist 20% part) MSE (for last 20% part) 

4 -35,0626 -28,4587 -50,6379 

6 -35,0419 -28,4339 -50,3788 

10 -34,9760 -28,3700 -50,2257 

15 -34,9116 -28,3092 -50,2011 

20 -34,8728 -28,2665 -50,1812 

30 -34,7785 -28,1619 -50,2314 

50 -34,5782 -27,9157 -50,5073 

100 -34,0408 -27,2786 -50,9163 

 

5.3 ANC Tests for Accelerating Motor Sound 

In this part, different types of LMS algorithm are tested for accelerating 

motor sound. Original and noisy sound signals are shown in Figure 5.22 and 

Figure 5.23, respectively. Noisy sound signal includes some sinusoidal signals, 

random noise and sound of a jet engine. 

 

 

 

 

 

 

 

Figure 5.22: An Accelerating Motor Sound 
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Figure 5.23: Noisy Accelerating Motor Sound 

Sound of a jet motor is added to two nonoverlapping intervals of the motor 

sound to get noisy signal. There are two reasons for this process. Sound of jet 

engine has 32000 samples while accelerating motor sound has 63000. So, same jet 

engine signal is added by starting from 1th and 32001th samples. The other reason 

is to test the performance at the algorithms to abrupt changes. This change and 

response of LMS algorithms to this change can be seen in Figure 5.24, Figure 

5.25 and Figure 5.26 for classical LMS, VLMS, VSLMS, respectively.  

It is easily seen from Figure 5.25 that Normalized VLMS algorithm has 

worse performance after the sharp change at input signal. However, VSLMS 

algorithm is not affected from this abrupt change so much as shown in Figure 5.26 

and it has the lowest error among all algorithms at the end of the process. So, it 

can be said that VSLMS algorithm has best performance at sharply changing 

signals relative to LMS and Normalized VLMS algorithms.   
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Figure 5.24: Test Results of LMS Algorithm for Noisy Accelerating Motor Sound 

Figure 5.25: Test Results of Normalized VLMS Algorithm for Noisy Accelerating Motor Sound  
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Figure 5.26: The Results for VSLMS Algorithm 

Figure 5.27: Comparison of LMS-VLMS-VSLMS Algorithms 
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The graph of error performance comparison of classical LMS, Normalized 

VLMS and VSLMS is shown in Figure 5.27. It is seen that classical LMS and 

Normalized VLMS are affected dramatically with the sudden change of sound. On 

the other side, both of them have slower convergence than VSLMS algorithm.  

Result of accelerating motor sound simulation is shown at Table 5.6. 

VSLMS algorithm has best performance for all of three parts. 

Table 5.6: Comparison of LMS Algorithms for Accelerating Motor Sound 

MSE (dB) MSE (for fist 20% part) MSE (for last 20% part) 

LMS -19,6445 -13,6484 -32,5902 

VLMS -32,0181 -26,1443 -35,5207 

VSLMS -35,4266 -28,7961 -49,8739 

Figure 5.28: Comparison of Normalized LMS and VLMS 

Normalized LMS and Normalized VLMS algorithms are tested in Figure 

5.28 to show the effect of VLMS algorithm. Both of these algorithms use same 

normalized step size algorithm. Therefore, this result shows difference between 
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according to this result. Their error performances are nearly same at last 20% 

parts although, VLMS algorithm much better than LMS algorithm at first 20% 

part of signal.  

Figure 5.29: Comparison Step Size Changes for Normalized LMS and VSLMS 

Changes in step size values are also shown in Figure 5.29 for VSLMS and 

Normalized LMS algorithms. Initial step size values of VSLMS algorithm are 

higher than Normalized LMS and it provides higher convergence speed. But, step 

size becomes its smallest value at the end of the simulation. For this reason, 

VSLMS have best error performance at these small step size values. On the other 

hand, Normalized LMS depends on the magnitude of input signal. So, there are no 

sharp changes on step size values. Therefore, their error performance has not 

changed enormously throughout the process. 

Tap length values for VSLMS algorithm is shown in Figure 5.29. Tap 

length has maximum value between 30000th and 40000th samples because there is 

a sharp change between these samples. Since tap length is initially defined as 4, 

very short tap lengths are observed in the early intervals of the signals.  
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Figure 5.30: Tap Length Changing during VLMS Algorithm 

5.4 ANC Tests for Motorbike Sound 

In this part, an original motorbike sound and a noisy motorbike sound are 

used to test LMS, Normalized VLMS and VSLMS algorithms. Original motor 

signal and noisy motorbike signals can be seen in Figure 5.31 and 5.32, 

respectively. Sinusoidal signals, which have different frequencies, and random 

noise are added to motorbike signal to obtain noisy signal. 
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Figure 5.31: Sound of a Motorbike 

Figure 5.32: Noisy Sound of a Motorbike 
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Error performance of classical LMS, Normalized VLMS and VSLMS can 

be seen in Figure 5.33, Figure 5.34 and Figure 5.35, respectively. As a result of 

these figures, it can be said that both Normalized VLMS and VSLMS algorithms 

have huge advantage over LMS algorithm to cancel noise and to increase 

convergence speed. Furthermore, Normalized VLMS algorithm has fastest 

convergence speed and best error performance up to 15000th sample. VSLMS 

algorithm has worst performance at near the 10000th sample. But, it has best error 

cancelling performance at the end of process. This situation can be seen in Figure 

5.36 clearly. 

Figure 5.33: The Result for LMS Algorithm 
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Figure 5.34: The Result for Normalized VLMS Algorithm 

Figure 5.35: The Result for VSLMS Algorithm 
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Figure 5.36: Comparison of LMS-VLMS-VSLMS Algorithms 

Table 5.7 contains simulation results for motorbike sound. VLMS algorithm has 

slightly better performance than VSLMS algorithm for overall MSE performance 

and MSE performance for first 20% part. But, VSLMS algorithm has the best 

performance for last 20% part. 

Table 5.7: Comparison of LMS Algorithms for Motorbike Sound 

MSE (dB) MSE (for fist 20% part) MSE (for last 20% part) 

LMS -18,4277 -14,9613 -29,1091 

VLMS -31,7583 -28,6228 -36,0870 

VSLMS -30,6540 -26,7100 -51,0257 

 

 

 

 

 

0 0.5 1 1.5 2 2.5 3

x 10
4

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8
Comparison of LMS Algorithms

number of sample

E
rr
o
r

 

 
without LMS

LMS

Normalized VLMS

VSLMS



60 
 

Normalized LMS algorithm and Normalized VLMS algorithm are also 

compared in Figure 5.37. According to this result, VLMS algorithm has higher 

convergence speed, and it has almost same error during the whole process. 

Besides, they have similar error cancelling performance at the end of the process.  

Figure 5.37: Comparison Normalized LMS and Normalized VLMS 

Step size changes during filtering process are investigated for Normalized 

LMS and VSLMS algorithms and the result of this comparison is shown in Figure 

5.38. Initial step size value has maximum value for VLMS algorithm to get higher 

converge speed. But, there is a spike near the 10000th sample. So, step size value 

is also increased to higher values at these samples. Then, it has smaller values to 

get better error performance. On the other hand, step size has almost same value 

for Normalized LMS algorithm; therefore, its convergence is slower. 

Tap length changes for VSLMS algorithm is shown in Figure 5.39. In the 

first half of filtering process, it mostly changes between 64 and 128 while it 
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Figure 5.38: Comparison Step Size Changes for Normalized LMS and VSLMS 

Figure 5.39: Tap Length Changing during VLMS Algorithm 
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The effect of tap length on VSLMS algorithm is also tested. Result of this 

test is shown in Table 5.8. It can be easily seen that there is no considerable effect 

of tap length on VSLMS algorithm. First 20% part of signal is also investigated to 

see effect on convergence and it is also observed that there is no significant effect 

of tap length on convergence speed.  

Table 5.8: Tap Length Effect on VSLMS Algorithm 

Tap Length MSE (dB) MSE (for fist 20% part) MSE (for last 20% part) 

4 -30,903 -26,0621 -50,8675 

6 -30,985 -27,0048 -50,242 

10 -30,7847 -26,5623 -50,8889 

15 -30,909 -27,3483 -51,0126 

20 -30,654 -26,71 -51,0257 

30 -30,7342 -27,271 -51,567 

50 -30,3247 -26,7958 -51,7312 
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6) CONCLUSION 

In this thesis, an adaptive active noise control system to cancel motor noise 

for a driver inside a car environment is presented. Initially, the definition of active 

noise is given, then, the types of adaptive active noise control are mentioned. 

Among these types, feedforward control is selected for the proposed method due 

to the availability of taking reference signal from the noise source in the car 

environment. As being simpler than other adaptive algorithms such as RLS, LMS 

is used as the main signal processing in the system. Therefore, initially, the theory 

of classical LMS and their extended versions such as normalized LMS and 

sign-sign algorithms are explained. Then, more recent and advanced types of 

LMS such as VLMS and VSLMS, which have crucial superiorities to classical 

LMS in terms of steady state error and convergence, are introduced.   

In the fifth chapter of this thesis, various simulations are realized to 

demonstrate the cancellation of motor noise inside the car for driver. LMS, 

normalized LMS, normalized VLMS and VSLMS algorithms are used in these 

simulations. 

The effect of step size and tap length on performance of error cancellation 

and convergence are firstly shown. For this purpose, only classical LMS is 

handled and several simulations are performed for different step size and tap 

length values. As the results of these simulations, it is observed that there is a 

tradeoff between the performances of error and convergence for both step size and 

tap length parameters. Equivalently, fixing these parameters to some constant 

values improves the performance of either error or convergence; but, degrades the 

performance of the other one.        

In the following simulations, variable tap length and variable step size 

algorithms are studied. The aim of this study is to prevent drawbacks causing 

from constant step size and tap length values. For this purpose, VLMS and 

VSLMS algorithms are simulated and their performances are compared. 

VLMS is an algorithm using constant step size values. Nevertheless, 

improper selection of the step size value causes decreasing in the performance of 

the system. Therefore, normalized structure is added to VLMS algorithm, which 

has minimum computational complexity, to avoid the effect of unsuitable 

selection of step size. 
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VLMS algorithm sets the required tap lengths at each iteration. Error 

cancellation performance of the system increases when higher tap lengths are 

selected. On the other side, if lower step size is selected, system can have lower 

processing time. 

The performance of the normalized VLMS algorithm can be changed by the 

input signal due to the nature of normalized structure. Therefore, it is observed in 

the simulations that step size of normalized VLMS algorithm has nearly same 

values during the process. For this reason, the system has high convergence speed 

and but, the error can not be annihilated exactly. 

In the view of the results of VSLMS algorithm, it is shown that the step size 

has the largest value at the start of VSLMS algorithm. Therefore, highest 

convergence speed is obtained in earlier part of the whole signal. Then, the value 

of step size is decreased by the algorithm and gets its minimum value in the 

steady-state condition. Connectedly, this small step size provides the minimum 

error in the steady-state.  

Sign-data, sign-error and sign-sign structures are also employed in the 

simulations to decrease computational complexity. The effects of these structures 

on performance are tested and it is observed that performances of these structures 

highly depend on the input signal. These structures are utilized especially in DSP 

algorithms to yield real-time applications. However, usage of these structures 

causes degradation in the performance.  

In the given simulations, normalized LMS is also compared to normalized 

VLMS algorithm to demonstrate the effect of VLMS algorithm. According to the 

results of these simulations, VLMS algorithm has higher convergence speed. 

However, the errors in the last parts of simulations are found to be nearly same. 

As the result of VLMS, VSLMS and LMS algorithms for pure sinusoidal 

and different motor sounds, it is concluded that the overall MSE performance of 

the system is very close for VLMS and VSLMS algorithms; but, these algorithms 

have highly better MSE performance than LMS. On the other hand, VSLMS 

algorithm has the best performance with respect to the last 20% part of whole 

signal, which is important for this study considering steady-state performance. 

Therefore, VSLMS algorithm is found to be the best option to cancel motor noise 

inside the car.   
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6.1) Future Work 

This thesis is based on the active noise cancellation for a motor noise of a 

car. In this study, the algorithms are constructed in the computer environment 

(MATLAB) and the situations for different motor noises are only realized with 

computer simulations. All required materials for theory and simulation are 

included in this work. Hence, DSP implementation of the algorithm, therefore, 

system, is the next step for this thesis. 

Active noise cancellation system is used in many areas and its performance 

highly depends on environment. The driver of a car is the main focused subject in 

this thesis. For this purpose, it is expected that this system can be demanded by 

the car manufacturers especially. Besides, it can be adopted other applications 

easily.  

Chip technology is progressed day by day and it provides the improvement 

of DSP structures. Today, DSPs have capabilities 8000 MIPS (million instructions 

per second) and more (Texas Instruments, 2009). Therefore, it is not considered to 

struggle with any problem in real time applications with these mentioned 

processing speeds.  

Sign-sign algorithm provides an important decrease in the process time. It 

also improves the performance of filter despite the increase in MSE for certain 

signals. Hence, sign-sign part of the algorithm might be excluded. However, 

removal of this algorithm substantially effects (increases) the process time. 

Initial values of tap length are selected as low values in the simulations. But, 

it may be required higher values. If first value of tap length is not chosen 

appropriately, the converge speed of the ANC system will decrease and noise will 

be attenuated effective in the late times. Similarly, changing  and  values, 

which are situated in variable step size algorithm, will also increase MSE 

performance. Therefore, the optimum values for these parameters should be 

considered for the given real-time application.   

It is aimed that use FxLMS algorithm for real time application of this study. 

Therefore, this algorithm will be investigated and used to cancel motor noise of a 

car. 
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APPENDIX A: GRAPHICAL USER INTERFACE 

 

 

 

 

 

 

 

 

 

Figure A.1: GUI for Classical LMS Algorithm 

 

 

 

 

 

 

 

Figure A.2: The Result of GUI for Classical LMS Algorithm
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Figure A.3: GUI for Normalized VLMS Algorithm 

 

 

 

 

 

 

 

Figure A.4: The Result of GUI for Normalized VLMS Algorithm 
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Figure A.5: GUI for Variable Step Size LMS Algorithm 

 

 

 

 

 

 

 

Figure A.6: The Result of GUI for Normalized VLMS Algorithm 
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