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In this thesis we study some properties of exhausters, quasidifferential and 

Frechet superdifferential and their applications to the switching control problem 
and discrete control problem. 

We also consider the necessary optimality condition via exhauster, 
quasidifferential and Frechet superdifferential for the continuous switching control 
problem and necessary optimality condition for discrete optimal control problem 
with nonsmooth data (basic subdifferential). 

In this way, we use the knowledge of the nonsmooth analysis. By using the 
increment formula we obtain necessary optimality conditions for the switching 
control problem. The minimizing functional satisfying nonsmoothness properties. 
The obtained optimality condition is an analog of the Pontryagin maximum 
principle for the switching control problem. 
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INTRODUCTION 

 

 The thesis consists of three sections. 

 In the first section we consider necessary optimality condition for the 

switching optimal control problem. The problem in this section is same as the 

problem that we consider in the last section but in this case minimizing functional 

satisfying Frechet superdifferential condition. 

Switching versions of the maximum principle have been presented in [13, 35, 

40] and [48]. A dynamic programming approach for hybrid systems and special issue 

on hybrid system are discussed in [1, 2]. In [10, 23], a computational method for 

solving an optimal control problem, governed by a switched dynamical system with 

time delay and control parameterizations for optimal control of switching system, are 

developed. The approach is to parameterize the switching instants as a new 

parameter vector to be optimized. Then, the gradient of the cost function is obtained 

via solving a number of delay differential equations forward in time. On this basis, 

the optimal control problem can be solved as a mathematical programming problem. 

In [24] and [25], discrete switched control problems have been studied. All these 

articles consider smooth hybrid optimal control problem. The nonsmooth version of 

the hybrid optimal control problem has not been studied extensively. To our best 

knowledge, there is only one article which considers the nonsmooth version of the 

hybrid maximum principle, namely the paper [48]. In this paper, the author obtains 

the nonsmooth version of the hybrid maximum principle by using “Boltyanskii 

approximation cone” (By using this method, smooth version of the hybrid maximum 

principle was obtained by Boltyanskii in [5]). In [48], the author assumes the 

switching cost and endpoint functionals are nonsmooth. He applies generalized 

gradients and proves the hybrid maximum principle. Then the author extends this 

principle for the semidifferentiable switching and endpoint functionals. He also notes 

that this can be proved by using the Warga’s generalized derivative. However, this 

paper does not consider the hybrid maximum principle using Frechet upper 

subdifferential. (for the definition of Frechet upper and lower subdifferentials see, for 

example, [33]).        

The second section of the thesis is dedicated to the nonsmooth optimal 

control problems governed by discrete-time systems with the delays in state 
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variables. Problems of this type arise in variational analysis of delay-differential 

systems via discrete approximations (cf. [30, 31] and their predecessors for non-

delayed systems in [39] and [28, 29]). They are important for many applications, 

especially to economic modelling, to qualitative and numerical aspects of 

optimization and control of various hereditary processes, to numerical solutions of 

control systems with distributed parameters, etc. (see, e.g., [4, 11, 30, 37, 49] and the 

references there in). Note that delayed discrete systems may be reduced to non-

delayed ones of a bigger dimension by a multi-step procedure and that they both can 

be reduced to finite-dimensional mathematical programming. Nevertheless, optimal 

control problems of type (P) deserve a special attention in order to obtain results that 

take into account their particular dynamic structure and the influence of delays on the 

process of dynamic optimization. 

 It is well known that, while for continuous-time systems optimal controls 

satisfy the Pontrjagin maximum principle without restrictive assumptions [36], its 

discrete analog (the discrete maximum principle) does not generally hold unless a 

certain convexity is imposed a priori on the control system (see, e.g., [4, 19, 21, 37] 

and their references). A clear explanation of this phenomenon is given in Section 5.9 

of Pshenichnyi’s book [38] (the first edition), where it is shown why discrete systems 

require a convexity assumption for the validity of the maximum principle, while 

continuous-time systems enjoy it automatically due to the so-called “hidden 

convexity”. The relationships between convexity and the maximum principle are 

transparent from the viewpoint of nonsmooth analysis due to the special nature of the 

normal cone to convex sets (cf. [39] and [28]). 

 The goal of this section is to derive the necessary optimality conditions in the 

form of the discrete maximum principle for problem (P) and some of its 

generalizations. Our standing assumption is that ),,,( uyxtff = is continuous with 

respect to all variables but t and continuous differentiable with respect to the state 

variables (x,y) for all UuTt ∈∈  and near the optimal solution under consideration. 

We do not assume any smoothness of the cost function ϕ  and derive new versions of 

the discrete maximum principle with transversality conditions taking into account the 

nonsmoothness of ϕ . A striking result obtained in this thesis, new for both delayed 

and non-delayed systems, is the superdifferential form of the discrete maximum 

principle, where the transversality condition is expressed in terms of the so-called 
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Frechet superdifferential. This is a rather surprising result, since it applies to 

minimization problems for which subdifferential forms of necessary optimality 

conditions are more conventional. We also obtain the discrete maximum principle for 

nonsmooth problems with transversality conditions of subdifferential type, which 

extend known results to the case of delayed systems. We will discuss the 

relationships between the superdifferential and subdifferential forms of the discrete 

maximum principle: they are generally independent, while the superdifferential one 

may be considerably stronger in some situations when it applies. 

 In last, third, section we consider optimal control for switching system in the 

case of minimizing functional satisfying quasidifferential and exhauster conditions in 

the Demyanov and Rubinov sense. 

A switched system is a particular kind of hybrid system that consists of 

several subsystems and a switching law specifying the active subsystem at each time 

instant. Examples of switched systems can be found in chemical processes, 

automotive systems, and electrical circuit systems, etc. Recently, optimal control 

problems of hybrid and switched systems have been attracting researchers from 

various  fields in science and engineering, due to problems significance in the theory 

and application. The available results in the literature on such problems can be 

classified into two categories, i.e., theoretical and practical. [35, 6, 48, 10, 24, 25, 26, 

7, 5] contain primarily theoretical results. These results extended the classical 

maximum principle or the dynamic programming approach to such problems. 

Among them, earliest results which proves a maximum principle for hybrid system 

with autonomous switchings by Seidman in [46]. More complicated versions of the 

maximum principle under various additional assumptions are proved by Sussmann in 

[48] and by Piccoli in [35]. All these article dedicate to the smooth switching optimal 

control problem (only Sussmann’s article [48], it is studied switching system which 

minimizing functional and constraints are satisfying the generalized differentation). 

In the last section of the presented thesis the author’s aim to establish necessary 

optimality condition by using exhausters and quasidifferentiable in the sense of 

Demyanov and Rubinov [14, 15]. We consider minimizing functional is positively 

homogeneous (p.h). Positively homogeneous (p.h) functions play on outstanding role 

in Nonsmooth Analysis and Nondifferentiable Optimization since (first-order) 

optimality conditions are normally expressed in terms of directional derivatives of 

their generalizations (the Dini and Hadamard upper and lower direcitonal derivatives, 
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the Clarke derivative, the Michael-Penot derivative etc.). All these derivatives are 

positively homogeneous functions of direction. In the convex case the directional 

derivative is convex (and p.h), by the Minkovwski duality, optimality conditions can 

be stated in geometric terms. Attempts to reduce the problem of minimizing an 

arbitrary function to a sequence of convex problems were undertaken, among others 

by Pschenichnyi [39], who introduced the notations of upper convex and lower 

concave approximations and by Clarke [12], who introduced generalized derivatives. 

Demyanov and Rubinov [14] proposed to consider exhaustive families of upper 

convex and lower concave approximations. The last section addresses to learn role 

exhausters and quasidifferentiability in the switching control problem.   
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1. NECESSARY OPTIMALITY CONDITIONS FOR SWITCHING 

CONTROL PROBLEMS 

 

1.1 Preliminaries 

 

We recall some definitions from nonsmooth analysis which will be applied to find 

the superdifferential from the necessary optimality condition for the step discrete 

system. 

Given a nonempty set nR⊂Ω , consider the associated distance fuction 

   

                           - inf  );dist( ω
ω

xx
Ω∈

=Ω  

 

and define Euclidean projector of x onto Ω  by 

 

                                   { }.);(dist      : );( Ω=−Ω∈=ΩΠ xxx ωω  

 

The set );( ΩΠ x  is nonempty for every nRx∈  if the set Ω  is closed and bounded. 

The normal cone in finite dimensional spaces is defined by using the Euclidean 

projector: 

 

               ))],;(([limsup : );( ΩΠ−=ΩΝ
→

xxconex
xx

 

 

while the basic subdifferential )(xϕ∂  is defined geometrically via the normal cone to 

the epigraph of ϕ  is a real valued finite function,  

{ } ));(,((  ,-1)(  R x :)( *n* ϕϕϕ epixxxx Ν∈∈=∂ and

{ })(  R  );( : 1n xxepi ϕµµϕ ≥∈= +  is the epigraph of ϕ . This nonconvex cone to 

closed sets and corresponding subdifferential of lower semicontinuous extended real-

valued functions were introduced in [33, 32]. Note that this cone is nonconvex (see 

[25, 33, 32]) and for the locally lipschitz functions convex hull of a subdifferential is 

a Clarke generalized subdifferential;   
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42]). [12, ntialsubdiffere dgeneralize Clarke is )( (here )()( 000 xxcox kk ϕϕϕ ∂= If kϕ  

is lower semicontinuous in some neighborhood of x , then its basic subdifferential 

can be expressed as: )(limsup : )(
0

0 xx
xx

ϕϕ ∂=∂
→

.  

Here, 

        












≥
−

−−−
∈=∂

→

∧

0
,)()(

liminf: R  : )(
0

0*0

n*0

0

xu

xuxxu
xx

xu

ϕϕ
ϕ  

 

is the Frechet subdifferential. By using plus-minus symmetric constructions, we can 

write 

     ))((ˆ- : )(ˆ  ),)((-- : )( 0000 xxxx ϕϕϕϕ −∂=∂∂=∂ ++  

 

which are called basic superdifferential and Frechet superdifferential, respectively. 

Here 

 

                  












≤
−

−−−
∈=∂

→

+
∧

0
,)()(

limsup : R   : )(
0

0*0

n*0

0 xu

xuxxu
xx

xu

ϕϕ
ϕ    

 

For a locally Lipschitz function subdifferential and superdifferential may be 

different. For example, if we take xx =)(ϕ  on R, then [ ]1 ,1)0( −=∂ϕ , but 

{ }1 ,1)0( −=∂ +ϕ . If ϕ  is locally Lipschitz continuous at a point 0x  then the strict 

differentiability of the function 0at  xϕ  (see [26]) is equivalent to  

{ })()()( 000 xxx ϕϕϕ ∇=∂=∂ + . If )()( 00 xx ϕϕ
∧

∂=∂  then this function is lower 

regular at 0x . Symmetrically, we can define upper regularity of the function using 

the superdifferential and Frechet superdifferential. Also, if we extended real-valued 

function is locally Lipschitz and upper regular at a given point, then its Frechet 

superdifferential is not empty at this point. Furthermore, it is equal to Clarke 

generalized subdifferential at this point. In this thesis we will use the following 

theorem. 
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Theorem 1.1.1.  ([33]) Let RX →:ϕ  be a proper function . Assume that ϕ  is finite 

at a point x . Then for every )(* xx ϕ
∧

∂∈  there is a function RXs → :  with 

)()( xxs ϕ=  and whenever Xx∈  such that s(.) is Frechet differentiable at 

*)( with xxsx =∇ . 

 

1.2 Problem formulation  

 

We consider the following optimization problem 

 

[ ] NKtttttutxftx KKKKKK ..., 2, ,1   ,,   ),),(),(()( 1 =∈= −&                                        (1.1) 

 

    )( 001 xtx =                                                                                      (1.2) 

 

   ..., 2, 1,    ,0)),(( NKttxF NNNK ==                                                            (1.3) 

 

       1 ..., 2, 1,    ),),(()(1 −==+ NKttxMtx KKKKKK                                               (1.4)                          

 

 

1

1 1

1 1

min ( ,..., , ,..., )

( ( )) ( , , )       
K

K

N N

tN N

K K K K K

K K t

S u u t t

x t L x u t dtϕ
−

= =

= +∑ ∑ ∫
                                                           (1.5) 

 

Here  KK

nrn

K FMRRRRf  and   ,: →××  are continuous, at least continuously 

partially differentiable vector-valued functions with respect to their variables, 

RRRRL rn →××:  is continuous and have continuous partial derivative with 

respect to their variables, (.) and : KϕRRRM n

K →×  are given differentiable 

functions, r

KK RURtu ⊂→:)(  are controls. The sets KU  are assumed to be 

nonempty and bounded. Here (1.4) are switching conditions. It is required to find the 

control Kuuu  ..., , , 21 , switching points 121  ..., , , −Nttt  and the end point Nt  (here  Nt  is 

not fixed) with corresponding state Nxxx  ..., , , 21  satisfying (1.1)-(1.4) so that the 

fuction S(.) in (1.5) is minimized. We will derive necessary conditions for smooth 
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and nonsmooth version of these problems (in the case of smooth and nonsmooth cost 

functionals). 

Denote: 

                            

(t)).u(t),...,u(t),(uu(t)                 

)),(),...,(),(()(  ),,...,,(

N21

2121

=

== txtxtxtxttt NNθ

   

 

Our aim is to find tuple ) ),(),(( θtutx  which solves problem (1.1)-(1.5). Such tuple 

will be called optimal control for the problem (1.1)-(1.5). 

 

Theorem  1.2.1.  Let the ) ),(),(( θtutx  be an optimal control for Problem (1.1)-(1.5). 

Then there are vector functions NKtpK  ..., 2, ,1  ),( =  such that following conditions 

hold. 

1) State equation. 

 

NKttt

p

tpuxH
tx

KK

K

KKKK
K

 ..., 2, 1,   ],,[

),,,(
)(

1 =∈

∂

∂
=

−

&
 

 

2) Costate equation. 

 

NKttt

x

tpuxH
tp

KK

K

KKKK
K

 ..., 2, 1,   ],,[

),,,(
)(

1 =∈

∂

∂
=

−

&
 

   

3) At Nt , the function (.)Np  satisfies  

 

∑
= ∂

∂
+

∂

∂
=

N

K N

NNNK

K

N

NNN

NN
x

ttxF

x

tx
tp

1

)),(())((
)( λ

ϕ
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4)  Necessary conditions 

 

],[

 ..., 2, 1,   ),)(,,()),(),(,(max

1

000

KK

KKKKKKKK
Uu

ttt

NKttpuxHttptuxH
KK

−

∈

∈

==
 

 

5) Necessary conditions at the switching points 

 

( )

.    ..., 2, 1,   ,  

),,,(.),,,(),,,(

    ,0

, ..., 2, 1,L,                     

    ,1

 

.01
)),((

)(

)),((

1 ..., 2, 1,   ,
)),((

)(
)(

)(

,

,

1

1

1

,

1

1

vectorsareNKand

tpuxfptpuxLtpuxH

NL

N

NL

Here

t

ttxM
tp

t

ttxF

NK
x

ttxM
tp

x

t
tp

K

KKKK

T

KKKKKKKKK

NL

NL

N

K K

KKKK
KK

NL

N

K N

NNNK
K

K

KKKK
KK

K

KK
KK

=

+=









≠

=

=

=

=−×








∂

∂
−










∂

∂

−=
∂

∂
−

∂

∂
=

∑

∑
−

=
+

=

+

λ

δ

δ

δλ

ϕ

 

 

Proof.  We use Lagrange multipliers to adjoint the state and conjugate equations in 

the theorem. Then, by using Lagrange multipliers rule, we can write 

 

1

'

1 1

.

1

( ( )) ( ( ), )

   ( ( , , ) ( )( ( , , ) ( )))
K

K

N N

K K K K K N N N

K K

tN
T

KK K K K K K

K t

S x t F x t t

L x u t p t f x u t x t dt

ϕ λ

−

= =

=

= +

+ + −

∑ ∑

∑ ∫
 

 

By determining  

 

],[for  ),,()(),,(),,,( 1 KKKKKKKKKKKKK ttttuxftptuxLtupxH −∈+=  
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we have: 

 

∑ ∫

∑∑

=

==

−

++

+=

N

K

t

t

K

T

KKKKK

N

K

NNNKK

N

K

KKK

K

K

dttxptupxH

ttxFtxS

1

11

'

1

))(),,,((     

)),(())(( λϕ

 

 

From the calculus of variations, we can obtain that the first variation of 'Sδ  as: 

 

∑ ∫

∑∑

∑∑

∑∑

=

==

==

==

−

∂

∂
+

∂

∂
+

∂

∂
+

∂

∂
+

∂

∂
+

∂

∂
=

N

K

t

t

KK

N

K

K

K

KKKK
N

K

K

K

KKKK

N

K

K

K

KKKK
N

K

N

N

KNNK
K

NN

N

K N

NNNK
K

N

K

KK

K

KKK

K

K

dttxtp

p
p

tpuxH
u

u

tpuxH

tx
x

tpuxH
t

t

ttxF

tx
x

ttxF
tx

x

tx
S

1

.

11

11

11

'

1

)()(-        

),,,(),,,(
        

)(
),,,()),((

       

)(
)),((

)(
))((

δδ

δδλ

δλδ
ϕ

δ

 

 

The latter term in previous equation can be computed as follows; 

 

 

∑ ∫

∑∑

∑ ∫

∑ ∫ ∑

=

−

=
++

=

=

= =
−−

−

−

−

−

−=

−=

N

K

t

t

KK

N

K

KKKK

N

K

KKKK

N

K

t

t

KK

N

K

t

t

N

K

KKKKKKKKKK

K

K

K

K

K

K

dtxtptxtp

txtptxtp

dtxtp

txtptxtptdxtp

1

.

0101

1

1

11

1

1

.

1 1

11

1

1

1

)()()(-                               

)()()()(                               

)(-                              

))()(()()()()(

δδ

δδ

δ
 

 

Here we have taken into account: 

 

 ∑∑
−

=
++

=
−− +=

1

1

010111

1

11 )()()()()()(
N

K

KKKK

N

K

KKKK txtptxtptxtp  
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Since 0)( 01 =txδ  using (1.4) we get 

 

 

1

1

1

1

1

1

1

1

( ( ), ) ( ( ), )
( ) ( )

( ( ), )
( ) ( )

( ( ), )
( )

N
K K K K K K K K

K K K K K

K K K

N
K K K K

K K K K

K K

N
K K K K

K K K

K K

M x t t M x t t
p t x t t

x t

M x t t
p t x t

x

M x t t
p t t

t

δ δ

δ

δ

+
=

−

+
=

−

+
=

 ∂ ∂
+ ∂ ∂ 

∂
=

∂

∂
+

∂

∑

∑

∑

 

 

Then, first variation has the following form; 
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1
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     ( )
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K K N N

K K N
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K N N K N

K KN N

N N
K K K K K K K K

K K

K KK K

K K K K N

s x ts x t
S x t x t

x x

F x t t F x t t
x t t

x t

H u x p t H u x p t
u p

u p

p t x t p

δ δ δ

λ δ λ δ

δ δ

δ

−

=

= =

= =
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= +

∂ ∂

∂ ∂
+ +

∂ ∂
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+ +

∂ ∂

−

∑

∑ ∑

∑ ∑
1

1

1

1

1

1

1
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1

1

1
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K K K
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M x t t
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s x t M x t t
p t p t x t

x x
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δ

δ δ

δ
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=

−

+
=

−

+
= =

−

+
=

∂
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∂
−

∂

 ∂ ∂
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+

∑

∑

∑ ∑

∑

( )

1

1
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1 1 1
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      ( ) 1
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     ( )
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L K KN K

N
K K K K

K

K K

s x t F x t t
p t x t

x x

F x t t M x t t
p t t

t t

H x p u t
p t

x

λ δ

λ δ δ δ

=

−

+
= = =

=

 ∂ ∂
+ − ∂ ∂ 

    ∂ ∂
− −    ∂ ∂   

 ∂
+ − ∂ 

∑

∑ ∑ ∑

∑
1

.

1

( , , , )

( , , , )
     ( )

N
K K K K

K K

K K

N
K K K K

KK

K K

H x p u t
x u

u

H x p u t
p t p

p

δ δ

δ

=

=

∂
+

∂

 ∂
+ − ∂ 

∑

∑
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The latter sum is known because 

 

   ).(
),,,( .

tx
p

tpuxH
K

K

KKKK =
∂

∂
 

 

According to a necessary condition for an optimal solution 0' =Sδ . Setting to zero 

coefficients of the independent increments KKKKKNN puxtxtx δδδδδ  and , , ),( ),(  

yields the necessary optimality condition in the following form 

 

( ) .01
)),((

)(
)),((

1 ..., 2, 1,   ,0
)),((

)()(
)(

0)(
)),(()(

1 ..., 2, 1,   ,0
)),((

)()(
)(

0
),,,(

),,,(
)(

),,,(
)(

,

1

1,

1

1

1

1

=−








∂

∂
−









∂

∂

−==
∂

∂
−−

∂

∂

=−
∂

∂
+

∂

∂

−==
∂

∂
−−

∂

∂

=
∂

∂

∂

∂
=

∂

∂
=

∑∑

∑

=
+

=

+

=

+

NL

N

K K

KKKK
KKNL

N

K N

NNNK
K

K

KKKK
KKKK

K

KK

NN

N

K N

NNNK
K

N

NN

K

KKKK
KKKK

K

KK

K

KKKK

K

KKKK
K

K

KKKK
K

t

ttxM
tp

t

ttxF

NK
x

ttxM
tptp

x

t

tp
x

ttxF

x

t

NK
x

ttxM
tptp

x

t

u

tpxuH

x

tpuxH
tp

p

tpxuH
tx

δδλ

ϕ

λ
ϕ

ϕ

&

&

 

 

This completes the proof. 

 Let us now assume that the objective function (.)Kϕ  is Frechet upper 

subdifferentiable (superdifferentiable) at the point )( KK tx . Then one can prove the 

following theorem for the nonsmooth version of problem (1.1)-(1.5). 
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Theorem  1.2.2.  (Nonsmooth version) Let objective function (.)Kϕ  is Frechet upper 

subdifferentiable (superdifferentiable) at the point )),(),((  )( θtxtuandtx KK  be an 

optimal solution to the control problem (1.1)-(1.5). Then, every collection of Frechet 

upper subgradients (supergradients) NKtxx KKKK  ..., 2, 1,   )),((ˆ* =∂∈ +ϕ  conditions 

in Theorem 1.2.1. hold with the corresponding trajectory (.)Kp  of the conjugate 

system, the condition (3) and condition (5) in Theorem 1.2.1. replacing by following 

conditions: 

 

( )

*

1

*

1

1

, 1 ,

1 1

1 2

( ( ), )
( ) ( ) ,    1, 2, ..., 1

( ( ), )
( )

( ( ), ) ( ( ), )
( ) 1 0,

  1, 2, ..., ,   ( ,

K K KK
K KK K K

K

N
N N NK

NN N

K N

N N
N N N K K KK K

KL N K L N

K KN K

M x t t
p t x p t K N

x

F x t t
p t x

x

F x t t M x t t
p t

t t

here L N t t

δ δ

θ

+

=

−

+
= =

∂
= − = −

∂

∂
= +

∂

   ∂ ∂
− − =   

∂ ∂   

= =

∑

∑ ∑

1 2 1 2

,..., ),  

( ) ( ( ), ( ),..., ( )),   ( ) ( ( ), ( ),..., ( )).

N

N N

t

x t x t x t x t u t u t u t u t= =

 

 

Proof.  Take any arbitrary set of Frechet upper subgradients 

 NKtxx KKKK  ..., 2, 1,  )),((* =∂∈
∧
+ ϕ  and employ the smooth variational description 

of *

Kx−  from assertion (i) of Theorem 1 (see [33]). As a result, we find functions 

NKRXsK  ..., 2, 1,for    : =→  satisfying the relations 

 

           ))(())((   )),(())(( txtxstxtxs KKKKKKKKK ϕϕ ==  

 

in some neighborhood of )( KK tx  and such that each of them Frechet differentiable at 

NKxtxstx KKKKKK  ..., 2, 1,   ,))(( with )( * ==∇ . 

 By using construction of these functions we easily deduce that the process 

)(.),(.),( θxu  is an optimal solution to the following control problem: 

 

             ∑ ∫∑
==

−

+=
N

K

t

t

KK

N

K

KKKNN

K

K

dttuxLtxsttuuS
11

11

1

),,())((),...,,,...,(min  
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subject to conditions (1.1)-(1.4). The initial data of the latter optimal control problem 

satisfy all the assumptions of Theorem 1.2.1. Thus, applying the above maximum 

principle to the problem (1.1)-(1.5) and taking into account that 

 

                                      NKxtxs KKKK  ..., 2, 1,   ,))(( * ==∇   

 

we complete the proof of the theorem. 

 

Lemma 1.2.3.  Let RR→:ϕ   be locally Lipschitz continuous at x  and upper 

regular at this point. Then Frechet superdifferential is not empty at this point and 

coinside with the Clarke subdifferential at this point, )()(ˆ0 xx ϕϕ ∂=∂≠ + . 

 

Proof.  The nonemptiness of )(ˆ xϕ+∂  directly follows from 0)( ≠∂ xϕ  for locally 

Lipschitzian functions and the definition of upper regularity. Due to )()( xcox ϕϕ =∂ , 

any locally Lipschitz function is lower regular at x  if and only if  )()( xx ϕϕ ∂=∂
∧

. 

Hence, the upper regularity of xat  ϕ  and the plus-minus symmetry of the 

generalized gradient imply that )())(())(()(ˆ xxxx ϕϕϕϕ ∂=−∂−=−∂−=∂
∧

+  which 

completes the proof. 

 

Corollary 1.2.4.  Let { }θ(.),(.), KK xu  be an optimal solution of the control problem 

(1.1)-(1.5) and assume that (.)Kϕ  is locally Lipschitz and upper regular at )( KK tx . 

Then, for any Clarke generalized gradient ))((*

KKKK txx ϕ∂∈  the maximum principle 

and transversality condition is satisfied. 

 The proof follows from Theorem 1.2.2. and Lemma 1.2.3. 
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1.3 Necessary conditions for cost uniformly upper subdifferentiable functionals 

 

In this section we present uniformly upper subdifferential form of the main problem.   

 

Definition 1.3.1.  (Uniform upper subdifferentiability). A function RR n →:ϕ  is 

uniformly upper subdifferentiable at a point x , if it is finite at this point and there 

exists a neighborhood V of x  such that for every Vx∈  there exists nRx ∈*  with the 

following property: Given any 0〉ε , there exists 0〉η  for which  

 

   xvxvxxv −≤−−− εϕϕ ,)()( *  

 

whenever η≤∈ x-v with Vv . It is easy to check that the class of uniformly upper 

subdifferentiable functions include continuously differentiable functions and concave 

continuous functions, and also are closed with respect to taking the minimum over 

compact sets. 

 It is well known that a function uniformly upper subdifferentiable in some 

neighborhood of a given point is upper regular, Lipschitz continuous at this point 

(see [32], Proposition 3.2). Then: 

 

Corollary 1.3.2.  Let { }θ(.),(.), KK xu  be an optimal solution to Problem (1.1)-(1.5). 

Assume that Kϕ  is uniformly upper subdifferentiable in some neighborhood of the 

point )( KK tx . Then for every upper subgradient NKtxx KKKK  ..., 2, 1,  )),((ˆ* =∂∈ +ϕ  

the maximum condition, transversality conditions and necessary conditions in the 

switching points are satisfied in Theorem 1.2.2. 
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Proof.  Let Kϕ  be uniformly upper subdifferentiable in some neighborhood of the 

point )( KK tx . Then by using Proposition 3.2 ([32]) we can say Kϕ  is upper regular 

at Kx  and Lipschitz continuous at this point. Then, by using Corollary 1.2.4. and 

Theorem 1.2.2., we can write that, for every upper subgradient 

 NKtxx KKKK  ..., 2, 1,  where))((* =∂∈ ϕ  the maximum condition, the transversality 

condition and necessary conditions at the switching points are satisfied in Theorem 

1.2.1. 
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2. DISCRETE MAXIMUM PRINCIPLE FOR NONSMOOTH OPTIMAL 

CONTROL PROBLEMS WITH DELAYS 

 

 Our notation is basically Standard (see, e.g., [41]).  

  

{ }N allfor  )( with  and  sequences R:)(Limsup ∈∈→→∃∈=
→

kxFyyyxxyxF kkKk

m

xx

 

denotes the Painleve-Kuratowski upper (outer) limit for a set-valued mapping 

xxF →→
→

 as RR: mn . The expressions  

  { }Ω∈〉=ΩΩΩ xaax   0,  :cone and ,   co ,  cl  

 

stand for the closure, convex hull, and conic hull of a set Ω , respectively. The 

notation xx →ϕ  with )()( xx ϕϕ →  

 

2.1 Tools of nonsmooth anaysis 

 

 In this section we review several constructions of nonsmooth analysis and 

their properties needed in what follows. For more information we refer the reader to 

[12, 28, 41]. 

 Let Ω  be a nonempty set in nR , and let 

 

  { });(dist with cl:);( Ω=−Ω∈=ΩΠ xwxwx  

 

be the Euclidean projector of x to the closure of  Ω . The basic normal cone [3] to Ω  

at Ω∈ clx  is defined by  

 

  ( )( )[ ]ΩΠ−=Ω
→

;conesup Lim:);( xxxN
xx

.                                           (2.1)    

                                                                                                                      

This cone if often nonconvex, and its convex closure agrees with the Clarke normal 

cone [35].  
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 Given an extended-real-valued function [ ] xat  finite ,-:RR: n ∞∞=→ϕ , we 

define its basic subdifferential [28] by 

 

                ( ){ })epi));(,((1,R:)( *n* ϕϕϕ xxNxxx ∈−∈=∂ ,                          (2.2)                                                                 

      

Where epi { })(R),(: 1n xx ϕµµϕ ≥∈= +  stands for the epigraph of ϕ . If ϕ  is locally 

Lipschitzian around )( then , xx ϕ∂ is a nonempty compact set satisfying  

 

                  )(  ,0)epi));(,((),( ** xxxxNx ϕλλϕϕλ ∂∈≥⇔∈− .                 (2.3)                                                                                                       

      

One always has )(co)( xx ϕϕ ∂=∂  for the Clarke generalized gradient of locally 

Lipschitzian functions [12]. Note the latter construction, in contrast to (2.2), 

possesses the classical plus-minus symmetry )())(( xx ϕϕ ∂−=−∂ . If ϕ  is lower 

semicontinuous around x , then the basic subdifferential (2.2) admits the 

representation 

 

       )(ˆsup Lim)( xx
xx

ϕϕ
ϕ

∂=∂
→

 

 

in terms of the so-called Frechet subdifferential of ϕ  at x defined by  

 

                    












≥
−

−−−
∈=∂

→
0

,)()(
inf limR:)(ˆ

*

n*

xu

xuxxu
xx

xu

ϕϕ
ϕ                    (2.4)                                                                                                      

     

The symmetric constructions  

 

                    ))((ˆ:)(ˆ  ),)((:)( xxxx ϕϕϕϕ −∂−=∂−−∂=∂ ++                            (2.5)                                                  

      

to (2.2) and (2.4) are called, respectively, tha basic superdifferential and the Frechet 

superdifferential af ϕ  at x . Note that 
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≤
−

−−−
∈=∂

→

+ 0
,)()(

sup limR:)(ˆ
*

n*

xx

xuxxx
xx

xx

ϕϕ
ϕ                   (2.6) 

                                                                                                                                   

and that both  )(ˆ and )(ˆ xx ϕϕ +∂∂ are nonempty simultaneously if and only if ϕ  is 

Frechet differentiable at x , in which case they both reduce to the classical (Frechet) 

derivative of ϕ  at this point: 

 

                          { } )()(ˆ )(ˆ xxx ϕϕϕ ∇=∂=∂ +                                      (2.7)                                                                                                                 

      

In contrast, the basic subdifferential and superdifferential are simultaneously 

nonempty for every locally Lipschitzian function; they may be essentially different, 

e.g., for xx =)(ϕ  on R when [ ] { }1,1)0( and 1,1)0( −=∂−=∂ +ϕϕ . Note also that if ϕ  

is Lipschitz continuous around x , then  

 

                          { } )()( )( xxx ϕϕϕ ∇=∂=∂ +                 (2.8)                                                                                                                        

     

if and only if ϕ  is strictly differentiable at x , i.e., 

 

                   0
'

'),()'()(
lim

xx'
xx

=
−

−∇−−

→
→ xx

xxxxx ϕϕϕ
   

 

which happens, in particular, when ϕ  is continuously differentiable around x . The 

singleton relations (2.8) may be violated if ϕ  is just differentiable but not strictly 

differentiable at x. For example, if 0)0( with 0for  )/1sin()( 2 =≠= ϕϕ xxxx , then  

 

                  [ ] { }0(0)ˆ (0)ˆ   while1,1)0()0( =∂=∂−=∂=∂ ++ ϕϕϕϕ  

 

 Recall [3] that ϕ  is lower regular at x if   )(ˆ )( xx ϕϕ ∂=∂ . This happens, in 

particular, when ϕ  is either strictly differentiable at x or convex. Moreover, lower 

regularity holds for the class of weakly convex functions [34], which includes both 
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smooth and convex functions and is closed with respect to taking the maximum over 

compact sets. Note that the latter class is a subclass of quasidifferentiable functions is 

the sense of Pshenichnyi [38]. 

 A large class of lower regular functions (in somewhat stronger sense) has 

been studied in [41] under the name of amenability. It was shown there that the class 

of amenable functions enjoys a fairly rich calculus and includes a large core of 

functions frequently encountered in finite-dimensional minimization. 

 Symmetrically, ϕ  is upper regular at x if   )(ˆ )( xx ϕϕ ++ ∂=∂ . It follows from 

(2.5) that this property is equivalent to the lower regularity of -ϕ  at x . Thus all the 

facts about subdifferentials and lower regularity relative to minimization can be 

symmetrically transferred to superdifferentials and upper regularity relative to 

maximization. The point is that in the next section we are going to apply 

superdifferentials and upper regularity relative to maximization problems. The 

following proposition is useful in this respect. 

 

Proposition 2.1.1.  Let RR: n →ϕ  be Lipschitz continuous around x and upper 

regular at this point. Then  )( )(ˆ0 xx ϕϕ ∂=∂≠ + . 

 

Proof.  The nonemptiness of 0)x( fromdirecty  follows )(ˆ ≠∂∂ + ϕϕ x  for locally 

Lipschitzian functions and the definition of upper regularity. Due to 

)(co )( xx ϕϕ ∂=∂ , any local Lipschitzian function is lower regular at x  if and only if 

 )( )(ˆ xx ϕϕ ∂=∂ . Hence the upper regularity of ϕ  at x  and the plus-minus symmetry 

of the generalized gradient imply that  

 

                                 )())(())((ˆ)(ˆ xxxx ϕϕϕϕ ∂=−∂−=−∂−=∂ +   

 

which ends the proof of the proposition. 

 Note that all the assumptions of Proposition 2.1.1. hold for concave functions 

continuous around x . 
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2.2 Superdifferential form of the discrete maximum principle  

 

The following problem (P) of the Mayer type is considered as the basic model: 

  

minimize ( ) ( )( )1:, txuxJ ϕ=                                                 (i)                                                                                                                       

 

over discrete control processes  { }(.)(.),ux  satisfying 

 

0 0( ) ( ) ( , ( ), ( ), ( )) ,       ( ) nx t h x t hf t x t x t u t x t x Rτ+ = + − ≡ ∈                                      (ii)                                                                                                              

      

{ }, ,...,,:  , )( 100 hthttTtUtu −+=∈∈                                                                (iii)                                                                                                                           

     

{ }, ,...,,:   , )()( 0000 hthttTttctx −+−−=∈= ττ                                            (iv)                                                                                                                            

     

where 0〉h  is a discrete stepsize, Nh=τ  is a time delay with some 

{ } , ,... 2, ,1:N UN =∈  is a compact set describing constraints on control values in 

(iii), and c(.) is a given function describing the initial “delay” condition (iv) for the 

delayed system (ii). 

In this section we first study the discrete optimal control problem (P) defined 

in (i)-(iv) and then consider its multiple delay generalization. Let { }(.)(.),ux  be a 

feasible process to  (P), and let { }(.)(.),ux  be an optimal process to this problem. For 

convenience sake we introduce the following notation: 

 

).u,(t,-u),(t,)(

),u,(t,-u),(t,:)(    ),()(:)(

),)(),(),(,(:u),,(t

),)(),(),(,(:u),(t,    ),)(),(),(,(:u),(t,

)),(),((:)(   )),(),((:)(

ξξ

ξξ

τττξτ
τξτξ

τξτξ

fftf

fftftxtxtx

tutxtxtff

tutxtxtfftutxtxtff

txtxttxtxt

u =∆

=∆−=∆

+++=+

−=−=

−=−=
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Using this notation, we define the adjoint system  

 

                               

*

*

( ) ( ) ( , , ) ( )

       ( , , ) ( ),

f
p t p t h h t u p t h

x

f
h t u p t h t T
y

ξ

τ ξ τ

∂
= + + +

∂
∂

+ + + + ∈
∂

             (2.9)               

                                                                                                                   

to (2.2) along the optimal process { }(.)(.),ux . Consider the Hamilton-Pontryagin 

function  

 

        ))(),(,(),(:))(),(),(,( tuttfhtptuthtptH ξξ +=+ ,                         (2.10)                             

 

which allows us to rewrite the adjoint system (2.9) in the simplified form 

 

                    







+

∂
∂

+
∂
∂

++= )()()()( τt
y

H
t

x

H
hhtptp    

 

with  ))(),(),(,(:)( tuthtptHtH ξ+= . Form the set 

 

                    { })),,();,,((),,(:))(( UtfutfutfUutu ξξσξ ∈∈=Λ .                    (2.11)                                                                                                                            

   

where );( Qqσ denotes the star-neighborhood of QQq   torelative ∈    

 

            { }( ; ) : 0 such that ( ) for all Nk kq Q a Q q a q Q kσ ε ε= ∈ ∃ ↓ + − ∈ ∈            (2.12)                                                                                                              

   

It easily follows from (2.11) and (2.12) that ),,(set   theif ))(( UtfUtu ξ=Λ is 

convex. The following theorem establishes a new superdifferential form of the 

discrete maximum principle for both delayed and non-delayed systems. 
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Theorem 2.2.1.  Let { }(.)(.),ux  be an optimal process to (P). Assume that 

RR: n →ϕ is finite at )( 1tx and that 0))((ˆ
1 ≠∂ + txϕ . Then for any ))((ˆ

1

* txx ϕ+∂∈  

one has the discrete maximum principle 

 

                        
,   )),(),(),(),(,(max

))(),(),(),(,(

(t))u(u
TttutxtxhtptH

tutxtxhtptH

∈−+=

−+

Λ∈
τ

τ
                       (2.13)                                                                                                  

  

where p(.) is an adjoint trajectory satisfying (2.9) and the transversality conditions  

 

            .  for   0)(   ,)( 1

*

1 tttpxtp 〉=−=                                            (2.14) 

            

 The maximum condition (2.13) is global over all Uu∈ if the set ),,( Utf ξ is 

convex. 

 

Proof.  Take an arbitrary ))((ˆ
1

* txx ϕ+∂∈ . It follows from (2.6) that 

 

               ( ))()(,))(()( 11

*

1 txxtxxxtxx −+−≤− οϕϕ                            (2.15)              

          

for all x sufficiently close to )( 1tx . Put *

1 :)( xtp −= and derive from (2.15) and (i) 

that 

 

              ( ))()(),(),(),( 111 txtxtpuxJuxJ ∆+∆−=− ο                            (2.16)  

          

for all feasible process { }(.)(.),ux  to  (P) such that )( 1tx is sufficiently close to )( 1tx . 

One always has the identity 

 

                          

1

0

1

0

1 1( ), ( ) ( ) ( ), ( )

                      ( ), ( ) ( )

t h

t t

t h

t t

p t x t p t h p t x t

p t h x t h x t

−

=

−

=

∆ = + − ∆

+ + ∆ + −∆

∑

∑
                      (2.17)         
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Due to (ii) we get the representation 

 

( ) ( ) ( )

                          ( ) ( , , ) ( ) ( , , ) ( ) ( )u

x t h x t h f t

f f
h f t t u x t t u x t t

x y
ξ ξ τ η

∆ + −∆ = ∆

 ∂ ∂
= ∆ + ∆ + ∆ − + ∂ ∂ 

, 

 

where the remainder )(tη is computed by  

 

( ) ( )

( ) ( , , ) ( , , ) ( ) ( , , ) ( , , ) ( )

       ( ) ( )

f f f f
t t u t u x t t u t u x t

x x y y

x t x t

η ξ ξ ξ ξ τ

ο ο τ

 ∂ ∂ ∂ ∂ = − ∆ + − ∆ −  ∂ ∂ ∂ ∂   

+ ∆ + ∆ −

. 

 

This allows us to present the second sum in (2.17) as 

 

1

0

1

0

( , ( ) ( )

( ), ( ) ( , , ) ( ) ( , , ) ( ) ( )

t h

t t

t h

u

t t

p t h x t h x t

f f
h p t h f t t u x t t u x t t

x y
ξ ξ τ η

−

=

−

=

+ ∆ + −∆

∂ ∂
= + ∆ + ∆ + ∆ − +

∂ ∂

∑

∑
. 

 

Using the equalities 

 

        10 for  0)(  , for  0)( tthtptttx ≥=+≤=∆  

 

and shifting the summation above, we have  

 

                        

∑

∑
−

=

−

=

∆+
∂
∂

++=

−∆
∂
∂

+

ht

tt

ht

tt

txut
y

f
htp

txut
y

f
htp

1

0

1

0

)(),,(,),(

)(),,(,(

ξττ

τξ

                           (2.18) 
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 Finally, substituting (2.9), (2.17), and (2.18) into (2.16), we obtain 

 

                      

( )

1

0

1

0

1

( , ) ( , ) ( )

                          ( ), ( ) ( ) 0

t h

u

t t

t h

t t

J x u J x u h H t

h p t h t x tη ο

−

=

−

=

− = − ∆

− + + ∆ ≥

∑

∑
                  (2.19)  

            

with ( ) : ( , ( ), ( ), ( )) ( , ( ), ( ), ( )) uH t H t p t h t u t H t p t h t u tξ ξ∆ = + − + where 1( )x t∆ is 

sufficiently small. 

Let us prove that (2.19) implies that, ))(( and any for  0)( tuuTttHu Λ∈∈≤∆ , 

which is equivalent to the discrete maximum principle (2.13). Assuming the 

contrary, we find  

 

                      0  :)(  ))(( and 〉=∆Λ∈∈ aHuuT u θθθ .                              (2.20)              

          

By definitions (2.11) and (2.12), there are sequences 

Uukk ∈↓  and 0ε such that  

 

                ),,(),,(:),,(),,(),,( Ufufufufuf kk ξθξθξθξθεξθ ∈=−+ , 

 

which is equivalent to  

 

       )(:)),,(),,((),,(),,(:)( θεξθξθεξθξθθ fufufufuff ukkkuk
∆=−=−=∆ . 

 

Now let us consider needle variations of the optimal control defined as  

 

               
{ }




∈

=
=

, /  if  )(

,0  if  
)(

θTttu

tu
tv

k

k  

 

which are feasible to (P) for all ∈k N, and let )(txk∆ be the corresponding 

perturbations of the optimal trajectory generated by )(tvk . One can see that  
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      10 ,...,for  )()( and ,...,for  0)( thtOtxtttx kkk +==∆==∆ θεθ . 

 

This implies that  

 

Tttxut
y

f
vt

y

f

txut
x

f
vt

x

f

kk

kk

∈=−∆








∂
∂

−
∂
∂

+

∆







∂
∂

−
∂
∂

  , 0)(),,(),,(

)(),,(),,(

τξξ

ξξ

  

 

and that Nk ,)()( ∈= kk t εοη , for the corresponding remainders (.)kη defined above. 

Hence 

0  )()(),()(),(),(
1

0

〈+−=+−∆−=− ∑
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for all large Nk ∈  due to (2.20). Since ∞→→ ktxtxk  as )()( 11 , this contradicts 

(2.19) and completes the proof of the theorem. 

 Let us present two important corollaries of Theorem 2.2.1. The first one 

assumes that ϕ  is (Frechet) differentiable at the point )( 1tx . Note that it may not be 

strictly differentiable (and hence not upper regular) at this point as for the function 

0)0( with 0for  )/1sin()( 2 =≠= ϕϕ xxxx (see definitions in Section 2). If ϕ  is 

continuously differentiable around )( 1tx  and ),,( uxtff = in (ii), then this result and 

its proof go back to the discrete maximum principle for non-delayed systems 

established in [19, Chapter IX]. 

 

Corollary 2.2.2.  Let { }(.)(.),ux  be an optimal process to (P), where ϕ  is assumed to 

be differentiable at )( 1tx . Then one has the discrete maximum principle (2.13) with 

p(.) satisfying (2.9) and  

 

  111   for  0)(  , ))(()( tttptxtp 〉=−∇= ϕ                                            (2.21)
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Proof.  It follows from Theorem 2.2.1. due to the second relation in (2.7), which 

ensures that (2.14) reduces to (2.21). 

 The next corollary provides a striking result for upper regular and Lipschitz 

continuous cost function ϕ . In this case the discrete maxımum principle holds with 

the transversality condition *

1 )( xtp −= given by any vector *x  from the generalized 

gradient ))(( 1txϕ∂ , while conventional results ensure such conditions only for some 

subgradient. 

 

Corollary 2.2.3.  Let { }(.)(.),ux  be an optimal process to (P), where ϕ  is assumed to 

be Lipschitz continuous around )( 1tx  and upper regular at this point. Then for every 

vector 0))(( 1

* ≠∂∈ txx ϕ  one has the maximum principle (2.13) with p(.) satisfying 

(2.9) and (2.14).  

 

Proof.  Follows from Theorem 2.2.1 and proposition 2.1.1. 

 Now let us consider an extension )( 1P of problem )(P to the case of multiple 

delays: minimize (i) over discrete control processes { }(.)(.),ux  satisfying the system 
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with many delays miNh iii ,...,1 and Nfor  N =∈=τ  subject to constraints (iii) and 

(iv), where ),,...,,,( 1 uxxxtff m= satisfies our standing assumption and where the 

initial interval T0 is correspondingly modified.  

Denote ))(),...,(),((:)( 1 mtxtxtxt ττξ −−= and define p(.) satisfying (2.14) 

and the adjoint system  

 

                   

*

*

1

( ) ( ) ( , , ) ( )

      ( , , ) ( )
m

i i

i

f
p t p t h h t u p t h

x

f
h t u p t h

x

ξ

τ ξ τ
=

∂
= + + +

∂
∂

+ + + +
∂∑

                                   (2.23) 

        

     



 28 

for Tt∈ , which can be rewritten in the Hamiltonian form 
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in terms of (2.10) with ))(),(),(,(:)( tuthtptHtH ξ+= . The proof of the following 

theorem is similar to the basic case of Theorem 2.2.1. and can be omitted. 

 

Theorem 2.2.4.  Let { }(.)(.),ux  be an optimal process to (P1) with 0))((ˆ
1 ≠∂ + txϕ . 

Then for any ))((ˆ
1

* txx ϕ+∂∈ one has the discrete maxımum principle 
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where p(.) is an adjoint trajectory satisfying (2.14) and (2.23). 

 Of course, we have the corollaries of Theorem 2.2.4. similar to the above 

ones for Theorem 2.2.1. Let us obtain another corollary of Theorem 2.2.4. for a 

counterpart (P2) of the optimal control problem (P) involving discrete systems of 

neutral type 
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where  
h

txhtx )()( ττ −−+−
 can be treated as an analog of the delayed derivative 

)( τ−tx& under the time discretization and where ),,,,( uzyxtff = satisfies our 

standing assumption. 

Given an optimal process { }(.)(.),ux  to (P2), we put 
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and define the adjoint discrete neutral-type system 
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Corollary 2.2.5.  Let { }(.)(.),ux  be an optimal process to (P2) with 0))((ˆ
1 ≠∂ + txϕ . 

Then for any ))((ˆ
1

* txx ϕ+∂∈ one has the discrete maxımum principle (2.24), where 

(.)ξ is defined in (2.26) and where p(.) is an adjoint trajectory satisfying (2.14) and 

(2.27). 

 

Proof.  Observe that the neutral system (2.25) can be easily reduced to (2.22) with 

two delays. Thus this corollary follows from Theorem 2.2.4. via simple calculations. 

 A drawback of the superdifferential form of the discrete maximum principle 

established above is that the Frechet superdifferential may be empty for nice 

functions important in nonsmooth minimization, e.g., for convex functions that are 

not differentiable at the minimum points. In the next section we derive results on the 

discrete maximum principle that cover delayed problems of type (P) with general 

nonsmooth cost functions ϕ . Results of the latter subdifferential type are applicable 

to a broad class of nonsmooth problems, but they may not be as sharp as the 

superdifferential form of Theorem 2.2.1. when it applies. 
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2.3  Discrete maximum principle in terms of basic normals and subgradients  

 

 In this section of the thesis, we present nonsmooth versions of the discrete 

maximum principle for the delayed problem (P) in (i)-(iv) with transversality 

conditions expressed in terms of basic normals and subgradients defined in Section 

2.1. The corresponding modifications for problems (P1) and (P2) can be made 

similarly to Section 2.2. 

 

Theorem 2.3.1.  Let { }(.)(.),ux  be an optimal process to (P), and let )(: 1txx = . 

Assume that the set ),,,( Uyxtf is convex around Tttxtx ∈−  allfor  ))(),(( τ . Then 

one has the following assertions. 

(a)Let ϕ  be lower semicontinuous around x . Then there is a nonzero vector 

1* R),( +∈ nx λ  such that 0≥λ   

)epi));(,((),( * ϕϕλ xxNx ∈− , and the discrete maximum principle  
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holds with p(.) satisfying (2.9) and (2.14). 

 (b) Let ϕ  be Lipschitz continuous around x . Then there is )(* xx ϕ∂∈ such 

that (2.28) holds with p(.) satisfying (2.9) and (2.14). 

 

Proof.  We will proceed similarly to the non-delayed case using the method of metric 

approximation (cf. [28, Section 11]). This method allows us to approximate the 

original nonsmooth problem by a family of smooth discrete problems with delays 

and then arrive at the desired conclusions by a limiting procedure involving the 

corresponding results. 

Let us first prove assertion (a). Taking a parameter R∈γ , we consider a 

parametric family of the following optimal control pronlems )( γP for delayed 

discrete systems with the distance-type cost functional: 
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over control processes { }(.)(.),ux  subject to constraints (ii)-(iv). 

 Let { }(.)(.),let  and ,))((: 1 γγϕγ uxtx=  be optimal processes to )( γP that 

obviously exist by the classical Weierstrass theorem due to the standing assumptions.  

It follows from the structure of )( γP  and the optimality of { }(.)(.),ux  in the original 

problem (P) that { }1 allfor   as )()( TTttxtx ∪∈→→ γγγ . Moreover, 

 

              γγγγγγ    whenever 0  )epi);),(((dist: 1 〈〉= txm .                            (2.29) 

 

The latter allows us to conclude that, for any γγ    〈 , the process{ }(.)(.), γγ ux  is 

optimal to the smooth problem )( γP of minimizing the functional 
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subject to (ii)-(iv), where ),( γγ wx is an arbitrary element of the Euclidean projector 

)epi);),((( 1 ϕγγ txΠ of )),(( 1 γγ tx to the closed set epiϕ . Introducing an additional 

state variable )(1 txn+  by 
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we rewrite problem )( γP  in the equivalent form of minimizing the Mayer-type 

functional 
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over { }(.)(.),(.), 1 uxx n+  satisfying (ii)-(iv) and (2.30). 

Denote ))(),((:)( τξ γγγ −= txtxt and observe that the sets )),(,( Uttf γξ are 

convex for all Tt∈  while the cost function in (2.31) is differentiable at 

))(),(( 111 txtx n+γ , where (.)1+nx is generated by (.)γx in (2.30). Now applying 

Corollary 2.2.4. to problem γγγ    as )( 〈P  and taking into account the structure of the 

cost function (2.31), we arrive at the discrete maximum principle  
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where (.)γp satisfies the adjoint system (2.9) along { }(.)(.), γγ ux  with the 

transversality conditions  
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where 0  〉γm is given in (2.29), and where 

 

   1
)(

22

1
=













 −
+













 −

γ

γ

γ

γγ γ

m

w

m

xtx
       

 

Passing to the limit as γγ ↑  in the above relations and using the constructions of the 

basic normal cone (2.1), we arrive at all the conclusions of (a). 

 To justify (b) when ϕ  is Lipschitz continuous around )( 1tx  , we observe that 

in this case one has ))(( 1

* txx ϕλ∂∈ from (a) and (2.3). The latter implies that 0≠λ , 

which yields (b) by normalization. 

 Let us compare the superdifferential and subdifferential forms of the discrete 

maximum principle from Theorems 2.2.1. and 2.3.1., respectively. As mentioned 

above, Theorem 2.3.1. is applicable to a broad class of nonsmooth problems (P) 

while Theorem 2.2.1. requires that 0))((ˆ
1 ≠∂ + txϕ , which excludes many nonsmooth 
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functions. On the other hand, the superdifferential form has essential advantages for 

special classes of cost functions. 

 First we observe that Theorem 2.2.1. implies the gradient form (2.21) of 

transversality when ϕ  is just differentiable at )( 1tx (it may even not be Lipschitz 

continuous around this point) while Teorem 2.3.1. ensures (2.21) only when ϕ  is 

strictly differentiable at )( 1tx (see (2.8) and the related discussion in Section 2). The 

most striking difference between subdifferential and superdifferential transversality 

conditions appears in the case of upper regular and locally Lipschitzian cost 

functions. In this case Theorem 2.3.1. provides the discrete maximum principle 

generated by some subgradient ))(())(( 11

* txtxx ϕϕ ∂⊂∂∈ in (2.14) while Corollary 

2.2.5. ensures it for every ))(( 1

* txx ϕ∂∈ . This is a big difference! 
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3. OPTIMALITY CONDITIONS VIA EXHAUSTERS AND 

QUASIDIFFERENTIABILITY IN SWITCHING CONTROL PROBLEM 

 

3.1 Some knowledge about quasidifferential and exhausters  

 

Let us begin with basic constructions of directional derivative (or its generalization) 

used in the sequel. We refer the reader to the book by Demyanov and Rubinov [14, 

15] and articles Roshchina [43, 44, 45], Demyanov and Roshchina [16, 17, 18]. Let 

nRXRXf ∈→  ,:  be an open set. The function )( ↓↑
HH ff  is called Hadamard upper 

(lower) derivative of the function f  at the point x in the direction g if there exist limit 
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Note that limit in (3.1, 3.2) always exist, but are not necessarily finite. This 

derivative is positively homogeneous function of direction. The Gateaux upper 

(lower) subdifferential of the function f  at a point Xx ∈0  can be defined as follows 
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is called, respectively, upper (lower) Frechet subdifferential of the function f  at the 

point 0x . 

 It is known that, if f is a quasidifferentiable function then [15] its directional 

derivative at a point x is represented as 
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where nRxfxf ⊂∂∂ )(),(  are convex compact sets. From last relation, easly we can 

reduce that 
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It means that for the function ),()( ' gxfgh =  the upper and lower exhausters can be 

describe following way 
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It follows that the directional derivative of a quasidifferentiable function (as a 

function of direction) is positively homogeneous and quasidifferentiable. 

If )(gh  is upper semicontinuous in g, then [14, 18] )(gh can be expressed as 
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and if )(gh  is lower semicontinuous in g, then )(gh  can be written as in the form 
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In [9], Castellani proved that if h is Lipschitz then h can be written in the forms 
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The pair ],[ *

* EEE =  of families of totally bounded, convex compact sets a 

biexhausters, *E  being an upper exhausters and *E  a lower one. In [17, theorem 3.3] 

and in [18, theorem 2], the authors wrote and proved relationship between upper 

exhausters and Frechet lower subdifferential. They also wrote about relationship 

between lower exhauster and Frechet upper subdifferential and remark that this 

relationships can be prove easly by using symmetrical construction. For the 

continence of our future work in current article, let us prove this relationship. It is 

clear that Frechet upper subdifferential can be Express with the Hadamard upper 

derivative following way [17, lemma 3.2] 
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Then: 

 

Theorem 3.1.1.  Let *E  be lower exhausters of the positively homogeneous function 

RRh n →: . Then I
*

)0(ˆ

EC

nhC
⊂

+∂= , where h+∂̂  is the Frechet upper subdifferential 

of the h at 0n and for the positively homogeneous function RRh n →:  the Frechet 

superdifferential at the point zero follows, 
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Proof.  Take any I
*

0
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∈ . Then from the definition of lower exhausters that, 
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Then by separation theorem there exist nRx ∈0  such that  
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It is conducts (3.3) and Cv ∈0  for every *EC∈ and due to arbitrary. This means 

that I
*

0
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Cv
⊂

∈ . It is complete proof of the theorem. 

 

Lemma 3.1.2.  The Frechet upper (lower) and Gateaux upper (lower) 

subdifferentials of a positively homogeneous function at zero coincide. 

 

Proof.  Let RRh n →:  be a positively homogeneous function. It is not difficult to 

observe that every nRg ∈  and every 0〉t  
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Hence, the Gateaux lower subdifferential of h at 0n take the form 
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which coincide with the representation of the Frechet upper subdifferentials of the 

positively homogeneous function (see [22], Proposition 1.9). 
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3.2 Problem formulation and necessary optimality principle   

 

We consider the following optimization problem: 

 

1( ) ( ( ), ( ), ),   [ , ],   1, 2, ...,      K K K K K Kx t f x t u t t t t t K N−= ∈ =&              (3.5) 

 

001 )( xtx =                                (3.6) 

 

NKttxF NNNK  ..., 2, 1,   , 0)),(( ==                             (3.7) 
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Remark 3.2.1.  We consider the problem (3.5)-(3.9) in the first section (the problem 

(1.1)-(1.5)) but in this section we extend this result in the case of minimizing 

functional satisfies quasidifferential and exhauster conditions in the Demyanov and 

Rubinov sense.    

Here nrn

K RRRRf →××: , KM  and KF  are continuous, at least 

continuously partially differentiable vector-valued functions with respect to their 

variables, RRRRL rn →××:  is continuous and have continuous partial derivative 

with respect to their variables, (.)Kϕ  has Frechet upper subdifferentiable 

(superdifferentiable) at a point )( KK tx  and positively homogeneous functional, 

r

KK RURtu ⊂→:)(  are controls. The sets KU  are assumed to be nonempty and 

bounded. Here (3.8) are switching conditions. It is required to find the control 

Nuuu ,...,, 21 , switching points 121 ,...,, −Nttt  and the end point Nt  (here Nttt ,...,, 21  are 

not fixed) with corresponding state Nxxx ,...,, 21  satisfying (3.5)-(3.9) so that the 

function ),...,,,...( 11 NN ttuuS in (3.9) is minimized. We will derive necessary 

conditions for nonsmooth version of these problems (by using exhausters and 

quasidifferentiable in the Demyanov sense). 
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Denote: 

 

       )).(),...,(),(()(  )),(),...,(),(()(  ),,...,,( 212121 tututututxtxtxtxttt NNN ===θ  

 

Our aim is to find tuple ( )θ),(),( tutx  which solves problem (3.5)-(3.9). Such tuple 

will be called optimal control for the problem (3.5)-(3.9). At first we assume that 

(.)Kϕ  is Hadamard upper differentiable at the point )( KK tx  to the zero direction. 

Then, (.)Kϕ  is uppersemicontinuous [47] and it has exhaustive family of lower 

concave approximations of (.)Kϕ [15, theorem 3]. Then: 

 

Theorem 3.2.2.  (Necessary optimality condition in terms of lower exhauster) 

Let )(.),(.),( θKK xu  be an optimal solution to the control problem (3.5)-(3.9). Then, 
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KK EC
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vector functions NKtpK  ..., 2, 1,  ),( =  which one has following necessary optimality 

condition hold: 

1) State equation. 
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4) Stationarity condition 
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where KE*,  is lower exhauster of the functional ))(( KKK txϕ  and NKK  ..., 2, 1,  , =λ  

are the vectors, (.)Kp  is defined by the conditions (3.2) and (3.3) in the theorem, 

later. 

 

Proof.   To prove the theorem, take any elements from intersection of the subset of 

the exhauster, NKCx
KK EC

KK  ..., 2, 1,  ,
*,

* =∈
∈
I . Then by using theorem 3.1 we can write 

that ))((ˆ*

KKKK txx ϕ+∂∈ . Then, apply the variational description from theorem 1.88 

((i)) in [33] to the subgradients ( )))((ˆ*

KKKK txx ϕ−∂∈− + . In this way we find 

functions RXsK →:  for K=1, 2, …, N satisfying the relations 

))(())(( KKKKKK txtxs ϕ=  and ))(())(( txtxs KKKK ϕ≥  in some neighborhood of 

)( KK tx  and such that each (.)Ks is continuously differentiable at )( KK tx  with 

NKxtxs KKKK  ..., 2, 1,  ,))(( * ==∇ . It is easy to check that (.)Kx  is a local solution 

to the following optimization problem of type (3.5)-(3.9) but with cost continuously 

differentiable around (.)Kx . This means that, we deduce the optimal control problem 

(3.5)-(3.9) with the nonsmooth cost functional to the smooth cost functional data 
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Then, by using Lagrange multipliers rule and by using results which described in 

first section where we calculated first variation of the minimizing functional. We can 

obtain first variation of the minimizing functional in the following form; 
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The latter sum is known because 
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According to a necessary condition for an optimal solution 0'=Jδ . Setting to zero 

coefficients of the independent increments KKKKKNN puxtxtx δδδδδ  and ,),(),(  and 

taking into account that 

 

            NKxtxs KKKK  ..., 2, 1,   ,))(( * ==∇  
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yields the necessary optimality condition in the following form 
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This completes the proof of the theorem. 

 

Theorem 3.2.3.  (Necessary optimality conditions for switching optimal control 

system in terms of Quasidifferentiability) Let the minimization functional (.)Kϕ to be 

positively homogeneous, quasidifferentiable at a point (.)Kx and )(.),(.),( θKK xu be 

an optimal solution to the control problem (3.5)-(3.9). Then there exist vector 

functions NKtpK  ..., 2, 1,  ),( = and there exist convex compact and bounded 

set (.))( KM ϕ , which for any elements (.))(*

KK Mx ϕ∈ the necessary optimality 

conditions 1)-5) in the theorem 3.2.2. are satisfied. 

 

Proof.  Let minimization functional (.)Kϕ  to be positively homogeneous, 

quasidifferentiable at a point )( KK tx . Then there exist totally bounded lower 

exhausters KE*,  for the (.)Kϕ ([17] theorem 4). Let us make substitution 

KK EM *,(.))( =ϕ , take any element (.))(*

KK Mx ϕ∈ . Then KK Ex *,

* ∈  also and if we 

follow the prove description and result in theorem 3.2.2., we can prove the theorem 

3.2.3.  
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If we use relationship between Gateaux upper subdifferential and Dini upper 

derivative[15, lemma3.6], put substitution )),(()( , gtxgh KKHKK

+=ϕ  then we can 

write following corollary. (here )),((, gtx KKHK

+ϕ is Hadamard upper derivative of the 

minimizing functional (.)Kϕ in the direction g ) 

 

Corollary 3.2.4. Let the minimization functional (.)Kϕ  to be positively 

homogeneous, Dini upper differentiable at a point  (.)Kx and )(.),(.),( θKK xu be an 

optimal solution to the control problem (3.5)-(3.9). Then for any elements 

)0(*

nKGK hx +∂∈  there exist vector functions NKtpK  ..., 2, 1,  ),( =  such that the 

necessary optimality conditions 1)-5) in the theorem 3.2.2. hold. 

 

Proof.  Let take any element )0(*

nKGK hx +∂∈ . Then by using lemma 3.8 in [17], we 

can write )0(*

nKFK hx +∂∈ . Next, if we use lemma 3.2 in [17], then we can put 

))((*
KKKFK txx ϕ+∂∈ . At least, if we follow the theorem 3.1.1. (relationship between 

upper Frechet subdifferential and exhausters) and the theorem 3.2.2. (necessary 

optimality condition in terms of exhausters), we can prove the result of the corollary 

3.2.4. 
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CONCLUSION 

 

   In thesis, results for nonsmooth optimal control of switching systems are 

reported. The method takes advantage of the special structure of nonlinear optimal 

switching control systems with smooth and nonsmooth minimizing functional. 

Application of necessary optimality condition to the switching optimal control 

problem is also reported. A further research topic can be carried on the development 

of methods to search optimality conditions for the nonsmooth switching optimal 

control problem for the differential and discrete inclusion, nonsmooth optimal 

switching control problem with delay and neutral type. 

 We also investigated necessary optimality condition for discrete system in the 

nonsmooth case. It is first time obtained optimality condition for given problem. 

In thesis we tried to get necessary optimality conditions for the switching 

optimal control problem in terms of exhausters and quasidifferentiable in the 

Demyanov sense. By using necessary results about relationship Frechet upper 

subdifferential, Quasidifferentiability and exhausters which was obtained by 

Demyanov and Roshchina [15], Roshchina [18], and by using results connection 

Gateaux subdifferentiable and Dini derivative which obtained by Demyanov and 

Roshchina in [15], it is obtained necessary condition for switching control problem.       

It is first time studied application quasidifferentiability and exhausters in the 

switching optimal control problem. But there are some open problem, like Clarke 

and Penot subdifferentiable in the switching optimal control problem, reduction of 

the exhausters which it will be help for us to get more constructive optimality 

condition for the switching control problem. 
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