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ABSTRACT 

CONTROL OF M/Coxian-2/s MAKE-TO-STOCK  

PRODUCTION SYSTEMS  

ÖZTÜRK, Özgün 

MSc in Industrial Engineering 

Supervisor: Asst. Prof. Dr. Önder BULUT 

 

August 2016, 58 pages 

  In this thesis, we consider a make-to-stock production environment with 

multiple processing channels, several customer classes, fixed production start-up costs 

and lost sales. Demands of customer classes are generated from independent Poisson 

processes. Processing times are assumed to be independent two-phase Coxian random 

variables. Each phase of Coxian distribution is an exponential random variable 

corresponding to a specific stage in production and there is a certain visiting probability 

from phase-one to phase-two. Phase-type processing time assumption allows to model 

a system with a rework/inspection operation. The problem is to control the production 

and allocate the on hand inventory among different customer classes. We extend the 

production-inventory control literature by considering phase-type production times, 

several customer classes, parallel production channels and start-up cost in a single 

model. First, the dynamic programming formulation is developed and optimal 

production and rationing policies are characterized under average system cost criterion. 

Furthermore, a dynamic rationing policy and several production policies are proposed 

and their performance analyses are carried out. The final contribution of this thesis is 

to propose a new method, based on renewal theory, to calculate the long-run average 

system cost under the optimal production and static rationing policies when there is a 

single processing channel.  

Keywords: make-to-stock, inventory-production control, phase-type processing times, 

multiple production channels, start-up cost. 
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ÖZET 

M/Coxian-2/s STOĞA-ÜRETİM SİSTEMLERİNİN KONTROLÜ 

 

Özgün ÖZTÜRK 

Yüksek Lisans Tezi, Endüstri Mühendisliği Bölümü 

Tez Danışmanı: Yrd. Doç. Dr. Önder BULUT  

 

Ağustos 2016, 58 sayfa 

Bu tezde sabit hazırlık ve kayıp satış maliyetlerini içeren, paralel üretim kanalları 

ve birden çok müşteri sınıfının bulunduğu stoğa-üretim sistemlerinde üretim ve stok 

tayınlama kontrolü ele alınmaktadır. Müşteri taleplerinin bağımsız Poisson süreçleri 

uyarınca geldiği ve üretim zamanlarının iki-aşamalı Coxian dağılıma sahip olduğu 

varsayılmıştır. Coxian dağılımının her bir aşaması Üssel rassal değişkeni olmakla 

birlikte bu aşamalar üretimin belirli bir fazına tekabül etmektedir. Ayrıca, birinci üretim 

aşamasından ikinci aşamaya belirli bir olasılık ile geçilmektedir. Bu çalışmada dikkate 

alınan faz-tipi üretim zamanları, yeniden işleme/kontrol operasyonlarının 

modellenmesine imkan vermektedir. Problem, üretim kontrolü ve eldeki envanterin 

müşteri sınıfları arasında ayrıştırılmasını kapsamaktadır. Faz-tipi üretim zamanları, 

farklı müşteri sınıfları, paralel üretim kanalları ve sabit hazırlık maliyeti tek bir modelde 

ele alınarak üretim-envanter kontrolü literatürü genişletilmektedir. İlk olarak, dinamik 

programlama formülasyonu geliştirilmiş ve en iyi üretim ve tayınlama politikaları, 

ortalama sistem maliyeti kriteri baz alınarak karakterize edilmiştir. Sistem durum 

bilgisinin kullanıldığı dinamik bir stok tayınlama politikası ile alternatif üretim 

politikaları önerilmiş, performans analizleri yapılmıştır. Son olarak, yenileme teorisi baz 

alınarak geliştirilen yeni yöntem ile tek üretim kanallı sistem için en iyi üretim politikası 

ve statik tayınlama politikası altında ortalama sistem maliyeti hesaplanmıştır.  

Anahtar sözcükler: stoğa üretim, üretim-envanter kontrolü, faz-tipi üretim zamanları, 

paralel üretim kanalları, hazırlık maliyeti.  
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1 INTRODUCTION 

 In this thesis, we consider a make-to-stock production environment with multiple 

processing channels, several customer classes, fixed production start-up costs and lost 

sales. In a make-to-stock production system, there is always a tradeoff between excess 

inventory, shortages and production costs. Production control is the main tool handling 

this tradeoff and providing cost effective operation. However, nowadays, in addition to 

the production control, customers are also differentiated based on their service level 

requirements or lost sale costs. Almost all the parties in a supply chain develop stock 

reservation strategies in anticipation of future demand arrival of their privileged 

customers. Generally, the idea behind the differentiation is to manage the variation 

among customers in order to provide effective service. 

 In general, in a make-to-stock environment, a production control decision 

requires starting production at the right time and producing with the optimum number 

of channels to provide sufficient amount of products. A stock reservation strategy is 

also required for the inventory allocation among the several customer classes. In the 

literature and practice such strategies are referred as inventory rationing strategies. 

Inventory rationing reserves some portion of the inventory in anticipation of demand 

arrivals from the customer classes having higher priorities by rejecting demands from 

the other classes when the inventory status drops below certain threshold levels 

corresponding to different classes. Here, inventory status refers a function of the state 

variables that keep track of the required system information such as inventory level, 

number of outstanding production orders and their ages. The form of the optimal 

inventory status function would change from system to system but it is still unknown 

even for most of the basic inventory or production-inventory settings. Therefore, most 

of the studies in the literature either assumes that inventory status equals inventory 

level, which is referred as static rationing, or they propose approximate functional 

forms including other system variables, which is referred as dynamic rationing. Bulut 

and Fadiloglu (2011), Liu and Zhang (2015), and Özkan (2016) provide extensive 

discussions on the optimality of rationing policies for inventory and production-

inventory systems, respectively.   

  In order to better understand our problem, we explain it using a supply chain 

illustrated in Figure 1.1. Suppose there is a specific type of product which is delivered 

to the end customers through the supply chain described in the future. The first echelon 
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of the chain is for the raw material suppliers that provides necessary materials to 

manufacturers. At the second stage, manufacturers process raw materials and deliver 

finished products to the retailers where the end customers have access to the products. 

Let the manufacturers have multiple processing or assembly channels and at each 

alternative channel there is also a rework/inspection operation. All these manufacturers 

are actually the customers of raw material suppliers. Similarly, retailers are the 

customers of manufacturers. It is better for raw material suppliers, manufacturers and 

retailers to ration their inventories by classifying their customers. For instance, for a 

specific raw material supplier, some of its customers, that is some of the manufacturers, 

might be more valuable than the others. This value might come from their high market 

shares, high shortage costs/service level requirements or their long term contracts. It is 

more cost effective for the raw material supplier to reserve some inventory for this class 

of valuable customers. Thus, at all the levels of the chain (excluding the end customers) 

all the parties would develop their production and rationing strategies to operate their 

own systems by balancing holding, shortage and production costs.  

 

Figure 1.1 An Explanatory Example of a Supply Chain Network 
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 Production times have different structures in different industries and companies. 

Due to the nature of the production environment and its technology, production times 

might have zero, moderate or high variance. In order to consider the systems with 

rework, we assume phase-type production times at each alternative channel. In specific, 

production times are assumed to be independent 2-phase Coxian random variables. In 

practice, a production channel might be considered as a machine such that rework 

operation is also done on the same machine whenever needed. Furthermore, a channel 

might be a worker/operator of a labor-intensive system who performs the main 

operation and inspection/rework once in a while. A busy worker would be either busy 

at the first phase (main operation) or at the second phase (inspection/rework) at any 

given time. We also assume demands from different customer classes arrive according 

to independent stationary Poisson processes. In the make-to-stock production literature, 

phase-type processing times, several customer classes and multiple production 

channels are not yet studied at the same time.  

 The rationale behind 2-phase Coxian processing times extension is the following: 

𝑖. the second stage of the production process (the second phase of Coxian random 

variable) can  be considered as a rework/inspection operation, 𝑖𝑖. since 2-phase Coxian 

consists of Exponential stages, the study directly extends Bulut and Fadıloğlu (2011) 

that assumes a single exponential stage, 𝑖𝑖𝑖. Our study is a multi-server extension of  

Lee and Hong (2003) that considers Coxian processing times for single channel system 

and focuses solely on static policies, 𝑖𝑣. when the production rates are equal at each 

stage of Coxian and all the items certainly visit the second stage, the model turns out 

to be one that enables us to study the multi-server systems with Erlangian processing 

times, 𝑣. Using Coxian production times we preserve the Markovian structure and are 

able to use Markov Decision Process (MDP) techniques. The representation of a 

production channel feeding the inventory after a processing time that is a two-phase 

Coxian random variable is shown in Figure 1.2 below. 

 
Figure 1.2 Representation of a production channel of our system 
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 Visiting probability of second stage, 𝛽, enables us to work on more general 

systems than the ones having exponential processing times, which is a classical 

assumption in the literature.  Different values of  𝛽, 𝜇1 and 𝜇2 corresponds to systems 

with different rework characteristics and processing time moments.  

 Due to the above assumptions, we model the system as an  𝑀/𝐶𝑜𝑥𝑖𝑎𝑛 − 2/𝑠 

make-to-stock queue with several demand classes, fixed start-up costs and lost sales. 

In the terminology of production-inventory control literature, the classical Kendall Lee 

queueing notation is used for the models of make-to-stock systems. However, the 

meaning of the queuing notation is slightly different in the make-to-stock environment. 

In our case, M denotes Markovian inter-demand arrival times but the arrived demands 

do not enter a queue and trigger a production order, instead they are either directly 

satisfied from the inventory or lost/rejected and immediately leave the system. The 

second entry in the notation, which is “Coxian-2” in our case, is for the production time 

distribution. The inventory is replenished using s many available production channels 

(servers) according to a production policy in anticipation of the future demand arrivals. 

That is, Coxian-2 is not the “service” time of each demand arrival, it is the 

replenishment lead time of any production order triggered according to the policy.     

 Our study extends the related literature in several aspects. Initially, optimal or 

approximate dynamic stock rationing policies for both single and multiple channel 

systems having the production channel structure shown in Figure 1.2. has not been 

touched yet. Even though the structure of the optimal production policy is known for 

the single server systems, which is a base stock policy, there is no study in the literature 

on the production control of multi-channel systems. Lee and Hong (2003) is the only 

study considering the similar production structure but they assume single channel and 

static rationing. In this thesis, we both characterize the optimal production and rationing 

policies of 𝑀/𝐶𝑜𝑥𝑖𝑎𝑛 − 2/𝑠 make-to-stock queue and conduct performance analyses 

for several alternative production and rationing policies.  In addition to these, we also 

study the effect of fixed production (start-up) cost on the structure of the optimal 

production and rationing policies.  

  We provide the literature review in Section 2. Section 3 is devoted to dynamic 

programming formulation of the problem, characterization of the optimal production 

and rationing policies, and an extensive numerical study depicting the effect of system 

parameters on the optimal policies. We propose a new dynamic rationing policy and 
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test its performance in Section 4. Section 5 is for the performance analysis of several 

alternative production policies each using the information carried by the system state 

vector in a different way. In Section 6, using a renewal approach, we calculate the long-

run expected average system cost under optimal production and static rationing 

policies. Section 7 concludes the thesis and provides directions for future research. 
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2 LITERATURE REVIEW 

 In this chapter, we review the production and inventory control literature in the 

make-to-stock environment. This problem is first attacked by considering the systems 

having single production channel and single customer/demand class. Analyses are 

mostly based on queueing theory techniques. Interestingly, the early studies consider 

the fixed startup or shut-down costs. More recent studies extend the literature either by 

considering multiple customer classes or multiple production channels without fixed 

costs. Another common feature of the recent studies is the Markovian structure that 

enables them to develop Markov Decision Process (MDP) formulation for the control 

of make-to-stock systems. In our study, preserving the Markovian structure, we 

consider multiple customer classes, multiple production channels allowing reworks and 

fixed start-up costs at the same time. 

 Gavish and Graves (1980) is the first to study the production-inventory problem 

assuming single channel, fixed and deterministic production times, independent 

Exponential inter-demand-arrival times, and backorders. He modeled the problem as a 

𝑀/𝐷/1 make-to-stock queue in the infinite horizon under the time-average cost 

criterion. This first study is actually the extension of Heyman (1968) and Sobel (1969) 

studies to the make-to-stock production environment. Heyman (1968) and Sobel (1969) 

study  𝑀/𝐺/1 and 𝐺/𝐺/1 queueing systems, respectively, operating with server start-

up and shut-down costs, and unit service and queue-time costs. For both of the settings, 

it is shown that the optimal policy is a two critical number policy denoted by (𝑆, 𝑠) 

policy and (𝑀, 𝑚) policy in Heyman (1968) and Sobel (1969), respectively. If the 

queue length is less than or equal to 𝑚 (or s), service is not provided until queue length 

increases to 𝑀 (or S). Service is triggered when the queue length is M and continued 

until it drops to m again. Although the analyses of Heyman (1968) and Sobel (1969) 

are specific for the queueing environment, we believe that their setting covers the 

production control for make-to-order systems.  

 The optimal policy structure, which is a two critical number policy, is preserved 

in the make-to-stock production environment setting of Gavish and Graves (1980). 

However, the control parameters of the policy are defined on the inventory level: start 

production when the inventory level hits to the lower control level and continue until 

it hits to the upper control level.  
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 Gavish and Graves (1981) extends the findings of Gavish and Graves (1980) to 

the general service time setting modelled as an 𝑀/𝐺/1 make-to-stock queue. Graves 

and Keilson (1981) again studies a single machine, single customer class production-

inventory system with backordering and start-up costs, and extends the literature by 

considering a compound Poisson demand structure where demand size is another 

exponential random variable. They show that the structure of the policy is still a two-

critical-number policy denoted by (𝐼∗, 𝐼∗∗). In addition to this study, there are also 

several other studies considering compound arrivals:  

 Moreover, there are several studies in production/inventory environment that 

consider compound arrivals: Doshi et al. (1978) analyzes a continuous review 

production/inventory system in backorders and lost sales environment. Demands are 

assumed to be compound Poisson arrival process and fixed cost is incurred for each 

switch over the production rate. They consider two-critical-levels for the control, i.e. if 

upper level is reached, production rate is switched from fast to slow, if inventory level 

is below the lower level, then production rate is switched from slow to fast. De Kok et 

al. (1984) considers similar problem to Doshi et al. (1978) by developing switch-over 

level approximations. In addition to these studies, Altiok (1989) studies phase-type unit 

production rate with compound Poisson demand process. He controls production using 

continuous review (𝑅, 𝑟) policy and calculates steady-state probabilities in order to 

obtain minimum cost for given 𝑅 and 𝑟 values in both backordering and lost sales cases. 

On the other hand, Lee and Srinivasan (1989) considers a single production channel 

with fixed startup cost. Demand arrivals are according to a Poisson process and 

processing times are assumed to be arbitrary distribution. Backordering cost is occurred 

whenever inventory is not available. They propose a renewal analysis in order to 

calculate expected cost. In consideration of two-critical-level policy, they define a 

production and non-production period and calculate the expected cost during periods. 

Since the horizon is infinite, accumulated cost during periods converges to a value. 

Afterwards, they obtain expected system cost. They also extend their work by 

considering compound Poisson process (Lee and Srinivasan, 1991). 

 After a while, researchers apply MDP analysis since the structure of the problems 

is Markovian. Except for Lee and Hong (2003), the literature assumes that there is no 

fixed production/setup cost. In addition, production is triggered by a single server 

except that Bulut and Fadıloğlu (2011). To the best of our knowledge, there is no such 
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a study that considers multiple production channels and processing times different from 

Exponential random variables simultaneously.  

 Ha (1997a) is the first study that uses MDP techniques in problem modeling. 

Demand arrives according to a Poisson process and production times are assumed to 

be independent Exponential random variables. The study considers make-to-stock 

production environment with single production channel, multiple demand classes and 

lost sales without fixed startup cost. Since multiple demand classes term is considered, 

he first defines stock rationing problem in production environment. In study of Ha 

(1997a), demand classes are differentiated based on their lost sales cost. Another way 

to ration customers is to classify them based on their service level requirements, it can 

be seen such studies in the literature. Ha (1997a) models the problem as an 𝑀/𝑀/1 

make-to-stock queue and he shows that base-stock policy is optimal production control 

policy. He also shows that stock-reservation policy is optimal for rationing inventory. 

This policy indicates that each demand class has a rationing level and it is optimal to 

satisfy a demand from a class if the inventory level is greater than rationing level of 

that class. He proposes a stationary analysis of the system based on two demand classes 

and performs comparisons with FCFS policy to test the power of the rationing. Ha 

(1997b) considers an 𝑀/𝑀/1 make-to-stock queue with two demand classes and 

backorders. In case demand is not satisfied, customers join the backorder queues of 

their classes. Customers are differentiated by their waiting cost i.e. high priority 

customer classes have higher waiting cost. Ha (1997b) defines a two-variable system 

state such that inventory level and number of class-two backorders since negative 

inventory level implies the number of class-one backorders. He shows that base-stock 

policy is optimal policy for production control and static-threshold level policy is 

optimal for rationing. Vericourt et al. (2002) addresses the extension of Ha (1997b) by 

considering 𝑛 different customer classes. Bulut and Fadıloğlu (2011) contributes the 

literature with multiple production channels. Bulut and Fadıloğlu (2011) extends the 

work of Ha (1997a) and model the problem as an 𝑀/𝑀/𝑠 make-to-stock queue with 

multiple demand classes and lost sales. System state includes inventory level and 

number of active channels at a given time. They show that optimal production policy 

is a state-dependent base-stock policy and optimal rationing policy is a threshold type 

policy which is a function of active servers. There is a threshold inventory level for 

each class and it is optimal to satisfy incoming demand from a customer class above 

the threshold level of that class, otherwise it is optimal to reject. Speaking of threshold 

level, it is optimal to satisfy a demand from class-one, whenever there is an on-hand 
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inventory. They also embed full order and partial order cancellation flexibility to the 

model and perform stationary analysis under a base-stock policy. Özkan (2016) extends 

the study of Bulut and Fadıloğlu (2011) by adding fixed start-up cost to the 𝑀/𝑀/𝑠 

make-to-stock environment. Thus far, production times are assumed to be exponential 

random variables. Since exponential distribution has a memoryless property, current 

production status does not provide an information except from multi-server cases such 

that Bulut and Fadıloğlu (2011). Ha (2000) analyzes a make-to-stock queue with 

Erlangian processing times that allow to keep track of current status of the production. 

Ha (2000) assumes multiple demand classes and lost sales and problem is modeled as 

an 𝑀/𝐸𝑘/1 make-to-stock queue. System state keeps the number of completed stages 

and inventory level at a given time and state variables define the work storage level 

(WSL). He shows that a critical work level policy is optimal for production control and 

inventory rationing control. It is optimal to produce if the WSL is below the critical 

work level and not to produce otherwise. It is optimal to satisfy a demand of a class if 

the WSL is above critical work storage level of that class and reject otherwise. Gayon 

et al. (2009) differs from Ha (2000) with a backordering assumption. It is shown that it 

is optimal to produce if the WSL is lower than a given threshold level and not to 

produce otherwise. Also optimal rationing policy is characterized by 𝑛 customer 

classes work storage rationing thresholds. Lee and Hong (2003) is the study that 

considers non-exponential processing times and fixed start-up cost. They analyze a 

production system controlled by two-critical levels i.e. (𝑠, 𝑆) type policy, multiple 

demand classes and lost sales. Single channel production environment is considered 

and processing times are assumed to be two-phase Coxian random variables. Problem 

is modeled as continuous time Markov Chain and average operating cost is obtained 

via steady-state probabilities. System state covers the inventory level and the current 

phase of the production. They propose a heuristic algorithm to obtain rationing levels 

for customer classes under static rationing.  

 Inventory rationing problem is initiated by Veinott (1965) in a backordering 

environment. Ordering policy is the base-stock policy and there are different service 

levels between customer classes. Topkis (1968) shows that the optimal inventory 

rationing policy is a dynamic threshold policy for periodic review systems with zero 

lead time. Nahmias and Demmy (1981) considers a military depot in a backordering 

environment and describe service levels under static rationing for an (𝑟, 𝑄) continuous 

system. Deshpande et al. (2003) considers two demand classes and backorders and 

proposes an approach for static threshold levels for an (𝑟, 𝑄) continuous system. Later 
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on, Fadıloğlu and Bulut (2010) analyzes a dynamic rationing policy for continuous 

review inventory systems called Rationing with Exponential Replenishment Flow 

(RERF). It is shown that policy depends on the ages and the numbers of outstanding 

orders. In recent times, Pang et al. (2014) considers a make-to-stock production 

environment with multiple demand classes, lost sales and no fixed cost. Batch demand 

arrival is permitted and arbitrary, phase-type and Erlangian processing times are 

considered. They show that optimal rationing levels are time-dependent. Liu and Zhang 

(2015) studies an inventory system with two demand classes and backordering. They 

propose an approximate closed-form expression for dynamic critical levels. Liu et al. 

(2015) performs a two-step approach based on certainty equivalence principle for 

multiple demand classes. They obtain closed-form expressions for rationing thresholds. 
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3 THE MODEL AND THE ANALYSES OF OPTIMAL POLICIES 

 In this chapter, it is characterized both optimal production and rationing policies 

in environment of single product, fixed start-up cost, multiple parallel production 

channels, multiple customer classes and lost sales. It is assumed that demands arrive 

according to a stationary Poisson process with rate 𝜆𝑗, 𝑗 ∈ {1, … , 𝑁} for a customer 

class 𝑗. Since there are several customer classes, they are differentiated based on their 

lost sale costs. For each unsatisfied demand of customer class 𝑗, lost sale cost 𝑐𝑗 is 

incurred. Without loss of generality, it is assumed that 𝑐1 ≥ ⋯ ≥ 𝑐𝑁. Processing times 

are assumed to be two-phase Coxian random variables. Each phase of Coxian 

distribution is exponentially distributed with rates 𝜇1 and 𝜇2 respectively and there is 

a certain visiting probability 𝛽 ∈ [0,1] from phase-one to phase-two (see Figure 1.2 for 

the illustration of a production channel having 2-phase Coxian processing times).  

  Triggered production is started at phase-one. After processing at phase-one with 

rate 𝜇1, it is either passed to phase-two with probability 𝛽, processed there with rate 𝜇2 

and places in the inventory or bypassed with probability 1 − 𝛽 and takes place in the 

inventory. Fixed cost of each activated server is 𝐾, holding cost per item in the 

inventory is ℎ and production cost rate is 𝑝. Discount rate is denoted by 𝛼 and there is 

no order cancellation. Based on the aforementioned assumptions, the system is 

modelled as 𝑀/𝐶𝑜𝑥𝑖𝑎𝑛 − 2/𝑠 make-to-stock queue. 

 Dynamic programming based modelling approach is provided in Section 3.1, 

optimal production and rationing policies via numerical studies are introduced in 

Section 3.2 and it is explained how optimal production/rationing decisions and average 

cost criterion are affected by system parameters in Section 3.3. 

3.1 Dynamic Programming Formulation 

 System state is defined with three variables to keep track of the events: 

𝑋𝑖(𝑡), ∀𝑖∈{1,2} denotes the number of active servers at 𝑖𝑡ℎ stage at time 𝑡 and 𝑋3(𝑡) 

denotes the inventory level at time 𝑡. Events are production completion at phase-one, 

production completion at phase-two and demand arrival from a customer class. Based 

on the definition, system state space is 
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𝑆𝑆 = {(𝑋1(𝑡), 𝑋2(𝑡), 𝑋3(𝑡)) | ∑ 𝑋𝑖(𝑡)
2

𝑖=1
≤ 𝑠, 𝑋𝑖(𝑡) ∈ 𝑍+ ∪ {0}, ∀𝑖 = 1,2,3}     (3.1) 

where 𝑠 is the number of available servers. Since there are Markovian policies in the 

space of optimal policies, through the Markovian property, decision can be made in 

either stage completion or demand arrival. For this reason, system state definition 

(𝑋1(𝑡), 𝑋2(𝑡), 𝑋3(𝑡)) is used regardless of time dimension as (𝑥1, 𝑥2, 𝑥3). Since the 

original problem is continuous time Markov process, it is converted to the equivalent 

discrete time problem via uniformization technique by Lippman (1975). The uniform 

transition rate is defined as 𝜈 = ∑ 𝜆𝑗
𝑁
𝑖=1 + 𝑠(𝜇1 + 𝜇2). 

 Production decision is denoted by 𝑢𝑝 where 𝑢𝑝 ∈ {𝑥1, 𝑥2, … , (𝑥1 + 𝑠 − 𝑥2)} and 

rationing decision for customer class 𝑗 is denoted by 𝑢𝑟𝑗
 where 𝑢𝑟𝑗

∈ {0,1}, 𝑗 =

1,2, … , 𝑁. Production decision is upper bounded by number of available servers and 

lower bound of the decision is number of active servers at stage-one since there is no 

order cancellation. For the rationing decision, if 𝑢𝑟𝑗
= 0, then incoming demand of 

class 𝑗 is rejected, if 𝑢𝑟𝑗
= 1, demand is satisfied. Based on the definitions, optimal 

cost-to-go function is written by 

𝐽(𝑥1, 𝑥2, 𝑥3) =
1

𝜈 + 𝛼
min

𝑥1≤𝑢≤𝑠−𝑥2

{ℎ𝑥3 + 𝑝(𝑢 + 𝑥2) + 𝐾(𝑢 − 𝑥1)

+ (𝑠(𝜇1 + 𝜇2) − 𝑢𝜇1 − 𝑥2𝜇2)𝐽(𝑢, 𝑥2, 𝑥3)

+ 𝑢𝜇1( 𝛽𝐽(𝑢 − 1, 𝑥2 + 1, 𝑥3)

+ (1 − 𝛽)𝑚𝑖𝑛{𝐽(𝑢 − 1, 𝑥2, 𝑥3 + 1), 𝐽(𝑢, 𝑥2, 𝑥3 + 1)})

+ 𝑥2𝜇2𝑚𝑖𝑛{𝐽(𝑢, 𝑥2 − 1, 𝑥3 + 1), 𝐽(𝑢 + 1, 𝑥2 − 1, 𝑥3 + 1)}

+ 𝑇𝑅(𝑢, 𝑥2, 𝑥3)}                                                                                         (3.2) 

where 𝑇𝑅(𝑥1, 𝑥2, 𝑥3) = ∑ 𝑇𝑅𝑗
(𝑥1, 𝑥2, 𝑥3)𝑁

𝑗=1 , 𝑗 ∈ {1,2, … , 𝑁}, 

𝑇𝑅𝑗
(𝑥1, 𝑥2, 𝑥3) = {

𝜆𝑗 min
 

{𝐽(𝑥1, 𝑥2, 𝑥3 − 1), 𝑐𝑗 + 𝐽(𝑥1, 𝑥2, 𝑥3)} , 𝑥3 > 0

𝜆𝑗 (𝑐𝑗 + 𝐽(𝑥1, 𝑥2, 0)) , 𝑥3 = 0
                (3.3)                        

 In equation (3.2), expected discounted cost is calculated for a given system state 

based on production decision minimization. Holding cost is charged for each unit in 

inventory, production cost is charged for total number of active servers and fixed 

startup cost is required for each activated server. Due to the uniformization, the term 
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(𝑠(𝜇1 + 𝜇2) − 𝑢𝜇1 − 𝑥2𝜇2)𝐽(𝑢, 𝑥2, 𝑥3) is necessary for the fictious self-transitions. It 

is because any system state (𝑥1, 𝑥2, 𝑥3) directly turns to (𝑢, 𝑥2, 𝑥3) when a production 

decision is occurred. Production is completed at stage-one with rate 𝑢𝜇1 and passed 

through stage-two with probability 𝛽 and bypassed stage-two with probability 1 − 𝛽. 

In case of visiting second stage with probability 𝛽, inventory level remains the same 

because an item leaves the stage-one, gets into stage-two and current production is not 

finished yet. In case of leaving the system with probability 1 − 𝛽, second stage is not 

visited and inventory level is increased by one unit. Since there is a production 

completion, next production decision is either continuing with the remaining number 

of active channels, i.e. 𝑢 − 1, or keeping the finished channel active, i.e. 𝑢, without 

paying start-up cost. The optimal decision is the one that provides minimum cost. 

Additionally, production is completed at stage-two with rate 𝑥2𝜇2. In that case, a 

finished item is added to the inventory and optimal production decision is either 

producing with the remaining channels or continuing with the finished channel in 

addition to the remaining ones because of the fixed start-up cost. 

 In equation (3.3), 𝑇𝑅𝑗
(𝑥1, 𝑥2, 𝑥3) corresponds the rationing decision for demand 

class 𝑗. Demand is occurred with rate 𝜆𝑗, rationing operator decides whether to satisfy 

the demand from class 𝑗 or not if there is on-hand inventory, otherwise incoming 

demand from class 𝑗 is rejected. 

 Although we develop the dynamic programming formulation based on expected 

discounted cost criterion, we use average cost criterion in our numerical studies as Ha 

(1997a, 2000) and Lee and Hong (2003) in the literature. Thus, we easily obtain the 

average system cost for a given policy via Continuous Time Markov Chain (CTMC) 

analysis. Consideration of average cost whilst eliminating the determination of 

discount rate, allows the cost of all visited states to converge to the same average cost 

value. In order to obtain an average system cost, we revise the equation (3.2) by using 

value iteration algorithm and setting discount rate to be zero additively. In this case, 

optimal cost-to-go function value is divided by the number of events. We consider the 

absolute value of difference between average cost of all feasible states with one another 

as a termination criterion for the value iteration. Value iteration terminates when the 

absolute value of difference is smaller than predetermined epsilon value and expected 

average cost is obtained. By means of this criterion, costs of whole states converge to 

the same value with the epsilon unit of deviation. Figure 3.1 shows the pseudo code of 
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value iteration algorithm where 𝑖 takes value 0 if the cost criterion is discounted and 

value 1 if the criterion is average and 𝑘 represents the current step.  

𝑉𝑎𝑙𝑢𝑒 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 (𝑖): 

𝑘 =  0 

𝐴𝑠𝑠𝑖𝑔𝑛 𝑎𝑛 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 𝑓𝑜𝑟 𝐽0 

    𝑊ℎ𝑖𝑙𝑒 (𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 > 𝑒𝑝𝑠𝑖𝑙𝑜𝑛) 

    𝑘 =  𝑘 + 1 

𝐿𝑜𝑜𝑝: 𝐹𝑜𝑟 𝑎𝑙𝑙 𝑠𝑡𝑎𝑡𝑒𝑠 

𝐿𝑜𝑜𝑝: 𝑢 = {𝑠𝑒𝑡 𝑜𝑓 𝑎𝑙𝑙 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑠} 

𝑅𝐷 = 𝑅𝑎𝑡𝑖𝑜𝑛𝑖𝑛𝑔 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑢) 

𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝐽𝑘
𝑐𝑎𝑛𝑑(𝐽𝑘−1, 𝑠𝑡𝑎𝑡𝑒(𝑢), 𝑅𝐷) 

𝐸𝑛𝑑 𝑙𝑜𝑜𝑝 

𝐽𝑘(𝑠𝑡𝑎𝑡𝑒) = 𝑚𝑖𝑛
𝑢

( 𝐽𝑘
𝑐𝑎𝑛𝑑(𝐽𝑘−1, 𝑠𝑡𝑎𝑡𝑒(𝑢), 𝑅𝐷)) 

𝐸𝑛𝑑 𝑙𝑜𝑜𝑝 

𝐼𝑓 𝑖 = 0 

𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = 𝑚𝑎𝑥  |𝐽𝑘 (𝑠𝑡𝑎𝑡𝑒) −  𝐽𝑘−1(𝑠𝑡𝑎𝑡𝑒)| 

𝐸𝑛𝑑 𝑙𝑜𝑜𝑝 

𝐼𝑓 𝑖 = 1 

𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = max
𝑠𝑡𝑎𝑡𝑒∈𝑆𝑆

  max
𝑠𝑡𝑎𝑡𝑒′∈𝑆𝑆/{𝑠𝑡𝑎𝑡𝑒}

|
𝐽𝑘 (𝑠𝑡𝑎𝑡𝑒)

𝑘
−  

𝐽𝑘(𝑠𝑡𝑎𝑡𝑒′)

𝑘
| 

𝐸𝑛𝑑 𝑙𝑜𝑜𝑝 

Figure 3.1 Value Iteration Algorithm Pseudo Code 

 Since we obtain the average system cost, we give the numerical characterization 

of the optimal production and rationing policies in Section 3.2. After that, we analyze 

the effect of system parameters on the optimal policies in Section 3.3. 

3.2 Characterization of the Optimal Production and Rationing Policies 

 In this chapter, we introduce the optimal production and rationing decisions 

under average system cost. System state space is bounded by the inventory level and 

numerical studies consider two customer classes (𝑐1 ≥ 𝑐2). We define the setting as a 

vector such that (𝐾, 𝑠, 𝜇1, 𝜇2, 𝛽, ℎ, 𝜆1, 𝜆2, 𝑐1, 𝑐2) where 𝐾 is the fixed start-up cost, 𝑠 is 

the number of available servers, 𝜇1, 𝜇2, 𝛽 are Coxian parameters, 𝜆1, 𝜆2 are demand 

rates from class 1 and 2 respectively and 𝑐1, 𝑐2 are lost sale costs for related customer 

classes.  

 First analysis for the system considers a single production channel with 2-phase 

Coxian processing times and system setting is set to be (0, 1, 5, 2.5, 0.3, 2, 3, 2, 10, 3). 
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Table 3.1 shows the optimal production decisions under average cost criterion when 

the number of available server is one. As it is well known for a single server system 

with fixed cost and general processing times, two-critical number policy (𝑋∗, 𝑋∗∗) is 

optimal for production control. As it is seen from the table, there are two-critical levels 

and when fixed start-up cost is set to be zero, behavior of the production decisions 

become base-stock policy as well as critical numbers are equal to each other and stands 

for the base-stock level 𝑆. In the case of 𝐾 = 0, it is seen in Table 3.1 that 𝑋∗ = 𝑋∗∗ =

6, i.e. 𝑆 = 6 since there is no fixed start-up cost. On the other hand, critical values are 

obtained as 𝑋∗ = 4, 𝑋∗∗ = 9 in the case of 𝐾 = 2. 

Table 3.1 Optimal Production Decisions (𝒔 = 𝟏) 

𝐾 = 0 

State Inventory Level 

 [𝑥1, 𝑥2] 0 1 2 3 4 5 6 7 8 9 10 11 

[0,0] 1 1 1 1 1 1 1 0 0 0 0 0 

[0,1] 1 1 1 1 1 1 1 0 0 0 0 0 

[1,0] 1 1 1 1 1 1 1 0 0 0 0 0 

𝐾 = 2 

State Inventory Level 

 [𝑥1, 𝑥2] 0 1 2 3 4 5 6 7 8 9 10 11 

[0,0] 1 1 1 1 1 0 0 0 0 0 0 0 

[0,1] 1 1 1 1 1 1 1 1 1 1 0 0 

[1,0] 1 1 1 1 1 1 1 1 1 1 0 0 

Table 3.2 Optimal Rationing Decisions of Class-one (𝒔 = 𝟏) 

𝐾 = 0 

State Inventory Level 

 [𝑥1, 𝑥2] 0 1 2 3 4 5 6 7 8 9 10 11 

[0,0] 0 1 1 1 1 1 1 1 1 1 1 1 

[0,1] 0 1 1 1 1 1 1 1 1 1 1 1 

[1,0] 0 1 1 1 1 1 1 1 1 1 1 1 

𝐾 = 2 

State Inventory Level 

 [𝑥1, 𝑥2] 0 1 2 3 4 5 6 7 8 9 10 11 

[0,0] 0 1 1 1 1 1 1 1 1 1 1 1 

[0,1] 0 1 1 1 1 1 1 1 1 1 1 1 

[1,0] 0 1 1 1 1 1 1 1 1 1 1 1 
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 Optimal rationing decisions of customer class-one and class-two are expressed 

in Table 3.2 and 3.3 respectively. According to the Table 3.2, it is optimal to satisfy a 

demand from customer class-one when there is an on-hand inventory for a single 

channel system. The dynamic structure of rationing decisions for customer class-two 

can be seen in Table 3.3. As stated in the table, it is optimal to satisfy a demand from 

class-two if the state is [1,0,3]. On the other hand, it is optimal to reject the demand if 

the state is [0,1,3]. Production states [0,0] and [1,0] have the same rationing decisions 

since triggered production switches from state [0,0] to state [1,0] instantaneously. 

Briefly, different rationing decisions may occur in the same inventory levels due to the 

current production status. 

Table 3.3 Optimal Rationing Decisions of Class-two (𝒔 = 𝟏) 

𝐾 = 0 

State Inventory Level 

 [𝑥1, 𝑥2] 0 1 2 3 4 5 6 7 8 9 10 11 

[0,0] 0 0 0 1 1 1 1 1 1 1 1 1 

[0,1] 0 0 0 0 1 1 1 1 1 1 1 1 

[1,0] 0 0 0 1 1 1 1 1 1 1 1 1 

𝐾 = 2 

State Inventory Level 

 [𝑥1, 𝑥2] 0 1 2 3 4 5 6 7 8 9 10 11 

[0,0] 0 0 0 1 1 1 1 1 1 1 1 1 

[0,1] 0 0 0 0 1 1 1 1 1 1 1 1 

[1,0] 0 0 0 1 1 1 1 1 1 1 1 1 

 Although optimal production policy is well-defined for the single channel 

environment, it has not been characterized the multiple channel production with Coxian 

processing times in make-to-stock environment yet. Table 3.4 shows the optimal 

production decisions with a given setting (0,2,5,2.5,0.3,2,3,2,15,3). In addition, 

optimal rationing decisions are presented in Table 3.5 for both customer classes. 

 As it is seen from the Table 3.4, optimal production decisions seem to be highly 

dynamic. Rows represent the production stages and columns show the inventory level. 

Any intersection of the rows and columns, production decisions are indicated for a 

given state [𝑥1, 𝑥2, 𝑥3]. At the very beginning, at state [0,0,0], production is triggered 

by activating two servers (𝑢𝑝 = 2) but at state [0,1,0], production decision becomes 

one (𝑢𝑝 = 1). Referring to Table 3.4, it is seen that production decisions remain the 
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same for some states. When all the servers are active, production decision becomes the 

number of active server at first stage, i.e. states [0,2,0], [1,1,0] and [2,0,0] in Table 3.4, 

since there is no cancellation or no more channels to be activated. 

Table 3.4 Optimal Production Decisions (𝒔 = 𝟐) 

𝐾 = 0 𝐾 = 2 

State Inventory Level State Inventory Level 

[𝑥1, 𝑥2]  0 1 2 3 4 5  [𝑥1, 𝑥2] 0 1 2 3 4 5 

[0,0] 2 2 2 2 0 0 [0,0] 2 2 1 1 0 0 

[0,1] 1 1 1 1 0 0 [0,1] 1 1 1 0 0 0 

[0,2] 0 0 0 0 0 0 [0,2] 0 0 0 0 0 0 

[1,0] 2 2 2 2 1 1 [1,0] 2 2 1 1 1 1 

[1,1] 1 1 1 1 1 1 [1,1] 1 1 1 1 1 1 

[2,0] 2 2 2 2 2 2 [2,0] 2 2 2 2 2 2 

Table 3.5 Optimal Rationing Decisions (𝒔 = 𝟐) 

𝐾 = 0 

Class-1 Class-2 

State Inventory Level State Inventory Level 

[𝑥1, 𝑥2]  0 1 2 3 4 5 [𝑥1, 𝑥2]  0 1 2 3 4 5 

[0,0] 0 1 1 1 1 1 [0,0] 0 0 1 1 1 1 

[0,1] 0 1 1 1 1 1 [0,1] 0 0 0 1 1 1 

[0,2] 0 1 1 1 1 1 [0,2] 0 0 0 1 1 1 

[1,0] 0 1 1 1 1 1 [1,0] 0 0 1 1 1 1 

[1,1] 0 1 1 1 1 1 [1,1] 0 0 0 1 1 1 

[2,0] 0 1 1 1 1 1 [2,0] 0 0 1 1 1 1 

 Table 3.5 shows the optimal rationing decisions for both customer classes. 

Whenever there is an on-hand inventory, it is optimal to satisfy incoming demand form 

class-one at any production stage as it is seen from the left hand side of the Table 3.5. 

Right hand side of the table shows that optimal rationing decisions for class-two depend 

on the system state.  

 In addition, optimal decisions under discounted cost criterion may take different 

values from the optimal decisions under average cost for a given setting, however these 

two criteria have the same characteristics. For instance, base-stock policy is optimal 

production policy for 𝑀/𝐶𝑜𝑥𝑖𝑎𝑛 − 2/1 under both discounted and average cost 

consideration.  
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3.3 Effect of System Parameters on Optimal Policies 

 In this section, we explain the effect of system parameters on optimal production 

and rationing decisions. Since there is no optimal production or rationing 

characterization of 𝑀/𝐶𝑜𝑥𝑖𝑎𝑛 − 2/𝑠 make-to-stock systems with fixed start-up cost, 

2-phase Coxian parameters (𝜇1, 𝜇2, 𝛽), number of server (𝑠) and start-up cost (𝐾) are 

major parameters of this study. A base setting is determined such that 

(𝐾, 𝑠, 𝜇1, 𝜇2, 𝛽, ℎ, 𝜆1, 𝜆2, 𝑐1, 𝑐2) = (0,2,2,5,0.5,2,2,2,25,3) for numerical studies in this 

chapter. 

 Fixed startup cost (𝐾) is incurred for each activated channel at phase-one since 

production is triggered at phase-one. Table 3.6 shows the optimal production and 

rationing decisions while 𝐾 is increasing. At state [0,0,0], production starts with two 

active servers (𝑢𝑝 = 2) regardless from the value of 𝐾, but the general perspective is 

to activate less channel while 𝐾 is getting high. Consider the state [1,0,4]; two 

production channel is active when there is no start-up cost, however a single channel 

is active at the production when the start-up cost is positive. Suppose 𝑠-many channels 

are activated at stage-one currently. If the new production decision is the same with the 

number of active channels at that stage, then fixed start-up cost is not incurred because 

of the continuation.  

Table 3.6 Effect of Fixed Startup Cost on Optimal Policies 

Optimal Production Decisions 

      

  K = 0 K = 1 K = 2 K = 8 

State  Inventory Level  Inventory Level  Inventory Level  Inventory Level 

 [x1, x2] 0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4 5 6 

[0,0] 2 2 2 2 2 1 0 2 2 2 2 1 1 0 2 2 2 2 1 1 0 2 2 2 2 1 1 0 

[0,2] 1 1 1 1 1 0 0 1 1 1 1 0 0 0 1 1 1 0 0 0 0 1 1 1 0 0 0 0 

[1,0] 2 2 2 2 2 1 1 2 2 2 2 1 1 1 2 2 2 2 1 1 1 2 2 2 2 1 1 1 

Optimal Rationing Decisions 

[0,0] 0 0 0 0 1 1 1 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 0 1 1 1 1 

[0,2] 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 0 1 1 1 1 

[1,0] 0 0 0 0 1 1 1 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 0 1 1 1 1 

  When the start-up cost increases, the production decision is to continue with the 

same number of channels instead of activating a channel later in order to avoid to the 
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fixed cost. Optimal rationing decisions in Table 3.6 shows that increasing 𝐾 causes 

lower rationing level for second customer class. In that case, system behavior is to 

produce more when there is high start-up cost, because reactivating a channel becomes 

costly when start-up cost is high. Higher production reduces the rejection level class-

two. Also system considers the tradeoff between start-up cost and lost sale cost of 

second class. Increasing fixed cost also causes increasing average system cost. 

Effect of number of production channels (𝑠) is shown in Table 3.7. As the 

number of server increases, system state space increases. On the basis of this 

information, we truncate the table and show the optimal decisions for common 

production states. The detailed production and rationing decisions in Table 3.7 are 

shown in Appendix 1. First of all, production is finished at lower inventory levels when 

the number of channel is increased. Increasing channel causes higher production rate 

and it is easy to reach a specific inventory level. Optimal production decision at the 

very beginning, state [0,0,0], is to activate as many as channel by considering 

availability except from the decision where 𝑠 = 9. Optimal production decision is 

equal to the number of available server when 𝑠 = 8, but optimal decision remains the 

same when 𝑠 = 9. Although number of available channel is practically infinite, it is not 

optimal to activate more than 8 channel for this setting. After this point, model turns 

out to be a typical inventory system. As it is seen in Figure 3.2, average system cost 

decreases and converges to a value while the number of channels is increasing because 

providing more available channel does not increase the system cost.  

Table 3.7 Effect of Production Channels on Optimal Policies 

Optimal Production Decisions 

      

  𝑠 = 3 𝑠 = 6 𝑠 = 8 𝑠 = 9 

State Inventory Level Inventory Level Inventory Level Inventory Level 

 [𝑥1, 𝑥2] 0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4 5 6 

[0,0] 3 3 3 3 1 0 0 6 6 3 1 0 0 0 8 5 3 1 0 0 0 8 5 3 1 0 0 0 

[0,2] 1 1 1 0 0 0 0 4 2 0 0 0 0 0 5 2 0 0 0 0 0 5 2 0 0 0 0 0 

[1,0] 3 3 3 3 1 1 1 6 6 3 1 1 1 1 8 5 3 1 1 1 1 8 5 3 1 1 1 1 

Optimal Rationing Decisions 

[0,0] 0 0 0 1 1 1 1 0 0 1 1 1 1 1 0 0 1 1 1 1 1 0 0 1 1 1 1 1 

[0,2] 0 0 1 1 1 1 1 0 0 1 1 1 1 1 0 0 1 1 1 1 1 0 0 1 1 1 1 1 

[1,0] 0 0 0 1 1 1 1 0 0 1 1 1 1 1 0 0 1 1 1 1 1 0 0 1 1 1 1 1 
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 Optimal rationing decisions are for the benefit of second customer class. Since 

production rate increases, a finished product is achieved rapidly and incoming demand 

from clas-two is satisfied at a lower inventory level.  

 
Figure 3.2 Average Costs with Increasing Number of Channels 

 Table 3.8 shows that system holds fewer items in the inventory while holding 

cost (ℎ) is increasing. It is shown that there is a non-increasing trend in optimal 

production decisions for any system state while holding cost is increasing. It is also 

seen that the rationing level of class-two is decreased. 

Table 3.8 Effect of Holding Cost on Optimal Policies 

Optimal Production Decisions 

     

  ℎ = 2 ℎ = 3 ℎ = 4 

State Inventory Level Inventory Level Inventory Level 

[𝑥1, 𝑥2] 0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4 5 6 

[0,0] 2 2 2 2 2 1 0 2 2 2 2 1 0 0 2 2 2 2 0 0 0 

[0,1] 1 1 1 1 1 0 0 1 1 1 1 0 0 0 1 1 1 0 0 0 0 

[1,0] 2 2 2 2 2 1 1 2 2 2 2 1 1 1 2 2 2 2 1 1 1 

Optimal Rationing Decisions 

[0,0] 0 0 0 0 1 1 1 0 0 0 1 1 1 1 0 0 0 1 1 1 1 

[0,1] 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 1 1 1 1 1 

[1,0] 0 0 0 0 1 1 1 0 0 0 1 1 1 1 0 0 0 1 1 1 1 
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 Production rates (𝜇1, 𝜇2) have also significant effect on the optimal decisions. 

We examine the effect of production rates in twofold. Table 3.9 show the optimal 

decisions in the case of 𝜇1 ≥ 𝜇2. Particularly, it is seen that optimal production 

decisions have non-increasing trend while 𝜇1/𝜇2 is increasing. For a given inventory 

level, production decisions in any state [𝑥1, 𝑥2] are non-increasing. An increment in the 

production rate of stage-one causes lower rejection level for the demand of customer 

class-two. As production rate increases, expected time to finish for an item decreases 

and placing an item in inventory becomes rapid. 

Table 3.9 Effect of Production Rates on Optimal Policies (𝝁𝟏 ≥ 𝝁𝟐) 

Optimal Production Decisions 

     

   𝜇1 = 2, 𝜇2 = 2  𝜇1 = 6, 𝜇2 = 2  𝜇1 = 8, 𝜇2 = 2 

State Inventory Level Inventory Level Inventory Level 

[𝑥1, 𝑥2] 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 

[0,0] 2 2 2 2 2 2 2 0 2 2 2 2 0 0 0 0 2 2 2 2 0 0 0 0 

[0,1] 1 1 1 1 1 1 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 

[1,0] 2 2 2 2 2 2 2 1 2 2 2 2 1 1 1 1 2 2 2 2 1 1 1 1 

Optimal Rationing Decisions 

[0,0] 0 0 0 0 1 1 1 1 0 0 0 1 1 1 1 1 0 0 1 1 1 1 1 1 

[0,1] 0 0 0 0 1 1 1 1 0 0 0 1 1 1 1 1 0 0 0 1 1 1 1 1 

[1,0] 0 0 0 0 1 1 1 1 0 0 0 1 1 1 1 1 0 0 1 1 1 1 1 1 

Table 3.10 Effect of Production Rates on Optimal Policies (𝝁𝟏 < 𝝁𝟐) 

Optimal Production Decisions 

     

   𝜇1 = 2, 𝜇2 = 4  𝜇1 = 2, 𝜇2 = 6  𝜇1 = 2, 𝜇2 = 8 

State Inventory Level Inventory Level Inventory Level 

[𝑥1, 𝑥2] 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 

[0,0] 2 2 2 2 2 2 0 0 2 2 2 2 2 1 0 0 2 2 2 2 2 1 0 0 

[0,1] 1 1 1 1 1 0 0 0 1 1 1 1 1 0 0 0 1 1 1 1 1 0 0 0 

[1,0] 2 2 2 2 2 2 1 1 2 2 2 2 2 1 1 1 2 2 2 2 2 1 1 1 

Optimal Rationing Decisions 

[0,0] 0 0 0 0 1 1 1 1 0 0 0 1 1 1 1 1 0 0 0 1 1 1 1 1 

[0,1] 0 0 0 1 1 1 1 1 0 0 0 1 1 1 1 1 0 0 0 1 1 1 1 1 

[1,0] 0 0 0 0 1 1 1 1 0 0 0 1 1 1 1 1 0 0 0 1 1 1 1 1 

 Table 3.10 shows the optimal decisions for the case 𝜇1 < 𝜇2. Increasing the 

production rate of stage-two makes the optimal production decisions non-increasing 

but an increment in 𝜇2 does not affect the system as much as the increment in 𝜇1 
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because visiting the second-stage is probabilistic, i.e. 𝛽 ∈ [0,1]. On the other hand, an 

item is processed at stage-one certainly. Since the expected time to finish for an item 

decreases, incoming demand of a customer class-two is satisfied in earlier levels.  

 Table 3.11 shows the effect of demand rates (𝜆1, 𝜆2) on the optimal policies by 

keeping the total demand constant. The ratio of 𝜆1 and 𝜆2 is chosen as 0.6, 1 and 1.67 

respectively. In the sense of production decision, production is finished at higher 

inventory levels while 𝜆1/𝜆2 is increasing. In the setting shown in Table 3.11, it is 

optimal to increase production amount in order to satisfy incoming demand of customer 

class-one because demand rate of that class increases. Although the total demand rate 

remains unchanged, 𝜆2 is relatively getting smaller than 𝜆1. While 𝜆2 is relatively 

getting smaller, rationing level of demand class-two is getting higher in anticipation of 

future demand arrival from customer class-one. 

Table 3.11 Effect of Demand Rates on Optimal Policies 

Optimal Production Decisions 

     

  𝜆1 = 1.5, 𝜆2 = 2.5  𝜆1 = 2, 𝜆2 = 2   𝜆1 = 2.5, 𝜆2 = 1.5   

State Inventory Level Inventory Level Inventory Level 

[𝑥1, 𝑥2] 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 

[0,0] 2 2 2 2 2 0 0 0 2 2 2 2 2 1 0 0 2 2 2 2 2 2 1 0 

[0,1] 1 1 1 1 0 0 0 0 1 1 1 1 1 0 0 0 1 1 1 1 1 1 0 0 

[1,0] 2 2 2 2 2 1 1 1 2 2 2 2 2 1 1 1 2 2 2 2 2 2 1 1 

Optimal Rationing Decisions 

[0,0] 0 0 0 1 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 

[0,1] 0 0 1 1 1 1 1 1 0 0 0 1 1 1 1 1 0 0 0 0 1 1 1 1 

[1,0] 0 0 0 1 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 

 Hereinbefore, we ration the inventory based on the lost sale cost of demand 

classes and it is optimal to satisfy incoming demand of class-one if there is an on-hand 

inventory. In Table 3.12, we increase the gap between lost sale costs of demand classes 

(𝑐1, 𝑐2). It is optimal to produce more when lost sale cost of class-one is increased in 

order not to stock out. In addition, inventory is reserved for the prioritized customer 

and it is optimal to reject the demand of lower prioritized customer while 𝑐1 is 

increasing. As a remark, it is likely to prevent rationing by setting 𝑐1 and 𝑐2 to the same 

value. In that case, inventory is allocated with respect to the first come first served 

policy. 
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Table 3.12 Effect of Lost Sale Costs on Optimal Policies 

Optimal Production Decisions 

      

   𝑐1 = 10, 𝑐2 = 3  𝑐1 = 15, 𝑐2 = 3 𝑐1 = 20, 𝑐2 = 3  𝑐1 = 25, 𝑐2 = 3  

State Inventory Level Inventory Level Inventory Level Inventory Level 

[𝑥1, 𝑥2] 0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4 5 6 

[0,0] 2 2 2 2 1 0 0 2 2 2 2 2 0 0 2 2 2 2 2 0 0 2 2 2 2 2 1 0 

[0,1] 1 1 1 1 0 0 0 1 1 1 1 0 0 0 1 1 1 1 1 0 0 1 1 1 1 1 0 0 

[1,0] 2 2 2 2 1 1 1 2 2 2 2 2 1 1 2 2 2 2 2 1 1 2 2 2 2 2 1 1 

Optimal Rationing Decisions 

[0,0] 0 0 1 1 1 1 1 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 0 0 1 1 1 

[0,1] 0 0 1 1 1 1 1 0 0 1 1 1 1 1 0 0 0 1 1 1 1 0 0 0 1 1 1 1 

[1,0] 0 0 1 1 1 1 1 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 0 0 1 1 1 

 Visiting probability (𝛽) is one of the essential parameters of the 2-phase Coxian 

processing times because it allows us to analyze 𝑀/𝑀/𝑠 by eliminating second phase 

(𝛽 = 0) and 𝑀/𝐸2/𝑠 by visiting second phase with probability one (𝛽 = 0). We first 

explain the effect of 𝛽 in a single channel system, then we extend our scope to the 𝑠-

many parallel production channels. We set the parameters such that 𝐾 = 0, 𝑠 = 1, 

[𝜇1, 𝜇2] = [5, 2.5], ℎ = 2, [𝜆1, 𝜆2] = [2, 2] and [𝑐1, 𝑐2] = [25, 3]. Recalling the base 

stock policy is optimal production policy for 𝑀/𝐶𝑜𝑥𝑖𝑎𝑛 − 2/1, we show the base-

stock levels for given 𝛽 values in Figure 3.3. While 𝛽 is increasing, it is more likely to 

visit second phase and higher 𝛽 causes higher expected time to produce. Nevertheless, 

it takes more time to put an item to the inventory and base stock level is non-decreasing 

while 𝛽 is getting higher.  

 
Figure 3.3 Effect of Visiting Probability on Base Stock Levels (𝒔 = 𝟏) 
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 Optimal rationing decisions are shown in Table 3.13 as well. In general, rationing 

decisions are getting more likely to reject the demand of class-two along with the 𝛽 

increment. Incoming demand of class-two is rejected in anticipation of a demand 

arrival from customer class-one because of the higher expected time to produce an 

item. Consider the production status [0,1], i.e. second phase is active, it is optimal to 

satisfy a demand if there are at least 4 items in the inventory when 𝛽 = 0.1. On the 

other hand, it is optimal to reject if the inventory level is 4 when 𝛽 = 0.5.  

Table 3.13 Effect of Visiting Probability on Optimal Rationing Decisions (𝒔 = 𝟏) 

Optimal Rationing Decisions 

      

  𝛽 = 0.0 𝛽 = 0.1 𝛽 = 0.3 𝛽 = 0.5 

State Inventory Level Inventory Level Inventory Level Inventory Level 

[𝑥1, 𝑥2] 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 

[0,0] 0 0 0 1 1 1 1 1 0 0 0 1 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0 1 1 1 

[0,1] 0 0 0 1 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0 1 1 1 

[1,0] 0 0 0 1 1 1 1 1 0 0 0 1 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0 1 1 1 

Costs 9,6494 11,1131 13,448 15,4562 

      

  𝛽 = 0.7 𝛽 = 0.8 𝛽 = 0.9 𝛽 = 1.0 

State Inventory Level Inventory Level Inventory Level Inventory Level 

[𝑥1, 𝑥2] 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 

[0,0] 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 

[0,1] 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 

[1,0] 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 

Costs 17,4275 18,4469 19,554 20,7092 

  
Figure 3.4 Effect of Visiting Probability on Rationing Levels (𝒔 = 𝟏)  
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 Figure 3.4 shows the rationing levels of the low prioritized class based on 

production status for given 𝛽 values. As it is seen in the figure, it depends on the current 

status of the production. There is a non-decreasing trend in rationing levels in both 

states [1,0] and [0,1] but until the 𝛽 value of 0.3, state [0,1] has higher rationing level 

than state [1,0]. However, state [1,0] has higher rationing level than the other at the 

higher 𝛽 values. Although state [0,1] seems like closer to the inventory than the state 

[1,0], being that state may be disadvantageous because of higher rationing level. 

Change in 𝛽 values affects the optimal rationing decisions either positively or 

negatively in terms of customer class-two. We observe the similar non-monotone 

behavior in multiple-channel cases.  

Table 3.14 Effect of Visiting Probability on Optimal Production Decisions 𝒔 = 𝟒 

Optimal Production Decisions 

 

State 

[𝑥1, 𝑥2] 

   

𝛽 = 0.1 𝛽 = 0.4 𝛽 = 0.7 

Inventory Level Inventory Level Inventory Level 

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 

[0,0] 4 3 1 0 0 0 4 4 2 0 0 0 4 4 3 1 0 0 

[0,1] 3 2 0 0 0 0 3 3 1 0 0 0 3 3 2 0 0 0 

[0,2] 2 2 0 0 0 0 2 2 0 0 0 0 2 2 1 0 0 0 

[0,3] 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 

[0,4] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

[1,0] 4 3 1 1 1 1 4 4 2 1 1 1 4 4 3 1 1 1 

[1,1] 3 2 1 1 1 1 3 3 1 1 1 1 3 3 2 1 1 1 

[1,2] 2 2 1 1 1 1 2 2 1 1 1 1 2 2 1 1 1 1 

[1,3] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

[2,0] 4 3 2 2 2 2 4 4 2 2 2 2 4 4 3 2 2 2 

[2,1] 3 2 2 2 2 2 3 3 2 2 2 2 3 3 2 2 2 2 

[2,2] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 

[3,0] 4 3 3 3 3 3 4 4 3 3 3 3 4 4 3 3 3 3 

[3,1] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 

[4,0] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 

 Additionally, we show the effect of visiting probability 𝛽 on optimal policies by 

considering multiple production channel. Optimal production decisions with a 

parameter vector (𝐾, 𝑠, 𝜇1, 𝜇2, ℎ, 𝜆1, 𝜆2, 𝑐1, 𝑐2) = (0,4,5,2.5,2,2,2,25,3) are given in 

Table 3.14 while 𝛽 is increasing. In this case, production rate of second phase is as 

much as half of the production rate of first phase, thus it is more likely to visit the phase 
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that has a lower production rate as 𝛽 increases. As it is seen from the table, production 

decisions have non-decreasing trend.   

 When optimal rationing decisions are examined, it is reasonable to say that 

rationing levels are non-decreasing. Table 3.15 indicates that it is optimal to satisfy a 

second class demand in particular system states i.e. [0,0], [1,0], [2,0], [3,0], [4,0] earlier 

inventory levels other than remaining states. As 𝛽 increases, being phase-one becomes 

less advantageous because of the chance of visiting phase-two. 

Table 3.15 Effect of Visiting Probability on Optimal Rationing Decisions 𝒔 = 𝟒 

Optimal Rationing Decisions 

 

State 

[𝑥1, 𝑥2] 

   

𝛽 = 0.1 𝛽 = 0.4 𝛽 = 0.7 

Inventory Level Inventory Level Inventory Level 

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 

[0,0] 0 1 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 

[0,1] 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 

[0,2] 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 

[0,3] 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 

[0,4] 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 

[1,0] 0 1 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 

[1,1] 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 

[1,2] 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 

[1,3] 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 

[2,0] 0 1 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 

[2,1] 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 

[2,2] 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 

[3,0] 0 1 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 

[3,1] 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 

[4,0] 0 1 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 

 On the other hand, optimal rationing decisions are affected by Coxian parameters 

(𝜇1, 𝜇2, 𝛽) jointly. The behavior of the optimal rationing policy is affected by relative 

values of production rates and visiting probability. We show the optimal rationing 

decisions by considering two cases with the common parameters such that 

(𝐾, 𝑠, ℎ, 𝜆1, 𝜆2, 𝑐1, 𝑐2) = (0, 3, 2, 2, 2, 25, 3) in Table 3.16. We separate the cases based 

on the 2-phase Coxian parameters (𝜇1, 𝜇2, 𝛽) where first case considers (2, 5, 0.5) and 

second one considers (5, 1, 0.3).  
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Table 3.16 Optimal Rationing Decisions 𝒔 = 𝟑 

Optimal Rationing Decisions 

  Case 1   Case 2 

State Inventory Level State Inventory Level 

[𝑥1, 𝑥2] 0 1 2 3 4 5  [𝑥1, 𝑥2] 0 1 2 3 4 5 

[0,0] 0 0 0 1 1 1 [0,0] 0 0 1 1 1 1 

[0,1] 0 0 1 1 1 1 [0,1] 0 0 1 1 1 1 

[0,2] 0 0 1 1 1 1 [0,2] 0 0 0 1 1 1 

[0,3] 0 0 1 1 1 1 [0,3] 0 0 0 1 1 1 

[1,0] 0 0 0 1 1 1 [1,0] 0 0 1 1 1 1 

[1,1] 0 0 1 1 1 1 [1,1] 0 0 1 1 1 1 

[1,2] 0 0 1 1 1 1 [1,2] 0 0 0 1 1 1 

[2,0] 0 0 0 1 1 1 [2,0] 0 0 1 1 1 1 

[2,1] 0 0 1 1 1 1 [2,1] 0 0 1 1 1 1 

[3,0] 0 0 0 1 1 1 [3,0] 0 0 1 1 1 1 

 It is more favorable to be in state [1,2] than in state [1,0] when we consider the 

rationing level of customer class-two in Case 1. It is optimal to satisfy a demand from 

second class in state [1,2, 2] since it is advantageous that there are two activated 

channel at stage-two, however it is optimal to reject it in state [1,0, 2]. Consider the 

optimal rationing decisions in Case 2 with the same system states, it is optimal to reject 

a demand when current state is [1,2, 2] but it is optimal to satisfy the demand in state 

[1,0, 2]. We obtain opposite decisions in the same system states when we change the 

Coxian parameters. In addition, it is seen that 𝑢𝑟2

[1,0,2]
= 1 and 𝑢𝑟2

[0,3,2]
= 0 in Case 2. 

Although all the available channels are active at stage-two, it is optimal to reject a 

demand and it is optimal to satisfy the demand when there is a single activated channel 

at stage-one. This is because production rate of second phase is lower than the first 

phase and there is a 0.3 visiting probability to phase-two. The rationale behind the 

decisions is the joint effect between production rates and visiting probability. This non-

monotony forms a basis for the proposed rationing policy that is explained in Section 

4. 
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4  PROPOSED RATIONING POLICY 

 In this section, we propose a rationing policy for the 𝑀/𝐶𝑜𝑥𝑖𝑎𝑛 − 2/𝑠 make-to-

stock queue. For a given parameter vector, any change in visiting probability 𝛽 and 

production rates of stages 𝜇1, 𝜇2 affect the expected time to produce (ETTP) in two 

way. If there is a completed stage in production, ETTP either decreases or increases 

depending on the parameter vector. First instance may be explained trough the 

Erlangian processing times because Erlang distribution has an increasing failure rate 

distribution. However, second instance is not seen in typical Erlangian processing times 

because stage completion increases the ETTP. In the study of Lee and Hong (2003), it 

is analyzed an 𝑀/𝐶𝑜𝑥𝑖𝑎𝑛 − 2/1 model under static rationing, i.e. current status of the 

production is not considered. 

 By taking the parameter vector into consideration, we separate the states 

according to the current production status and compare the ETTP values. Let 𝐸[𝑥1,𝑥2,𝑥3] 

be the expected time to produce an item where the current state is [𝑥1, 𝑥2, 𝑥3]. Suppose 

a state that an item is completed stage-one and being processed at stage-two for a given 

inventory level, i.e. [0,1, 𝑥3], then expected time to produce for that item is obtained 

by 𝐸[0,1,𝑥3] = 1
𝜇2

⁄ . On the other hand, suppose a state that an item is being processed 

at stage-one, i.e. [1,0, 𝑥3]. At this time, ETTP is calculated by considering the 

probability of visiting stage-two and it is expressed by 𝐸[1,0,𝑥3] = 1
𝜇1

⁄ + 𝛽 1
𝜇2

⁄ . We 

define a hierarchy between states [0,1, 𝑥3] and [1,0, 𝑥3]. If 𝐸[0,1,𝑥3] < 𝐸[1,0,𝑥3], then 

completing a production stage decreases the ETTP. On the contrary, ETTP increases if 

𝐸[0,1,𝑥3] ≥ 𝐸[1,0,𝑥3] holds. Then, we obtain a ratio by 

𝐸[0,1,𝑥3] < 𝐸[1,0,𝑥3]                                                                                                                 (4.1) 

1
𝜇2

⁄ < 1
𝜇1

⁄ + 𝛽 1
𝜇2

⁄                                                                                                         (4.2) 

𝜇1

(1 − 𝛽)

𝜇2
< 1                                                                                                                      (4.3) 

 Hence, expected time to produce decreases if parameters 𝛽, 𝜇1, 𝜇2 satisfy the 

condition in (4.3). If the parameters satisfy the (4.6), then expected time to produce 

increases. 
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𝐸[0,1,𝑥3] ≥ 𝐸[1,0,𝑥3]                                                                                                                 (4.4) 

1
𝜇2

⁄ ≥ 1
𝜇1

⁄ + 𝛽 1
𝜇2

⁄                                                                                                         (4.5) 

𝜇1

(1 − 𝛽)

𝜇2
≥ 1                                                                                                                      (4.6) 

 The proposed rationing policy is the policy that uses the information of current 

status of the production and separates the cases using a coefficient such that 𝜇1
(1−𝛽)

𝜇2
. 

The proposed rationing policy is expressed by 

𝑖𝑓 𝜇1

1 − 𝛽

𝜇2
< 1, 𝑢𝑅2

= {
1, 𝑖𝑓    𝑥3 + 𝑎 ∙ 𝑥2 > 𝑅
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                             (4.7) 

𝑖𝑓 𝜇1

1 − 𝛽

𝜇2
≥ 1, 𝑢𝑅2

= {
1, 𝑖𝑓    𝑥3 − 𝑎 ∙ 𝑥2 > 𝑅
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                             (4.8) 

where 𝑅 is the rationing level of lower prioritized customer class (class-two) and 𝑎 ∈

[0, 1] is the age parameter which is the relative value of one outstanding order with 

respect to one unit of inventory. The value of 𝑎 is upper bounded by 1 because an 

outstanding order cannot be more valuable than one unit of inventory. The values of 𝑅 

and 𝑎 are obtained by searching and provided as input to the policy. The proposed 

rationing policy is developed based on the information of number of active channels at 

second production stage (𝑥2) and inventory level (𝑥3). It is not used the information 

of first production stage (𝑥1) because state [0,0] passes to the state [1,0] with an infinite 

rate and behavior of these states remains the same.  

 In Equation (4.7), it is summed up the relative value of the number of active 

channels at stage-two and the inventory level and if the sum is greater than a given 

rationing level, a demand of second class is satisfied, otherwise it is rejected. In 

Equation (4.8), the relative value of 𝑥2 is subtracted from the inventory level and if the 

difference is greater than the predetermined rationing level, a demand from class-two 

is satisfied, else it is not satisfied. 

 Table 4.1 shows the performance of the proposed rationing policy against optimal 

rationing policy while number of channel is increasing with the predetermined system 
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parameters (𝐾, 𝜇1, 𝜇2, 𝛽, ℎ, 𝜆1, 𝜆2, 𝑐1, 𝑐2) = (0,2,5,0.5,2,2,2,25,3). As it is seen from 

the table, average system cost has a non-decreasing trend when the number of channel 

increases in both policies. For example, rationing level of class-two is computed as 1.3 

and the relative value of an outstanding order is 0.2 when 𝑠 = 4. Also, the percentage 

of the cost difference is 0,01. 

Table 4.1 Performance of the Proposed Rationing Policy 

Number of Optimal Proposed Cost Rationing Relative 

Channel Rationing Rationing Difference Level Value 

𝑠 Policy Policy % 𝑅∗ 𝑎∗ 

1 21,271 21,271 0,00% 6.0 1.0 

2 12,004 12,004 0,00% 3.0 1.0 

3 9,448 9,450 0,02% 2.0 0.1 

4 8,438 8,438 0,01% 1.3 0.2 

5 7,968 7,989 0,26% 1.1 0.3 

6 7,763 7,788 0,32% 1.1 0.4 

7 7,685 7,696 0,15% 1.2 0.5 

8 7,663 7,663 0,00% 1.2 0.6 

9 7,663 7,674 0,15% 1.1 0.7 

10 7,663 7,673 0,14% 1.1 0.8 

  We consider two different policies in addition to the proposed rationing policy 

in order to compare their performances. Initially, a static rationing policy based on 

inventory level is considered to evaluate the value of dynamic rationing. When we set 

the age parameter to be zero (𝑎 = 0), the policy imposes the static rationing. As it is, 

we expect the proposed rationing policy to perform at least a static policy. Then, we 

examine First Come First Served Policy (FCFS) in order to measure the value of 

rationing. 

 Rationing decisions of the policies are given in Table 4.2 for a given parameter 

vector (𝐾, 𝑠, 𝜇1, 𝜇2, 𝛽, ℎ, 𝜆1, 𝜆2, 𝑐1, 𝑐2) = (0,3,2,5,0.5,2,2,2,25,3). The decisions of the 

proposed rationing policy is the same with the optimal one. There is a cost difference 

between the static and dynamic policy as it is seen from the table. The worst 

performance of the FCFS policy can be explained by power of the rationing. That 

means rationing reduces the average system cost. Moreover, Figure 4.1 shows the 

performance of the proposed rationing and FCFS policies with increasing number of 

channels. Although the difference between the performance of proposed rationing and 
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FCFS policy is really high in small number of channels, the difference is getting smaller 

as the number of channel increases. This is because the system increases production 

capacity and becomes more likely to satisfy a demand from customer class-two.  

Table 4.2 Rationing Decisions of the Policies 

  

Optimal Rationing 

Policy 

Proposed Rationing 

Policy 

Static Rationing 

Policy 

FCFS  

Policy 

State Inventory Level Inventory Level Inventory Level Inventory Level 

 [x1, x2] 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 

[0,0] 0 0 0 1 1 0 0 0 1 1 0 0 1 1 1 0 1 1 1 1 

[0,1] 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 1 1 1 1 

[0,2] 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 1 1 1 1 

[0,3] 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 1 1 1 1 

[1,0] 0 0 0 1 1 0 0 0 1 1 0 0 1 1 1 0 1 1 1 1 

[1,1] 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 1 1 1 1 

[1,2] 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 1 1 1 1 

[2,0] 0 0 0 1 1 0 0 0 1 1 0 0 1 1 1 0 1 1 1 1 

[2,1] 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 1 1 1 1 

[3,0] 0 0 0 1 1 0 0 0 1 1 0 0 1 1 1 0 1 1 1 1 

Avg 

Cost 9,448 9,450 9,598 11,010 

 
Figure 4.1 Performance of Proposed Rationing Policy and FCFS Policy 

 Figure 4.2 shows the performance of the policies while 𝛽 is increasing with 

parameter vector (𝐾, 𝑠, 𝜇1, 𝜇2, ℎ, 𝜆1, 𝜆2, 𝑐1, 𝑐2) = (0,3,2,5,2,2,2,25,3). As it is seen in 

the figure, cost difference between optimal rationing policy and FCFS policy increases 
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as 𝛽 increases. Proposed rationing policy performs well and the difference between 

optimal and static rationing policy is expected to be increased while 𝑠 increases.  

 
Figure 4.2 Performance of the Rationing Policies with Increasing 𝜷 

 Fixed start-up cost is not considered in aforementioned numerical analysis for 

the rationing policies. Then, we examine the effect of start-up cost in rationing 

decisions including optimal, proposed and FCFS policies. Table 4.3 includes the 

average cost differences between optimal and proposed rationing policies and optimal 

rationing and FCFS policies when 𝐾 increases. As 𝐾 increases, performance of the 

proposed rationing policy decreases but it performs among 2% worse than the optimal 

one. However, FCFS performs well with the increasing 𝐾.  

Table 4.3 Effect of Start-up Cost on the Rationing Policies 

K 

Optimal vs Proposed Rationing Policy 

Cost Difference % 

Optimal Rationing vs FCFS Policy 

Cost Difference % 

𝛽 =0.1 𝛽 =0.5 𝛽 =0.9 𝛽 =0.1 𝛽 =0.5 𝛽 =0.9 

0 0,77% 0,74% 0,81% 10,68% 14,71% 17,24% 

3 0,43% 0,86% 1,64% 7,96% 10,29% 12,96% 

6 1,36% 1,70% 1,90% 7,90% 9,07% 11,86% 

9 1,85% 2,52% 2,01% 7,64% 9,78% 10,68% 
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5 ALTERNATIVE PRODUCTION POLICIES 

 In this section, we introduce the alternative production policies for the 

𝑀/𝐶𝑜𝑥𝑖𝑎𝑛 − 2/𝑠 make-to-stock queue. Since the behavior of the optimal production 

policy is highly dynamic/state dependent, it may not be practical. We propose 

alternative production policies where their performances are closer to the optimal 

production policy in a systematic way. It is well known that two-critical-level policy is 

optimal production policy in an 𝑀/𝐺/1 production-inventory system with fixed cost. 

According to the study of Gavish and Graves (1981), it is optimal to produce if 

inventory level drops to a lower control level, and stop to produce if inventory level 

hits to an upper control level. In this context, there are two control parameters in 

proposed policies such that 𝑋∗, 𝑋∗∗ where 𝑋∗ is a lower and 𝑋∗∗ is an upper critical 

levels. Proposed policies are defined in Section 5.1 and performance evaluation of the 

studies are expressed in Section 5.2. 

5.1 Description of the Policies 

 At the very beginning, we start with a static production policy based on inventory 

level. Recalling the state definition, first two dimension keep track of the current status 

of the production and third dimension keeps the inventory level. Initial proposed policy 

does not consider the current production status but control the production with the 

information of the inventory level, it is called Inventory Level Policy (ILP). Production 

is triggered whenever the inventory level drops to 𝑋∗ and continued until it reaches to 

𝑋∗∗. When the inventory level hits to 𝑋∗∗, production channels are not activated and 

production period is truncated until inventory level drops to 𝑋∗ again. Production 

decisions are expressed by 

𝑢𝑝(𝑥1, 𝑥2, 𝑥3) = {
max(min(𝑋∗ − 𝑥3, 𝑠 − 𝑥2) , 𝑥1) 𝑥3 ≤ 𝑋∗

𝑥1 𝑋∗ < 𝑥3 < 𝑋∗∗

𝑥1 𝑥3 ≥ 𝑋∗∗
                     (5.1) 

 In the expression (5.1), production decision is bounded by the number of 

available channels and number of active channel at phase-one, since there is no order 

cancellation. ILP is also related to the base-stock policy where 𝑆 is the base-stock level. 

When the control parameters of the ILP are equalized to the base-stock level i.e. 𝑋∗ =
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𝑋∗∗ = 𝑆, the policy is optimal production policy for the 𝑀/𝐶𝑜𝑥𝑖𝑎𝑛 − 2/1 as well as 

𝑀/𝑀/1 without start-up cost. 

 On the other hand, optimal production policy has a dynamic structure. Then, we 

include the information of the current production status to the inventory level. Thus we 

trigger the production based on the inventory position and call the Inventory Position 

Policy (IPP). Structure of the policy is given by 

𝑢𝑝(𝑥1, 𝑥2, 𝑥3) = {
max(min(𝑋∗ − 𝐼𝑃, 𝑠 − 𝑥2) , 𝑥1) 𝐼𝑃 ≤ 𝑋∗

𝑥1 𝑋∗ < 𝐼𝑃 < 𝑋∗∗

𝑥1 𝐼𝑃 ≥ 𝑋∗∗
                     (5.2) 

where 𝐼𝑃 = 𝑥1 + 𝑥2 + 𝑥3. ILP considers the total number of active servers, i.e. current 

production status, but not the current phase/stage status. Although the states  [2,1, 𝑥3], 

[1,2, 𝑥3] and [3,0, 𝑥3] have the same inventory position, they may have different 

production decisions in the optimal policy. For this reason, we expect some fluctuations 

in the performance of ILP based on the system parameters. 

 Since the first stage of the production is visited certainly, we aim to analyze 

whether or not the information of stage-one affects the production decisions. Then, we 

eliminate the effect of stage-one and call the Modified Inventory Position Policy 

(MIPP). Production is controlled by 

𝑢𝑝(𝑥1, 𝑥2, 𝑥3)

= {
max(min(𝑋∗ − (𝑥2 + 𝑥3), 𝑠 − 𝑥2) , 𝑥1) 𝑥2 + 𝑥3 ≤ 𝑋∗

𝑥1 𝑋∗ < 𝑥2 + 𝑥3 < 𝑋∗∗

𝑥1 𝑥2 + 𝑥3 ≥ 𝑋∗∗
                         (5.3) 

 We also examine the effect of the age information on the production decisions 

with the policy defined above. Recalling the study of Ha (2000), work storage level 

policy (WSL) is optimal production policy for 𝑀/𝐸𝑘/1 make-to-stock queue. WSL is 

defined as a function of number of completed production stages. An item that is being 

processed at 𝑘𝑡ℎ stage has 𝑘 − 1 completed stages and coefficient of a stage increases 

as the number of completed stage increases. MIIP is the policy that places between IPP 

and WSL. 
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 Although an item passes to the following production stage with probability one 

in Erlangian processing times, the visiting probability takes value between zero and 

one in Coxian processing times. In order to use the age information, we adapt the WSL 

to our model. We may also obtain optimal production decisions for the 𝑀/𝐸2/1 by 

setting 𝛽 = 1 and 𝑠 = 1 in 𝑀/𝐶𝑜𝑥𝑖𝑎𝑛 − 2/𝑠 make-to-stock queue. In our setting, 

𝑊𝑆𝐿 = 0𝑥1 + 1𝑥2 + 2𝑥3 where the coefficients represent the completed number of 

stages. Production decision in WSL is the following: 

𝑢𝑝(𝑥1, 𝑥2, 𝑥3)

= {
max(min(𝑋∗ − (𝑥2 + 2𝑥3), 𝑠 − 𝑥2) , 𝑥1) 𝑥2 + 2𝑥3 ≤ 𝑋∗

𝑥1 𝑋∗ < 𝑥2 + 2𝑥3 < 𝑋∗∗

𝑥1 𝑥2 + 2𝑥3 ≥ 𝑋∗∗
                    (5.4) 

 We expect the WSL Policy to perform well in some cases, but the production 

rates are assumed to be equal in WSL formulation. However, 2-phase Coxian random 

variables allow us to study different production rates at stage-one (𝜇1) and stage-two 

(𝜇2). Different production rates cause the different coefficients for the WSL. Based on 

this information, we repair the WSL by using the information of production rates 𝜇1, 

𝜇2 and called Modified Work Storage Level Policy (MWSLP). The production 

decisions of the MWSLP is explained by 

𝑢𝑝(𝑥1, 𝑥2, 𝑥3)

= {
max(min(𝑋∗ − 𝑠𝑡𝑎𝑡𝑢𝑠𝑀𝑊𝑆𝐿 , 𝑠 − 𝑥2) , 𝑥1) 𝑠𝑡𝑎𝑡𝑢𝑠𝑀𝑊𝑆𝐿 ≤ 𝑋∗

𝑥1 𝑋∗ < 𝑠𝑡𝑎𝑡𝑢𝑠𝑀𝑊𝑆𝐿 < 𝑋∗∗

𝑥1 𝑠𝑡𝑎𝑡𝑢𝑠𝑀𝑊𝑆𝐿 ≥ 𝑋∗∗
            (5.5) 

where 𝑠𝑡𝑎𝑡𝑢𝑠𝑀𝑊𝑆𝐿 = 𝑥1 + (1 + ⌈
𝜇ℎ

𝜇𝑙
⌉) 𝑥2 + (2 + ⌈

𝜇ℎ

𝜇𝑙
⌉) 𝑥3, 𝜇ℎ = 𝑚𝑎𝑥(𝜇1, 𝜇2) and 

𝜇𝑙 = 𝑚𝑖𝑛(𝜇1, 𝜇2). We consider the ratio of higher and lower production rates and 

round them up. 𝑠𝑡𝑎𝑡𝑢𝑠𝑀𝑊𝑆𝐿 shows that coefficient of the completing first stage (𝑥1) is 

determined as one. Then, the coefficient of 𝑥2 is calculated relatively. We sum the age 

of 𝑥1 and the relative value of the production rates and obtain the age of 𝑥2. Similarly, 

we sum the age of 𝑥2 and the relative value of the inventory level where the age of an 

item that places in the inventory is one. For instance, according to the MWSL policy, 

the value of completing stage-one is one, completing the stage-two is two and the value 

of an item in the inventory is three when  𝜇1 = 𝜇2. We aim to catch the effect of 

different production rates on the production decisions with this policy. 
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5.2 Numerical Study: Performance Evaluation and Comparisons 

 This section includes numerical analysis of the proposed policies based on the 

average system cost criterion. Computational results are obtained via MATLAB 

program. In order to avoid the joint effect between production and rationing decisions, 

we provide a pure production environment. We equalize the lost sale costs of demand 

classes (𝑐1 = 𝑐2), thus the inventory is controlled by a FCFS policy. First of all, a 

parameter vector is chosen such that (𝐾, 𝑠, ℎ, 𝜆1, 𝜆2, 𝑐1, 𝑐2) = (0,3,2,3,4,4,4) for the 

analysis.  

Table 5.1 Average Costs of the Production Policies 𝒔 = 𝟑, 𝑲 = 𝟎 

 𝜇1  𝜇2 𝛽 OP ILP IPP MIPP WSLP MWSLP 

3 

0.3 

0.1 14,19 14,39 14,26 14,35 14,25 20,71 

0.4 21,64 21,69 21,67 21,69 21,66 24,94 

0.7 23,91 23,92 23,92 23,94 23,93 25,89 

1 24,98 25 24,99 25,01 25,02 26,32 

1.5 

0.1 9,34 9,4 9,68 9,46 9,39 9,37 

0.4 12,47 12,53 12,53 12,49 12,74 12,76 

0.7 15,18 15,18 15,39 15,24 15,25 15,47 

1 17,32 17,37 17,46 17,36 17,36 17,47 

3 

0.1 8,75 8,78 9,31 8,81 8,82 8,77 

0.4 10,12 10,13 10,26 10,18 10,14 10,15 

0.7 11,49 11,5 11,78 11,53 11,57 11,56 

1 12,91 12,96 12,96 13,03 12,95 12,92 

6 

0.1 8,48 8,51 9,11 8,52 8,66 8,48 

0.4 9,08 9,11 9,36 9,1 9,14 9,08 

0.7 9,64 9,69 10,01 9,73 9,84 9,64 

1 10,21 10,24 10,38 10,24 10,26 10,22 

60 

0.1 8,28 8,32 8,73 8,32 8,43 10,92 

0.4 8,33 8,44 8,76 8,45 8,42 11,08 

0.7 8,38 8,55 8,77 8,58 8,42 11,23 

1 8,41 8,54 8,82 8,47 8,43 11,39 

 Table 5.1 shows the average cost of the production policies where OP is the 

optimal production policy, ILP is an inventory level policy, IPP is an inventory position 

policy, MIPP is a modified inventory position policy, WSLP is a work storage level 

policy and MWSLP is a modified work storage level policy. For given 𝜇1, 𝜇2 values, 

the average system cost of production policies increases, as 𝛽 increases. The reason 
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behind the increment is the effect of visiting probability 𝛽 on the expected processing 

times, in other words higher 𝛽 value causes higher expected time to produce an item. 

On the other hand, while  𝜇2/𝜇1 is increasing, expected system cost of the optimal 

production policy is non-increasing for any given 𝛽 value. In addition, since expected 

time to produce an item decreases as the production rate of the second stage increases, 

then expected cost of the optimal production policy decreases.  

Table 5.2 Performances of the Alternative Production Policies 𝒔 = 𝟑, 𝑲 = 𝟎 

𝜇1 𝜇2 𝛽 OP vs. ILP OP vs. IPP OP vs. MIPP OP vs. WSLP 
OP vs. 

MWSLP 

3 

0.3 

0.1 1,39% 0,49% 1,11% 0,42% 31,48% 

0.4 0,23% 0,14% 0,23% 0,09% 13,23% 

0.7 0,04% 0,04% 0,13% 0,08% 7,65% 

1 0,08% 0,04% 0,12% 0,16% 5,09% 

1.5 

0.1 0,64% 3,51% 1,27% 0,53% 0,32% 

0.4 0,48% 0,48% 0,16% 2,12% 2,27% 

0.7 0,00% 1,36% 0,39% 0,46% 1,87% 

1 0,29% 0,80% 0,23% 0,23% 0,86% 

3 

0.1 0,34% 6,02% 0,68% 0,79% 0,23% 

0.4 0,10% 1,36% 0,59% 0,20% 0,30% 

0.7 0,09% 2,46% 0,35% 0,69% 0,61% 

1 0,39% 0,39% 0,92% 0,31% 0,08% 

6 

0.1 0,35% 6,92% 0,47% 2,08% 0,00% 

0.4 0,33% 2,99% 0,22% 0,66% 0,00% 

0.7 0,52% 3,70% 0,92% 2,03% 0,00% 

1 0,29% 1,64% 0,29% 0,49% 0,10% 

60 

0.1 0,48% 5,15% 0,48% 1,78% 24,18% 

0.4 1,30% 4,91% 1,42% 1,07% 24,82% 

0.7 1,99% 4,45% 2,33% 0,48% 25,38% 

1 1,52% 4,65% 0,71% 0,24% 26,16% 

 

 Table 5.2 shows the performances of the alternative production policies with 

respect to the optimal production policy. When 𝜇2 is relatively smaller than 𝜇1, 

performances of the ILP, IPP, MIPP and WSLP are closer to the OP for any 𝛽 values. 

In this case, being at stage-two is risky because of the lower production rate and policy 

decisions are to continue producing in order to avoid the risk. However, IPP worsens 

with the increasing 𝜇2. The optimal production policy uses the current status of the 

production because optimal decision depends on not only 𝜇1 but also 𝜇2, but IPP 

considers the total number of active channel instead of stage-based information. On the 
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other hand, WSLP performs well where the moderate values of 𝑠 are considered. 

MWSLP performs well except for the extreme values of 𝜇2/𝜇1. In general, ILP 

performs well for any 𝜇1, 𝜇2, 𝛽 values in the table.  

 Table 5.3 represents the performances of the production policies when the 

number of channels is increased to 5 (𝑠 = 5). IPP is mainly affected by the increasing 

number of channels among the alternative policies because of the lack of the stage 

information. As the 𝑠 increases, upper bound of the production decision increases and 

the information in the system state is also increases. WSLP conserves its performance 

but performs worse than the case where 𝑠 = 3. Nonetheless, MWSLP is the best 

performed production policy within the moderate cases of 𝜇2/𝜇1. This is because 

MWSLP uses the relative values of the production rates of stages.  

Table 5.3 Performances of the Alternative Production Policies 𝒔 = 𝟓, 𝑲 = 𝟎 

𝜇1 𝜇2 𝛽 OP vs. ILP OP vs. IPP OP vs. MIPP OP vs. WSLP 
OP vs. 

MWSLP 

3 

0.3 

0.1 4,15% 6,79% 5,77% 2,57% 35,62% 

0.4 0,34% 0,17% 0,34% 0,34% 19,30% 

0.7 0,05% 0,23% 0,19% 0,37% 11,55% 

1 0,09% 0,04% 0,35% 0,35% 7,40% 

1.5 

0.1 4,35% 17,52% 8,11% 2,95% 1,49% 

0.4 1,90% 6,58% 2,98% 1,57% 0,56% 

0.7 0,57% 1,80% 0,86% 1,05% 0,00% 

1 0,58% 0,67% 0,67% 0,91% 0,00% 

3 

0.1 5,47% 19,16% 8,52% 3,27% 1,39% 

0.4 3,25% 12,33% 4,08% 2,02% 1,90% 

0.7 1,06% 7,36% 2,09% 1,06% 1,17% 

1 1,10% 5,16% 0,66% 0,66% 0,77% 

6 

0.1 6,56% 20,05% 7,92% 3,46% 1,13% 

0.4 5,19% 15,90% 5,56% 2,93% 1,35% 

0.7 5,22% 12,80% 3,78% 1,55% 0,52% 

1 6,27% 13,79% 5,69% 4,39% 4,15% 

60 

0.1 7,93% 21,35% 8,18% 3,93% 9,75% 

0.4 8,42% 21,35% 9,51% 4,06% 11,15% 

0.7 7,58% 18,43% 6,59% 1,56% 11,35% 

1 7,79% 17,30% 4,51% 0,71% 12,53% 

 A fixed start-up cost is incurred when a production channel is activated. 

Production decisions of the policies are expressed in Table 5.4 where the parameter 
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vector is (𝐾, 𝑠, 𝜇1, 𝜇2, 𝛽, ℎ, 𝜆1, 𝜆2, 𝑐1, 𝑐2) = (6,3,3,6,0.1,2,3,4,4,4). It is optimal to 

activate 2 channels in the current state [0,0,0] as it is seen from the table. Instead of 

activating 3 channels, 2 channels are activated and production is continued with 2 

channels in order to avoid the start-up cost. Although the production decision at state 

[0,0,0] is to activate 3 channels in all the alternative policies, production decisions of 

the MWSLP are closer to the optimal production decisions with respect to other 

alternative production policies. 

Table 5.4 Production Decisions of the Policies 𝒔 = 𝟑, 𝑲 = 𝟔 

[x1, x2] 
 

OP ILP IPP 

Inventory Level Inventory Level Inventory Level 

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 

[0,0] 2 2 2 1 1 0 3 2 1 0 0 0 3 2 1 0 0 0 

[0,1] 1 1 0 0 0 0 2 2 1 0 0 0 2 1 0 0 0 0 

[0,2] 0 0 0 0 0 0 1 1 1 0 0 0 1 0 0 0 0 0 

[0,3] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

[1,0] 2 2 2 1 1 1 3 2 1 1 1 1 2 1 1 1 1 1 

[1,1] 1 1 1 1 1 1 2 2 1 1 1 1 1 1 1 1 1 1 

[1,2] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

[2,0] 2 2 2 2 2 2 3 2 2 2 2 2 2 2 2 2 2 2 

[2,1] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 

[3,0] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 

Avg 

Cost 12,02 13,61 13,17 

[x1, x2] 
 

MIPP WSLP MWSLP 

Inventory Level Inventory Level Inventory Level 

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 

[0,0] 3 2 1 0 0 0 3 2 0 0 0 0 3 0 0 0 0 0 

[0,1] 2 1 0 0 0 0 2 1 0 0 0 0 1 0 0 0 0 0 

[0,2] 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 

[0,3] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

[1,0] 3 2 1 1 1 1 3 2 1 1 1 1 2 1 1 1 1 1 

[1,1] 2 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 

[1,2] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

[2,0] 3 2 2 2 2 2 3 2 2 2 2 2 2 2 2 2 2 2 

[2,1] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 

[3,0] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 

Avg 

Cost 13,58 13,95 12,45 
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 The detailed performance results of the policies are given in Table 5.5. The effect 

of start-up cost (𝐾) makes the alternative policies worsen, especially in lower 𝜇1/𝜇2 

values. MWSL Policy may be tractable in moderate values of 𝜇1/𝜇2, on the other hand 

ILP, IPP, MIPP and WSLP are applicable in higher 𝜇1/𝜇2 values.  

Table 5.5 Performances of the Alternative Production Policies 𝒔 = 𝟑, 𝑲 = 𝟔 

𝜇1 𝜇2 𝛽 OP vs. ILP OP vs. IPP OP vs. MIPP 
OP vs. 

WSLP 

OP vs. 

MWSLP 

3 

0.3 

0.1 1,48% 1,73% 1,48% 1,60% 33,99% 

0.4 0,23% 0,37% 0,00% 0,51% 14,72% 

0.7 5,47% 5,94% 5,43% 5,78% 17,79% 

1 0,16% 0,16% 0,16% 0,16% 9,72% 

1.5 

0.1 7,15% 5,44% 6,61% 7,95% 0,92% 

0.4 4,23% 3,65% 3,79% 5,09% 2,31% 

0.7 0,13% 0,00% 0,07% 1,36% 0,07% 

1 0,57% 0,06% 0,40% 0,35% 0,06% 

3 

0.1 10,02% 8,55% 9,69% 9,76% 1,05% 

0.4 23,66% 25,36% 23,77% 14,52% 17,19% 

0.7 2,45% 2,13% 2,37% 2,61% 2,37% 

1 0,15% 0,46% 0,15% 4,14% 0,77% 

6 

0.1 11,68% 8,73% 11,49% 13,84% 3,45% 

0.4 32,78% 30,58% 33,28% 18,51% 5,66% 

0.7 33,43% 35,33% 33,04% 17,99% 10,55% 

1 15,83% 16,15% 15,71% 10,70% 8,82% 

15 

0.1 12,23% 9,29% 23,51% 13,82% 17,58% 

0.4 32,22% 28,10% 32,76% 24,53% 12,14% 

0.7 45,87% 39,19% 48,64% 25,20% 10,77% 

1 57,31% 48,57% 62,16% 39,78% 6,47% 

 Fixed start-up cost has an important effect on the optimality criterion. Either 

underestimated or overestimated optimal decisions may worsen the performance 

criterion. In case of underestimation in the production decision, an incoming demand 

may be rejected in possibility of stock-out. On the other hand, an over production 

decision causes the higher start-up costs, higher holding and production costs as well. 

Since the structure of such systems is highly dynamic, performance of the alternative 

policies varies from region to region. In general, proposed policies mostly perform well 

in moderate values of production channels. IPP is chiefly affected by increasing 

number of channels. In that case, it is worse to use the information of active channels 

partially than not to use, i.e. ILP. Referring to the moderate number of channels, 
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MWLSP dominates the other policies when production rates of stages are closer to each 

other, WSLP obtains closer average cost with respect to the optimal one.  
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6 RENEWAL ANALYSIS 

 Since we consider a make-to-stock production system with fixed start-up cost, 

two-critical-level policy is optimal production policy for such a system. We call the 

critical numbers (𝑋∗, 𝑋∗∗) in our studies. When fixed cost is set to be zero, the relation 

between critical levels become equal and that critical level represents the base-stock 

level, optimal production decision, for 𝑀/𝐶𝑜𝑥𝑖𝑎𝑛 − 2/1 without fixed cost. We obtain 

expected system cost using MDP during numerical studies but it is also possible to 

obtain the cost via steady-state probabilities or renewal reward analysis. The steady-

state probabilities are computable for a single channel system; however multiple 

production channels require more complex state transitions although it still has Markov 

property. As we mention in Chapter 2, Lee and Srinivasan (1989, 1991) is our main 

contribution for the renewal analysis (RA) that allows us to solve sub-systems instead 

of whole system. Renewal reward theorem considers a regeneration point and each 

cycle until regeneration point is called sub-system. Since the horizon is infinite, 

accumulated system cost converges to a value then it is enough to calculate the cost for 

only one cycle and the ratio of accumulated cost and cycle length gives the expected 

system cost. In the following section, analysis of 𝑀/𝐶𝑜𝑥𝑖𝑎𝑛 − 2/1 make-to-stock 

queue is expressed. 

6.1 Analysis of the Optimal Production Policy for M/Coxian-2/1 

 We first start to analyze two-phase Coxian processing times with single 

production channel, fixed start-up cost, lost sale cost and two demand classes under 

static rationing. Upper critical value (𝑋∗∗) is chosen as the regeneration point. 

Production is triggered whenever inventory position (IP) drops to 𝑋∗ and continues 

until it reaches to 𝑋∗∗ and it is called production period. Besides, non-production period 

starts when IP reaches to 𝑋∗∗ and ends when IP drops to 𝑋∗ for the first time. Let 

𝐾 = fixed start-up cost 

ℎ = holding cost 

𝑐1, 𝑐2 = lost sale costs of customer class 1 and 2 

𝑅 = rationing level of customer class 2, 𝑅 ∈ [0, 𝑋∗∗] 
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𝐶𝑁(𝑋∗, 𝑋∗∗, 𝑅) = expected cost during a non-production period 

𝐶𝑃(𝑋∗, 𝑋∗∗, 𝑅) = expected cost during a production period 

𝐿𝑁(𝑋∗, 𝑋∗∗, 𝑅) = expected length of a non-production period 

𝐿𝑃(𝑋∗, 𝑋∗∗, 𝑅) = expected length of a production period 

𝐴𝐶(𝑋∗, 𝑋∗∗, 𝑅) = expected system cost per unit time 

 Since production is triggered for once, one fixed start-up cost is charged in each 

cycle. Then, expected cost per unit time with given control values 𝑋∗ and 𝑋∗∗ and 𝑅 is 

obtained by 

𝐴𝐶(𝑋∗, 𝑋∗∗, 𝑅) =
𝐶𝑁(𝑋∗, 𝑋∗∗, 𝑅) + 𝐶𝑃(𝑋∗, 𝑋∗∗, 𝑅) + 𝐾

𝐿𝑁(𝑋∗, 𝑋∗∗, 𝑅) + 𝐿𝑃(𝑋∗, 𝑋∗∗, 𝑅)
                                  (6.1) 

 By definition of the rationing operator, incoming demand of a customer class is 

rejected if the inventory position is less than or equal to rationing level of that class, 

otherwise it is satisfied. Expected system cost accumulates depending on the rationing 

level of second demand class. Basically, second class rationing level (𝑅) is either 

between 𝑋∗ and 𝑋∗∗ or less than 𝑋∗. In case 𝑅 is between 𝑋∗ and 𝑋∗∗, the only rejection 

region for the second customer class is between 𝑅 and 𝑋∗. Figure 6.1 shows the 

accumulated demand rates in both cases.  

          

𝑋∗∗       𝑋∗∗       

𝑅   𝜆1 + 𝜆2      𝜆1 + 𝜆2  

𝑋∗    𝜆1   𝑋∗        

     𝑅         

              

Figure 6.1 Demand Rates According to Critical Levels 

Let 𝑔𝑥,𝑥−1 be the expected cost when inventory level drops from 𝑥 to 𝑥 − 1 for the first 

time during a non-production period. The expected cost of the non-production period 

with given control values is specified by 
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𝐶𝑁(𝑋∗, 𝑋∗∗, 𝑅) =  ∑ 𝑔𝑥,𝑥−1

𝑋∗∗

𝑥=𝑋∗+1
                                                      (6.2) 

where 

 𝑔𝑥,𝑥−1 =
ℎ𝑥

𝜆1+𝜆2
, ∀𝑥∈[1,𝑅)                                                                                        (6.3) 

𝑔𝑥,𝑥−1 =
ℎ𝑥

𝜆1 + 𝜆2
, ∀𝑥∈[𝑅+1,𝑋∗∗]                                                                            (6.4) 

𝑔𝑥,𝑥−1 =
ℎ𝑥

𝜆1
, ∀𝑥∈[𝑋∗+1,𝑅]                                                                                      (6.5) 

 Since the cost of the non-production period accumulates based on the position of 

𝑅, then length of the non-production period is obtained in a similar way. Let 𝐿𝑛 be the 

expected length during the non-production period. Total expected length of a non-

production period is expressed by 

𝐿𝑁 = ∑ 𝐿𝑛

𝑋∗∗

𝑛=𝑋∗+1
                                                                                        (6.6) 

where  

𝐿𝑛 =
𝑋∗∗ − 𝑋∗

𝜆1 + 𝜆2
, ∀𝑥∈[1,𝑅)                                                                                (6.7) 

𝐿𝑛 =
𝑋∗∗ − 𝑋∗

𝜆1 + 𝜆2
, ∀𝑥∈[𝑅+1,𝑋∗∗]                                                                        (6.8) 

𝐿𝑛 =
R − 𝑋∗

𝜆1
, ∀𝑥∈[𝑋∗+1,𝑅]                                                                             (6.9) 

 In order to recall the system state definition (𝑥1, 𝑥2, 𝑥3), 𝑥1 and 𝑥2 denote the 

number of active production channel in phase-one and phase-two and 𝑥3 denotes the 

inventory level. By reason of single channel, either first or second phase of the 

production becomes busy during a production period. Let 𝑓(1,𝑥),(1,𝑥+1) be the expected 

first passage cost from 𝑥 unit inventory to 𝑥 + 1 for the first time when first stage of 

the production is operational. Similarly, 𝑓(2,𝑥),(1,𝑥+1) is the expected first passage cost 
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from 𝑥 unit inventory to 𝑥 + 1 for the first time when second stage of the production 

is operational. Without loss of generality, 𝑓(𝑛,𝑥),(𝑛,𝑥) = 0, ∀𝑛∈{0,1,2}, ∀𝑥≥0. Thus the 

expected cost of the production period with given control values is the following 

expression: 

𝐶𝑃(𝑋∗, 𝑋∗∗, 𝑅) =  ∑ 𝑓(1,𝑥),(1,𝑥+1)

𝑋∗∗−2

𝑥=𝑋∗
+ 𝑓(1,𝑋∗∗−1),(0,𝑋∗∗)                          (6.10) 

 Whenever production is triggered, it is started in phase-one. It is processed with 

rate 𝜇1 in phase-one, either it is passed to stage-two with probability 𝛽 and processed 

with rate 𝜇2 or bypassed with probability 1 − 𝛽. At the end, the finished item places in 

the inventory and the following production is started in phase-one. Demand rates of  

customer class-one and two are 𝜆1 and 𝜆2 respectively and total demand is denoted by 

𝜆. 𝑅 is the critical level for the expected first passage cost calculation, thus the rejection 

criterion for the incoming demand of class-two depends on its rationing level. Figure 

6.2 is an explanatory example of state transitions in production period with given 

control values. 

 

Figure 6.2 Example of State Transition Diagram (𝑿∗ = 𝟐, 𝑿∗∗ = 𝟔, 𝑹 = 𝟒) 

Based on the consideration above, expected first passage costs are obtained by 

𝑓(1,𝑥),(1,𝑥+1) =
ℎ𝑥

𝜆 + 𝜇1
+

𝜇1

𝜆 + 𝜇1
[𝛽𝑓(2,𝑥),(1,𝑥+1) + (1 − 𝛽)𝑓(1,𝑥+1),(1,𝑥+1)]

+
𝜆1

𝜆 + 𝜇1
𝑓(1,𝑥−1),(1,𝑥+1)

+
𝜆2

𝜆 + 𝜇1
(𝑐2 + 𝑓(1,𝑥),(1,𝑥+1)), ∀𝑥>0,𝑥≤𝑅                                               (6.11) 
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𝑓(2,𝑥),(1,𝑥+1)=

ℎ𝑥

𝜆 + 𝜇2
+ 𝑓(1,𝑥+1),(1,𝑥+1) +

𝜆1

𝜆 + 𝜇2
𝑓(2,𝑥−1),(1,𝑥+1)

+
𝜆2

𝜆 + 𝜇2
(𝑐2 + 𝑓(2,𝑥),(1,𝑥+1)), ∀𝑥>0,𝑥≤𝑅                                              (6.12) 

 Equations (6.11) and (6.12) are valid for all positive inventory levels and when 

the inventory level is less than or equal to 𝑅. Recall that demand of class-two is rejected 

in this situation. During the production period, holding cost and lost sale cost are 

charged. In phase-one, completed production either passes to phase-two or leaves the 

system. In case of leaving the system with probability 1 − 𝛽, there is no accumulated 

cost because of the self-transition. Similarly, production completion at phase-one 

causes the self-transition in terms of expected first passage cost. If the class-one 

demand is occurred, it is satisfied and inventory level is decreased by one unit. If the 

class-two demand is occurred, it is rejected and system state remains the same. 

Equation (6.13) and (6.14) are valid for all inventory level that is greater than 𝑅. This 

condition allows us to satisfy incoming demand of both customer classes.  

𝑓(1,𝑥),(1,𝑥+1) =
ℎ𝑥

𝜇1
+

𝜇1

𝜆 + 𝜇1
[𝛽𝑓(2,𝑥),(1,𝑥+1) + (1 − 𝛽)𝑓(1,𝑥+1),(1,𝑥+1)]

+
𝜆

𝜆 + 𝜇1
𝑓(1,𝑥−1),(1,𝑥+1), ∀𝑥>𝑅                                                              (6.13) 

𝑓(2,𝑥),(1,𝑥+1)=

ℎ𝑥

𝜆 + 𝜇2
+ 𝑓(1,𝑥+1),(1,𝑥+1) +

𝜆

𝜆 + 𝜇1
𝑓(2,𝑥−1),(1,𝑥+1), ∀𝑥>𝑅                      (6.14) 

 When there is no on-hand inventory, demand of any class is rejected and only 

lost sale costs accumulate. At the boundary, expected first passage cost is obtained by 

𝑓(1,0),(1,1) =
𝜆1𝑐1 + 𝜆2𝑐2

𝜇1
+

𝛽(𝜆1𝑐1 + 𝜆2𝑐2)

𝜇2
                                                                (6.15) 

𝑓(2,0),(1,1) =
𝜆1𝑐1 + 𝜆2𝑐2

𝜇2
                                                                                                  (6.16) 

  When we consider the relationship between equations (6.15) and (6.16), we 

may define 𝑓(1,0),(1,1) as a function of 𝑓(2,0),(1,1). In addition to this, any 𝑓(1,𝑥),(1,𝑥+1) is 

related to 𝑓(2,𝑥),(1,1+1) in general. Using this information, we obtain recursive 
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expressions in twofold: i. in case 𝑥 is less than or equal to 𝑅, ii. in case 𝑥 is greater than 

𝑅 with the boundaries defined in (6.17) and (6.18). 

𝑓(1,𝑥),(1,𝑥+1) =
ℎ

𝜇1
∑ 𝑖 (

𝜆1

𝜇1
)

𝑥−𝑖𝑥

𝑖=1
+

𝜆2𝑐2

𝜇1
∑ (

𝜆1

𝜇1
)

𝑥−𝑖𝑥

𝑖=1
+ (

𝜆1

𝜇1
)

𝑥

𝑓(1,0),(1,1)

+ 𝛽 ∑ (
𝜆1

𝜇1
)

𝑥−𝑖

[
ℎ

𝜆1 + 𝜇2
∑ 𝑗 (

𝜆1

𝜆1 + 𝜇2
)

𝑖−𝑗𝑖

𝑗=1

𝑥

𝑖=1

+
𝜆2𝑐2

𝜆1 + 𝜇2
∑ (

𝜆1

𝜆1 + 𝜇2
)

𝑖−𝑗𝑖

𝑗=1
+ (

𝜆1

𝜆1 + 𝜇2
)

𝑖

𝑓(2,0),(1,1)

+ ∑ (
𝜆1

𝜆1 + 𝜇2
)

𝑖−𝑗+1

𝑓(1,𝑗),(1,𝑗+1)

𝑖

𝑗=1
] , ∀𝑥>0,𝑥≤𝑅                              (6.17) 

𝑓(1,𝑥),(1,𝑥+1) =
ℎ

𝜇1
∑ 𝑖 (

𝜆1

𝜇1
)

𝑥−𝑖𝑥

𝑖=1
+ (

𝜆1

𝜇1
)

𝑥

𝑓(1,0),(1,1)

+ 𝛽 ∑ (
𝜆1

𝜇1
)

𝑥−𝑖

[
ℎ

𝜆1 + 𝜇2
∑ 𝑗 (

𝜆1

𝜆1 + 𝜇2
)

𝑖−𝑗𝑖

𝑗=1

𝑥

𝑖=1

+ (
𝜆1

𝜆1 + 𝜇2
)

𝑖

𝑓(2,0),(1,1)

+ ∑ (
𝜆1

𝜆1 + 𝜇2
)

𝑖−𝑗+1

𝑓(1,𝑗),(1,𝑗+1)

𝑖

𝑗=1
] , ∀𝑥>𝑅                                    (6.18) 

 For the aim of expected length of a production period, first passage time analysis 

(Solberg (2008)) is conducted. The analysis provides expected first passage time from 

any state to another with given transition rates. Let 𝑚𝑖𝑗 be the expected total time to 

achieve state j for the first time starting from the state i. In our case, we aim to calculate 

𝑚𝑋∗,𝑋∗∗ for the production period. Let 𝜆𝑖𝑗 be the transition rate from state i to j. The 

mean first passage times 𝑚𝑖𝑗 in a continuous time Markov process should satisfy the 

following equation: 

0 = 1 + ∑ 𝜆𝑖𝑘𝑚𝑘𝑗
𝑘≠𝑗

                                                                            (6.19) 

where 𝑖 ≠ 𝑗. Let Λ be the transition rate matrix from any state i to j to be traveled. Then, 

𝑗𝑡ℎ row and 𝑗𝑡ℎ column of the Λ is replaced with zero and the intersection of the 𝑗𝑡ℎ 

row and 𝑗𝑡ℎ column is set to be one. Let 𝜆𝑗
+ be the modified transition matrix. The 

modifications prevent to have singular matrix, then matrix becomes invertible. In 
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equations (6.20) and (6.21), 𝑚𝑗 array is a column vector that holds the first passage 

times from any state i to j where 𝑖𝑡ℎ state is included the 𝑖𝑡ℎ element of the vector. 

0 = 1 + ∑ 𝜆𝑗
+𝑚𝑗

𝑘≠𝑗
                                                                                   (6.20) 

𝑚𝑗 = (−𝜆𝑗
+)

−1
1                                                                                               (6.21) 

 We hereby obtain expected cost via RA using MATLAB with the 

aforementioned algorithms. We also conduct MDP analysis based on value iteration 

algorithm, then we compare the computational effort of these algorithms for given 

system parameters. Table 6.1 shows the CPU times of MDP and RA in two cases: i. 

𝐾 = 0, ii. 𝐾 = 6 with a single demand class consideration. As it is seen, RA is not 

affected by start-up cost as MDP is. 

Table 6.1 CPU Times of MDP and RA – Single Demand Class 

𝑋∗ 𝑋∗∗ 

CPU Time 

𝐾 = 0 𝐾 = 6 

MDP RA MDP RA 

1 16 8.66 0.69 15.02 0.72 

3 16 8.69 0.68 11.1 0.77 

5 16 8.96 0.73 11.34 0.70 

7 16 8.86 0.68 11.39 0.70 

9 16 8.71 0.68 11.47 0.70 

11 16 8.67 0.71 11.79 0.70 

13 16 8.65 0.69 11.83 0.70 

15 16 8.68 0.69 11.96 0.72 

 When a rationing decision is also considered, computation time of MDP 

increases rapidly. Table 6.2 indicates the computational efforts of the algorithms for 

given parameters. When the rationing decision is included to the algorithms in addition 

to the production decision, a remarkable difference between computation time of MDP 

and RA is obtained.  

 It is observed that the computation time is significantly reduced. And this 

reduction will be more pronounced as number of production channel increases. 
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Table 6.2 CPU Times of MDP and RA – Two Demand Classes 

𝑅 𝑋∗ 𝑋∗∗ 

CPU Time 

𝐾 = 0 𝐾 = 6 

MDP RA MDP RA 

2 3 16    47.61     1.64    53.52     1.60 

2 5 16    47.97     1.62    49.85     1.60 

2 7 16    48.53     1.63    50.46     1.63 

2 9 16    49.11     1.60    51.20     1.61 

2 11 16    49.97     1.59    50.91     1.63 

2 13 16    50.56     1.60    51.20     1.61 

2 15 16    50.79     1.61    51.08     1.65 
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7 CONCLUSION AND FUTURE WORK 

 This thesis considers a production-inventory system in a make-to-stock 

environment with multiple identical production channels, fixed start-up costs, several 

demand classes and lost sale costs. Production times are assumed to be 2-phase Coxian 

random variables that allow us to embed rework operations into production process. 

Demands of customer classes arrive according to independent Poisson processes and 

demand classes are differentiated based on their lost sale costs. The system is modeled 

as an 𝑀/𝐶𝑜𝑥𝑖𝑎𝑛 − 2/𝑠 make-to-stock queue and dynamic programming formulation 

is developed under the average system cost criterion. 

 Phase-type production time consideration with multiple channels, several 

customer classes and start-up costs is an extensive study in the literature. 𝑀/𝐶𝑜𝑥𝑖𝑎𝑛 −

2/𝑠 is a direct extension of 𝑀/𝑀/𝑠 make-to-stock queue. Additionally, 2-phase 

Coxian processing times extends the 2-stage Erlangian processing times by offering 

different production rates to the stages, i.e. 𝑀/𝐶𝑜𝑥𝑖𝑎𝑛 − 2/𝑠 generalizes the 𝑀/𝐸2/𝑠 

make-to-stock queue.  

 We first characterize the optimal production and rationing policies by means of 

numerical analyses and show that optimal policy structure is highly dynamic. In 

consideration of applicability of the policies, we propose a dynamic rationing policy 

whose performance is close to the performance of the optimal policy. We then work 

on alternative production policies utilizing the dynamic information that the system 

state vector carries. We proposed different ways of assessing the value of inventory 

level and the number of active servers at both stages. Furthermore, we conduct a 

renewal analysis for the 𝑀/𝐶𝑜𝑥𝑖𝑎𝑛 − 2/1 with two demand classes and obtain the 

optimal average system cost. When we compare the renewal analysis with value 

iteration algorithm, we observe that the computation time is significantly reduced. 

 The renewal analysis may be easily extended to the n-many customer classes, 

since the current one is based on two classes. This analysis can be also modified to 

assess the performance of better performing dynamic rationing policies. Additionally, 

a desirable extension of our study may be n-phase Coxian processing time 

consideration where each production stage has its own rework operation. 
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APPENDIX 1 QUESTIONAIRE 

 The detailed production and rationing decisions when s increases:  
 
 

(s=3) 

Optimal Production Decisions Optimal Rationing Decisions 

state Inventory Level state Inventory Level 

 [x1, x2] 0 1 2 3 4 5 6  [x1, x2] 0 1 2 3 4 5 6 

[0,0] 3 3 3 3 1 0 0 [0,0] 0 0 0 1 1 1 1 

[0,1] 2 2 2 1 0 0 0 [0,1] 0 0 1 1 1 1 1 

[0,2] 1 1 1 0 0 0 0 [0,2] 0 0 1 1 1 1 1 

[0,3] 0 0 0 0 0 0 0 [0,3] 0 0 1 1 1 1 1 

[1,0] 3 3 3 3 1 1 1 [1,0] 0 0 0 1 1 1 1 

[1,1] 2 2 2 1 1 1 1 [1,1] 0 0 1 1 1 1 1 

[1,2] 1 1 1 1 1 1 1 [1,2] 0 0 1 1 1 1 1 

[2,0] 3 3 3 3 2 2 2 [2,0] 0 0 0 1 1 1 1 

[2,1] 2 2 2 2 2 2 2 [2,1] 0 0 1 1 1 1 1 

[3,0] 3 3 3 3 3 3 3 [3,0] 0 0 0 1 1 1 1 

 (s=6) 

state Inventory Level state Inventory Level 

 [x1, x2] 0 1 2 3 4 5 6  [x1, x2] 0 1 2 3 4 5 6 

[0,0] 6 6 3 1 0 0 0 [0,0] 0 0 1 1 1 1 1 

[0,1] 5 4 1 0 0 0 0 [0,1] 0 0 1 1 1 1 1 

[0,2] 4 2 0 0 0 0 0 [0,2] 0 0 1 1 1 1 1 

[0,3] 3 0 0 0 0 0 0 [0,3] 0 0 1 1 1 1 1 

[0,4] 1 0 0 0 0 0 0 [0,4] 0 1 1 1 1 1 1 

[0,5] 0 0 0 0 0 0 0 [0,5] 0 1 1 1 1 1 1 

[0,6] 0 0 0 0 0 0 0 [0,6] 0 1 1 1 1 1 1 

[1,0] 6 6 3 1 1 1 1 [1,0] 0 0 1 1 1 1 1 

[1,1] 5 4 1 1 1 1 1 [1,1] 0 0 1 1 1 1 1 

[1,2] 4 2 1 1 1 1 1 [1,2] 0 0 1 1 1 1 1 

[1,3] 3 1 1 1 1 1 1 [1,3] 0 1 1 1 1 1 1 

[1,4] 1 1 1 1 1 1 1 [1,4] 0 1 1 1 1 1 1 

[1,5] 1 1 1 1 1 1 1 [1,5] 0 1 1 1 1 1 1 

[2,0] 6 6 3 2 2 2 2 [2,0] 0 0 1 1 1 1 1 

[2,1] 5 4 2 2 2 2 2 [2,1] 0 0 1 1 1 1 1 

[2,2] 4 2 2 2 2 2 2 [2,2] 0 0 1 1 1 1 1 

[2,3] 3 2 2 2 2 2 2 [2,3] 0 1 1 1 1 1 1 

[2,4] 2 2 2 2 2 2 2 [2,4] 0 1 1 1 1 1 1 

[3,0] 6 6 3 3 3 3 3 [3,0] 0 0 1 1 1 1 1 

[3,1] 5 4 3 3 3 3 3 [3,1] 0 0 1 1 1 1 1 
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[3,2] 4 3 3 3 3 3 3 [3,2] 0 0 1 1 1 1 1 

[3,3] 3 3 3 3 3 3 3 [3,3] 0 1 1 1 1 1 1 

[4,0] 6 6 4 4 4 4 4 [4,0] 0 0 1 1 1 1 1 

[4,1] 5 4 4 4 4 4 4 [4,1] 0 0 1 1 1 1 1 

[4,2] 4 4 4 4 4 4 4 [4,2] 0 0 1 1 1 1 1 

[5,0] 6 6 5 5 5 5 5 [5,0] 0 0 1 1 1 1 1 

[5,1] 5 5 5 5 5 5 5 [5,1] 0 0 1 1 1 1 1 

[6,0] 6 6 6 6 6 6 6 [6,0] 0 0 1 1 1 1 1 

(s=8) 

state Inventory Level state Inventory Level 

 [x1, x2] 0 1 2 3 4 5 6  [x1, x2] 0 1 2 3 4 5 6 

[0,0] 8 5 3 1 0 0 0 [0,0] 0 0 1 1 1 1 1 

[0,1] 6 4 1 0 0 0 0 [0,1] 0 0 1 1 1 1 1 

[0,2] 5 2 0 0 0 0 0 [0,2] 0 0 1 1 1 1 1 

[0,3] 3 0 0 0 0 0 0 [0,3] 0 0 1 1 1 1 1 

[0,4] 1 0 0 0 0 0 0 [0,4] 0 1 1 1 1 1 1 

[0,5] 0 0 0 0 0 0 0 [0,5] 0 1 1 1 1 1 1 

[0,6] 0 0 0 0 0 0 0 [0,6] 0 1 1 1 1 1 1 

[0,7] 0 0 0 0 0 0 0 [0,7] 0 1 1 1 1 1 1 

[0,8] 0 0 0 0 0 0 0 [0,8] 0 1 1 1 1 1 1 

[1,0] 8 5 3 1 1 1 1 [1,0] 0 0 1 1 1 1 1 

[1,1] 6 4 1 1 1 1 1 [1,1] 0 0 1 1 1 1 1 

[1,2] 5 2 1 1 1 1 1 [1,2] 0 0 1 1 1 1 1 

[1,3] 3 1 1 1 1 1 1 [1,3] 0 1 1 1 1 1 1 

[1,4] 1 1 1 1 1 1 1 [1,4] 0 1 1 1 1 1 1 

[1,5] 1 1 1 1 1 1 1 [1,5] 0 1 1 1 1 1 1 

[1,6] 1 1 1 1 1 1 1 [1,6] 0 1 1 1 1 1 1 

[1,7] 1 1 1 1 1 1 1 [1,7] 0 1 1 1 1 1 1 

[2,0] 8 5 3 2 2 2 2 [2,0] 0 0 1 1 1 1 1 

[2,1] 6 4 2 2 2 2 2 [2,1] 0 0 1 1 1 1 1 

[2,2] 5 2 2 2 2 2 2 [2,2] 0 0 1 1 1 1 1 

[2,3] 3 2 2 2 2 2 2 [2,3] 0 1 1 1 1 1 1 

[2,4] 2 2 2 2 2 2 2 [2,4] 0 1 1 1 1 1 1 

[2,5] 2 2 2 2 2 2 2 [2,5] 0 1 1 1 1 1 1 

[2,6] 2 2 2 2 2 2 2 [2,6] 0 1 1 1 1 1 1 

[3,0] 8 5 3 3 3 3 3 [3,0] 0 0 1 1 1 1 1 

[3,1] 6 4 3 3 3 3 3 [3,1] 0 0 1 1 1 1 1 

[3,2] 5 3 3 3 3 3 3 [3,2] 0 0 1 1 1 1 1 

[3,3] 3 3 3 3 3 3 3 [3,3] 0 1 1 1 1 1 1 

[3,4] 3 3 3 3 3 3 3 [3,4] 0 1 1 1 1 1 1 

[3,5] 3 3 3 3 3 3 3 [3,5] 0 1 1 1 1 1 1 

[4,0] 8 5 4 4 4 4 4 [4,0] 0 0 1 1 1 1 1 

[4,1] 6 4 4 4 4 4 4 [4,1] 0 0 1 1 1 1 1 

[4,2] 5 4 4 4 4 4 4 [4,2] 0 0 1 1 1 1 1 

[4,3] 4 4 4 4 4 4 4 [4,3] 0 1 1 1 1 1 1 
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[4,4] 4 4 4 4 4 4 4 [4,4] 0 1 1 1 1 1 1 

[5,0] 8 5 5 5 5 5 5 [5,0] 0 0 1 1 1 1 1 

[5,1] 6 5 5 5 5 5 5 [5,1] 0 0 1 1 1 1 1 

[5,2] 5 5 5 5 5 5 5 [5,2] 0 1 1 1 1 1 1 

[5,3] 5 5 5 5 5 5 5 [5,3] 0 1 1 1 1 1 1 

[6,0] 8 6 6 6 6 6 6 [6,0] 0 0 1 1 1 1 1 

[6,1] 6 6 6 6 6 6 6 [6,1] 0 0 1 1 1 1 1 

[6,2] 6 6 6 6 6 6 6 [6,2] 0 1 1 1 1 1 1 

[7,0] 8 7 7 7 7 7 7 [7,0] 0 0 1 1 1 1 1 

[7,1] 7 7 7 7 7 7 7 [7,1] 0 1 1 1 1 1 1 

[8,0] 8 8 8 8 8 8 8 [8,0] 0 0 1 1 1 1 1 

 (s=9) 

state Inventory Level state Inventory Level 

 [x1, x2] 0 1 2 3 4 5 6  [x1, x2] 0 1 2 3 4 5 6 

[0,0] 8 5 3 1 0 0 0 [0,0] 0 0 1 1 1 1 1 

[0,1] 6 4 1 0 0 0 0 [0,1] 0 0 1 1 1 1 1 

[0,2] 5 2 0 0 0 0 0 [0,2] 0 0 1 1 1 1 1 

[0,3] 3 0 0 0 0 0 0 [0,3] 0 0 1 1 1 1 1 

[0,4] 1 0 0 0 0 0 0 [0,4] 0 1 1 1 1 1 1 

[0,5] 0 0 0 0 0 0 0 [0,5] 0 1 1 1 1 1 1 

[0,6] 0 0 0 0 0 0 0 [0,6] 0 1 1 1 1 1 1 

[0,7] 0 0 0 0 0 0 0 [0,7] 0 1 1 1 1 1 1 

[0,8] 0 0 0 0 0 0 0 [0,8] 0 1 1 1 1 1 1 

[0,9] 0 0 0 0 0 0 0 [0,9] 0 1 1 1 1 1 1 

[1,0] 8 5 3 1 1 1 1 [1,0] 0 0 1 1 1 1 1 

[1,1] 6 4 1 1 1 1 1 [1,1] 0 0 1 1 1 1 1 

[1,2] 5 2 1 1 1 1 1 [1,2] 0 0 1 1 1 1 1 

[1,3] 3 1 1 1 1 1 1 [1,3] 0 1 1 1 1 1 1 

[1,4] 1 1 1 1 1 1 1 [1,4] 0 1 1 1 1 1 1 

[1,5] 1 1 1 1 1 1 1 [1,5] 0 1 1 1 1 1 1 

[1,6] 1 1 1 1 1 1 1 [1,6] 0 1 1 1 1 1 1 

[1,7] 1 1 1 1 1 1 1 [1,7] 0 1 1 1 1 1 1 

[1,8] 1 1 1 1 1 1 1 [1,8] 0 1 1 1 1 1 1 

[2,0] 8 5 3 2 2 2 2 [2,0] 0 0 1 1 1 1 1 

[2,1] 6 4 2 2 2 2 2 [2,1] 0 0 1 1 1 1 1 

[2,2] 5 2 2 2 2 2 2 [2,2] 0 0 1 1 1 1 1 

[2,3] 3 2 2 2 2 2 2 [2,3] 0 1 1 1 1 1 1 

[2,4] 2 2 2 2 2 2 2 [2,4] 0 1 1 1 1 1 1 

[2,5] 2 2 2 2 2 2 2 [2,5] 0 1 1 1 1 1 1 

[2,6] 2 2 2 2 2 2 2 [2,6] 0 1 1 1 1 1 1 

[2,7] 2 2 2 2 2 2 2 [2,7] 0 1 1 1 1 1 1 

[3,0] 8 5 3 3 3 3 3 [3,0] 0 0 1 1 1 1 1 

[3,1] 6 4 3 3 3 3 3 [3,1] 0 0 1 1 1 1 1 

[3,2] 5 3 3 3 3 3 3 [3,2] 0 0 1 1 1 1 1 

[3,3] 3 3 3 3 3 3 3 [3,3] 0 1 1 1 1 1 1 
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[3,4] 3 3 3 3 3 3 3 [3,4] 0 1 1 1 1 1 1 

[3,5] 3 3 3 3 3 3 3 [3,5] 0 1 1 1 1 1 1 

[3,6] 3 3 3 3 3 3 3 [3,6] 0 1 1 1 1 1 1 

[4,0] 8 5 4 4 4 4 4 [4,0] 0 0 1 1 1 1 1 

[4,1] 6 4 4 4 4 4 4 [4,1] 0 0 1 1 1 1 1 

[4,2] 5 4 4 4 4 4 4 [4,2] 0 0 1 1 1 1 1 

[4,3] 4 4 4 4 4 4 4 [4,3] 0 1 1 1 1 1 1 

[4,4] 4 4 4 4 4 4 4 [4,4] 0 1 1 1 1 1 1 

[4,5] 4 4 4 4 4 4 4 [4,5] 0 1 1 1 1 1 1 

[5,0] 8 5 5 5 5 5 5 [5,0] 0 0 1 1 1 1 1 

[5,1] 6 5 5 5 5 5 5 [5,1] 0 0 1 1 1 1 1 

[5,2] 5 5 5 5 5 5 5 [5,2] 0 1 1 1 1 1 1 

[5,3] 5 5 5 5 5 5 5 [5,3] 0 1 1 1 1 1 1 

[5,4] 5 5 5 5 5 5 5 [5,4] 0 1 1 1 1 1 1 

[6,0] 8 6 6 6 6 6 6 [6,0] 0 0 1 1 1 1 1 

[6,1] 6 6 6 6 6 6 6 [6,1] 0 0 1 1 1 1 1 

[6,2] 6 6 6 6 6 6 6 [6,2] 0 1 1 1 1 1 1 

[6,3] 6 6 6 6 6 6 6 [6,3] 0 1 1 1 1 1 1 

[7,0] 8 7 7 7 7 7 7 [7,0] 0 0 1 1 1 1 1 

[7,1] 7 7 7 7 7 7 7 [7,1] 0 1 1 1 1 1 1 

[7,2] 7 7 7 7 7 7 7 [7,2] 0 1 1 1 1 1 1 

[8,0] 8 8 8 8 8 8 8 [8,0] 0 0 1 1 1 1 1 

[8,1] 8 8 8 8 8 8 8 [8,1] 0 1 1 1 1 1 1 

[9,0] 9 9 9 9 9 9 9 [9,0] 0 0 1 1 1 1 1 

 




