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ABSTRACT

WEAK SOLUTIONS OF CAUCHY DYNAMIC AND
HYPERBOLIC PARTIAL DYNAMIC EQUATIONS IN

BANACH SPACES

Duygu Soyoğlu

MS. in Mathematics

Supervisor: Asst. Prof. Dr. Ahmet Yantır

June 06, 2012

In this dissertation, we obtain the sufficient conditions (as close as necessary

conditions) for the existence of weak solutions for the second order dynamic

Cauchy problem with mixed derivatives

x∆∇(t) = f(t, x(t)),

x(0) = 0, x∆(0) = η1

, t ∈ T, η1 ∈ E

and an hyperbolic partial dynamic equation

zΓ∆(x, y) = f(x, y, z(x, y)),

z(x, 0) = 0, z(0, y) = 0
, x ∈ T1, y ∈ T2

in Banach spaces. As the dynamic equations are the unification of differential,

difference and q-discrete equations, our results are also true for the special cases

R,Z, hZ and Kq.

We establish integral operators corresponding to our problems in appropriate

circumstances and we prove the existence of the fixed points of these operators

via Sadowskii fixed point theorem. The measure of weak noncompactness β,

introduced by DeBlasi,

β(A) = inf{t > 0 : there exists C ∈ Kw such that A ⊂ C + tB1},

is used for the compactness condition of the operators.

Keywords: Time Scale, fixed point theorem, weak solution, Cauchy problem,

measure of weak noncompactness, mean value theorem.
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ÖZET

BANACH UZAYLAR ÜZERİNDE CAUCHY DİNAMİK
VE KISMİ TÜREVLİ HİPERBOLİK DİNAMİK

DENKLEMİNİN ZAYIF ÇÖZÜMLERİ

Duygu Soyoğlu

Matematik, Master

Tez Yöneticisi: Yrd. Doç. Dr. Ahmet Yantır

06 Haziran 2012

Bu tezde, Banach uzaylar üzerinde ∆∇-zayıf türevler içeren ikinci mertebeden

Cauchy probleminin

x∆∇(t) = f(t, x(t)),

x(0) = 0, x∆(0) = η1

, t ∈ T, η1 ∈ E

ve hiperbolik kısmi zayıf türevli dinamik denklemin

zΓ∆(x, y) = f(x, y, z(x, y)),

z(x, 0) = 0, z(0, y) = 0
, x ∈ T1, y ∈ T2.

zayıf çözümlerinin varlığı için yeter koşullar (gerek koşullara mümkün olduğu

kadar yakın) elde ettik. Dinamik denklemler, diferansiyel, fark ve q-diskret den-

klemlerin bir birleşimi olduğundan, sonuçlarımız R,Z, hZ ve Kq özel durumları

olan için de doğrudur.

Öncelikle problemlerimize uygun koşullarda karşılık gelen integral operatörleri

oluşturduk ve Sadowskii sabit nokta teoremi yardımı ile bu operatörlerin sabit

noktalarının varlığını ispatladık. Operatörlerin kompaktlık koşulları için DeBlasi

tarafından geliştirilen β zayıf kompakt olmama ölçümü

β(A) = inf{t > 0 : ∃C ∈ Kw öyle ki A ⊂ C + tB1}

kullanıldı.

Anahtar sözcükler : Zaman skalası, sabit nokta teoremi, zayıf çözüm, Cauchy

problemi, zayıf kompakt olmama ölçümü,ortalama değer teoremi.
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Ā The closure of A

A
w

The weak closure of A

β(A) The measure of weak noncompactness of A

diam(A) The diameter of A

||u|| The norm of u

HCP Hyperbolic Cauchy problem

pp. pages

a.e. almost everywhere



Chapter 1

Introduction

Time scale (or a measure chain) which unifies the discrete and continuous analy-

sis was initiaded by Hilger in his Ph.D. thesis [43]. Hilger formed the definitions

of derivatives and integral on time scales. After the theory of time scale was cre-

ated and the first article by Aulbach and Hilger [14] was published, the concept

of the time scale attracted the attention of the scientists especially working on

discrete and continuous models. The differential equations, difference equations

and quantum equations [45] h-difference (uniform stepsize) and q-difference (non-

uniform stepsize) equations were unified as ”dynamic equations”.

Time scale provides two important advantages for the theory of differential equa-

tions. By the ”unification” property of time scales differential equations, dif-

ference equations with uniform step-size (h-difference equations on hR) and the

quantum equations (q-difference (differential) equations on Kq) can be unified.

On the other hand, by the extension property the new approach for the theory of

differential equations (the differential equations formed on a set which is combina-

tion of continuous intervals and discrete sets) can be constructed. The landmark

articles for the dynamic equations on time scales are [29, 31, 30, 52, 53].

The first books on time scales on written by Kaymakçalan, Lakshmikantham

and Sivasundaram [46], and Bohner and Peterson [18]. The book [20] edited by

Bohner and Peterson collected the pinoneering articles on time scales.

Cauchy differential equations x′(t) = f(t, x(t)) and Cauchy difference equation

have been widely studied by many authors [7, 25, 26, 27, 28, 33, 34, 37, 40, 47, 49,

4



CHAPTER 1. INTRODUCTION 5

50, 51, 55, 60, 61] in the literature. Authors studied the existence and properties

of classical, weak, Carathéodory and pseudo-solutions of Cauchy problem. The

existence of solutions is proved by the fixed point of Mönch [56] or Kubiaczyk

[50]. Among them one of the most detailed article is by Cichon [28]. Cichon

studied the Cauchy problem

x′(t) = f(t, x(t))

x(0) = 0, t ∈ I = [0, α]

in details with different type of integrals. In this work author represented the

requirements on the nonlinear term f as possible as close to the necessary condi-

tions.

To obtain the existence results and investigate the structure of the solution, he

defines the notation of solution in the following forms:

• Classical solution (with continuous f)

• Carathéodory solution (with f differentiable a.e)[24]

• Weak solution (using weak topology on E)[61]

• Pseudo- solution (Carathéodory case with weak topology) [54].

However the dynamic equations in Banach spaces are quite new research area.

For Cauchy dynamic equation

x∆(t) = f(t, x(t))

in Banach spaces, the landmark articles belongs to Cichon et.al [29, 30]. Authors

formed the time scale calculus (and the weak time scale calculus) for Banach

space valued functions. By means of measure of noncompactness [16] and Mönch

fixed point theorem [56], the sufficient conditions for the existence of classical and

Carathéodory type solutions are stated.

The existence of weak solutions, by means of measure of weak noncompactness

[36] and the fixed point theorem of Kubiaczyk [50], are obtained [29]. For this

purpose the weak ∆-derivative, and the ∆-integral in Banach spaces and the
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Mean Value Theorem for weak ∆-integrals are introduced.

Satco [59] obtained the existence of continuous solution for a nonlocal Cauchy

problem with integral boundary conditions in Banach spaces, considering non-

absolutely convergent ∆-integrals.

This thesis is organized as follows:

In Chapter 2, we first give basic preliminary introduction to time scale concept

and time scale calculus. Then we state the deformed definitions of time scale

calculus for Banach space valued functions, i.e., for the functions f : T → E.

Next we improve the weak time scale calculus which is introduced by Cichon

et.al. [29] for double integrals. Consequently we list the theorems and definitions

which will be used in the rest of the dissertation. Finally we give brief information

about measure of noncompactness β.

In Chapter 3 we prove the existence of weak solutions of the second order

dynamic Cauchy problem with mixed derivatives. For this purpose, we make use

of measure of DeBlasi weak noncompactness β, the mean value theorem for weak

∆-integrals and Sadowskii and Kubiaczyk fixed point theorems.

In Chapter 4 we generalize the result of [35] and prove the existence of weak

solutions of an hyperbolic partial dynamic equation in Banach spaces. The weak

Riemann double integral and the mean value theorem for double weak integrals

are introduced in Chapter 2 to prove the main result. We make use of DeBlasi

measure of weak noncompactness and Sadowskii and Kubiaczyk fixed point the-

orems.



Chapter 2

Preliminaries

2.1 Time Scale Calculus

A time scale (or a measure chain) is an arbitrary nonempty closed subset

of real numbers. Therefore, the set of real numbers, the integers, the natural

numbers, and the Cantor set are the examples of time scales. However, the

rational numbers, the complex numbers, and the open interval (0, 1), are not

time scales. The calculus of time scales was iniated by Stefan Hilger in order to

create a theory that can unify discrete and continuous analysis [44]. Indeed for

the most famous time scales, the delta derivative f∆ for a function f defined on

T turns out to be

1. f∆ = f ′ if T = R,

2. f∆ = ∆f if T = Z,

3. f∆ = ∆ qf =
f(qt)− f(t)

(q − 1)t
if T = Kq.

After Hilger created the theory, many authors contributed the theory of time

scales. (see [3, 5, 8, 9, 11, 13, 14, 18, 20, 46] and references therein). For the basic

calculus on time scales, we follow the definitions and notations of the books by

Bohner and Peterson [18, 20] in the next subsections.

In this dissertation, by the interval [a, b]T, we mean the intersection of the interval

7



CHAPTER 2. PRELIMINARIES 8

[a, b] and time scale T, i.e., [a, b]T = {s ∈ T : a ≤ s ≤ b}. Other types of intervals

can be defined in a similar manner.

2.1.1 Forward and Backward Jump Operators

For an easy understanding of the issue of time scale calculus, first we have to

define the forward jump operator σ, the backward jump operator ρ, the graininess

functions µ and ν, the region of ∆- differentiability Tκ and the region of ∇-

differentiability Tκ. The closest point in the time scale on the right and left of

a given point are the forward jump and backward jump operators, respectively.

And the graininess functions are the distance from a point to the closest point

on the right and the left.

Definition 2.1.1 Let T be a time scale and t ∈ T. We define the forward jump
operator σ : T→ T by

σ(t) = inf{s ∈ T : s > t},

while the backward jump operator ρ : T→ T, is defined by

ρ(t) = sup{s ∈ T : s < t}.

For the points M = max(T) and m = min(T), σ(M) = M and ρ(m) = m.
Clearly, for t ∈ T, the images σ(t), ρ(t) ∈ T, as T is closed. The point t ∈ T can
be classified with respect to the images under the operators σ and ρ as follows:

t is right dense if σ(t) = t,

t is right scattered if σ(t) > t,

t is left dense if ρ(t) = t,

t is left scattered if ρ(t) < t.

t ∈ T is said to be a dense point if it is both right and left dense and t ∈ T
is isolated point if it is both right and left scattered. The graininess functions
µ : T→ [0,∞) and ν : T→ [0,∞) are defined by µ(t) = σ(t)−t and ν(t) = t−ρ(t)
respectively.

The trivial continuous and discrete time scales R and Z, have the following clas-

sifications:

If T = R, then for each t ∈ R,

σ(t) = inf{s ∈ R : s > t} = inf(t,∞) = t,
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and similarly

ρ(t) = sup{s ∈ R : s < t} = sup(−∞, t) = t.

Therefore each point of R is a dense point. And µ(t) ≡ ν(t) ≡ 0 for all t ∈ R.

If T = Z, for each t ∈ Z,

σ(t) = inf{s ∈ Z : s > t} = inf{t+ 1, t+ 2, · · · } = t+ 1

and similarly

ρ(t) = sup{s ∈ T : s < t} = sup{· · · , t− 2, t− 1} = t− 1.

Therefore each point of Z is an isolated point. And µ(t) ≡ ν(t) ≡ 1 for all t ∈ Z.

2.1.2 Derivative on Time Scale

The region of ∆ differentiability Tκ, which is derived from T is required in

order to define ”well-defined” ∆-derivative. In literature, Tκ is called Hilger’s

above truncated set and is defined as follows [18]:

Tκ =

{
T− {maxT}, if max(T) <∞ and maxT is left scattered,

T , otherwise.

Definition 2.1.2 Let f : T→ R be a function and t ∈ Tκ. Then we define f∆(t)
to be the number (provided that it exists) with the property that given ε > 0, there
exists a neighborhood Nt of t (i.e., Nt = (t − δ, t + δ) ∩ T for some δ > 0) such
that

|f(σ(t))− f(s)− f∆(t)[σ(t)− s]| ≤ ε|σ(t)− s|, ∀s ∈ Nt. (2.1)

We call f∆(t) the ∆- (or Hilger) derivative of f at t. Moreover, we say that f
is ∆- (or Hilger) differentiable on Tκ provided that f∆(t) exists for all t ∈ Tκ.
Then the function f∆ : T→ R is called the ∆-derivative of f on Tκ.

Now we state the primary theorems on ∆- derivative on time scales.

Theorem 2.1.3 Let f : T → R be a function and t ∈ Tκ. Then we have the
following:
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(i) If f is ∆-differentiable at t, then f is continuous at t.

(ii) If f is continuous at t and t is right scattered, then f is ∆-differentiable at
t and

f∆(t) =
f(σ(t))− f(t)

µ(t)
.

(iii) If t is right-dense, then f is ∆-differentiable at t if and only if the limit

lim
s→t

f(t)− f(s)

t− s

exists. In this case

f∆(t) = lim
s→t

f(t)− f(s)

t− s
.

(vi) If f is ∆-differentiable at t, then

f(σ(t)) = f(t) + µ(t)f∆(t).

Proof. See Theorem 1.16, (pp. 6-7) of [18]. �

Theorem 2.1.4 Assume that the functions f, g : T→ R are ∆-differentiable at
t ∈ Tκ. Then for all α, β ∈ R, we have the followings:

(i) The linear sum of f and g is ∆-differentiable at t and

(αf + βg)∆(t) = αf∆(t) + βg∆(t).

(ii) The product (fg) : T→ R is ∆-differentiable at t and

(fg)∆(t) = f∆(t)g(t) + f(σ(t))g∆(t)

= f(t)g∆(t) + f∆(t)g(σ(t)).

(iii) If g(t)g(σ(t)) 6= 0, then
f

g
∆-differentiable at t and

(
f

g
)∆(t) =

f∆(t)g(t)− f(t)g∆(t)

g(t)g(σ(t))
.
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Proof. See Theorem 1.20, (pp. 8-9) of [18]. �

Next we state the ∇-analogues of the above definitions and theorems. The region

of ∇-differentiability Tκ, which is derived from T is required in order to define

”well-defined” ∇-derivative [18].

Tκ =

{
T− {minT}, if min(T) > −∞ and minT is right scattered,

T , otherwise.

Definition 2.1.5 Let f : T→ R be a function and t ∈ Tκ. Then we define f∇(t)
to be the number (provided that it exists) with the property that given ε > 0, there
exists a neighborhood Nt of t such that

|f(ρ(t))− f(s)− a[ρ(t)− s]| ≤ ε|ρ(t)− s|, ∀s ∈ Nt. (2.2)

We call f∇(t) the ∇-derivative of f at t. Moreover, we say that f is ∇-
differentiable on Tκ provided that f∇(t) exists for all t ∈ Tκ. Then the function
f∇ : T→ R is called the ∇-derivative of f on Tκ.

Theorem 2.1.6 Let f : T → R be a function and t ∈ Tκ. Then we have the
followings:

(i) If f is ∇-differentiable at t, then f is continuous at t.

(ii) If f is continuous at t and t is left scattered, then f is ∇-differentiable at t
and

f∇(t) =
f(t)− f(ρ(t))

ν(t)
.

(iii) If t is left dense, then f is ∇-differentiable at t if and only if the limit

lim
s→t

f(t)− f(s)

t− s

exists. In this case

f∇(t) = lim
s→t

f(t)− f(s)

t− s
.

(vi) If f is ∇-differentiable at t, then

f(ρ(t)) = f(t)− ν(t)f∇(t).
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Proof. See Theorem 3.2, (pp. 47-48) of [20]. �

Theorem 2.1.7 Assume that the functions f, g : T→ R are ∇-differentiable at
t ∈ Tκ. Then for all α, β ∈ R, we have the followings:

(i) The linear sum of f and g is ∇-differentiable at t and

(αf + βg)∇(t) = αf∇(t) + βg∇(t).

(ii) The product (fg) : T→ R is ∇-differentiable at t and

(fg)∇(t) = f∇(t)g(t) + f(ρ(t))g∇(t)

= f(t)g∇(t) + f∇(t)g(ρ(t)).

(iii) If g(t)g(ρ(t)) 6= 0, then
f

g
∇-differentiable at t and

(
f

g
)∇(t) =

f∇(t)g(t)− f(t)g∇(t)

g(t)g(ρ(t))
.

Proof. See Theorem 3.3, (pp. 48) of [20]. �

2.1.3 Integration on Time Scale

After Hilger introduced the basics of integration theory, the Riemann ∆- and ∇-

integrability are constructed by Guseinov and Kaymakcalan [41]. Then Aulbach

and Neidhard [15] improved the theory. The improper integral was initiated by

Bohner and Guseinov [19]. The Lebesgue integral on time scales was introduced

by Guseinov [42]. Cabada and Vivero [22] studied the relationship between Rie-

mann and Lebesgue integrals on time scales. The fundamental integration theory

can be found in almost each article related to time scales. These information are

collected in the books [18, 20] by Bohner and Peterson.

In this subsection, we express some basic definitions and theorems which we need

in the rest of the thesis.

Definition 2.1.8 [18] A function f : T → R is called rd-continuous provided it
is continuous at all right dense points in T and its left-sided limits exist (finite)
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at all left dense points in T. In this thesis, the set of rd-continuous functions
f : T→ R will be denoted by Crd.
Similarly, a function f : T → R is called ld-continuous provided it is continuous
at all left dense points in T and its right-sided limits exist (finite) at all left dense
points in T. In this thesis, the set of ld-continuous functions f : T → R will be
denoted by Cld.

Theorem 2.1.9 .

(i) Every rd-continuous function has a ∆-antiderivative. In particular, if t0 ∈
T, then F defined by

F (t) :=

∫ t

t0

f(s)∆s for t ∈ T

is a ∆-antiderivative of f .

(ii) Every ld-continuous function has a ∇-antiderivative. In particular, if t0 ∈
T, then F defined by

F (t) :=

∫ t

t0

f(s)∇s for t ∈ T

is a ∇-antiderivative of f .

Proof. See Theorem 1.74, (pp. 27) and Theorem 8.45 (pp. 332) of [18]. �

Next we present two examples, ∆ and ∇-integral on Z, R, and hZ, to emphasize

the difference between the ordinary derivative and integral and time scale inte-

grals. The following theorem is very useful to evaluate the definite integral on

discrete sets.

Theorem 2.1.10 If f ∈ Crd and t ∈ Tκ, then∫ σ(t)

t

f(s)∆s = µ(t)f(t),

and similarly if f ∈ Cld and t ∈ Tκ, then∫ t

ρ(t)

f(s)∇s = ν(t)f(t).
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Proof. See Theorem 1.75, (pp. 28) and Theorem 8.46 (pp. 332) of [18]. �

Theorem 2.1.11 Let a, b ∈ T and f ∈ Crd. If [a, b] consists of only isolated
points, then ∫ b

a

f(t)∆t =


∑

t∈[a,b) µ(t)f(t) , a < b;

0 , a = b;
−
∑

t∈[b,a) µ(t)f(t) , a > b.

Proof. See Theorem 5.37, (pp. 139-140) of [20]. �

We briefly summarized the ∆- and the ∇- integrals on time scales. The reader

can find the detailed theory in the books [18, 20].

Example 2.1.12 We consider the function f(t) = t2on an arbitrary time scale.
Let T be an arbitrary time scale and t ∈ Tk.

1. If T = R then σ(t) = t. Therefore f∆(t) = f ′(t) = 2t and∫ b

a

t2∆t =

∫ b

a

t2dt.

2. If T = Z then σ(t) = t+ 1. Therefore f∆(t) = ∆f(t) = 2t+ 1 and∫ b

a

t2∆t =
b−1∑
n=a

n2.

3. If T = 2Z then σ(t) = t+ 2. Therefore f∆(t) = 2t+ 2 and∫ b

a

t2∆t = 2
b−2∑
n=a

n2.

Similarly, to find ∇-derivative and integral, let us take t ∈ Tk. The ∇-derivative
and integral of f .

1. If T = R then ρ(t) = t. Therefore f∇(t) = f ′(t) = 2t and∫ b

a

t2∇t =

∫ b

a

t2dt.
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2. If T = Z then ρ(t) = t− 1. Therefore f∇(t) = ∇f(t) = 2t− 1 and∫ b

a

t2∇t =
b+1∑
n=a

f(n).

3. If T = 2Z then ρ(t) = t− 2. Therefore f∇(t) = 2t− 2 and∫ 2b

2a

t2∇t = 2
2b+2∑
n=2a

f(n).

2.1.4 Measure Theory on Time Scale

The measure theory on time scales’ content has two parts, ∆-measure and ∇-

measure. In this subsection, we mention the basic definitions and theorems of

Lebesgue ∆- and Lebesgue ∇-measure.

The measure theory on time scales is introduced by Guseinov [42]. The reader

can find this article in the book [20] which is the collection of selected works.

After that the theory is improved by Cabada and Vivero [22].

Let F1 be the family of all left closed, right open intervals of a time scale T. The

set function m1 : F1 → [0,∞] defined by

m1([a, b)) = b− a

is a countable additive measure on F1.

Let K be an arbitrary subset of a time scale T and the family {Vj ∈ F1 : j ∈ N}
be a finite or countable cover for K. We define the outer measure on T by

m∗1(K) = inf
∑
j

m1(Vj).

If such a finite or countable cover can not be found forK, then we setm∗1(K) =∞.

Definition 2.1.13 A subset A of T is said to be m∗1 measurable if for all K ⊂ T
the property

m∗1(K) = m∗1(K ∩ A) +m∗1(K ∩ AC)

holds. Here AC is the complement of A in T and is defined by AC = T \ A. The
set of all m∗1 measurable sets is denoted by M(m∗1).
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Definition 2.1.14 The restriction of the outer measure m∗1 on M(m∗1) is called
Lebesgue ∆-measure and denoted by µ∆.

Lebesgue ∆-measure µ∆ is endowed with the following properties:

• All the intervals belonging to F1 are ∆-measurable.

• Since ∅ = [a, a), the empty set is ∆-measurable.

• The time scale T is ∆-measurable.

The single point sets has a Lebesgue measure zero on R. Although this kind of

sets may have nonzero Lebesgue ∆-measure on a time scale. The main differ-

ence Lebesgue ∆-measure and Lebesgue measure is this situation. The following

theorem states this result.

Theorem 2.1.15 If t0 ∈ T \ {maxT}, then the single point set {t0} is ∆-
measurable and

µ∆({t0}) = σ(t0)− t0.

Proof. See Theorem 5.76, (pp. 158) of [20]. �

By making use of the previous theorem the Lebesgue ∆-measure of all kinds of

intervals can be defined as follows:

Theorem 2.1.16 If a, b ∈ T and a ≤ b, then

µ∆([a, b)) = b− a and µ∆((a, b)) = b− σ(a).

If a, b ∈ T \maxT and a ≤ b, then

µ∆((a, b]) = σ(b)− σ(a) and µ∆([a, b]) = σ(b)− a.

Proof. See Theorem 5.77, (pp. 158-159) of [20]. �

By denoting the family of all left open, right closed intervals of a time scale by

F2, the set function m2 : F2 → [0,∞],

m2((a, b]) = b− a
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can be defined on this family. Thus the outer measure m∗2, and the Lebesgue

∇-measure µ∇ can be defined in a similar manner. For more detailed information

see [20, 42].

The ∇ analogues of the Theorems 2.1.15 and 2.1.16 are as follows:

Theorem 2.1.17 If t0 ∈ T \ {minT}, then the single point set {t0} is ∇-
measurable and

µ∇({t0}) = t0 − ρ(t0).

Proof. See Theorem 5.78, (pp. 159) of [20]. �

Theorem 2.1.18 If a, b ∈ T and a ≤ b, then

µ∇((a, b)) = b− a and µ∇((a, b)) = ρ(b)− a.

If a, b ∈ T \minT and a ≤ b, then

µ∇([a, b)) = ρ(b)− ρ(a) and µ∇([a, b]) = b− ρ(a).

Proof. See Theorem 5.79, (pp. 159) of [20]. �

The reader can find the more details about the the Lebesgue ∆- and ∇-measures

and the relationships between these measures and the Lebesgue ∆- and ∇- inte-

grals in Guseinov [42] and Cabada and Vivero [22].

2.1.5 Time Scale Calculus on Banach Spaces

In this subsection, we deal with the generalizations of the definitions of ∆- and ∇-

derivatives and ∆- and ∇-integrals for Banach valued functions. Also we mention

and prove the mean value theorems for ∆- and ∇-integrals. For more details, for

the calculus for Banach space valued function in discrete and continuous case see

[21, 16, 4, 26], for time scale case see [29, 30, 31, 59].

Definition 2.1.19 Let E be a Banach space, u : T→ E be a function and t ∈ Tκ.
Then we define u∆(t) to be the number (provided that it exists) with the property
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that given ε > 0, there exists a neighborhood Nt of t (i.e., Nt = (t− δ, t+ δ) ∪ T
for some δ > 0) such that

|u(σ(t))− u(s)− u∆(t)[σ(t)− s]| ≤ ε|σ(t)− s|, ∀s ∈ Nt. (2.3)

Definition 2.1.20 Let E be a Banach space, u : T→ E be a function and t ∈ Tκ.
Then we define u∇(t) to be the number (provided that it exists) with the property
that given ε > 0, there exists a neighborhood Nt of t (i.e., Nt = (t− δ, t+ δ) ∪ T
for some δ > 0) such that

|u(ρ(t))− u(s)− u∇(t)[ρ(t)− s]| ≤ ε|ρ(t)− s|, ∀s ∈ Nt. (2.4)

Definition 2.1.21 Assume that U∆(t) = u(t) for t ∈ Tκ. The ∆-integral on a
Banach space is defined by∫ t

a

u(τ)∆τ = U(t)− U(a),

while under the assumption W∇(t) = w(t) for t ∈ Tκ, the ∇-integral on a Banach
space is ∫ t

a

w(τ)∇τ = W (t)−W (a).

2.1.6 Partial Derivatives on Time Scales

In this section, we present a brief introduction to multivariable time scale calculus.

The multivariable calculus of time scales is created by Ahlbrandt and Morian, [23]

and Jackson [17] in order to study the partial dynamic equations. We improve

these definitions and theorems for Banach valued functions.

Consider the product T = T1 × T2 × · · · × Tn where Ti is a time scale for all

1 ≤ i ≤ n. Then for any t ∈ T, with t = (t1, t2, · · · , tn) for ti ∈ Ti for all

1 ≤ i ≤ n define the following :

• the forward jump operator σ : T→ T by

σ(t) = (σ(t1), σ(t2), · · · , σ(tn)), where σ(ti) represents the forward jump

operator of ti ∈ Ti on the time scale Ti for all 1 ≤ i ≤ n. Hereafter, the

forward jump operator of the time scale Ti for ti ∈ Ti will be denoted by

σ(ti) = σi(t).
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• the backward jump operator ρ : T→ T by

ρ(t) = (ρ(t1), ρ(t2), · · · , ρ(tn)), where ρ(ti) represents the backward jump

operator of ti ∈ Ti on the time scale Ti for all 1 ≤ i ≤ n. Hereafter, the

forward jump operator of the time scale Ti for ti ∈ Ti will be denoted by

ρ(ti) = ρi(t).

• the graininess function µ : T→ Rn by

µ(t) = (µ(t1), µ(t2), · · · , µ(tn)), where µ(ti) represents the backward jump

operator of ti ∈ Ti on the time scale Ti for all 1 ≤ i ≤ n. Again, from

this point on the graininess function of the time scale Ti for ti ∈ Ti will be

denoted by µ(ti) = µi(t).

• Tk = Tk1 × Tk2 × · · · × Tkn.

Until here, we have defined the multivariate time scale forward jump operator,

now we will define the partial ∆ derivative of a function f(t). Before doing this,

we must give some other notations. From here on, set

fσi(t) = f(t1, t2, · · · , ti−1, σi(t), ti+1, · · · , tn) and the set

f si (t) = f(t1, t2, · · · , ti−1, s, ti+1, · · · , tn) (i.e. to evaluate f si (t) replace ti in f(t)

by s.)

Definition 2.1.22 Let f : T→ R be a function and let t = (t1, t2, · · · , tn) ∈ Tk.
Then define f∆i(t) to be the number (provided it exists) with the property that
given any ε > 0, there exists a neighborhood U of ti, with U = (ti− δ, ti + δ)∩Ti
for δ > 0 such that∣∣[fσi(t)− f si (t)]− f∆i(t)[σi(t)− s]

∣∣ ≤ ε |σi(t)− s| for all s ∈ U .

f∆i is called the partial delta derivative of f at t with respect to the variable
ti.

Among to these definitions, it can be understood that to find the partial derivative

with respect to ti, the other variables must be seen as constants with respect to
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ti and taking the usual derivative of f(t) in the ti variable on the time scale Ti.
Thus, the definition is same as the generalization of its continuous analog, which

follows from the fact that if Ti = R for all i, then the partial delta derivative is

the usual continuous partial derivative. In the same way, if Ti = hZ for all i,

then the partial delta derivative is the known partial difference operator as given

in [62]. With these investigations, it can be seen that f∆ij(t) (if this value exists)

is found by first taking the partial derivative with respect to ti to get f∆i(t), and

then taking the partial derivative of this derivative function with respect to tj to

obtain f∆ij(t), so that f∆ij = (f∆i)∆j . Higher order mixed partials are defined

and evaluated by the same way. To evaluate f∆iii···i(t) where i occurs n times, the

other notion that will be used is to take the partial derivative of f(t) with respect

to ti n times. From the disputation about mixed partials that we have mentioned

above, it can be easily understood that evaluating this derivative is equivalent

to evaluating f∆n
i (t), where ∆n

i denotes taking the delta derivative with respect

to ti on the time scale Ti n times. In order to simplfy the expressions, we use

fΓ∆(x, y) for the second order partial derivative of f : T → R with respect to x

and y respectively.

2.2 Weak Time Scale Calculus

The weak solutions of Cauchy differential equation, was studied by Szep [61] for

the first time. Later on the theorems on the existence of weak solutions of Cauchy

problem were proved by Cramer, Lakshmikantham, and Mitchell [33], Kubiaczyk

[48], Mitchell and Smith [55], Szufla [47] Cichon [27], Cichon and Kubiaczyk [26].

In Banach spaces for solving existence problems for difference equations with

similar methods equipped with its weak topology were studied, for instance in

[1, 34, 51]. Weak time scale calculus is created by [29] and improved by [63]. We

improve these theory for multivariable calculus in order to construct and obtain

the existence of weak solutions of the hyperbolic Cauchy problem in Banach

spaces.

Definition 2.2.1 A function f : T → E is said to be weakly continuous if it is
continuous from T to E, endowed with its weak topology. A function g : E →
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E1, where E and E1 are Banach spaces, is said to be weakly-weakly sequentially
continuous if, for each weakly convergent sequence (xn) in E, the sequence (g(xn))
is weakly convergent in E1. When the sequence xn tends weakly to x0 in E, we
write xn

w→ x0.

Definition 2.2.2 [29] We say that u : T → E is weakly right dense continuous
(weakly rd-continuous) if u is weakly continuous at every right dense point t ∈ T
and exists and lims→t− u(s) is finite at every left dense point t ∈ T.

The so-called ∆ and∇-weak derivative and ∆, ∇-weak integral for Banach valued

functions are defined by generalizing the notions ∆-derivative and ∆- integral on

time scales [18, 20].

Definition 2.2.3 [29] Let u : T → E. Then we say that u is ∆-weak differen-
tiable at t ∈ T if there exists an element U(t) ∈ E such that for each x∗ ∈ E∗ the
real valued function x∗u is ∆-differentiable at t and (x∗u)∆(t) = (x∗U)(t). Such
a function U is called ∆-weak derivative of u and denoted by u∆w.

For the ∇ analogue we can give similar definition.

Definition 2.2.4 Let u : T → E. Then we say that u is ∇-weak differentiable
at t ∈ T if there exists an element U(t) ∈ E such that for each x∗ ∈ E∗ the real
valued function x∗u is ∇-differentiable at t and (x∗u)∇(t) = (x∗U)(t). Such a
function U is called ∇-weak derivative of u and denoted by u∇w.

Definition 2.2.5 [29] If U∆w = u(t) for all t, then we define ∆-weak Cauchy
integral by

Cw

∫ t

a

u(τ)∆τ = U(t)− U(a).

The ∇-weak Cauchy integral can be defined in a similar way:

Definition 2.2.6 If U∇w = u(t) for all t, then we define ∇-weak Cauchy integral
by

Cw

∫ t

a

u(τ)∇τ = U(t)− U(a).
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By generalizing the Theorem 1.74 of [18], the existence of weak antiderivatives

can be obtained:

Definition 2.2.7 [29](Existence of ∆-weak antiderivatives). Every weakly rd-
continuous function has a weak antiderivative. In particular if t0 ∈ T then U
defined by

U(t) := Cw

∫ t

t0

u(τ)∆τ, t ∈ T

is a weak ∆ antiderivative of u.

Definition 2.2.8 (Existence of ∇-weak antiderivatives). Every weakly ld-
continuous function has a weak antiderivative. In particular if t0 ∈ T then U
defined by

U(t) := Cw

∫ t

t0

u(τ)∇τ, t ∈ T

is a weak ∇ antiderivative of u.

Since the ∆-weak (∇-weak) Cauchy integral is defined by means of weak an-

tiderivatives, the space of ∆-weak, (∇-weak) Cauchy integrable functions (i.e.

the space of weakly rd-continuous functions) is too narrow. Therefore, we need

to define the ∆-weak and ∇-weak Riemann integral for Banach space-valued

function.

Definition 2.2.9 [29] Let P = {a0, a1, · · · , an} be a partition of the interval
[a, b]. P is called finer than δ > 0 either

• µ∆([ai−1, ai)) ≤ δ or

• µ∆([ai−1, ai)) > δ if only ai = σ(ai−1).

Definition 2.2.10 [29] A function u : [a, b] → E is called ∆-weak Riemann
integrable if there exists U ∈ E such that for any ε > 0, there exists δ > 0 with
the following property: For any partition P = {a0, a1, · · · , an} which is finer than
δ and any set of points t1, t2, · · · , tn with tj ∈ [aj−1, aj) for j = 1, 2, · · · , n one
has ∣∣∣∣∣x∗(U)−

n∑
j=1

x∗(u(tj))µ∆([aj−1, aj))

∣∣∣∣∣ ≤ ε, ∀x∗ ∈ E∗.
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According to Definition 2.1.19, U is uniquely determined and it is called the ∆-

weak Riemann integral of u and denoted by

U = Rw

∫ b

a

u(t)∆t.

Definition 2.2.11 A function u : [a, b]→ E is called weak ∇-Riemann integrable
if there exists U ∈ E such that for any ε > 0, there exists δ > 0 with the following
property: For any partition P = {a0, a1, · · · , an} which is finer than δ and any
set of points t1, t2, · · · , tn with tj ∈ [aj−1, aj) for j = 1, 2, · · · , n one has∣∣∣∣∣x∗(U)−

n∑
j=1

x∗(u(tj))µ∇([aj−1, aj))

∣∣∣∣∣ ≤ ε, ∀x∗ ∈ E∗.

According to Definition 2.1.20, U is uniquely determined and it is called the ∇-

weak Riemann integral of u and denoted by

U = Rw

∫ b

a

u(t)∇t.

By regarding the definitions of weak integrals and by using Theorem 4.3 of

Guseinov [42], we are able to state that every Riemann ∆ and ∇-weak integrable

function is a Cauchy ∆ and∇-weak integrable and in this case, these two integrals

coincide.

Theorem 2.2.12 [29](Mean value theorem for ∆-weak integrals) If the function
f : T→ E is ∆- weak integrable then

Rw

∫
Ib

f(t)∆t ∈ µ∆(Ib) · convf(Ib),

where Ib is an arbitrary subinterval of the time scale T and µ∆(Ib) is the Lebesgue
∆- measure of Ib.

Proof. See Theorem 2.11, (pp.4-5) of [29]. �

Similar to the preceeding theorem we construct the mean value theorem for ∇-

weak integrals.
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Theorem 2.2.13 (Mean Value Theorem for ∇-weak integrals) If the function
f : T→ E is ∇- weak integrable then

Rw

∫
Ib

f(t)∇t ∈ µ∇(Ib) · convf(Ib),

where Ib is an arbitrary subinterval of the time scale T and µ∇(Ib) is the Lebesgue
∇- measure of Ib.

Proof. Put v = Rw

∫
A

y(s)∇s and W = µ∇(A) · conv y(A). Suppose to the

contrary that v /∈ W . By the separation theorem for convex sets, there exists

z∗ ∈ E∗ such that sup
x∈W

z∗(x) = α < z∗(v). But

z∗(v) = z∗
(
Rw

∫
A

y(s)∇s
)

=

∫
A

z∗(y(s))∇s.

Moreover since y(s) ∈ y(A), for all s ∈ A, we have

µ∇(A) · y(s) ∈ µ∇(A) · conv y(A) = W, i.e., y(s) ∈ 1

µ∇(A)
·W.

Thus z∗(y(s)) ≤ 1

µ∇(A)
· α. Finally we obtain

z∗(v) =

∫
A

z∗(y(s))∇s ≤
∫
A

α

µ∇(A)
∇s =

α

µ∇(A)
.µ∇(A) = α

which is a contradiction. �

See [18, 20, 22, 42, 15] and for the definition and basic properties of the Lebesgue

∆-measure and the Lebesgue ∆-integral.

In order to study hyperbolic partial dynamic problem stated in Chapter 4, we

need to define the Riemann double integrability and the mean value theorem for

double integrals.

Definition 2.2.14 (Riemann Double Integrability) A Banach space valued-
function f : [a, b] × [c, d] → E is called weak Riemann double integrable if there
exists U ∈ E such that for any ε > 0 there exists a δ with the following property:
For any partition P1 = {a0, a1, · · · , an} of [a, b] and P2 = {c0, c1, · · · , cn} of [c, d]
which are finer than δ and the set of points xj ∈ [aj−1, aj) and yj ∈ [cj−1, cj) for
j = 1, 2, · · · , n one has∣∣∣∣∣x∗(U)−

n∑
j=1

x∗(f(xj, yj))µ∆([aj−1, aj)× [cj−1, cj))

∣∣∣∣∣ ≤ ε,∀x∗ ∈ E∗.
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The function U is called weak Riemann double integral f and denoted by

U = Rw

∫ b

a

Rw

∫ d

c

f(x, y)∆yΓx.

Theorem 2.2.15 (Mean Value Theorem for Double Integrals) If the function
h : T1 × T2 → E is ∆ and Γ-weak integrable,then∫∫

R
h(x, y)∆yΓx ∈ µ∆(R) · conv h(R)

where R is an arbitrary subset of T1 × T2.

Proof. Let

∫∫
R
h(x, y)∆yΓx = v and µ∆(R) · conv h(R) = W . Suppose to the

contrary, that v /∈ W . By separation theorem for the convex sets there exists

z∗ ∈ E∗ such that

sup
g∈W

z∗(g) = α < z∗(v),

then

z∗(v) = z∗
(
Cw

∫
Cw

∫
R
h(x, y)∆yΓx

)
=

∫∫
z∗(h(x, y))∆yΓx.

And let (s, t) ∈ R, we have h(s, t) ∈ h(R). We get

µ∆(R).h(s, t) ⊆ µ∆(R).conv h(R) = W

h(s, t) ⊆ W

µ∆(R)

implies

z∗(h(s, t)) ≤ z∗
(

W

µ∆(R)

)
<

α

µ∆(R)
.

Finally we obtain,

z∗(v) =

∫∫
z∗(h(s, t))∆yΓx ≤

∫∫
R

α

µ∆(R)
∆yΓx =

α

µ∆(R)
· µ∆(R) = α

which is a contradiction. �
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2.3 Basic Definitions and Theorems

In this section, we present the main theorems and the definitions which will be

applied throughout the dissertation.

Theorem 2.3.1 [7] Let E be a Banach space and M ⊂ E. M is relatively
compact if the following conditions hold:

1. M is uniformly bounded in E,

2. The functions taken from M are equicontinuous on any compact interval of
[0,∞),

3. The functions taken from M are equiconvergent, i.e., for any given ε there
exists a real number T = T (ε) > 0 such that |f(t) − f(∞)| < ε, for any
t > T, f ∈M .

Definition 2.3.2 [32] An operator is called completely continuous if it is contin-
uous and maps bounded sets into relatively compact sets.

Definition 2.3.3 [32] Let F be the family of functions from the metric space
(X, d) to the metric space (X ′, d′). The family F is uniformly equicontinuous if
for every ε > 0 there exists δ > 0 such that for all f ∈ F , x, y ∈ X

d(x, y) < δ ⇒ d′(f(x), f(y)) < ε.

More generally, when X is a topological space, a set F of functions from X to X ′

is said to be equicontinuous at x if for every ε > 0, x has a neighborhood Nx such

that d′(f(y), f(x)) < ε for all y ∈ Nx and f ∈ F. This definition usually appears

in the context of of topological vector spaces.

Theorem 2.3.4 (Arzelà-Ascoli Theorem) [57] Let Ω be a bounded subset of Rn

and (fk) be the sequence of the functions from Ω to Rm. If (fk) is equicontinuous
and uniformly equibounded then there exists a uniformly convergent subsequence
(fkj) of (fk).

Definition 2.3.5 [32] Let X be a metric space and A ⊆ X. A is said to be
totally bounded if there exist a a finite subset {s1, s2, . . . , sn} of A such that A ⊆⋃n
k=1 B(sk, ε) for ε > 0 where B(sk, ε) denotes the open ball with center sk and

radius ε.
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The more abstract (more general) version of Arzelà-Ascoli Theorem is as folows:

Theorem 2.3.6 (Arzelà-Ascoli Theorem)[32] Let X and Y be totally bounded
metric spaces and F ⊂ C(X, Y ) be the family of uniformly equicontinuous func-
tions. Then F is totally bounded with respect to uniformly convergence metric
generated by C(X, Y ).

We note that the first version of Arzelà-Ascoli Theorem is a result of the second

one. Really, a complete metric space is totally bounded if and only if its closure

is compact. Thus Ω is totally compact and the images of each fk are in a totally

bounded set. The totally compactness of F = {fk} implies the compactness of

F . Hence (fk) has a convergent subsequence.

Definition 2.3.7 [32] Let F be the family of functions from the metric space
X and the metric space Y . If there exists a bounded subset B of Y such that
f(x) ∈ B for all f ∈ F and x ∈ X, then the family F is said to be equibounded.

Note that, if F ⊂ Cb(X, Y ) (the set of continuous and bounded functions), then F

is equibounded if and only if F is bounded with respect to uniformly boundedness

metric.

Definition 2.3.8 [57] Let Ω be a convex set on R and f : Ω→ R. If

f
(
λx+ (1− λ)y

)
≥ λf(x) + (1− λ)f(y)

hold for all x, y ∈ Ω and λ ∈ (0, 1), then the function f is said to be a concave
function.

Theorem 2.3.9 [58](Sadovskii Fixed Point Theorem) If F : B → B is contiuous
mapping satisfying φ(F (V )) < φ(V ) for arbitrary nonempty subset V of B with
φ(V ) > 0, then F has a fixed point in B.

Theorem 2.3.10 [50](Kubiaczyk Fixed Point Theorem) Let X be a metrizable
locally convex topological vector space. Let D be a closed convex subset of X, and
let F be a sequentially continuous map from D into itself. If for some x ∈ D the
implication

V = conx({x} ∪ F (V ))⇒ V relatively weakly compact.

holds for every subset V of D, then F has a fixed point.
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2.4 Measure of Weak Noncompactness

The measure of weak noncompactness was developed by De Blasi [36].Then it is

used in numerous branches of functional analysis and the theory of differential

and integral equations.

Let A be a bounded nonempty subset of Banach space E. The measure of weak

noncompactness β(A) is defined by

β(A) = inf{t > 0 : there exists C ∈ Kw such that A ⊂ C + tB1}

where Kw is the set of weakly compact subsets of E and B1 is the unit ball in E.

We will utilize the below properties of the measure of weak noncompactness β

(for bounded nonempty subsets A and B of E):

1. If A ⊂ B then β(A) ≤ β(B),

2. β(A) = β(A
w

), where A
w

denotes the weak closure of A,

3. β(A) = 0 if and only if A is relatively compact,

4. β(A ∪B) = max{β(A), β(B)},

5. β(λA) = |λ| β(A) where λ ∈ R,

6. β(A+B) ≤ β(A) + β(B),

7. β(conx(A)) = β(conx(A)) = β(A), where conv(A) denotes the convex hull

of A.

The following lemma which is an adaptation of the corresponding result of Banaś

and Goebel [16] is true, when β is an arbitrary set function that satisfies the

above properties.

Lemma 2.4.1 [29] If ‖E1‖ = sup{‖x‖ : x ∈ E1} < 1 then

β(E1 + E2) ≤ β(E2) + ‖E1‖ β(K(E2, 1)),

where K(E2, 1) = {x : d(E2, 1) ≤ 1}.
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Lemma 2.4.2 [63] Let X be an equicontinuous bounded set in C(T, E), where
C(T, E) denotes the space of all continuous functions from the time scale T to
the Banach space E.
Denote ∫ a

0

X(s)∆s =

{∫ a

0

x(s)∆s : x ∈ X
}
.

β

(∫ a

0

X(s)∆s

)
≤
∫ a

0

β(X(s))∆s.

Proof. For δ > 0 we choose points in T in the following way:

t0 = 0,

t1 = sup
s∈Ia
{s : s ≥ t0, s− t0 < δ},

t2 = sup
s∈Ia
{s : s > t1, s− t1 < δ},

t3 = sup
s∈Ia
{s : s > t2, s− t2 < δ},

· · ·

tn−1 = sup
s∈Ia
{s : s > tn−2, s− tn−2 < δ},

tn = a.

If some ti = ti−1 then ti+1 = inf
s∈Ia
{s : s > ti}. By the equicontinuity of X there

exists δ > 0 and ξi ∈ [ti−1, ti] such that∥∥∥∥∥
∫ a

0

x(s)∆s−
n∑
i=1

x(ξi)µ∆(ti−1, ti)

∥∥∥∥∥ ≤ ε.

Thus we have∫ a

0

X(s)∆s ⊂

{∫ a

0

x(s)∆s−
n∑
i=1

x(ξi)µ∆(ti−1, ti) : x ∈ X

}

+

{
n∑
i=1

x(ξi)µ∆(ti−1, ti) : x ∈ X

}
= A+B.
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Now

β(A) ≤ β(K(0, ε)) = εβ(K(0, 1))

and

β(B) ≤
n∑
i=1

µ∆(ti−1, ti)β(X(ξi)).

Therefore

β

(∫ a

0

X(s)∆s

)
≤ β(A+B) ≤ εβ(K(0, 1)) +

n∑
i=1

µ∆(ti−1, ti)β(X(ξi)).

If ε→ 0 and n→∞ we obtain

β

(∫ a

0

X(s)∆s

)
≤
∫ a

0

β(X(s))∆s.

�

The lemma below is an adaptation of the corresponding result of Ambrosetti [12]

and it is proved in [29].

Lemma 2.4.3 Let H ⊂ C(T, E) be a family of strongly equicontinuous functions.
Let H(t) = {h(t) ∈ E, h ∈ H}, for t ∈ T. Then

β(H(T)) = sup
t∈T

β(H(t)),

and the function t 7→ β(H(t)) is continuous on T.

Proof. See Lemma 2.9, (pp.4) of [29]. �

The generalization of Ambrosetti Lemma for C(T1 × T2, E) is as follows:

Lemma 2.4.4 Let H ⊂ C(T1 × T2, E) be a family of strongly equicontinuous
functions. Let H(x, y) = {h(x, y) ∈ E, h ∈ H}, for (x, y) ∈ T1 × T2. Then

β(H(T1 × T2)) = sup
(x,y)∈T1×T2

β(H(x, y)),

and the function (x, y) 7→ β(H(x, y)) is continuous on T1 × T2.

Let us denote by S∞ the set of all nonnegative real sequences. For ξ = ξn ∈ S∞,

η = ηn ∈ S∞, we write ξ < η if ξn ≤ ηn ( i.e. ξn ≤ ηn, for n = 1, 2, · · · ) and ξ 6= η.



CHAPTER 2. PRELIMINARIES 31

Let B be a closed convex subset of (C(T, E),W ) and φ be a function which

assigns to each nonempty subset V of B, a sequence φ(V ) ∈ S∞, such that

φ({x} ∪ V ) = φ(V ), for x ∈ B, (2.5)

φ(conv V ) = φ(V ), (2.6)

if φ(V ) = ∅ (the zero sequence) then V is compact. (2.7)



Chapter 3

Cauchy Dynamic Equation

A dynamic equation is a differential equation, difference equation, quantum equa-

tion or more interestingly a combination of all these. The study of dynamic equa-

tions on time scales is an area of mathematics research that has recently received

a lot of attention. Dynamic equations on a time scale have an enormous potential

for applications such as in population dynamics. For example, it can model insect

populations that are continuous while in season, die out in say winter, while their

eggs are incubating or dormant, and then hatch in a new season, giving rise to

a nonoverlapping population. There are applications of dynamic equations on

time scales to quantum mechanics, electrical engineering, neural networks, heat

transfer, and combinatorics.

In this chapter, we prove the existence of weak solutions of second order

Cauchy dynamic problem

x∆∇(t) = f(t, x(t)),

x(0) = 0, x∆(0) = η1

, t ∈ T, η1 ∈ E (3.1)

in Banach spaces.

The first order Cauchy difference equation ∆x(t) = f(t, x(t)) and the first

order Cauchy differential equation x′(t) = f(t, x(t)) in Banach spaces have been

studied may many authors in the literature. Authors obtained the conditions

expressed by measure of (weak) noncompactess for the existence of classical so-

lutions, Carathéodory solutions, weak solutions and pseudo solutions. In the

32
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articles [55, 27, 29, 33, 61, 63] the properties of solution sets are presented.

The study on the dynamic equations in Banach spaces is started with the land-

mark article by Cichon et.al. [27]. The existence of weak solutions for the first

order dynamic Cauchy problem over an unbounded time scale is presented. Au-

thors remark that the condition on the nonlinear term given in terms of measure

of noncompactness can be generalized to Szufla condition or Sadowskii condition,

also measure of weak noncomapctness can be replaced by any axiomatic measure

of noncompactness. The study dynamic equation in Banach spaces is continued

by [29] and [63].

3.1 Equivalent Integral Operator

In this section, first we express the problem (3.1) as an integral equation. Then

we write the equivalent integral operator corresponding to the problem (3.1). For

constructing the equivalent integral operator we set the followings.

Let L1(T) denote the space of real valued ∆- Lebesgue integrable functions on a

time scale T. Assume that there exists a function M ∈ L1(T),M(t) ≥ 0, t ∈ T,

such that ‖f(t, x)‖ ≤M(t) µ∆ a.e. on T, for some x ∈ E.

Let

bt = ‖η1‖ t+ Cw

∫ t

0

Cw

∫ t1

0

M(t2)∇t2∆t1, (3.2)

K(τ, s) = Cw

∫ s

τ

Cw

∫ t1

0

M(t2)∇t2∆t1, (3.3)

p(t) = η1.t, (3.4)

B̃t = {x ∈ C(It, E) : ‖x(t)‖ ≤ bt,‖x(τ)− x(s)‖ ≤ ‖p(τ)− p(s)‖+K(τ, s),

t, τ, s ∈ T, 0 ≤ s < τ < t} (3.5)

where T denotes an unbounded time scale and It = {s ∈ T : 0 ≤ s ≤ t}.

We recall that a function g : E → E is a weakly-weakly sequentially continu-

ous if xn
w→ x0 in E then g(xn)

w→ g(x0) in E.
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Definition 3.1.1 A function x : T → E is said to be a weak solution of the
problem (3.1) if x has ∆-weak derivative, x∆ has ∇-weak derivative and satisfies
(3.1) for all t ∈ T.

We consider an appropriate integral equation

x(t) = η1 · t+ Cw

∫ t

0

Cw

∫ t1

0

f(t2, x(t2))∇t2∆t1 (3.6)

We note that each solution of the problem (3.6) is the solution of (3.1) and

converse. Now we verify the equivalence of (3.6) and (3.1). For this purpose

assume that a weakly continuous function x : T→ E is a weak solution of (3.1).

By using the definition of ∇-weak integrals (Definition 2.2.8), we have

Cw

∫ t1

0

f(t2, x(t2))∇t2 = Cw

∫ t1

0

x∆∇(t2)∇t2

= x∆(t1)− x∆(0),

that is,

x∆(t1) = η1 + Cw

∫ t1

0

f(t2, x(t2))∇t2. (3.7)

Hence

Cw

∫ t

0

x∆(t1)∆t1 = Cw

∫ t

0

η1∆t1 + Cw

∫ t

0

Cw

∫ t1

0

f(t2, x(t2))∇t2∆t1

Applying the ∆-weak integral (Definition 2.2.7), we obtain

x(t)− x(0) = η1.t+ Cw

∫ t

0

Cw

∫ t1

0

f(t2, x(t2))∇t2∆t1

which means that the function x satisfies the integral equation (3.6). Next, let

the function x be the solution of the integral equation (3.6). For any x∗ ∈ E∗,
we have

(x∗x)(t) = x∗(η1.t+

∫ t

0

∫ t1

0

f(t2, x(t2))∇t2∆t1)

Using the definition of ∆-weak derivative (Definition 2.2.3), we get

(x∗x)∆(t) = x∗
(
η1.t+

∫ t

0

∫ t1

0

f(t2, x(t2))∇t2∆t1

)∆

= [x∗(η1.t)]
∆ + [

∫ t

0

∫ t1

0

x∗(f(t2, x(t2))∇t2∆t1)]∆

= x∗(η1) +

∫ t

0

x∗(f(t2, x(t2)))∇t2
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Next we apply ∇-weak derivative (Definition 2.2.4):

(x∗x)∆∇(t) = [x∗(η1) +

∫ t

0

x∗(f(t2, x(t2)))∇t2]∇

= (x∗(η1))∇ +

(∫ t

0

x∗(f(t2, x(t2)))∇t2
)∇

= x∗(f(t2, x(t2))), ∀x∗ ∈ E∗.

Therefore x∆∇(t) = f(t, x(t)) in weak sense. Now, we show that the initial

conditions of (3.1) hold.

x(0) = η1.0 + Cw

∫ 0

0

Cw

∫ t1

0

f(t2, x(t2))∇t2∆t1 = 0,

i.e. the first initial condition holds. Using equation (3.7), we show that x also

satisfies second initial condition.

x∆(0) = η1 + Cw

∫ 0

0

f(t2, x(t2))∇t2 = η1

Therefore x(t) is the solution of (3.1), i.e. the Cauchy problem (3.1) and the

integral equation (3.6) are equivalent.

Let the operator F : (C(T, E);w)→ (C(T, E);w) be defined by

F (x)(t) = p(t) + Cw

∫ t

0

Cw

∫ t1

0

f(t2, x(t2))∇t2∆t1 (3.8)

where p(t) was defined in (3.4). By the considerations above, finding a solution

for the problem (3.1) is equivalent to finding a fixed point of the integral operator

(3.8).

3.2 Existence Result

In this section, we prove the existence of weak solution for the Cauchy problem

(3.1) by proving the existence of fixed points of the corresponding integral oper-

ator (3.8) using Theorem 2.3.9. We state the sufficient conditions-as possible as

close to necessary conditions- by means of DeBlasi measure of weak noncompact-

ness β. The condition given in terms of measure of weak noncompactness can

be generalized to Sadowskii of Szufla conditions. Also measure of weak noncom-

pactness can be replaced by any axiomatic measure of noncompactness.
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Theorem 3.2.1 Let f : T × E → E be a function and suppose that a and b
bounded and integrable functions from Crd(T,R) such that

‖f(t, x)‖ ≤ a(t) + b(t) ‖x(t)‖ (3.9)

for each (t, x) ∈ (T, E). Moreover, let the following conditions hold:

(C1) f(t, ·) is weakly-weakly sequentially continuous, for each t ∈ T;

(C2) for each strongly absolutely continuous function x : T → E; f(·, x(·)) is
weakly continuous,

(C3) there exists a function L : T×[0,∞)→ [0,∞) such that for each continuous
function u : [0,∞) → [0,∞) the mapping t 7→ L(t, u) is continuous and
L(t, 0) ≡ 0 on T,

(C4) for all r > 0 ∫ ∞
0

∫ t1

0

L(t2, r)∇t2∆t1 < r,

(C5) for any compact subinterval I of T and each nonempty bounded subset A of
E

β(f(Ib × A)) ≤ sup
t∈Ib

L(t, β(A)).

Then there exists at least one ∆-weak solution of the problem (3.1) on some
subinterval Ib ⊂ T.

Proof. The condition C2 implies that the operator F : B̃t → (C(T, E), w) is

well-defined. Now we show that the operator F maps B̃t → B̃t.

• First we verify ‖F (x)(t)‖ ≤ bt.

‖F (x)(t)‖ =

∥∥∥∥p(t) +

∫ t

0

∫ t1

0

f(t2, x(t2))∇t2∆t1

∥∥∥∥
≤ ‖p(t)‖+

∥∥∥∥∫ t

0

∫ t1

0

f(t2, x(t2))∇t2∆t1

∥∥∥∥
≤ ‖η1‖ t+

∥∥∥∥∫ t

0

∫ t1

0

f(t2, x(t2))∇t2∆t1

∥∥∥∥
≤ ‖η1‖ t+

∫ t

0

∫ t1

0

‖f(t2, x(t2))‖∇t2∆t1

≤ ‖η1‖ t+

∫ t

0

∫ t1

0

‖M(t2)‖∇t2∆t1 = bt
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• Consequently we show, the set F (B̃t) is almost equicontinuous.

‖F (x)(τ)− F (x)(s)‖ = ||p(τ) + Cw

∫ τ

0

Cw

∫ t1

0

f(t2, x(t2))∇t2∆t1 − p(s)

− Cw

∫ s

0

Cw

∫ t1

0

f(t2, x(t2))∇t2∆t1||

≤ ‖p(τ)− p(s)‖+

∥∥∥∥∫ τ

s

∫ t1

0

f(t2, x(t2))∇t2∆t1

∥∥∥∥
≤ ‖p(τ)− p(s)‖+

∫ τ

s

∫ t1

0

‖f(t2, x(t2))‖∇t2∆t1

≤ ‖p(τ)− p(s)‖+

∫ τ

s

∫ t1

0

M(t2)∇t2∆t1

≤ ‖p(τ)− p(s)‖+K(τ, s)

where τ, s ∈ T and x ∈ B̃t. Hence F (B̃t) is strongly almost equicontinuous.

• Now we show weakly sequentially continuity of the integral operator F .

Let xn
w→ x in B̃t. Fix an arbitrary ε > 0, then there exists N ∈ N such

that for n ≥ N and each t ∈ Iα, we have |x∗xn(t)− x∗x(t)| < ε. From

condition (C1), we get

|x∗f(t2, xn(t2))− x∗f(t2, x(t2))| < ε

α2
.

Therefore

|x∗ (F (xn)(t)−F (x)(t))| =
∣∣∣∣x∗(∫ t

0

∫ t1

0

f(t2, xn(t2))∇t2∆t1−
∫ t

0

∫ t1

0

f(t2, x(t2))∇t2∆t1)

∣∣∣∣
≤
∫ t

0

∫ t1

0

|x∗f(t2, xn(t2))− x∗f(t2, x(t2))| ∇t2∆t1

≤
∫ t

0

∫ α

0

|x∗f(t2, xn(t2))− x∗f(t2, x(t2))| ∇t2∆t1

<

∫ t

0

α
ε

α2
∆t1 =

∫ t

0

ε

α
∆t1 ≤

∫ α

0

ε

α
∆t1 = ε.

From items it was shown that F is well-defined, weakly sequentially continuous

and maps B̃t into B̃t.

It can be observed that the weak solution of the problem (3.1), is the fixed point

of operator F . Now we’ll prove that a fixed point of the operator F can be
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obtained by using the fixed point theorem (Theorem 2.3.9). Let V be a subset of

B̃t satisfying the condition

V = conv({x} ∪ F (V )) for some x ∈ B̃t.

We prove that V is relatively weakly compact.

The functions a(t), b(t) satisfying the sublinearity condition (3.9) can be chosen

in a way that ∫ ∞
ξ

|a(s)| ∇s+

∫ ∞
ξ

|b(s)| ‖x(s)‖∇s < ε.

We divide the interval [0, ξ] into m parts.

0 = t0 < t1 < t2 < · · · < tm−1 < tm = ξ

such that the partition is finer than δ (Definition 2.2.9). We define the subinterval

Ti = [ti, ti+1] ∩ T

and

V (Ti) = {x(s) ∈ E : x ∈ V and s ∈ Ti}.

By the definition of F (x)(t), Ti, and the mean value theorem (Theorem 2.2.12)

we have

F (x)(t) = p(t) +

∫ t

0

∫ t1

0

f(t2, x(t2))∇t2∆t1

= p(t) +

∫ t

0

(∫ ξ

0

f(t2, x(t2))∇t2 +

∫ t1

ξ

f(t2, x(t2))∇t2
)

∆t1

= p(t) +

∫ t

0

(
m−1∑
i=0

∫
Ti

f(t2, x(t2))∇t2 +

∫ t1

ξ

f(t2, x(t2))∇t2

)
∆t1

∈ p(t) +

∫ t

0

(
m−1∑
i=0

µ∇(Ti) · f(Ti, V (Ti)) +

∫ t1

ξ

f(t2, x(t2))∇t2

)
∆t1

for each x ∈ V . Hence

F (V )(t) ⊂ p(t) +

∫ t

0

(
m−1∑
i=0

µ∇(Ti) · f(Ti × V (Ti)) +

∫ t1

ξ

f(t2, x(t2))∇t2

)
∆t1.
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Using (C5),(C4), the properties of measure of weak noncompactness β, Lemma

2.4.1 and Lemma 2.4.2, we obtain

β(F (V )(t)) ≤ β

(
p(t) +

∫ t

0

(
m−1∑
i=0

µ∇(Ti) · f(Ti × V (Ti)) +

∫ t1

ξ

f(t2, V (t2))∇t2

)
∆t1

)

≤
∫ t

0

β

(
m−1∑
i=0

µ∇(Ti) · f(Ti × V (Ti))

)
+

(∥∥∥∥∫ t1

ξ

f(t2, V (t2))∇t2
∥∥∥∥)∆t1

≤
∫ t

0

(
m−1∑
i=0

µ∇(Ti) · β (f(Ti × V (Ti))) + sup
x∈V

∫ t1

ξ

f(t2, x(t2))∇t2

)
∆t1

≤
∫ t

0

(
m−1∑
i=0

µ∇(Ti) · sup
τi∈Ti

L(τi, β(V (Ti))) +

∫ ∞
ξ

a(t2) + b(t2) ‖x(t2)‖∇t2

)
∆t1

≤
∫ t

0

(
m−1∑
i=0

µ∇(Ti) · L(τ, β(V (Ti))) + ε

)
∆t1

where τ is defined in a way that L(τ, β(V (K))) = sup
τi∈K
{L(τi, (V (K)))}. Since ε

is arbitrary we get

β(F (V )(t)) ≤
∫ t

0

∫ t1

0

(L(s, β(V [0, ξ]))∇s) ∆t1

≤
∫ ∞

0

∫ t1

0

(L(s, β(V [0, ξ]))∇s) ∆t1 < β(V (0, ξ)) < β(V (0, t)),

for β(V (t)) ≥ 0.

If β(V (t)) = 0 then by the properties of measure of weak noncompactness, V

is relatively weakly compact. Thus the assumptions of fixed point theorem of

Kubiaczyk (Theorem 2.3.10) are fulfilled. Hence F has a fixed point which is the

solution of the problem (3.1).

We define φ(V (t)) = β(V (t)), it is evident that φ(F (V (t))) < φ(V (t)) whenever

φ(V ) > 0. It can be seen that all assumptions of Sadovskii’s fixed point theorem

(Theorem (2.3.9)) have been satisfied, F has a fixed point in B̃t i.e. the Cauchy

problem (3.1) has a solution and the proof is complete. �



Chapter 4

Cauchy Partial Dynamic
Equation

In this chapter we stated an existence result for the weak solutions of the hyper-

bolic Cauchy problem (HCP)

zΓ∆(x, y) = f(x, y, z(x, y)),

z(x, 0) = 0, z(0, y) = 0
, x ∈ T1, y ∈ T2 (4.1)

where the nonlinear term f : T1 × T2 × E → E and z : T1 × T2 → E. The

differential operators Γ and ∆ are taken in weak sense.

The study on the classical solutions of the hyperbolic Cauchy differential

equation zxy(x, y) = f(x, y, z(x, y)) is initiated by Davidowski, Kubiaczyk and

Rzepecki [35]. Authors expressed the sufficient conditions in terms of Kura-

towski measure of noncompactness to guarantee the existence of solutions. In

this chapter we improve the results of this article in two different aspects: We

construct the problem for the general case, i.e. time scale case and optimize the

conditions. Also we consider the weak solutions.

40
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4.1 Equivalent Integral Operator

In this section, first we obtain an integral equation which is equivalent to (4.1).

Then we assign the integral equation to an integral operator satisfying the con-

ditions of Sadovskii and Kubiaczyk fixed point theorems.

We remark that a weakly continuous function z : T1 × T2 → E is said to be

a weak solution of HPC (4.1) if z has Γ-weak partial derivative, zΓ has ∆-weak

partial derivative and satisfies (4.1) for all (x, y) ∈ T1 × T2.

We claim that in the case of weakly-weakly continuous f , finding a weak

solution of HPC (4.1) is equivalent to solving the integral equation

z(x, y) =

∫ x

0

∫ y

0

f(u, v, z(u, v))∆vΓu, (x, y) ∈ T1 × T2. (4.2)

Here integrals are considered in weak sense.

Assume that a weakly continuous function z : T1×T2 → E is a weak solution

of the HCP (4.1). We show that z solves the integral equation (4.2). By the

definition of weak Cauchy integral (Definition 2.2.5), we have∫ y

0

f(x, v, z(x, v))∆v =

∫ y

0

zΓ∆(x, v)∆v

= zΓ(x, y)− zΓ(x, 0) = zΓ(x, y)

Note that zΓ(x, 0) = 0 since z(x, 0) = 0. If we integrate the resulting equation

on [0, x]T1 , we obtain∫ x

0

∫ y

0

f(u, v, z(u, v))∆vΓu =

∫ x

0

zΓ(u, y)Γu

= z(x, y)− z(0, y) = z(x, y)

which implies that z solves the integral equation (4.2).

Conversely, we assume that z(x, y) is a solution of the integral equation (4.2).

For any z∗ ∈ E∗, we have

(z∗z)(x, y) = z∗
(∫ x

0

∫ y

0

f(u, v, z(u, v))∆vΓu

)
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and therefore

(z∗z)Γ =

(∫ x

0

∫ y

0

z∗(f(u, v, z(u, v)))∆vΓu

)Γ

=

∫ y

0

z∗(f(x, v, z(x, v)))∆v.

Differentiating the last expression we get

(z∗z)Γ∆ =

(∫ y

0

z∗(f(x, v, z(x, v)))∆v

)∆

= z∗(f(x, y, z(x, y))).

By the definition of weak partial derivatives (Definition 2.1.22), we obtain

zΓ∆(x, y) = f(x, y, z(x, y)).

Clearly the boundary conditions of (4.1) hold. Hence z(x, y) is a solution of (4.1).

We consider the space of continuous functions with its weak topology, i.e.,

(C(T1 × T2, E), w) = (C(T1 × T2, E), τ(C(T1 × T2, E), C∗(T1 × T2, E))) .

By the equivalence of (4.1) and (4.2), the fixed points of the integral operator

F : (C(T1 × T2, E), w)→ (C(T1 × T2, E), w)

F (z)(x, y) =

∫ x

0

∫ y

0

f(u, v, z(u, v))∆vΓu, (x, y) ∈ T1 × T2 (4.3)

are the weak solutions of the HCP (4.1)

4.2 Existence of Weak Solutions

In this section the existence of a weak solution of HCP (4.1) is obtained by

applying Sadovskii and Kubiaczyk fixed point theorems to the corresponding

integral operator (4.3). The conditions on the nonlinear term f in the main result

is stated in terms of measure of weak noncompactness. The mean value theorem

for double integrals (Theorem 2.2.15) developed by generalizing the result of [29]

and the Ambosetti’s Lemma is used to prove the main result.
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Let G : T1 × T2 × [0,∞)→ [0,∞) be continuous function and nondecreasing

in the last variable. Assume that the scalar integral inequality

g(x, y) ≥
∫ x

0

∫ y

0

G(u, v, ||z(u, v)||)∆vΓu (4.4)

has locally bounded solution g0(x, y) existing on T1 × T2.

We define the nonempty, closed, bounded, convex and equicontinuous function

set X ⊂ (C(T1 × T2, E), w) as follows:

X =
{
z ∈ (C(T1 × T2, E), w) : ||z(x, y)|| ≤ g0(x, y), on T1 × T2

||z(x1, y1)− z(x2, y2)|| ≤
∣∣∣∣∫ x2

0

∫ y2

y1

G(u, v, g0(u, v))∆vΓu

∣∣∣∣
+

∣∣∣∣∫ x2

x1

∫ y1

0

G(u, v, g0(u, v))∆vΓu

∣∣∣∣ for x1, x2 ∈ T1 and y1, y2 ∈ T2

}
(4.5)

Theorem 4.2.1 Let L : T1 × T2 × [0,∞) → [0,∞) be a function such that for
each u ∈ [0,∞) the mapping (x, y) 7→ L(x, y, u) is continuous and L(x, y, 0) ≡ 0
on T1 × T2. Moreover, let the following condition hold:

(D1) f is weakly weakly sequentially continuous for each x ∈ T1 and y ∈ T2,

(D2) ||f(x, y, u)|| ≤ G(x, y, ||u||) for (x, y) ∈ T1 × T2 and u ∈ E,

(D3) β(f(P ×W )) ≤ sup{L(x, y, β(W )) : (x, y) ∈ P} for any compact subset P
of T1 × T2 and each nonempty bounded subset W of E,

(D4)

∫ ∞
0

∫ ∞
0

L(u, v, r)∆vΓu ≤ r for all r > 0.

Then there exists a solution of (4.1) satisfying

||z(x, y)|| ≤ g0(x, y) for (x, y) ∈ T1 × T2.

Proof. In order to use fixed point theorems, we first show that F maps X to

X. Using the conditions (D2), (D4) and the inequality (4.4) respectively, we get

||F (z)(x, y)|| =

∣∣∣∣∣∣∣∣∫ x

0

∫ y

0

f(u, v, z(u, v))∆vΓu

∣∣∣∣∣∣∣∣
≤

∫ x

0

∫ y

0

||f(u, v, z(u, v))||∆vΓu

≤
∫ x

0

∫ y

0

G(u, v, ||z(u, v)||)∆vΓu ≤ g0(x, y). (4.6)
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Consequently we show that

||F (z)(x1, y1)− F (z)(x2, y2)|| ≤
∣∣∣∣∫ x2

0

∫ y2

y1

G(u, v, g0(u, v))∆vΓu

∣∣∣∣
+

∣∣∣∣∫ x2

x1

∫ y1

0

G(u, v, g0(u, v))∆vΓu

∣∣∣∣
For simplicity in the following calculations, let f stand for f(u, v, z(u, v)).

‖F (z)(x1, y1)− F (z)(x2, y2)‖ =

∥∥∥∥∫ x1

0

∫ y1

0

f∆vΓu−
∫ x2

0

∫ y2

0

f∆vΓu

∥∥∥∥
=

∥∥∥∥∫ x2

0

∫ y1

0

f∆vΓu+

∫ x1

x2

∫ y1

0

f∆vΓu−
∫ x2

0

∫ y2

0

f∆vΓu

∥∥∥∥
=

∥∥∥∥∫ x2

0

(∫ y1

0

f∆v −
∫ y2

0

f∆v

)
Γu+

∫ x1

x2

∫ y1

0

f∆vΓu

∥∥∥∥
=

∥∥∥∥∫ x2

0

∫ y1

y2

f∆vΓu+

∫ x1

x2

∫ y1

0

f∆vΓu

∥∥∥∥
=

∥∥∥∥∫ x2

0

∫ y2

y1

f∆vΓu+

∫ x2

x1

∫ y1

0

f∆vΓu

∥∥∥∥
≤
∥∥∥∥∫ x2

0

∫ y2

y1

f∆vΓu

∥∥∥∥+

∥∥∥∥∫ x2

x1

∫ y1

0

f∆vΓu

∥∥∥∥
≤
∣∣∣∣∫ x2

0

∫ y2

y1

G(u, v, g0(u, v))∆vΓu

∣∣∣∣+

∣∣∣∣∫ x2

x1

∫ y1

0

G(u, v, g0(u, v))∆vΓu

∣∣∣∣
Therefore, F maps X to X.

Next we show weakly-sequentially continuity of the integral operator (4.3).

Let zn
w→ z in X. Fix an arbitrary ε > 0. Then there exists N ∈ N such that

for n ≥ N and each t ∈ Iα × Iα ⊂ T1 × T2, we have |z∗zn(x, y)− z∗x(x, y)| < ε.

From condition (D1), it follows that

|z∗f(x, y, zn(x, y))− z∗f(x, y, z(x, y))| < ε

α2
.
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Therefore we lead

|z∗(F (zn)(x, y)− F (z)(x, y))| =
∣∣∣z∗(∫ x

0

∫ y

0

f(u, v, zn(u, v))∆vΓu

−
∫ x

0

∫ y

0

f(u, v, zn(u, v))∆vΓu
)∣∣∣

≤
∫ x

0

∫ y

0

|z∗f(u, v, zn(u, v))− z∗f(u, v, z(u, v))|∆vΓu

≤
∫ α

0

∫ α

0

|z∗f(u, v, zn(u, v))− z∗f(u, v, z(u, v))|∆vΓu

≤
∫ α

0

∫ α

0

ε

α2
∆vΓu = ε.

Since T1×T2 is a closed subset of R+×R+, it is locally compact Hausdorf space.

By the result of Dobrakov [38], F is weakly-sequentially continuous mapping.

From the considerations above, F is well-defined, weakly-sequentially continuous

and maps X to X.

Let f(x, y, z(x, y)) satisfy the sublinearity condition

‖f(x, y, z(x, y))‖ ≤ a(x, y) + b(x, y) ‖z(x, y)‖

for each (x, y, z) ∈ T1 × T2 × E, where a(x, y) and b(x, y) are bounded and

integrable functions taken from C(T1 × T2,R). Since a(x, y) and b(x, y) are

integrable functions, we have∫∫
R

|a(u, v)|∆vΓu+

∫∫
R

|b(u, v)| ‖z(u, v)‖∆vΓu < ε (4.7)

where R = T1 × T2 − ([0, ξ]× [0, η]) . We divide [0, ξ] ⊂ T1 into m parts and

[0, η] ⊂ T2 into m parts

0 < x1 < x2 < x3 < · · · < xm = ξ

0 < y1 < y2 < y3 < · · · < ym = η

such that each partition is finer than δ (Definition 2.2.9).

We define T i1 = [xi, xi+1]∩T1 and T j2 = [yj, yj+1]∩T2. Then there exists (σi, τj) ∈
T i1 × T

j
2 = Pij such that

β(W (σi, τj)) = β(W (Pij)) = sup{β(W (x, y)) : (x, y) ∈ Pij}
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Using mean value theorem for double integrals (Theorem 2.2.15) we lead

F (z)(x, y) =

∫ x

0

∫ y

0

f(u, v, z(u, v))∆vΓu

=

∫ ξ

0

∫ η

0

f(u, v, z(u, v))∆vΓu+

∫∫
R

f(u, v, z(u, v))∆vΓu

∈
m−1∑
i=0

n−1∑
j=0

µ∆(Pij) · conv(Pij ×W (Pij)) +

∫∫
R

f(u, v, z(u, v))∆vΓu

for all z ∈ W . Therefore

F (W )(x, y) ⊂
m−1∑
i=0

n−1∑
j=0

µ∆(Pij) · conv(Pij ×W (Pij)) +

∫∫
R

f(u, v, z(u, v))∆vΓu.

(4.8)

Consequently we apply β to each sides of equation (4.8) and we get

β(F (W )(x, y)) ≤ sup
m−1∑
i=0

n−1∑
j=0

µ∆(Pij)L(x, y, β(W )) +

∥∥∥∥∫∫
R

f(u, v, z(u, v))∆vΓu

∥∥∥∥
≤ sup

m−1∑
i=0

n−1∑
j=0

µ∆(Pij)L(x, y, β(W )) + ε

≤
∫ x

0

∫ y

0

L(u, v, β(W ))∆vΓu+ ε

≤ β(W )(x, y)

for β(W ) ≥ 0.

If β(W ) = 0 then using the properties of measure of weak of noncompactness, W

is relatively weakly compact. Thus all the assumptions of fixed point theorem of

Kubiaczyk are satisfied. Hence F has a fixed point which is the solution of our

HPC (4.1).

We define φ(W ) = β(W ). If φ(W ) > 0 then φ(F (W )) < φ(W ). Hence all as-

sumptions of Sadovski fixed point theorem are fulfilled, F has a fixed point i.e.

the HPC (4.1) has a solution. The proof is complete. �
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[27] Cichoń, M., Weak solutions of differential equations in Banach spaces, Dis-

cuss. Math. Diffr. Incl. 15 (1995), 5–14.
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