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ABSTRACT 

COUNTEREXAMPLES IN ANALYSIS 

Karagözoğlu, Ecem 

Msc, Applied Mathematics 

Advisor: Asst. Prof. Ahmet YANTIR  

July 2017 

 

   It is very important to make argument in mathematics and to understand it. 

Generally, we get help from the theorems proving another. However in some special 

cases we utilize counter examples. Counterexamples are used to indicate a predicate 

or a theory is wrong. We also say counterexamples are a kind of opponent proof. 

Anything that is meant to be described cannot be more illustrative than a good 

example. For this reason, we make use of counterexamples in mathematics. The aim 

of this thesis is to make some proofs with the help of  counterexamples. 

Key Words: counterexample, differentiation, functions and limit, sequences and 

series, proof of counterexamples
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ÖZ 

TÜRKÇE BAŞLIK 

ANALIZDE TERS ÖRNEKLER 

Karagözoğlu, Ecem 

Yüksek Lisans, Uygulamalı Matematik 

Danışman: Yrd.Doç. Dr. Ahmet YANTIR 

Temmuz 2017 

 

   Matematikte ispat yapmak ve ispatı anlamak çok önemlidir. Genellikle, ispat 

yaparken teoremlerden yararlanırız. Fakat bazı özel durumlarda karşıt örnekler ya da 

örneklemeler kullanırız. Karşıt örnekler bir önermenin ya da bir teorinin yanlış 

olduğunu göstermek için kullanılır. Karşıt örnekler için bir tür karşıt ispatta 

diyebiliriz. Anlatılan ya da anlatılmak istenen herhangi bir şey iyi bir örnekten daha 

iyi olamaz. Bu sebeple, matematikte karşıt örnekler kullanarak yardım alırız. Bu 

tezin amacı, karşıt örnekler yardımıyla bazı ispatlar yapmaktır. 

Anahtar Kelimeler: ters örnekler, türev, fonksiyon ve limit, diziler ve seriler, ters 

örnekler ispatı 
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CHAPTER 1 

INTRODUCTION 

Counterexamples play an important role in mathematics. They show that given 

mathematical statement (hypothesis, conjecture, proposition, etc.) is not correct. 

They are efficient tool for mathematicians. If a mathematician seek for 

counterexample before trying to prove a conjecture or hypothesis, this process will 

provide to save time an effort for her/him. Here are list of examples for this 

advantage in the history of very famous prime numbers theory: 

 In history of mathematics, listing the prime numbers and finding a formula for 

primes atracted many mathematicians. For a natural numbers of the form 

 

were beleieved to be prime number for many years until a counterexample was 

found. For , the number 

 

is a composite number and product of 641 and 6700417. 

 Another famous conjecture about prime numbers is Goldbach or Goldbach-

Euler conjecture and it is still waiting to be solved. The statement of the 

conjecture is very simple: Every even number greater than 2 is the sum of two 

prime numbers. For example,  and so on. No 

counterexample have been found for this conjecture up to the number 4 x 1014 . 

It is a 1 million $ problem. 

Another advantage for counterexamples is to understand the importance of the 

hypothesis of the theorems. For example for the existence and uniqueness of 

differentiation equation of the form  
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if the conditions are satistified it is guarateed that there exist a unique solution 

for a spesific region. However it does not mean that the solution is not unique 

if one of the condition fails to hold. 

The aim of this thesis is to provide some counterexamples with solutions in 

limits, continuity, differentiation, sequences and series in order to clarify these 

concepts. 

In chapter 2, we will give brief information about the concepts mentioned 

above and we prepare the reader for the next chapter. 

Chapter 3 gives the counterexamples with solutions. 

Finally we conclude the results of the thesis by conclusion chapter. 

CHAPTER 2 

PRELIMINARIES 

In this chapter, we will introduce some preliminary definitions and theorems that will 

be used throughout the thesis. Definitions and theorems and make explanations with 

examples. Each definition and theorem will help us in using and proving in future 

chapters. These basic informations can be found in many mathematics textbooks. We 

use the sources (Olmsted, 2003; J.Appell) for the informations. In this chapter we do 

not give all the details, only definitions and required theorems are stated. For more 

information please see (Olmsted, 2003)  
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2.1. DEFINITIONS AND  IMPORTANT THEOREMS 

2.1.1. Limit of a Function 

Let  be defined on an open interval about , except possibly at  itself. We say 

that the limit of  as  approaches  is the number , and write 

 

if,  for every number , there exists a corresponding number  such that for 

all ,  

 

Example 

 

  Let  be given. We must find  such that for all  satisfying 

 implies . The implication will hold if  equals or any 

smaller positive number. This proves that . 

 

2.1.2. The Sandwich Theorem 

   Sandwich theorem (or squeeze theorem) is used to find the limits of some 

complicated functions.  

Let the function  be bounded by  and  ; i.e,  for 

all  in some open interval containing , except possibly at  itself. Also  

suppose that 

 

Then  

 

Example 

 

Given that  

 for all  

The limit , since  no matter how 

complicated  is. 
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2.1.3. Upper and Lower Limit of a Sequence 

Let the least term  of a sequence be a term which is smaller than all but a finite 

number of the terms which are equal to . Then  is called the lower limit of the 

sequence. 

Let the greatest term  of a sequence be a term which is greater than all but a finite 

number of the terms which are equal to . Then  is called the upper limit of the 

sequence. 

The upper and lower limit of a sequence of real numbers  (called also lim 

superior and lim inferior) can be defined in several ways and are denoted, 

respectively as 

        . 

 

Example 

If  then  

 

If  then 

 

 

2.1.4. Continuity 

 A function   is said to be  continuous at  if for given   there 

exists   such that  implies  

  A function is said to be continuous on an interval , if  it is continuous at every 

point of the . The set of continuous functions  on  is denoted by  

 A function is said to be  continuous function if it is continuous at each point of 

its domain.  

A continuous function need not to be continuous on every interval. 

For example,   is not continuous , but it is continuous over its domain 

. 
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2.1.5. The Intermediate Value Theorem 

  Let  be real numbers with , and let  be a continuous function from 

 to  such that  and . Then there is some number 

 such that . 

Corollary 

  Let be a continuous function from some interval   to  , such that  and 

 have opposite signs. Then there is some number  between and  such that 

. 

2.1.6. Absolutely Continuity 

A function  is absolutely continuous on  if for every  there 

exists a  such that 

 

for any finite collection { [ , ] : 1 } of non-overlapping subintervals [ , 

] of  with  

 

The set of absolutely continuous functions  on  is denoted by .  

On a compact set  of , 

where   denotes the set of uniformly continuous functions on . 

 

Example 

 

, continuous but not absolutely continuous. 
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2.1.7. The Derivative  

  The derivative of the function  with respect to the variable  is the function  

whose value at is 

 

provided the limit exists. 

 

Example 

 

Let us use this definition to differentiate   

Here we have  and ,  

so  

. 

2.1.8. Differentiable Function 

  A differentiable function of one variable is a function whose derivative exists at 

each point of  its domain. 

If  is differentiable at , then f is continuous at c. 

Example 

 

 continuous but not differentiable at . 

2.1.9. Periodic Function  

A function  is said to be periodic (or, when emphasizing the presence of a single 

period instead of multiple periods, singly periodic) with period  if  

 

For  For example, the sine function , illustrated above, is periodic 

with least period (often simply called the “period”)  (as well as with period 

). 
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2.1.10. Bounded Variation 

(a) The function  is said to be of bounded variation on  if and 

only if there is a constant  such that  

 

for all partitions  of  . 

 

(b) If   is of bounded variation on , then the total variation of  

on  is defined by 

 . 

The set of functions obeying the rules of bounded variation is denoted by 

 

Example 

 

If   is monotonically increasing, then for any partition 

 of  . 

 

Thus  is of bounded variation and . 

2.1.11. Luzin-n-Property 

A function  continuous on an interval .  

For any set   of measure mesE =0 , the image of this set,  , also 

has measure zero. 

 A function  constant on  such that  almost-everywhere on 

 does not have the Luzin-n-property. 

 If  does not have the Luzin-n-property, then on  there is a perfect set P 

of measure zero such that . 

 An absolutely continuous function has the Luzin-N-property. 

 If   has the Luzin-N-property and has bounded variation on  then  is 

absolutely continuous on  
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 If  does not decrease on  and  is finite on , then  has the 

Luzin-N-property. 

 In order that  be measurable for every measurable set   it is 

necessary and sufficient that  have the Luzin-N-property on . 

 A function  that has the Luzin-N-property has a derivative  on the set for 

which any non-empty portion of it has positive measure. 

 For any perfect nowhere-dense set  there is a function  having the 

Luzin-N-property on  and such that does not exist at any point of P. 

The concept of Luzin’s N-property can be generalized to functions of several 

variables and functions of a more general nature, defined on measure spaces. 

2.1.12. Nowhere Dense Set 

A nowhere dense set in a topological space is a set whose closure has empty 

interior.  In a very loose sense, it is a set whose elements are not tightly clustered (as 

defined by the topology on the space) anywhere. 

 

Example 

 

 is nowhere dense in : although the points get arbitrarily close to 0, 

the closure of the set is , which has empty interior. 

2.1.13. Hamel Basis 

A basis for the real numbers , considered as a vector space over the rational , i.e., 

a set of real numbers  such that every real number  has a unique representation 

of the form 

 

where  is rational and  depends on . 

  The axiom of choice is equivalent to the statement: "Every vector space has a vector 

space basis," and this is the only justification for the existence of a Hamel basis. 
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CHAPTER 3 

COUNTEREXAMPLES IN ANALYSIS 

   In this chapter, we will see lots of counterexamples and we try to resolve them step 

by step. Especially, we analyze counterexamples in functions and limit, 

differentiation, series and sequences. 

3.1. Functions and Limit 

   In this section we consider some illustrative counterexamples about limit and 

functions. As we know, limit and functions are so important in mathematics 

(especially in calculus). The main concepts of mathematical analysis is based on 

functions and limit.  

3.1.1.  A nowhere continuous function whose absolute value is everywhere 

continuous. 

 

Let . Since the interval  involves both rational and irrational 

functions  does not hold  satisfying  ; if we 

choose . 

Note that  which is constant; hence continuous everywhere. 

3.1.2. A bounded function having no relative extrema on a compact 

domain. 

Let the compact domain be the closed interval  and for  , define  

 

 

 

Choose compact domain: . 

For n even and   

For n is odd   

 and there is no  such that . 
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No relative extreme value. 

3.1.3. A nonconstant periodic function without a smallest positive period. 

 

The periods of any real-valued function with domain R form an additive group (that 

is, the set of periods is closed with respect to subtraction). 

  is not constant 

  is periodic since the graph of  repeats itself for every interval. 

Smallest possible period  the difference between two consequtive rationals which 

does not exist. 

3.1.4. A function continuous and one-to-one on an interval and whose 

inverse is not continuous. 

Our example in this case is a complex-valued function  of the real variable 

, with continuity defined exactly as in the case of a real-valued function of a real 

variable, where the absolute value of the complex number  is defined 

 

Let the function  be defined: 

. 

 

 

 

 A continuous function converts a compact range into a compact 

range. 

. 

3.1.5. A function continuous at every irrational point and discontinuous at 

every rational point.  

Let  be defined as follows: 

If  is a rational number equal to , where  and  are integers such that the 

fraction  is in lowest terms and , let  be defined to be equal to ; 

otherwise, if  is irrational, let  i.e 
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Let   

 

 

There is always an irrational on interval  

 

3.1.6. A discontinuous linear function. 

A function  on  into  is said to be linear if and only if 

 for all . A function that is linear and not continuous is very 

complicated indeed. 

Construction of a discontinuous linear function can be achieved by use of a Hamel 

basis for the linear space of the real numbers  over the rational numbers . The 

idea is that this process provides a set  of real numbers  such that every 

real number  is a unique linear combination of a finite number of members of  

with rational coefficients . The function  can now be 

defined: 

 

 

 

f is linear 

 

 

 

 

 

Since , then it does not attain any irrational number between  and .  

 does not satisfy intermediate value property. 

 is not continuous. 
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3.1.7. Functions , whose composite 

function  is everywhere continuous, and such that 

 

If 

 

 for all  

 

But 

 

This counterexample becomes impossible in case the following condition is added: 

 

 
 

3.1.8. Let  and , and let  be defined by 

 

 holds precisely for  and arbitrary  

  

     

Let           

                                 

Since  by sandwich theorem; 

 

 is continuous at  

 . 

  

 Is  continuous at 0 ? ( ) 

for  

          ,        
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 is continuous at  

 

3.2. DIFFERENTIATION 

   We present some counterexamples about differentiation in this section.  

Differentiation in this part. differentiation is all about finding rates of change of one 

quantity compared to another. We need differentiation when the rate of change is not 

constant. 

3.2.1. A differentiable function with a discontinuous derivative. 

The function  

 

has as its derivative the function 

 

  

 

 which means 

   does not exist. Therefore,  is discontinuous at  

3.2.2. A differentiable function for which the law of the mean fails. 

The complex-valued function of a real variable , 
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is everywhere continuous and differentiable but there exist no  such that 

 and  

By the law of mean,   must be continuous on  and differentiable on  

Then,  such that 

 

       , continuous and differentiable 

 

 

Assume that (1) is correct. 

  

  

  

  

 

 

 

From this equation,  but this is a contradiction. 

Hence, no solution for  

3.2.3. Let  and , and let  be defined by 

 

 holds precisely for  and arbitrary 

 

 arbitrary 

For  ,  this statement is trivial. 
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 exists  exists. 
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3.2.4. Let  and , and let  be defined by 

 

 holds precisely for arbitrary  and  

a)  Let  

  

  

  and  

 

 

 

  

 

  

 

 

 

 

 

b) Let  

  

 

By (a) and (b) 
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3.2.5. Let  and , and let  be defined by 

 

                 holds precisely for arbitrary  and  

  

 

 

 . 

  correct ?  

 

 

 is continuous  
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3.3. SERIES AND SEQUENCES 

3.3.1. A divergent series whose general term approaches zero. 

Let us choose the harmonic series. 

 

Clearly . 

Now we will show that  is divergent. There are several ways to show the 

divergence of this series such as integral test, and geometric way etc. However we 

will show this analitically. 

Suppose that  

 

i.e, 

 

Clearly  

 

 

 

 which is a contradiction. Hence the series does not converge. 

3.3.2. Bounded Divergent Sequences. 

   The simplest example of a bounded divergent sequence is possibly  

 

or , where  if  is odd and  is  is even. Equivalently, 

 

Let  be the sequence in  defined as . 

It is clear that  is bounded above by  and below by . 

Note the following subsequences of   
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  where  is the sequence defined as  

  where  is the sequence defined as  

The first is and the second is  

So,  has two subsequences with different limits. Since any two subsequence of a 

sequence cannot converge to different limits,  cannot be convergent. 

3.3.3. A divergent sequence  for which  for every 

positive integer  

Let  be the  partial sum of the harmonic series. 

 

Then  is divergent, but for  

 

 

3.3.4. Sequences  and  such that 

 

Let  and  be the sequences repeating in cycles of 4: 

     

 

Now,  we sum up the expression 

 

 

 

Hence, 
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CHAPTER 4 

CONCLUSIONS  

   This thesis tries to emphasize the importance of counterexamples in mathematics. 

As in stated in Introduction chapter, counterexamples are very important tool to show 

that a given mathematical statement is incorrect. 

The subjects are choosen from calculus in order to be more understandable. These 

examples also emphasisez the importance of premises of the theorems. 

We aim to give very basic and illustrative examples to be clear. People who are 

interested in counterexamples in analysis may read the reference (Olmsted,2003) 

which is involves huge amount of examples in every branch of mathematical 

analysis. 

In other branches of mathematics, such as algebra, topology etc., there are many 

sources about counterexamples. 
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