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ABSTRACT

Speed-oriented Elliptic Curve Scalar Multiplication

Egrice, Berkan
MSc, Computer Engineering

Advisor: Assist. Prof. Hüseyin HIŞIL, Ph.D.
August 2022

Because of the increasing importance of cyber security in today’s world, modern
cryptographic applications is to be secure and fast. The aim of thesis is to explore
secure and fast implementation techniques of elliptic curve scalar multiplication, the
main performance bottleneck of implementations in Elliptic Curve Cryptography. The
studies cover two main streams of work. The first one is to pinpoint primes which
can be used to provide maximum speed. The other is to develop parallel versions of
celebrated Montgomery ladder algorithm.

In order to achieve the first aim, a mathematical framework that will parameterize fast
primes is proposed. With the help of this framework, the overlooked prime 2261−2131−1
which allows fast multiplication is found. It is shown with our implementation that this
new prime performs faster than the popular primes 2251− 9 and 2255− 19, which makes
it a good candidate for efficient implementations. In addition, a 9-limb representation of
the prime 2255 − 19 is developed. The new representation performs well on processors
with slower integer multiplication circuits.

In order to achieve the second aim, the first 4-way parallel version of the Montgomery
ladder algorithm is proposed. The proposed algorithm is inert to changes in the elliptic
curve parameters such as curve constants and the base point. This makes it a perfect can-
didate for variable-base variable-scalar multiplication. The algorithm finds immediate
application in the contemporary SIMD processors.
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ÖZ

Speed-oriented Elliptic Curve Scalar Multiplication

Eğrice, Berkan
Yüksek Lisans, Bilgisayar Mühendisliği

Danışman: Dr. Öğr. Üyesi Dr. Hüseyin HIŞIL
Ağustos 2022

Siber güvenliğin günümüz dünyasında artan önemi ile birlikte modern kriptografik
uygulamalar güvenli ve hızlı olmalıdır. Bu tezin amacı, eliptik eğri tabanlı kriptografik
uygulamaların darboğazı olan eliptik eğri skalar çarpma işleminin güvenli ve hızlı
gerçekleştirilmesini sağlamaktır. Bu tezdeki çalışmalar iki ana eksende yürütülmüştür.
Birinci safhada, en yüksek hızı sağlamak için kullanılabilecek asal sayılar belirlen-
miştir. İkinci safhada ise, Montgomery merdiven algoritmasının paralel versiyonu
geliştirilmiştir.

Birinci amaca ulaşmak için hızlı asal sayıları belirleyecek matematiksel bir çerçeve
önerilmiştir. Bu çerçeve yardımıyla hızlı çarpmaya izin veren ve gözden kaçan 2261 −
2131 − 1 asal sayısı bulunmuştur. Bu yeni asalın, popüler 2251 − 9 ve 2255 − 19 asal
sayılarından daha hızlı performans gösterdiği gerekçeleriyle gösterilmiştir. Ek olarak,
2255 − 19 asalının 9 basamaklı bir temsili geliştirilmiştir. Yeni gösterim, daha yavaş
tamsayı çarpma devrelerine sahip işlemcilerde iyi performans göstermektedir.

İkinci amaca ulaşmak için Montgomery merdiven algoritmasının ilk 4 yönlü paralel
versiyonu önerilmiştir. Önerilen algoritma, eğri sabitleri ve taban noktası gibi eliptik eğri
parametrelerindeki değişikliklerden bağımsız çalışmaktadır. Bu da, önerilen metodu
değişken-taban değişken-skalar çarpma işlemi için iyi bir aday yapmaktadır. Algoritma,
güncel SIMD işlemcilerinde uygulama bulmuştur.
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CHAPTER 1

INTRODUCTION

Our lives changed dramatically in the past few decades with the advances in technology.
The biggest role in this is, undeniably, the spread and development of the Internet.
In the late 90’s, the Internet has been involved in our lives and started shaping our
lives everlastingly. This revolutionary change, however, also came with the era of
security threats. It is far more important nowadays to keep personal information secure
e.g. in online shopping, banking, social media interaction. With the emergence of
threats, the efforts to reduce this risky side of the internet, which can be harmful to
users, gained importance. As a result of the studies carried out in this direction, the
security protocols that are currently in our lives were developed. The most famous
of these, TLS (Transport Layer Security), ensures that the transactions we perform
on the Internet are secure. Protocols take their importance from the reliability of the
encryption systems behind them. Since late 90’s various cryptography systems has been
developed. AES (Rivest, Shamir, & Adleman, 1978) and Blowfish (Schneier, 1994)
can be given as examples. However, in the context of this thesis, we focus only on
public-key cryptography. In short, public-key encryption is an encryption system that
uses a pair of keys. These keys are called public and private keys. Mathematically,
public-key encryption uses a one-way trap-door function to provide this property. The
following scenario is examined in order to explain such kind of encryption. For example,
in scenario, the sender uses a public key which is published by the receiver in order to
encrypt a secret message. This encrypted message can be transmittable on an untrusted
channel. The recipient receives the message encrypted with the recipient’s public key.
The decryption of this message will be performed using the recipient’s private key.
There are several different techniques developed to realize Public Key Cryptography.
These include the Diffie-Hellman (Diffie & Hellman, 1976) key exchange protocol,
ElGamal, Digital Signature Algorithm and more. The Public-key encryption can be
implemented using different techniques. In the context of the thesis, we are interested
in Elliptic Curve Cryptography (ECC). Elliptic Curve Cryptography was proposed
by (Koblitz, 1987) and (Miller, 1985). Cryptography relies on the power of number
theory. ECC is no exception. As with other techniques, basic operations such as addition
and multiplication play a significant role in their implementation. In this respect, there
were many pioneering studies existed over the years. However, this thesis provides the
establishment of an improvement over ECC with a focus on speed. More details are
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given in the following sections, especially in Chapter 3 that expresses the basic idea of
this thesis.

1.1. Motivation

An elliptic curve group is the building block of ECC. One typically fixes a finite field
and then fixes an elliptic curve defined over this field. The elliptic curve is selected as
to have a large prime order subgroup in which the group operation, namely the elliptic
curve point addition, is computed. At this point, it is natural to ask how fast we can add
points on an elliptic curve. A vast amount of work has been done in this direction. Two
major research areas are: (i) speeding up the underlying field arithmetic, (ii) optimizing
the point addition formulas. The main theme of this work is to focus on the first item.
In particular, our motivations is to find/rework cryptographically interesting and fast
prime(s) for ECC, and implement their arithmetic on modern processors. Speeding up
the field arithmetic contributes to the performance of ECC applications eventually.

The most crucial step in building up fast arithmetic on finite fields is to define a
fast way of integer multiplication. Various algorithms are available for performing fast
integer multiplication, such as FFT, Karatsuba, Toom-Cook, and Schoolbook (naive-
method). Within the scope of this thesis, we were mainly interested in schoolbook and
Karatsuba methods. When implementing these algorithms, two important decisions are
to be made:

• the number of limbs1 to be used to represent a field element on the registers/mem-
ory of a processor,

• the number of bits that will reside inside each limb

We study all these technical decisions in detail in order to optimize field multiplication.

1.2. Aims and outcomes

This thesis aims to provide answers to the following research questions.

• TLS protocol uses two celebrated primes p25519 and p448. Can we develop
new and faster representations of these primes on modern processors?

• Perhaps there are overlooked primes which can be faster. Can we define a
framework to look for such primes? Can we find any primes that can be faster
than p25519 and p448 (in their context)?

1The word ’limb’ comes from the nomenclature of the GNU GMP library. A limb is a digit of a number
in radix representation.
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The study on these questions led to the following outcomes.

• We developed a 4-way vectorizable Montgomery ladder step which suits well with
processors with SIMD support such as processors having the AVX2 instruction
extension. This outcome is not directly addressing the aforementioned research
questions but the nature of research led to finding such a side product which is
probably more interesting than having concrete answers to those questions.

• A 9-limb representation of elements of GF (2255 − 19) is proposed. This new
representation uses one less number of limb in comparison with the common
10-limb representation. The new method have potential to be competitive when
used inside elliptic curve variable-point variable-scalar multiplication. No better
representation of p448 was found than the common 16-limb representation.
These outcomes answers the first research question.

• A framework to find fast primes is found. Using this framework a new crypto-
graphically interesting prime is discovered, which is 2261 − 2131 − 1. The new
prime has a distinctive property that it is Karatsuba-friendly. That is several
optimizations can be made when Karatsuba multiplication method is employed
over the field arithmetic. We present a fast elliptic curve variable-point variable-
scalar multiplication implementation using this field. These outcomes answers
the second research question. We admit that we were extremely lucky to find the
Karatsuba friendly prime 2261 − 2131 − 1. We present a 10-limb representation of
this prime and implemented its arithmetic on a processors with AVX2 support.

• We searched and found cryptographically interesting elliptic curves defined over
GF (2261 − 2131 − 1). This part of the work is done to show the usefulness of our
prime 2261 − 2131 − 1 in the context of ECC.

The construction of the thesis was created in line with the desire to answer the above
questions.

1.3. Outline of the thesis

The thesis structured is given as follows. Chapter 2 presents basic algorithms on how to
perform multi-digit integer arithmetic in radix representation. Chapter 2 is informative.
Readers who are familiar with topics such as radix representation, Karatsuba multiplica-
tion, Montgomery reduction, etc. can skip to other chapters. Yet, the content forms the
basis of proceeding chapters. On the other hand, not all presented algorithms are used.
Some other are used with modifications which are made clear in place. Chapter 3 is
the heart of this thesis. This chapter includes the main idea of our thesis. This chapter
has detailed valuable examples concerning chosen technique against the used prime
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numbers properties. Also, the result of this chapter had expressed in a separate article
given in Chapter 5. Chapter 4 represent a 4 way vectorization of the complete set of
Montgomery curves. Chapter 4 is produced from a published article which is one of the
main outcomes of this thesis. Chapter 4 represents a new way doing arithmetic over
p25519. Chapter 5 is also produced from an article which is recently submitted for
publication and is also one of the main outcomes of this thesis. Chapter 5 introduces
the Karatsuba-friendly prime 2261 − 2131 − 1 and shows its usefulness in the context of
fast elliptic curve scalar multiplication.
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CHAPTER 2

BACKGROUND

Applications of public-key cryptography are built on number theoretic constructions.
One needs the arithmetic of large integers in order to realize such constructions. In order
to implement basic arithmetic operations on large integers, one needs special algorithms
that breaks down the large integer inputs into smaller chunks each of which can fit
into registers residing inside a processor and then accomplish certain sequence of tasks
that yields the desired output. Therefore, it is important to decide on how to represent
integers on a processor. The most common one is the so-called radix representation
where a non-negative integer a is represented by the sequence A = [A0, A1, ..., At−1]

satisfying

a =
t−1∑
i=0

Ai2
Wi

for some W which is selected with respect to

1. The capabilities and restrictions of the underlying hardware:

• register size: contemporary processors has either of 8, 16, 32, 64 bit registers.
This size can grow further in processors with SIMD1 support. More details
will be provided on SIMD implementation in Chapters 4 and 5.

• integer multiplier: some hardware can produce full-product e.g 32×32→ 64

or 64× 64→ 128 bit multipliers. Some others produces higher and lower
halves of the product in separate instructions. Yet, some others contain both.
One typically uses the largest multiplier circuit available provided that the
latency and throughput of that specific instructions is reasonable.

• carry bit handling: it is reasonable to reduce dependency between instruc-
tions in order to achieve a better pipelining at executing time. Therefore, one
should prevent carry bit propagation as much as possible. Some hardware
such as SIMD processors do not even have instruction that allow handling
overflows. As a solution to all, it is beneficial to select W to be smaller
than the actual maximum bound supported by the underlying hardware. The
"empty space" in each limb is then called nail bits. These nail bits typically
varies between 1 to 7 depending on the implementation and usually have the

1Single Instructions Multiple Data
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side benefit of providing extra space for multiplication with small constants
when necessary.

2. The nature of cryptographic implementation: the shape of the chosen field arith-
metic may structurally suits well with some instruction sets much better than
others. Therefore, the process of deciding which type of instruction set to use in
cryptographic applications plays an important role in performance.

Now, we present elementary algorithms for performing integer arithmetic. We closely
follow the exposition in (Hankerson, Menezes, & Vanstone, 2003). We reproduce the
algorithms in the notation of this thesis in order to keep the text self-contained. In the
process, we used Magma language to present algorithms in ready to go code format.
This makes it easy to present the algorithms. We start by providing auxiliary functions
which are called by higher level routines. These algorithms are essential for computing
with large integers. On the other hand, we never use any of these algorithms in the way
they are proposed. Speed implementations requires several tweaks on such algorithms.
Our modifications are presented in detailed in Chapter 3, 4 and 5.

2.1. Simulating instructions

The algorithms in this thesis are presented as scripts prepared in Magma language. Each
digit of the numbers represented in these scripts must be W-bit delimited for some W
which is determined with respect to technical properties of the underlying hardware.
Our aim is not to run these codes on Magma but they provide useful prototypes before
low-level implementation. There is no upper bound for integers defined in the Magma
language. These integers can grow as large as the memory is sufficient. This situation
deviates from the technical properties of the target hardware. In order to emulate the
target hardware, we define the additional functions presented below. These additional
auxiliary functions have given us the opportunity to develop using Magma as if we were
developing at a low-level language like C. For this reason, these additional functions
are used in all algorithms in the thesis.

The indices in Magma language starts from 1 whereas, the indices in C language
starts from 0. In order to make the two worlds compatible with each other we do the
following tweak given in Code 2.1. Now, for instance, the index i of an array, say A,
can be accessed in the syntax A[__+i] which pretty much looks a C code as soon as
__+ is omitted.

The global variable W is used to define a radix-basis for arithmetic operations. In the
remainder of thesis, W is fixed to 64 since contemporary processors use 64 bit registers.
For other scenarios, one can simply alter the value of W.
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__:=1;

Code 2.1. C-style indexing in
Magma

W:=64;

Code 2.2. Radix base

These additional auxiliary functions are designed to realize add and adc instructions
which are common most hardware. Code 2.3 is able to produce a sum of given 2

one-word integer on radix-basis W , and Code 2.4 handles the carry bit that can occur
when adding two one-word integer of size 2W − 1. Thoroughly, Code 2.3 takes two
integer values as the input, and then adds them by using built-in + (add) operator.
To get the carry bit, the result of the addition is divided by 2W , the division result will
be CF2. The resulting CF is used to provide the portion of the sum that exceeds 2W − 1.
The auxiliary function add returns CF and the sum. The Code 2.4 is works as same as
Code 2.3, additionally adds the CF flag while performing addition.

add := function (a0, a1)
zz := a0+a1;
CF := zz div 2^W;
z0 := zz-CF*2^W;
return CF, z0;

end function;

Code 2.3. Single digit addition
without carry

adc := function (CF, a0, a1)
zz := a0+a1+CF;
CF := zz div 2^W;
z0 := zz-CF*2^W;
return CF, z0;

end function;

Code 2.4. Single digit addition with
carry

Similarly, Code 2.5 and 2.6 are created to perform sub and sbb. The subtraction
function takes two integers as input, then returns the borrow bit and the difference. We
note that negative integers are represented in their two’s complement form. The Code 2.5
finds the difference using the mod operator. Here the mod operator is responsible of
masking the positive outputs and taking the two’s complement form. The carry flag (CF)
is determined by logical controls which checks whether the first input is smaller than
the second. The Code 2.6 differs from Code 2.5 only where the subtraction occurs, the
difference being that the CF bit value passed to sbb is subtracted from the subtraction
result.

sub := function (a0, a1)
z0 := (a0 - a1) mod 2^64;
CF := 0;
if a0 lt a1 then
CF := 1;

end if;
return CF, z0;

end function;

Code 2.5. Single digit subtraction
without borrow

sbb := function (CF, a0, a1)
z0 := (a0 - a1 - CF) mod

2^64;
CF := 0;
if a0 lt a1 then
CF := 1;

end if;
return CF, z0;

end function;

Code 2.6. Single digit subtraction
with borrow

2Carry flag indicates when an arithmetic carry or borrow is created during the operation.
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As described earlier, there is no size restriction for variables in the Magma language.
Therefore, an auxiliary function(s) is needed to perform the multiplication, just like
addition and subtraction. The Code 2.7 covers the built-in * (mul) Magma language
operator. The helper mul function takes two one-word integers and multiplies them
using the * operator. The result is divided by the base 2W to get the lower part of
the multiplication. The modulus operator is used for obtaining the high part of the
multiplication. As a result, the Code 2.7 is returns h (high part) and l (low part) of the
multiplication.

mul := function (a, b)
z := a*b;
h := z mod 2^W;
l := z div 2^W;
return h, l;

end function;

Code 2.7. Single digit multiplication

mulAddAdd := function (a, b,
c, d)

z := a*b+c+d;
h := z mod 2^W;
l := z div 2^W;
return h, l;

end function;

Code 2.8. Single digit multiplication
with two additions

Eventually, as explained earlier, the magma language is capable of doing arithmetic
without the register size limitations. However, in the remainder of the thesis, each
algorithm was developed with the assumption that this limitation exists. Therefore,
these auxiliary functions were created to provide a link between Magma language and
algorithmic requirements. As a result, the developed auxiliary functions are called in
each of the following algorithms.

2.2. Addition and Subtraction

Adding the two numbers a, b ∈ [0, 2W ) produces at most one bit of carry. Code 2.9
performs multi-digit integer addition of a and b, finally returning the CF (carry bit flag)
and the result of addition. The algorithm 2.9 iterates through each limb of the given
arrays, starting at index 1. The values of each iterated array are passed to the adc
function 2.4, and returned CF variable continues to be used in the further iteration. The
index 0 is specially processed, these index values are added using the add function 2.3
and the CF output is passed to the running adc process for the second index.

addn := function(a, b, t)
c := [];
CF, c[__+0] := add(a[__+0], b[__+0]);
for i:=1 to t do

CF, c[__+i] := adc(CF, a[__+i], b[__+i]);
end for;
return CF, c;

end function;

Code 2.9. Multiprecision addition
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Multi-digit integer subtraction is performed using Code 2.10. It has a similar logic
with Code 2.9. The only difference in this algorithm is the CF bit is called BF (Borrow
bit flag).

subn := function(a, b, t)
c := [];
BF, c[__+0] := sub(a[__+0], b[__+0]);
for i:=1 to t do

BF, c[__+i] := sbb(CF, a[__+i], b[__+i]);
end for;
return BF, c;

end function;

Code 2.10. Multiprecision subtraction

In order to perform the operations in the algorithms that will be explained in the
following parts of the thesis, auxiliary functions that can add and subtract in the n-limb
are generated.

2.3. Integer multiplication

The total running time of most cryptographic primitives are dominated by the speed
of unsigned integer multiplications. Therefore, one needs the fastest integer multipli-
cation available. At this point, we start with a basic algorithm, namely schoolbook
multiplication, with O(n2) running time were n = log2 (max (a, b)). The Code 2.11
provides an operand scanning strategy to multiply two unsigned integers. It also uses
the mulAddAdd auxiliary function explicitly described in Code 2.8; this is developed
assuming that the function never produces an output bigger than two words in base W ,
because (W − 1).(W − 1) + (W − 1) + (W − 1) = (W 2 − 1). It cannot exceed two
digits in base W .

This algorithm is handy for small sized inputs (i.e. inputs with a few digits, say up
to 8 digits). The algorithm suits well with the cases where there is no nail bits in the
registers (i.e. W is equal to the underlying register bit size). However, an implementer
should be warned that the algorithm presented in Code 2.11 comes with the expense of
long data dependencies. Therefore, using Code 2.11 may not be an optimal choice on
pipelined processors.
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integer_mul_osf := function(A, B, n, t)
C := [];
for i:=0 to (n+t+1) do
C[__+i] := 0;

end for;

for i:=0 to t do
U := 0;
for j:=0 to n do
U, V := mulAddAdd(A[__+j], B[__+i], C[__+i+j], U);
C[__+i+j] := V;

end for;
C[__+i+n+1] := U;

end for;

return C;
end function;

Code 2.11. Integer multiplication (operand scanning form)

In this case, an alternative algorithm is given in Code 2.12. This algorithm uses a
product scanning technique with less data dependency. We also note that the need
for register R2 in Code 2.12 is eliminated when there is enough nail bits. We always
introduce nail bits and prefer the latter algorithm for implementations in this thesis.

integer_mul_psf := function(A, B, t)
C := [];
R_0 := 0; R_1 := 0; R_2 := 0;
for k := 0 to 2*t-2 do
for l in { car< Integers(), Integers() > | <i, j> : i in

[0..t-1], j in [0..t-1] | i+j eq k } do
U, V := mul(A[__+l[1]], B[__+l[2]]);
E, R_0 := add(R_0, V);
E, R_1 := adc(E, R_1, U);
E, R_2 := add(R_2, E);

end for;
C[__+k] := R_0;
R_0 := R_1;
R_1 := R_2;
R_2 := 0;

end for;
C[__+2*t-1] := R_0;
return C;

end function;

Code 2.12. Integer multiplication (product scanning form)

As the number of digits grow, it is beneficial to switch to an asymptotically faster
multiplication algorithm namely 2-way Karatsuba multiplication with O(nlog 3/ log 2)

running time. Most applications of Elliptic Curve Cryptography use 4 up to 20 digits
to represent integers involved in arithmetic operations. The number of digits are
determined with respect to the size of the prime that is used in that particular application
and the register size on the target hardware. Karatsuba multiplication can be preferable
when digits are more than or equal to 8. This is of course not a strict bound. An
implementer should try both Schoolbook and Karatsuba multiplications and pick the
fastest one. In comparison, Schoolbook multiplication (with product scanning) is less
register hungry than Karatsuba multiplication. Therefore, multi-stage pipelining favors
Schoolbook multiplication more in most implementations. Again, this is not a strict
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inference. On the other hand, processors with slow multipliers and fast adders are
likely to benefit more from Karatsuba method. Multiplication algorithms of even lower
asymptotic complexity do exist. Typical examples are k-way Karatsuba multiplication
(k > 2), Toom-Cook multiplication, and multiplication with Fast Fourier Transform.
However, we do not use any of these methods as they are only interesting for primes
which are larger than the primes used in Elliptic Curve Cryptography. We note that
3-way Karatsuba multiplication can still be interesting for large primes of Elliptic Curve
Cryptography, e.g. primes having 448 up to 512 bits. We leave such an investigation
as a future work because our primary focus is on the primes having 250 up to 270 bits.
Also, we did not find any convenient prime numbers in this range using our proposed
systematic search methodology.

ym y2 y1 y0

x0 · y0

xn x2 x1 x0

x1 · y0

x2 · y0

x3 · y0

x0 · y1

x1 · y1

x2 · y1

x3 · y1

+

x

cm+n c1 c0c3 c2, . . . , . . . , . . . , . . . ,

Figure 2.1. Schoolbook Multiplication Scheme(Operand scanning form)

Figure 2.1 shows the n-limb schoolbook multiplication algorithm for the Code 2.11
implementation.
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cm+n−2 c1 c0c3 c2, . . . , . . . , . . . , . . . ,

x1x2xn−1

yn−1

x0

y2 y1 y0

x0 · y1

x1 · y0

x0 · y2

x1 · y1

x2 · y0

. . .

. . .

. . .

x0 · y0

xα+n−1 · yn−1−α

Figure 2.2. Schoolbook Multiplication Scheme(Product scanning form)
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Also, figure 2.2 shows the multiplication algorithm for the Code 2.12 implementation,
which also requires less data dependency.

Example

Let a = 9274 and b = 847 at base 10. Table 2.1 shows the algorithm values generated
when executing Code 2.11 for each iteration. See Section 2.3

Table 2.1.. Multi-digit integer multiplication

i j ci + j + aj · bi + U U V C6 C5 C4 C3 C2 C1 C0

0 0 0 + 28 + 0 2 8 0 0 0 0 0 0 8

1 0 + 49 + 2 5 1 0 0 0 0 0 1 8

2 0 + 14 + 5 1 9 0 0 0 0 9 1 8

3 0 + 63 + 1 6 4 0 0 6 4 9 1 8

0 0 1 + 16 + 0 1 7 0 0 6 4 9 7 8

1 9 + 28 + 1 3 8 0 0 6 4 8 7 8

2 4 + 8 + 3 1 5 0 0 6 5 8 7 8

3 6 + 36 + 1 4 3 0 4 3 5 8 7 8

0 0 8 + 32 + 0 4 0 0 4 3 5 0 7 8

1 5 + 56 + 4 6 5 0 4 3 5 0 7 8

2 3 + 16 + 6 2 5 0 4 5 5 0 7 8

3 4 + 72 + 2 7 8 7 8 5 5 0 7 8

Karatsuba Algorithm

As explained in Section 2.3, the Karatsuba algorithm generally performs better when
limb sizes exceed a limit, usually when there are more than 8 to 20 limbs. The Karatsuba
algorithm was first discovered in 1962 by Karatsuba and Ofman (Karatsuba & Ofman,
1962). The Karatsuba algorithm performs the product of two given integers using
divide-and-conquer approaches. Within the idea of the divide and conquer technique,
the Karatsuba algorithm divides the required multiplication by two then perform three
multiplication instead four. As a final step, the final multiplication is operated to
calculate the product. The Equation 2.1 shows the steps of how the Karatsuba algorithm
works for integers u, v of n-bit length.

a = uHvH

d = uLvL

e = (uH + uL)(vH + vL)− a− d

uv = uvn + eb
n
2 + d

(2.1)
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Each sub-multiplying can be processed repeatedly using Karatsuba techniques, but
is not necessary in the context of this thesis because of the length of the multiplied
variables. Since the Karatsuba technique adds additional operations to perform itself, it
will be computationally more costly to use the Karatsuba technique multiple times when
the multiplied variable can be defined directly on the register on the target hardware.
The reason for this decision will be understood more clearly when Chapter 3, the core
of this thesis, is explained. However, to complete the explanation of the Karatsuba
algorithm, Code 2.13 of the naive implementation of the Karatsuba algorithm, which is
recursive in nature, is given.

karatsuba_algorithm := function(u, v)
if u lt 2^W and v lt 2^W then
return u*v;

end if;
n := Max(Ceiling(Log(2^W, u)), Ceiling(Log(2^W, v)));
m := Ceiling(n div 2);
u_H := u div (W^m);
u_L := u mod (W^m);
v_H := v div (W^m);
v_L := v mod (W^m);
//recursive steps
a := karatsuba_algorithm(u_H, v_H);
d := karatsuba_algorithm(u_L, v_L);
e := karatsuba_algorithm(u_H + u_L , v_H + v_L) - a - d;
return (a*(W^(m*2)) + e*(W^m) + d);

end function;

Code 2.13. Karatsuba Algorithm

Note that we do not use the Karatsuba technique as implemented in a 2.13 due to speed
optimization concerns. The version of the Karatsuba technique used in this thesis will
be examined in the next sections.

+

x

x0x1

y1 y0

x0 · y0x1 · y1

−(x1 · y1)

−(x0 · y0)

+((x1 + x0) · (y1 + y0))

x · y

Figure 2.3. Karatsuba Multiplication Scheme
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Figure 2.3 illustrates the two-way Karatsuba algorithm approach, also this figure
follows the same approach as Code 2.13.

2.4. Integer squaring

As same as the field multiplication a, b ∈ Z+, the field squaring a ∈ Z+ performs by
first taking squaring a, and then reducing the result modulo p. Code 2.14 shows the
naive implementation of the field squaring a, the reducing the result modulo p.

integer_squaring := function(A, t)
C := [];
R_0 := 0; R_1 := 0; R_2 := 0;
for k := 0 to 2*t-2 do
for l in { car< Integers(), Integers() > | <i, j> : i in [0..t

-1], j in [0..t-1] | i+j eq k } do
U, V := mul(A[__+i], A[__+j]);
if i lt j then
E, V := add(V, V);
E, U := adc(E, U, U);
R_2 := add(R_2, E);

end if;
E, R_0 := add(R_0, V);
E, R_1 := adc(E, R_1, U);
E, R_2 := add(R_2, E);

end for;
C[__+k] := R_0;
R_0 := R_1;
R_1 := R_2;
R_2 := 0;

end for;
return C;

end function;

Code 2.14. Integer squaring

The same concern with using Code 2.11 and Code 2.12 for integer multiplication applies
to using Code 2.14 for integer squaring. As with integer multiplication, the Karatsuba
algorithm described earlier in section 2.3 may also perform better at squaring integers.
As with integer multiplication in Code 2.11 and Code 2.12, the way the squaring
algorithm presented is for informational purposes only.

2.5. Reduction

The integer multiplication of 0 ≤ a, b < p is most likely to produce a result greater
than p. Therefore, the operation (ab) mod p requires a reduction. Thus, there are two
methodologies exist to performs a field multiplication, one of is realize a multiplication
then reduce. The following multiplication algorithms strictly obey that methodology.

The schoolbook division (aka long division) algorithm involves frequent access to
the division instruction (assuming that such a division instruction is present in the
target hardware). We refer the reader to Knuth (Knuth, 1997), for an exposition of
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long division algorithm. However, any use of division instruction is not preferred in
cryptographic applications for two reasons: (i) the latency of the division instruction is
high and the throughput is low. (ii) the instruction does not take constant time. Therefore,
implementation of Long division was not implemented using Magma. However, to
work around these problems, we have four alternatives: namely, (i) binary reduction;
(2) Barrett reduction; (3) Montgomery reduction; (4) Special moduli.

We now explain these techniques noting that the special moduli technique is at the
heart of this thesis.

2.5.1. Binary Reduction

The binary reduction can be used when a division instruction is not present in the
hardware. The algorithm uses just basic linear operations such as shifts and additions.
One reason to exclude this algorithm from cryptographic applications is that it is
practically very slow. Yet another is that it is not constant time. For positive integers z
and p, Code 2.15 produces a z mod p, following the Binary reduction algorithm.

RedBin:=function(z,p)
pl:=Ceiling(Log(2,p)); // precomputed
while z gt p do

zl:=Ceiling(Log(2,z));
q:=2^(zl-pl);
t:=q*p; // Use muln
if z lt t then

t:=t/2;
end if;
z:=z-t;

end while;
return z;

end function;

Code 2.15. Binary Reduction

2.5.2. Barrett Reduction

Barrett reduction is a general purpose reduction algorithm introduced in 1986 by P.
D. Barrett (Barrett, 1987). The algorithm is more efficient than the long division if
precomputation on the prime moduli is allowed. This usually the case when several mul-
tiplications are to performed with a fixed prime, just as in Elliptic Curve Cryptography.
In particular, Barrett reduction makes access to two multi-digit multiplications and some
more linear operations. The first multi-digit multiplication requires access to higher half
of the result while the second one accesses the lower half. Both of these half products
can be optimized with lower level tweaks at the implementation. It can be proved that
the while loop iterates at most 2 times, without causing a serious performance penalty.
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b := 2^W;
k := Floor(Log(b, p)) + 1;
u := b^(2*k) div p;
q := (z div b^(k-1) * u) div b^(k+1);
r := (z mod b^(k+1)) - ((q * p) mod b^(k+1));
if r lt 0 then
r := r + b^(k+1);

end if;
while r ge p do
r := r - p;

end while;
return r;

Code 2.16. Barrett Reduction

The amount of work required for the amount of precomputation of the Barrett reduction
adds a computational overhead that is easily negligible compared to modular multipli-
cation. Also, note that in the Code 2.16 the div operation is used directly to perform
the division, but in real life implementation these divisions are done using the shift
operator.

2.5.3. Montgomery Reduction

Montgomery reduction algorithm proposed by P.L. Montgomery (P. L. Montgomery,
1985). The algorithm efficiently calculates c = a · b (mod n) where a, b and c are k-bit
binary numbers. Like the Barrett reduction algorithm, division operations are replaced
by simple shift operation. Let r be an integer such that gcd(r, n) = gcd(2k, n) = 1,
noting that n is always odd. The following steps are followed to define the Montgomery
reduction algorithm.

Let a be an integer with property a < n, we can construct the following equation
according to r as

ā = a · r mod n.

It also equates to complete residue system. This property allows to develop a faster
multiplication algorithm for two given integers in the n-residual system. Therefore,
Montgomery multiplication with the given of two integer at n-residue, can be defined
as:

c̄ = ā · b̄ · r−1 (mod n)

r−1 shows the inverse of r modulo n, it’s satisfies r−1 · r = 1 (mod n). If we use this
property of modular inversion, we get

c̄ = a · r · b · r · r−1 (mod n)

= a · b · r (mod n)

To realize the Montgomery reduction additional properties are easily produced using
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the extended Euclid algorithm, see 2.7.1, such as n′ whose satisfies the property

r′ · r − n · n′ = 1.

The Montgomery modular multiplication inputs are accomplished using Code 2.17. To
simplify the explanation of the algorithm, modular inversion is calculated using the
built-in Modinv function instead of the Code 2.20 described in Section 2.7.1.

montgomery_reduction := function(z, p, R)
c := 0;
pd := Modinv(-p, R);
c := c + (z + ((z*pd) mod R)*p) div R;
if(c ge p) then
c := c - p;

end if;
return c;

end function;

Code 2.17. Montgomery Reduction

Montgomery multiplication can be done using Code 2.18, this implementation also
includes an correctness test written in Magma language. Built-in Magma functions
were used to testing.

montgomery_multiplication := function(a, b, p, R)
A := (a*R) mod p;
B := (b*R) mod p;
C := montgomery_reduction(A*B, p, R);
c := (C*Modinv(R, p)) mod p;
res := c eq (a * b) mod p;
return res;
end function;

Code 2.18. Montgomery Multiplication

Eventually, the Montgomery reduction is another general purpose reduction algorithm.
It is specifically well-suited with modular exponentiation and elliptic curve scalar
multiplication. Just like Barrett reduction, Montgomery reduction also requires the
computation of two half products. Speed implementations always optimize these half
products. For some specifically selected primes Montgomery reduction can be speed up
significantly, see (Bos, Costello, Longa, & Naehrig, 2016).

2.5.4. Primes of a special modulus

Primes which are extremely close to a power of two are classified as special modulus.
Such primes allows reduction with a few linear operations and sometimes multiplications
by small constants. Some special primes are listed in Table 2.2.

Prime numbers listed in table 2.2 generally yield a better speed-oriented result because
the nature of prime shapes allows arithmetic to be done using fewer instructions. This
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Table 2.2.. List of selected primes of special modulus

p1271 2127 − 1
p192 2192 − 264 − 1
p224 2224 − 296 + 1
p2519 2251 − 9
p25519 2255 − 19
p256 2256 − 2224 + 2192 + 296 − 1
p2663 2266 − 3
p384 2384 − 2128 − 296 + 232 − 1
p448 2448 − 2224 − 1
p521 2521 − 1

thesis makes another entry to table 2.2 with the prime 2261 − 2131 − 1 the details are
provided in Chapter 5.

2.6. Modular Exponentiation

Modular exponentiation, as the name suggests, performs exponentiation over a module.
Modular exponentiation is one of the essential operations for cryptographic algorithms.
This calculates c = be mod p, where 0 ≤ c < p. As we mentioned earlier, it is
substantial to perform arithmetic operations rapidly for cryptographic algorithms. The
same concern applies when calculating modular exponentiation, so various algorithms
have been developed in this regard. The naive way to calculate modular exponentiation
is to first calculate be for the given integers b, e, and then to compute this result in
modulo p. The bit length of numbers significantly affects the computational speed.
Therefore, this method becomes cumbersome as b and e increase further to provide
better security.

2.6.1. Successive Squaring

This method provides a better algorithm for computing modular exponentiation. Unlike
the naive way, it does not perform the reduction in modulo p after it produces the
exponentiation result first. As a preliminary of this algorithm the exponent e should
written as a binary form. This can be described as in 2.2

e =
n−1∑
i=0

ai2
i (2.2)

In this form, n represents the bit length of e. Clearly, ai can be either 0 or 1. In this
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notation, modular exponentiation can be represented in 2.3

n−1∏
i=0

bai2
i

(mod p) (2.3)

describing the operation in this notation indicates: It is adequate to perform the
calculation only when ai ̸= 0. Code 2.19 has been developed in line with the method
described.

successive_squaring := function(b, e, p)
if p eq 1 then

return 0;
end if;
res := 1;
b := b mod p;
while e gt 0 do

if (e mod 2) eq 1 then
res := (res*b) mod p;

end if;
b := (b * b) mod p;
e := e div 2;

end while;
return res;

end function;

Code 2.19. Successive Squaring

The ability of Code 2.19 to perform faster arithmetic can also be useful for calculating
the modular multiplicative inverse of an integer with Code 2.22.

2.7. Inversion

A modular multiplicative inverse of the integer a is an integer x represented by ax ≡ 1

(mod p). The inverse of a can be simply noted as a a−1 or a−1 (mod p) where the
a ∈ Z. There are several ways to calculate the inverse of a, different techniques (e.g.,
Extended Euclidean algorithm, Fermat’s little theorem and Safe GCD) are studied in
this section.

2.7.1. Extended Euclidean Algorithm

A Euclidean algorithm is useful for finding the greatest common divisor (GCD). Simply
calculates d = GCD(a,b), takes two integers number a, b where a ≤ b, and then finds
the number d, which is the greatest common divisor for a, b. The classical Euclidean
algorithm can be modified to find x, y where the integers x, y are ax + by = d and
d = gcd(a, b). The naive implementation of this algorithm is given in Code 2.20.
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extended_gcd := function(a, b)
u := a; v := b;
x_1 := 1; y_1 := 0; x_2 := 0; y_2 := 1;
while u ne 0 do
q := v div u;
r := v - q*u;
x := x_2 - q*x_1;
y := y_2 - q*y_1;
v := u;
u := r;
x_2 := x1;
x_1 := x;
y_2 := y_1;
y_1 := y;

end while;
d := v;
x := x_2;
y := y_2;
return d, x, y;

end function;

Code 2.20. Extended GCD

2.7.2. Inversion with using the Extended Euclidean algorithm

Our aim is to compute the inverse of a, Code 2.20 can be used to calculate the inverse of
a given integer such as a. Let p be prime and a ∈ [1, p− 1], and therefore gcd(a, p) = 1.
Therefore, we have ax + bp = 1 ⇐⇒ ax ≡ 1 (mod p). Finally, the result of this
Code 2.20 is equal to the inverse of a in Fp. These restrictions on inputs produce slightly
optimized Code 2.21.

inversion_with_extended_gcd := function(a, p)
u := a; v := p;
x_1 := 1; x_2 := 0;
while u ne 1 do
q := v div u;
r := v-q*u;
x := x_2 - q*x_1;
v := u;
u := r;
x_2 := x_1;
x_1 := x;

end while;
return (x_1 mod p);

end function;

Code 2.21. Inversion with Extended GCD

2.7.3. Fermat’s little theorem

As with the Euclidean algorithm, Fermat’s little theorem can be used to find the modular
multiplicative inverse of any given integer a, p where gcd(a, p) = 1. Before we start
explaining how Fermat’s little theorem is used for the multiplicative inverse of integers.
Recall, Fermat’s little theorem is a special case of the Euclidean algorithm where a, p is
coprime and p is a prime. Therefore, ap−1 ≡ 1 (mod p). If the both sides are divided by
a. This congruence becomes ap−2 ≡ 1

a
(mod p) which implies ap−2 ≡ a−1 (mod p).

Thus, calculating the value of ap−2 when p is prime yields the modular multiplicative
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inverse of a in Fp. Code 2.22 shows the basic application of Fermat’s little theorem
algorithm to calculate the inverse of a in Fp. For the sake of performance, the Code 2.22
is poorly implemented, but it explains the gist of the algorithm. As we mentioned earlier,
these Magma codes are produced from an informative perspective only.

fermat_little_theorem := function(a, p)
u := a;
for i := 1 to p-3 do
u := (u*x) mod p;

end for;
return u;

end function;

Code 2.22. Fermat’s-little theorem

A better way might be to replace recurring multiplication on the Code 2.22 with
modular exponentiation, see 2.6.1, which has a better speed oriented performance.
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CHAPTER 3

FAST MODULAR MULTIPLICATION

Chapter 2 showed how to implement basic operations in finite field arithmetic. The
total running time of most cryptographic primitives (such as elliptic curve scalar multi-
plication) depends heavily on the number of field multiplications performed over the
underlying finite field. Therefore, we are particularly interested in modular multiplica-
tion in this chapter and in the remainder of this thesis.

Let p be a large prime. Let f and g be non-negative integers. Our task is to compute
(f · g) mod p. This task is named the modular multiplication. In the most naive way,
modular multiplication is carried out by an integer multiplication (i.e. f · g) followed
by a reduction procedure which were detailed in Sections 2.3 and 2.5, respectively.
Optimized speed implementations typically fix a NIST-like prime and merges the
arithmetic of multiplication and reduction steps. The most common instances are the
primes 2255 − 19 and 2448 − 2224 − 1. This chapter aims to investigate fast modular
multiplication strategies with these primes and also build a systematic search for possible
faster alternatives. Two concrete outcomes of this chapter are listed as follows:

1. We introduce a nine-limb representation the elements of GF (2255 − 19), which
have potential to be used in the place of classic ten-limb representation introduces
in (D. Bernstein, 2006), also see (Chou, 2015).

2. We introduce the prime 2261 − 2131 − 1 along with a ten-limb representation of
it’s elements, which outperforms the speed of the prime 2255 − 19 in all settings.

We adopt this second methodology in this chapter. In particular, we are interested in
two different strategies;

• Multiplication blended with reduction,

• Semi-reduced multiplication followed by reduction.

These strategies may have strengths depending on the conditions in which they have
been used. However, we are heavily involved with this second strategy mentioned
above.

The second strategy called “Semi-reduced multiplication followed by reduction",
allows the items produced to be kept in an unreduced and redundant form. This is strictly
limited by the register capacity. Hence, this strategy uses fewer limbs to do arithmetic
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unlike the "Multiplication is blended with reduction". In this context, the our prime
number p261 represented in 10 limbs, and after multiplication it fits into 10 limbs. This
hybridized technique is “Semi-reduced multiplication followed by reduction" allows
you to do this. Further information about this technique is given in Chapter 4.

In addition, the multiplication techniques proposed in this thesis use a Karatsuba
multiplication. Before we initiate to describe our proposed methods, it is beneficial to
explain the classical Karatsuba multiplication.

As described earlier in Section 2.3, the classical Karatsuba multiplication produces
the product fg. In this process, we split the operands into two ℓ-bit parts and perform
three half sized multiplications. For instance, f and g can be represented f = f1 ·2

ℓ
2 +f0,

g = g1 · 2
ℓ
2 + g0. The product formula of f and g can be described in the below.

fg ≡ (A+ cB) + 2ℓ · (C − A−B) (mod 22ℓ − c)

where A = f0g0, B = f1g1, and C = (f0 + f1)(g0 + g1). Further formulas can have
performed according to the properties of the selected prime. In this thesis, two types
of multiplication and corresponding prime numbers have been studied, which had
explained in 3.1 and 3.2 sections, respectively.

3.1. Karatsuba 2-way friendly primes

This section will explore the types of prime numbers which are suitable for using the
Karatsuba 2-way modular multiplication technique. In order to obtain this information,
all possible cases are explored on the most general suggested Karatsuba 2-way formula.
At first, we should define a Karatsuba 2-way in the most general way. As described
earlier, we use a semi-reduced multiplication technique. The classical Karatsuba
multiplication with our settings has expressed as follows:

c2fg ≡ ( c1(t1) + c2(t2 − t1 − t0) ) · ℓ1 +

( c0(t1) + + c2(t0 ) ) · ℓ0 (mod c2ℓ
2 − c1ℓ− c0)

(3.1)

where f = f1ℓ+f0, g = g1ℓ+g0 and p = c2ℓ
2−c1ℓ−c0. Additional components consist

of the Karatsuba formula t0 = f0g0, t1 = f1g1 and t2 = (f0+ f1)(g0+ g1), respectively.
The explicitly illustrated formula shows us that the prime components (c0, c1, c2) play
an significant role in constructing a multiplication sequence. Each arithmetic operation
used in the formula corresponds to at least one instruction, depending on the hardware
used. So our goal is to eliminate as many linear operations as possible using prime
components (c0, c1, c2) to reduce instruction usage. This generated general formula
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shows us some observations for making speed-oriented optimizations, they are as
follows:

• If c0 = 0, this case will never happen due to a prime number violation. Thus
in the best-case scenario, we can eliminate a single multiplication when c0 = 1.
Also, c2 = 0 cannot be happen.

• The most computationally cumbersome task performs in the ℓ1 limb. Thus the
optimization techniques should have focused on this step.

So representing the field multiplication in the most general way helped us understand the
bottleneck of multiplication and constraints, keep in mind that the generated formulas
are for multiplication only, but the same optimizations will be achieved in squaring
within the same observation. Accordingly, there are several conditions for the selection
of the prime components, they are examined below:

1. If c0 = 1, the formula becomes

c2fg ≡ ( c1(t1) + c2(t2 − t1 − t0) ) · ℓ1 +

( t1 + c2(t0 ) ) · ℓ0 (mod c2ℓ
2 − c1ℓ− 1)

(3.2)

Ideally, we would look for a smaller c0 due to our research to improve computa-
tional speed. But in this case, we have a better opportunity. In these settings, we
have a chance to remove a linear operation.

2. If c1 = 0, the formula becomes

c2fg ≡ ( c2 (t2 − t1 − t0) ) · ℓ1+
( c0(t1) + c2 (t0 ) ) · ℓ0 (mod c2ℓ

2 − c0)
(3.3)

In this case, the operating cost is reduced by one multiplication. Prime numbers
such as 2255 − 19 and 2251 − 9 are examples of this scenario. Most cryptographic
applications have an application where such prime numbers are used.

3. If c1 = c2, the formula becomes

c1fg ≡ ( c1(t2 − t0) ) · ℓ1 +

( c0(t1) + c1(t0 ) ) · ℓ0 (mod c1ℓ
2 − c1ℓ− c0)

(3.4)

We can eliminate one subtraction and one multiplication operation. The compu-
tational cost has significantly reduced. Also, such prime numbers allow some
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calculations have reused, such as reusing c1t0 in the ℓ1 limb.

4. If c2 = 1, c1 = 0, c0 = 1 the formula becomes

fg ≡ ( t2 − t1 − t0 ) · ℓ1 +

( t1 + t0 ) · ℓ0 (mod ℓ2 − 1)
(3.5)

Among all for combinations, the fourth one provides the fastest formulas. Unfor-
tunately, there is no such prime having bit length around 256.

5. If c2 = c1, c0 = 1 the formula becomes

c1fg ≡ ( c1(t2 − t0 ) ) · ℓ1 +

( t1 + c1(t0 ) ) · ℓ0 (mod c1ℓ
2 − c1ℓ− 1)

(3.6)

Ideally, we seek a for a prime of the form (mod c1ℓ
2 − c1ℓ− 1). An example of

this is the well-known prime number 2448 − 2224 − 1. Furthermore, we propose
a new prime number with these properties, detailed information is explained in
Chapter 5. Having these properties, the newly proposed prime has the possibility
to compete with other well-known prime numbers in speed-oriented applications.

These generated formulas can provide a brief overview of how prime components
should be selected when working with a finite field multiplication using the Karatsuba
technique. The formula creation process below may vary depending on application
constraints. Due to the focus of this thesis, only AVX2 instruction extension constraints
have been considered when generating a lower-level domain multiplication formula. In
line with the thesis focus, the possible formula representation is given in Section 3.1,
note that this formula is also used in the implementation of 2261 − 2131 − 1, these
implementation details are separately examined in Chapter 5.

10-limb representation

At this point, we begin to take a closer look at the implementation details. As we said
before, it is necessary to know how many limbs are used to represent the field elements
in order to produce a formula that is closer to the target hardware representation. In
these settings, field multipliers have represented in the 10 limb. Also, we assume that
c2 = c1 in the following formula. Each limb of the field multiplier elements tn could
express in 64-bit registers. Therefore, this formula can be easily applicable to the target
hardware.
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c1fg ≡ ( − c1(t04 − t24 ) ) · ℓ9 +

( c0(t18 ) − c1(t03 − t23 − t28 ) ) · ℓ8 +

( c0(t17 ) − c1(t02 − t22 − t27 ) ) · ℓ7 +

( c0(t16 ) − c1(t01 − t21 − t26 ) ) · ℓ6 +

( c0(t15 ) − c1(t00 − t20 − t25 ) ) · ℓ5 +

( c0(t14 ) + c1(t04 ) ) · ℓ4 +

( c0(t13 − t08 + t28) + c1(t03 ) ) · ℓ3 +

( c0(t12 − t07 + t27) + c1(t02 ) ) · ℓ2 +

( c0(t11 − t06 + t26) + c1(t01 ) ) · ℓ1 +

( c0(t10 − t05 + t25) + c1(t00 ) ) · ℓ0

(mod c2ℓ
2 − c1ℓ− c0)

(3.7)

In the best scenario, when c0 = 1 this formula will transform as follow:

c1fg ≡ ( − c1(t04 − t24 ) ) · ℓ9 +

( (t18 ) − c1(t03 − t23 − t28 ) ) · ℓ8 +

( (t17 ) − c1(t02 − t22 − t27 ) ) · ℓ7 +

( (t16 ) − c1(t01 − t21 − t26 ) ) · ℓ6 +

( (t15 ) − c1(t00 − t20 − t25 ) ) · ℓ5 +

( (t14 ) + c1(t04 ) ) · ℓ4 +

( (t13 − t08 + t28) + c1(t03 ) ) · ℓ3 +

( (t12 − t07 + t27) + c1(t02 ) ) · ℓ2 +

( (t11 − t06 + t26) + c1(t01 ) ) · ℓ1 +

( (t10 − t05 + t25) + c1(t00 ) ) · ℓ0

(mod c2ℓ
2 − c1ℓ− 1)

(3.8)

The reason we use 10-limb to represent field elements is because the newly discovered
prime fits perfectly into the 10-limb notation when each limb is filled with about 26
bits. Therefore, this formula is used in Section 5. This formula may perform better at
the newly suggested prime 2261 − 2131 − 1 instead of p25519. Further information is
given in Section 5.

3.2. Schoolbook 2-way friendly primes

As with Section 3.1, this section examines possible formulas for the schoolbook mul-
tiplication technique. The same methodology is followed here to explore possible
formulas for the schoolbook multiplication technique. Firstly, the most general way of
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technique is expressed as:

c2fg ≡ ( c1(t1) + c2(t2 + t3) ) · ℓ1 +

( c0(t1) + + c2(t0 ) ) · ℓ0 (mod c2ℓ
2 − c1ℓ− c0)

(3.9)

where f = f1ℓ + f0, g = g1ℓ + g0 and p = c2ℓ
2 − c1ℓ − c0. Other components

come from the multiplication technique used, which are explained as t0 = f0g0, t1 =
f0g1, t2 = f1g0, t3 = f1g1 respectively. As you noticed this technique requires
more multiplication than the Karatsuba method. However, there may be situations
where this schoolbook technique would be more beneficial. To investigate these cases,
every possible formula that could be produced was investigated according to its prime
components as follows. Before starting to explore formulas, some limitations should be
explained. Those are given in a list form.

• c0 ̸≡ 0 (mod 2), also should satisfy c0 ̸= 0.

• c2 = {x | x ∈ Z+, x > 0}

1. if c0 = 1 the formula as follows:

c2fg ≡ ( c1(t3) + c2(t1 + t2) ) · ℓ1 +

( t3 + c2(t0 ) ) · ℓ0 (mod c2ℓ
2 − c1ℓ− c0)

(3.10)

Such prime numbers can perform arithmetic using less linear operations compared
to prime number types where c0 ̸= 1. This special case provides an opportunity
to remove a multiplication that is c0(t3) explicitly c0(f1g1).

2. if c0 = c2 the formula as follows:

c2fg ≡ ( c0(t1 + t2)+ c1(t3) )·ℓ1 +
( c0(t0 + t3) )·ℓ0 (mod c2ℓ

2 − c1ℓ− c0)
(3.11)

In this case, using prime numbers with these properties helps us get t0 and t3 into
a common multiplication group, so that if we use such primes to do arithmetic,
we can produce a speed-optimized implementation. This observation gives us the
opportunity to remove a one linear operation in arithmetic.

3. if c2 = 1 the formula as follows:

c2fg ≡ ( c1(t3) + (t1 + t2) ) · ℓ1 +

( c0(t3) + (t0 ) ) · ℓ0 (mod c2ℓ
2 − c1ℓ− c0)

(3.12)
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The computational cost will be reduced dramatically. This situation where c2 = 1

allows us to remove the two linear operations. A few examples can be given for
this type of prime, such as 2192 − 264 − 1, 2224 − 296 + 1.

4. if c1 = 0 the formula as follows:

c2fg ≡ ( c2(t1 + t2) ) · ℓ1 +

( c0(t3) + c2(t0 ) ) · ℓ0 (mod c2ℓ
2 − c0)

(3.13)

The case where the property of the prime components is c1 = 0 allows to remove
a linear operation where t3 is also equal to f1g1.

5. if c2 = 1, c1 = 0, c0 = 1 the formula as follows:

fg ≡ ( t2 − t1 − t0 ) · ℓ1 +

( t1 + t0 ) · ℓ0 (mod ℓ2 − 1)
(3.14)

Ideally, we would look for a prime number with properties in this case. As it
turns out, such prime numbers have better potential to produce a speed-optimized
application.

These cases examined show the essential information about what kind of prime
numbers should be used with the corresponding multiplication technique. Thus, we
discovered that "Schoolbook algorithm" of the technique under review often performs
better with NIST-like prime numbers, such as 2521 − 1, 2255 − 19. To summarize,
we concluded that the prime components play an important role in the finite field
of multiplication. These comparisons are extensively explored in the Section 3.1 and
Section 3.2. Also, this systematic search for prime numbers shows that the multiplication
techniques used must depend heavily on prime properties. With this information
obtained, we showed which types of prime numbers would be useful. This systematic
way of looking for prime numbers helped us gain this knowledge. Also, this search
method helps to find the prime 2261 − 2131 − 1. This newly discovered prime has been
extensively researched on Chapter 5.
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CHAPTER 4

CASE STUDY #1: FAST 4 WAY VECTORIZED LADDER FOR THE
COMPLETE SET OF MONTGOMERY CURVES

This work introduces 4 way vectorization of Montgomery ladder on any Montgomery
form elliptic curve. Our algorithm takes 2M4 + 1S4 (M4: A vector of four field
multiplications, S4: A vector of four field squarings) per ladder step for variable-
scalar variable-point multiplication. This paper also introduces new formulas for doing
arithmetic over GF (2255 − 19).
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4.1. Introduction

Elliptic curve cryptography was proposed by Miller (Miller, 1985) and Koblitz (Koblitz,
1987) in late 80s. In the past three decades, elliptic curves became one of the central
objects in public key cryptography. The group law computations on elliptic curves are
particularly interesting as they allow efficient arithmetic on computers. In addition, hard
instances of discrete logarithm problem can be defined on elliptic curves over finite
fields of fairly small size. These two properties of elliptic curves make them perfect
candidates for many cryptographic primitives such as key exchange, key encapsulation
mechanism, and digital signatures. In all of these primitives, the bottleneck operation is
the multiplication of a point on an elliptic curve with a scalar. This operation is called
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scalar multiplication. Optimizing scalar multiplication is one of the main challenges in
elliptic curve cryptography.

An elliptic curve can be represented in several different forms. One of these forms
was introduced by Peter L. Montgomery in his celebrated article (P. Montgomery, 1987)
in 1987. An elliptic curve in Montgomery form is written as

By2 = x3 + Ax2 + x

with constants A and B satisfying B(A2 − 4) ̸= 0. Let P be a point on this curve.
Let x(P ) be the x-coordinate of P . Let k be a positive integer. Montgomery ladder
algorithm which was also proposed in (P. Montgomery, 1987), computes x(kP ) by
accessing a single point doubling and a single point addition operation per iteration
of its main loop. In this setting, Montgomery provides doubling formulas to compute
x(2P ) given x(P ), and differential addition formulas to compute x(P +Q) given x(P ),
x(Q), and x(P − Q). The auxiliary value x(P − Q) is maintained naturally by the
ladder. This regular structure of Montgomery ladder made it a perfect candidate to be
used in elliptic curve cryptography.

In 2006, Bernstein (D. Bernstein, 2006) proposed an elliptic curve Diffie-Hellman
key exchange function, Curve25519, which uses Montgomery ladder along with a
twist-secure Montgomery curve over the field GF (2255−19). Bernstein (D. Bernstein,
2006) also provided fast software which implements Curve25519, runs in constant-time,
and can defend against timing-attacks. Bernstein’s design is later re-specified by the
Internet Research Task Force in RFC 7748 memorandum.

Montgomery ladder was also adapted to other elliptic curve forms. For example,
Brier and Joye (Brier & Joye, 2002) presented formulas for any elliptic curve written
in short Weierstrass form y2 = x3 + a4x + a6 covering all elliptic curves over a
field k with char(k) ̸= 2, 3. Analogous formulas over a field of characteristic 2
were given by Lopez and Dahab (López & Dahab, 1999). Additional alternative
differential additions formulas can be found in (Castryck, Galbraith, & Farashahi,
2008), (D. J. Bernstein, Lange, & Rezaeian Farashahi, 2008), (R. Farashahi & Hosseini,
2016) and (R. R. Farashahi & Hosseini, 2017).

Building on an earlier work of Chudnovsky and Chudnovsky (Chudnovsky & Chud-
novsky, 1986), Gaudry introduced doubling and differential addition analogues on
genus 2 Kummer surfaces in (Gaudry, 2007). As a follow up work, Gaudry and Lubicz
introduced genus 1 analogues of Kummer surfaces in (Gaudry & Lubicz, 2009). Their
study covers both odd and even characteristics. We refer to these Kummer lines as
canonical Kummer lines in this work following the language of (Renes & Smith, 2017).
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Explicit formulas for squared Kummer lines appeared in EFD1 with credits to Gaudry
(Gaudry, 2007) and Gaudry, Lubicz (Gaudry & Lubicz, 2009).

Emerging hardware trend in single-instruction multiple-data (SIMD) circuits led
researchers develop vectorized implementations of ladders. A SIMD implementation
of Gaudry-Schost squared Kummer surface (Gaudry & Schost, 2012) was introduced
by Bernstein, Chuengsatiansup, Lange, and Schwabe (D. Bernstein, Chuengsatiansup,
Lange, & Schwabe, 2014). Their implementation is currently the speed leader in the
genus 2 setting. The genus 1 setting is actively in development. Chou (Chou, 2015,
Alg. 3.1) put forward a 2 way vectorized implementation of Montgomery ladder using
the inherent 2 way parallelism in the classic formulas. Chou’s implementation uses the
2 way vectorized 32 × 32 → 64-bit multipliers on Sandy Bridge and Ivy Bridge. A
4 way vectorized implementation of squared Kummer lines were presented by Karati
and Sarkar in (Karati & Sarkar, 2017). Their implementation uses the 4 way vectorized
32 × 32 → 64-bit multipliers on Haswell and Skylake. Karati and Sarkar report that
their implementation offers competitive performance in Kummer line based scalar
multiplication for genus one curves over prime order fields using SIMD operations.
Faz-Hernández and López provided a 2× 2 way implementation of Montgomery ladder
on Haswell and Skylake. The arithmetic of the underlying field is 2 way vectorized in
their implementation (hence the notation 2× 2).

Putting the vectorization option of the underlying field a side (which is also an option
for squared Kummer lines), the sequence of recent advances in ladder implementations
may lead to the illusion that Montgomery curves are less vectorization-friendly than
Kummer lines. In this work,

• we show that Montgomery curves are efficiently 4 way vectorizable. See Sec-
tion 4.3.

• we provide timings for our 4× 1 way vectorized implementation on AVX2. See
Section 4.4.

• we propose a new 9 limb representation of field elements which has potential
to be faster than the widely applied 10 limb representation, in implementations
without using field level vectorization. See Section 4.4.

• we provide timings for our 4× 2 way vectorized implementation on AVX-512.
See Section 4.5. This implementation sets the new speed record in variable-scalar
variable-point multiplication over the field GF (2255 − 19).

Results are provided in Section 4.6.

1http://www.hyperelliptic.org/EFD/ (last accessed 2019-05-20)
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4.2. Montgomery ladder

This section provides preliminaries on Montgomery ladder. We will skip detailed
discussions on the group law, the pseudo-group structure, working solely on the x-line,
point recovery etc. These are all very well understood and available in several texts
in the literature, cf. (D. Bernstein & Lange, 2017, Chapter 4) and (Costello & Smith,
2018). Our approach will be more implementation oriented. Therefore, the treatment in
this section is far from being comprehensive.

The abscissa x(P ) of a point P is represented in homogenous projective space P in
the form (x(P ) : 1). In this projective representation, (X : Z) = (λX : λZ) for all
non-zero λ ∈ K. The point (1 : 0) is the pseudo-identity element. From now on, we
update the definition of P and use the projective notation.

Given the points (X3 : Z3), (X2 : Z2), and (X1 : Z1) = (X3 : Z3)− (X2 : Z2), we
have (X5 : Z5) = (X3 : Z3) + (X2 : Z2) and (X4 : Z4) = 2(X2 : Z2). Montgomery
provided the following explicit formulas in (P. Montgomery, 1987):

(X5 : Z5) =
(
Z1(X2X3 − Z2Z3)

2 : X1(X2Z3 − Z2X3)
2
)
,

(X4 : Z4) =
(
(X2

2 − Z2
2)

2 : 4X2Z2(X
2
2 + AX2Z2 + Z2

2)
)
. (4.1)

These differential addition and doubling formulas are the building blocks of the
Montgomery ladder. Before providing the ladder, we simplify our notation and define
the functions DBLADD and SWAP. The function DBLADD inputs three points where the
third is the difference of the first two, and outputs the sum of the two initial points
and the double of the second input point. The output is overwritten to (X3 : Z3) and
(X2 : Z2), respectively. This is denoted as

DBLADD ((X3 : Z3), (X2 : Z2), (X1 : Z1)) .

The function SWAP inputs two points and a single bit. If swap is 0, then the output
is identical to the input. If swap is 1, then the output is the swapped input points. The
Montgomery ladder is provided succinctly in Algorithm 1.

In cryptographic applications, the output of Algorithm 1 is typically normalized as
X2/Z2 in order to obtain a unique representative of the output. In addition, ℓ is fixed
in order to fix the number of iterations. Moreover, one can force k to be multiple of a
small power of 2 to surpass active attacks exploiting the existence of small subgroups.
Cryptographic applications which are required to run in constant-time must have each
sub-operation run in constant-time. We refer to curve25519 specification for full
detail, (D. Bernstein, 2006).
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Algorithm 1: Montgomery ladder
Require: P = (X : Z) ̸= (1: 0) and k =

∑ℓ−1
i=0 ki2

i with kℓ−1 = 1, ki ∈ {0, 1}.
Ensure: kP .

1: (X3 : Z3)← P ,;
(X2 : Z2)← (1 : 0),;
(X1 : Z1)← P

2: prevbit← 0
3: for i = ℓ− 1 down to 0 do
4: swap← prevbit⊕ k[i]
5: prevbit← k[i]
6: SWAP(swap, (X3 : Z3), (X2 : Z2))
7: DBLADD((X3 : Z3), (X2 : Z2), (X1 : Z1))
8: end for
9: SWAP(k[0], (X3 : Z3), (X2 : Z2))

10: return (X2 : Z2)

4.3. 4 way Montgomery ladder

Montgomery’s formulas (4.1) lie at the heart of curve25519. Several implemen-
tations of curve25519 are available in public domain. Karati and Sarkar (Karati
& Sarkar, 2017) commented for the ladder step used in curve25519 specification
(D. Bernstein, 2006, Appendix B):

“The structure of this ladder is not as regular as the ladder step on the

Kummer line. This makes it difficult to optimally group together the multi-

plications for SIMD implementation.”

In this work, we aim to show that a higher level of parallelism can be achieved with
new tweaks on the ladder step, see Figure 4.1. In the figure, H stands for Hadamard
transformation which inputs two coordinates X and Z and outputs X + Z and X − Z.
The point doubling side of Figure 4.1 is recognizably different than Bernstein’s diagram.
Specifically, the squaring step now utilizes all 4 channels in vectorized form. On the
other hand, an inspection on Figure 4.1 reveals that the outputs X4, Z4, X5, and Z5

agree with (4.1) up to a multiplication of the coordinates by a constant with no effect on
the correctness of DBLADD routine.

The ladder step in Figure 4.1 takes 2M4 + 1S4. In comparison, Karati and Sarkar’s
4 way vectorized ladder step (Karati & Sarkar, 2017, Fig. 1) takes 2M4 + 1S4 + 1d4

(d4: A vector of four field multiplications by four small constants). There is a speed
trade-off between these two approaches, which is not clear immediately from the high
level operation counts:

• Multiplication with constants: A squared Kummer line requires one multiplication
by [a2 + b2, a2 − b2, a2 + b2, a2 − b2] followed by reduction (denoted d4), per
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X3 Z3 X2 Z2

H H

× × × × (M4)

H H

× × × × (S4)

×Z1 ×X1 × ×A (M4)

+
− +

X5 Z5 X4 Z4

Figure 4.1. DBLADD: 4 way vectorized ladder step for the curve By2 = x3 +Ax2 + x.

ladder step. Such a multiplication-reduction does not occur in Figure 4.1.

• Extra permutations: Data transfers between SIMD channels occur in Hadamard
transform and constant-time conditional point swap operations in both types of
ladder steps. Our algorithm requires additional transfers and linear operations
following the second Hadamard transform.

These two items constitute a speed trade-off (even if a2 + b2 and a2 − b2 are ex-
tremely small). This trade-off depends heavily on the comparative throughput of SIMD
multiplication and data transfer instructions, which can significantly vary depending on
the micro-architecture. In any case, the overall timings can be expected to be close in
optimized instantiations since neither of the operations is a speed bottleneck.

4.4. Implementation on AVX2

This section provides implementation details for 4 way vectorization of Montgomery
ladder. Implementers are not limited to the specification of this section because Fig-
ure 4.1 is independent of choices made here. The same applies to Section 4.5.
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We fix p = 2255 − 19 and work over GF (p). We start by explaining field multiplica-
tion. The discussion is narrowed to a single field multiplication. On the other hand, the
implementation computes 4 field multiplications simultaneously in vector form. We
refer to (D. Bernstein et al., 2014) for a comprehensive explanation of the concept. We
use core ideas from (D. Bernstein & Schwabe, 2012), (D. Bernstein et al., 2014), (Chou,
2015), and (Karati & Sarkar, 2017). Yet, we made different implementation choices.

Multiplication. We represent reduced field elements in 9 limbs rather than 10 and
keep unreduced products in 11 limbs rather than 10. We provide justifications for how
intermediate values always fit into 64 bit registers, without producing any overflow.
This is a hybridization of two commonly followed methods:

• doing the 255× 255→ 510 bit multiplication first and then reducing to 255 bits,
cf. (Karati & Sarkar, 2017) and

• merging reduction with integer multiplication and keeping elements always in
specified number of limbs, cf. (D. Bernstein, 2006).

These scenarios are not in the context of the 4 way ladder (Figure 4.1) and thus
omitted in this work.

We designed a two-layer implementation to carry out field multiplications with
a redundant representation of elements. Both layers use a 3 way splitting strategy.
Therefore, a field element is represented by 9 limbs each of which can accommodate
non-negative values smaller than 264.

The higher layer is described as follows. A field element u is represented by integers
u0, u1, and u2 such that u = u0 + 285u1 + 2170u2. We note that this is not a unique
representation. Let v be an integer also represented in the same way. We then have

uv ≡ 20( u0v0+ 19u1v2+ 19u2v1 ) +

285( u0v1+ u1v0+ 19u2v2 ) +

2170( u0v2+ u1v1+ u2v0 ) (mod p) .

The congruence 255 ≡ 0 (mod 3) helps greatly in obtaining simple formulas. If we
did not have this condition the given formulas would have contained several multiplica-
tions by 2 in addition to multiplications by 19. Such a situation would have added more
linear operations to the ladder step.

The nine long multiplications in the form uivj are reduced to six by three Karatsuba
optimizations which are capable of sharing the sub-expressions uivi as follows:

20( u0v0+ 19((u1 + u2)(v1 + v2)− u1v1 − u2v2) ) +

285( 19u2v2+ (u0 + u1)(v0 + v1)− u0v0 − u1v1 ) +

2170( u1v1+ (u0 + u2)(v0 + v2)− u0v0 − u2v2 ) .
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This variant leads to an increased number of additions/subtractions some of which
can be shared. We eliminated these repeating operations at the cost of using more
registers in our implementation. The additions of the form ui + uj are 3-limb additions.
All other additions and subtractions are 5-limb additions.

These high level operations do not provide low level details. For instance, we
do not have hardware multipliers that can accommodate 85 × 85 → 170-bit integer
multiplications. Therefore, we further split each digit in the higher layer into three
limbs:

u0 = a0 + 229a1 + 257a2, v0 = b0 + 229b1 + 257b2,
u1 = a3 + 229a4 + 257a5, v1 = b3 + 229b4 + 257b5,
u2 = a6 + 229a7 + 257a8, v2 = b6 + 229b7 + 257b8.

Now, for instance, u0v0 can be computed with the following formulas

u0v0 = 20( a0b0 ) +

229( a0b1+ a1b0 ) +

257( a0b2+ a2b0+ 2a1b1 ) +

286( a1b2+ a2b1 ) +

2114( a2b2 ) .

These operations take 9 multiplications and 5 additions all of which can be directly
carried out by the target hardware. Karatsuba optimization is not used here since the
trade-off between multiplications and additions do not provide a practical speed-up at
this level. The registers a0, a1, a2 are bounded carefully as to prevent overflowing of the
64 bit registers and allow the final carries to be delayed to the end of the field operation.
More explicitly, the multiplication algorithm inputs 9-limb integers and produces the
following 11 limbs

• w0 = a0b0 + 19(a3b6 + a6b3),

• w1 = a0b1 + a1b0 + 19(a3b7 + a4b6 + a6b4 + a7b3),

• w2 = a0b2 + 2a1b1 + a2b0 + 19(a3b8 + a8b3 + 2(a4b7 + a7b4) + a5b6 + a6b5),

• w3 = a0b3 + a3b0 + 2(a1b2 + a2b1) + 19(a6b6 + 2(a4b8 + a5b7 + a7b5 + a8b4)),

• w4 = a0b4 + a1b3 + a2b2 + a3b1 + a4b0 + 19(a5b8 + a6b7 + a7b6 + a8b5),

• w5 = a0b5 + a2b3 + a3b2 + a5b0 + 2(a1b4 + a4b1) + 19(a6b8 + 2a7b7 + a8b6),

• w6 = a0b6 + a3b3 + a6b0 + 2(a1b5 + a2b4 + a4b2 + a5b1 + 19(a7b8 + a8b7)),

• w7 = a0b7 + a1b6 + a2b5 + a3b4 + a4b3 + a5b2 + a6b1 + a7b0 + 19a8b8,
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• w8 = a0b8 + a2b6 + a3b5 + a5b3 + a6b2 + a8b0 + 2(a1b7 + a4b4 + a7b1),

• w9 = 2(a1b8 + a2b7 + a4b5 + a5b4 + a7b2 + a8b1), and

• w10 = a2b8 + a5b5 + a8b2

which satisfy in turn the following congruence

uv ≡ w ≡ (w0 + 229w1 + 257w2)+

285(w3 + 229w4 + 257w5)+

2170(w6 + 229w7 + 257w8)+

2255(w9 + 229w10) (mod 2255 − 19).

We do not perform all of these 9× 9 = 81 multiplications but just 9× 6 = 54. This
is due to the shared-Karatsuba approach explained earlier.

Input/output specification. We set important bounds

0 ≤ a0, a3, a6 < 229 + k,

0 ≤ a1, a2, a4, a5, a7, a8 < 228 + k

for the input and output limbs. k = 173 is a constant that will become clear in the
reduction step. We always ensure the accuracy of these bounds after a reduction step
which provide an easy-to-follow input/output specification.

The limbs wi are displayed explicitly (in the item list) in order to help check the
boundaries on the output easily. In particular, we need to show that these limbs cannot
exceed 264. Now, inputting the largest possible values for each limb of u and v and
evaluating on the formulas provided in the item list, we get

w0 < 263.29, w1 < 263.29, w2 < 263.88,
w3 < 263.91, w4 < 262.95, w5 < 262.98,
w6 < 262.59, w7 < 261.05, w8 < 260.17,
w9 < 259.59, w10 < 257.59.

Clearly, all of these values can be accommodated without overflow in 64-bit registers
wi.

Even if we have computed all wi, we are not quite done yet. We only have a
semi-reduced w satisfying

w ≡ uv (mod 2255 − 19). (4.2)
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We need to do the carries in order to get rid of w9, w10 and also match the output
requirements

0 ≤ w0, w3, w6 < 229 + k,

0 ≤ w1, w2, w4, w5, w7, w8 < 228 + k

which agree with the input specification of u and v.

Carries (Reduction after multiplication). This operation is composed of several
steps. Each step transforms w towards satisfying the input/output specification without
violating the congruence in display (4.2) and without producing an overflow. We go as
follows:

Step 1 : t← ⌊w9/2
29⌋, w9 ← w9 mod 229, w10 ← w10 + t,

Step 2 : w0 ← w0 + 19w9, w9 ← 0,

Step 3 : w1 ← w1 + 19w10, w10 ← 0,

Step 4 : t← ⌊w0/2
29⌋, w0 ← w0 mod 229, w1 ← w1 + t,

Step 5 : t← ⌊w1/2
28⌋, w1 ← w1 mod 228, w2 ← w2 + t,

Step 6 : t← ⌊w2/2
28⌋, w2 ← w2 mod 228, w3 ← w3 + t,

Step 7 : t← ⌊w3/2
29⌋, w3 ← w3 mod 229, w4 ← w4 + t,

Step 8 : t← ⌊w4/2
28⌋, w4 ← w4 mod 228, w5 ← w5 + t,

Step 9 : t← ⌊w5/2
28⌋, w5 ← w5 mod 228, w6 ← w6 + t,

Step 10 : t← ⌊w6/2
29⌋, w6 ← w6 mod 229, w7 ← w7 + t,

Step 11 : t← ⌊w7/2
28⌋, w7 ← w7 mod 228, w8 ← w8 + t,

Step 12 : t← ⌊w8/2
28⌋, w8 ← w8 mod 228, w0 ← w0 + 19t

Step 13 : t← ⌊w0/2
29⌋, w0 ← w0 mod 229, w1 ← w1 + t.

In this sequence of operations, we are accumulating on registers wi which contain
values potentially very close to 264. Once more, we need to justify that these additions
do not constitute any overflow.

• Step 1: t = ⌊w9/2
29⌋ < 259.59−29 = 230.59. So, w10+ t < 257.59+230.59 < 257.60.

Therefore, the updated value of w10 still fits into 64 bits. A bit of care is needed
now to track the updated w9. Although we computed w9 ← w9 mod 229 for
maximum possible inputs, the updated value of w9 can still get values as large as
229 − 1 for some other input. Therefore, we assume for the sake of our inspection
that we take w9 = 229 − 1 from here.

• Step 2: Now, we must have w0 +19w9 < 263.29 +19(229− 1) < 263.30. Multipli-
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cation by 19 here is performed with 32× 32→ 64 bit multiplication instruction
vpmuludq since both 19 and w9 are smaller than 232.

• Step 3: Similarly, we must have w1 + 19w10 < 263.29 + 19(257.60) < 263.75. We
note that 19w10 is computed as 19w10 = 16w10 + 2w10 + w10 by using vpaddq
and vpsllq instructions because w10 can exceed 232, and thus, is not suitable to
be inputted to vpmuludq. We note that w9 ← 0 and w10 ← 0 are displayed just
for mathematical correctness.

• Steps 4-11: Repeating the same inspection by computing each step sequen-
tially, we get w1,...,8 < 264 after additions as expected. Limbs w0,...,7 obey the
input/output specification after reducing w1,2,4,5,7 modulo 228 and w3,6 modulo
229. Again, we assume for the sake of our inspection that w0,3,6 = 229 − 1 and
w1,2,4,5,7,8 = 228 − 1 after the modular reductions are performed for these digits.

• Step 12: We get t = ⌊w8/2
28⌋ < 260.17−28 = 232.17. So, w0 + 19t < (229 − 1) +

19(232.17) < 236.43. Now, w8 also obeys the input/output specification after being
reduced modulo 228. We note that 19t is computed as 19t = 16t+ 2t+ t since
w8 can exceed 232.

• Step 13: We get w1 + t < (228− 1)+ (236.43−29) < 228 +173. This upper bound
explains the value of k. We note that a lower upper bound can be found with an
increased precision in calculations. Moreover, much larger values for k works
without producing overflow in reduction2 but 173 is adequate to test the stability
of limbs.

Now, all wi agrees with the input/output specification of ui and vi. We intentionally
added k to all limbs in the input/output specification rather than adding just to w1

because

• this simplifies the notation, and

• we need such extra additions when designing parallel carry chains.

The reduction step can be summarized as h9 → h10 followed by the very long
sequence

h8 → h0 → h1 → h2 → h3 → h4 → h5 → h6 →

h7 → h8 → h0 → h1.

We do faster by computing two sequences

2We reiterate that we use a redundant representation. Therefore, reduction does not produce a unique
representative. Nevertheless, we still call it reduction since we can do arithmetic in this form.
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h4 −−−−→ h5 → h6 → h7 → h8 → h0 → h1,

h9 → h10, h0 → h1 → h2 → h3 → h4 → h5

in parallel at processor’s ports. We refer to (D. Bernstein & Schwabe, 2012) and (Chou,
2015) for similar optimizations.

In this parallel reduction, not only w1 but also w5 can exceed 228 − 1 by k. But we
have already relaxed w5 (like all other limbs) by additions of k in our inspection.

Squaring. Squaring can be explained as a simplified multiplication routine.

20( u2
0+ 19((u1 + u2)

2 − u2
1 − u2

2) ) +

285( 19u2
2+ (u0 + u1)

2 − u2
0 − u2

1 ) +

2170( u2
1+ (u0 + u2)

2 − u2
0 − u2

2 ) .

The nine long multiplications in the form uivj are reduced now to six squares. In
addition, the computation of u2

0 can be further optimized at the lower level in the form

u2
i = 20( a20 ) +

229( (2a0)a1 ) +

257( (2a1)a1+ (2a0)a2 ) +

286( (2a1)a2 ) +

2114( a22 ) .

Similar applies to the other squarings. Our implementation delays multiplication by
twos and pushes them towards the higher layer.

Squeeze/Unsqueeze. A field element w satisfying the input/output specification can
be squeezed from 9 limbs to 5 by computing

wi+4 ← wi+4 ⊕ 232wi for i = 0, 1, 2, 3.

Now, w is represented by w4, w5, w6, w7, w8 only. Linear operations such as (field)
additions and subtractions can be handled in this form provided that computed values
do not exceed 232 − 1. This is always the case in our implementation.

A squeezed field element is unsqueezed into the original form by computing

wi ← wi+4/2
32 for i = 0, 1, 2, 3 and

wi+4 ← wi+4 mod 232 for i = 0, 1, 2, 3
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at multiplication, squaring, and reduction moments. We note that we skip computing
wi+4 ← wi+4 mod 232 before multiplication and squaring since the higher 32 bits are
not taken into consideration by vpmuludq instruction. See also (D. Bernstein et al.,
2014).

This squeeze/unsqueeze method is adapted from the software introduced in (D. Bern-
stein et al., 2014). The difference is that we group together the limbs of a field element
where Bernstein, Chuengsatiansup, Lange, and Schwabe group together points on a
genus 2 Kummer surface.

Despite the added cost of squeezing and unsqueezing, linear operations in squeezed
form can be done faster and save cycles in total.

Double Hadamard. This step can be put in 4 way vectorized form in modulus
2255 − 19 as follows;

(H×H)(X3, Z3, X2, Z2) =

(X3 + Z3, X3 − Z3, X2 + Z2, X2 − Z2) =

(X3 + Z3, X3 + (3p− Z3), X2 + Z2, X2 + (3p− Z2)).

The additions of 3p are to ensure that H × H (double Hadamard) produces non-
negative values for output limbs. We drop the word “double” for simplicity. This 3p
needs to be prepared with some care as follows

20([3(229 − 19)] + 229[3(228 − 1)] + 257[3(228 − 1)])+

285( [3(229 − 1)] + 229[3(228 − 1)] + 257[3(228 − 1)])+

2170( [3(229 − 1)] + 229[3(228 − 1)] + 257[3(228 − 1)]) .

Observe that each limb3 is greater than the corresponding maximum bound in the
input/output specification.

All of the limbs of X3 + Z3, X3 + (3p − Z3), X2 + Z2, and X2 + (3p − Z2) are
always less than 232 after the first Hadamard operation in Figure 4.1. To show this, we
concentrate to the linear operations appearing at the right of the bottom of the figure.

• Z4 is computed as the sum of three values. In order to simplify our analysis,
we assume that all inputs to these additions take largest possible values. Then,
w0,3,6 = 3((229 − 1) + k) < 231 and w1,2,4,5,7,8 = 3((228 − 1) + k) < 230.

• X4 is computed as the difference of two values. We assume that minuend takes
the largest and the subtrahend takes the smallest possible value. Then, w0,3,6 =

3The value of each limb appears in square brackets.
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((229 − 1) + k) + (2(229 − 1) − 0) < 231 and w1,2,4,5,7,8 = ((228 − 1) + k) +

(2(228−1)−0) < 230. Observe that we added 2p rather than 3p this time, which is
adequate because 2(229−1) > (229−1)+k and likewise 2(228−1) > (228−1)+k.
So, even if the subtrahend takes the maximum possible value, the limbs are still
non-negative.

Up to this point, we showed that wi of both X4 and Z4 fit into 31 bits. We now feed
these extreme values4 to the first Hadamard operation. Clearly, we have 0 ≤ wi < 232

for X + Z. Separately, assuming that wi = 0 for Z, we have 0 ≤ wi < 232 for
X + (3p − Z). Analyzing the second Hadamard is even simpler since its inputs are
already reduced values.

Fast carries (Fast reduction after Hadamard). Following a Hadamard step, a
reduction operation must be applied to the output to match the input/output specification.
This time, reduction can be performed faster since we do not have limbs w9 and w10.
Therefore, fast reduction can be defined as a trimmed version of the reduction after
multiplication as follows,

Step 1 : t← ⌊w0/2
29⌋, w0 ← w0 mod 229, w1 ← w1 + t,

Step 2 : t← ⌊w1/2
28⌋, w1 ← w1 mod 228, w2 ← w2 + t,

Step 3 : t← ⌊w2/2
28⌋, w2 ← w2 mod 228, w3 ← w3 + t,

Step 4 : t← ⌊w3/2
29⌋, w3 ← w3 mod 229, w4 ← w4 + t,

Step 5 : t← ⌊w4/2
28⌋, w4 ← w4 mod 228, w5 ← w5 + t,

Step 6 : t← ⌊w5/2
28⌋, w5 ← w5 mod 228, w6 ← w6 + t,

Step 7 : t← ⌊w6/2
29⌋, w6 ← w6 mod 229, w7 ← w7 + t,

Step 8 : t← ⌊w7/2
28⌋, w7 ← w7 mod 228, w8 ← w8 + t,

Step 9 : t← ⌊w8/2
28⌋, w8 ← w8 mod 228, w0 ← w0 + 19t

Step 10 : t← ⌊w0/2
29⌋, w0 ← w0 mod 229, w1 ← w1 + t.

We do better by computing these operations in squeezed form and computing

h0 → h1 → h2 → h3 −−−−→ h4 → h5,

h4 → h5 → h6 → h7 → h8 → h0 → h1

in parallel on two 32 bit SIMD channels. We do not further exploit processor’s port
level parallelism since the sequence is short enough to produce low latency.

4Noticed that all these operations can be performed in squeezed form.
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4.5. Implementation on AVX-512

AVX-512 provides 8 way SIMD multiplication with the vpmuludq instruction. This
provides twice as much 32×32→ 64 bit multipliers in comparison to AVX2. Therefore
it is reasonable to question whether the 4 way vectorized ladder can be computed faster
on AVX-512. Since Figure 4.1 supports up to 4 way vectorization, additionally, we
need to vectorize the field arithmetic in 8/4=2 way form to get a 4× 2 way ladder.

Although, our 9 limb multiplication fits nicely on 4× 1 ladder, it does not seem to be
the best choice for its 4× 2 counterpart. Yet, there is room for research in finding a fast
2 way vectorization of 9 limb multiplication described in Section 4.5. We do not pursue
this idea further here.

As a practical solution, we decided to use a 2 way vectorized version of the 10 limb
multiplication algorithm using Radix-225.5 from (D. Bernstein, 2006). This algorithm
was previously used with minor modifications in (D. Bernstein & Schwabe, 2012) and
(Chou, 2015). Fortunately, we were able to reuse optimized codes freely available in
public domain. In particular, we used the 2 way AVX2 targeted intmul and intsqr
functions from

hp-ecc-vec/src/eltfp25519_2w_redradix.c

by Faz Hernández, López, Dahab 5 and have those functions run on AVX-512. Then,
we applied the ladder step in Figure 4.1 to get a 4×2 = 8 way vectorized implementation
of Montgomery ladder over the field GF (2255 − 19). The speed comparison is given in
Section 4.6.

4.6. Results

The final inversion. Our implementation reduces the output of scalar multiplication to
a unique representative in the underlying field in radix 256. Therefore, we compute
X2/Z2 after the main loop. We integrated Nath and Sarkar’s (Nath & Sarkar, 2018)
freely available and optimized inversion software without further modification. In
particular, we used

pmp-inv-master/p25519/SL-DCC/1

which requires BMI2 instruction set. Nath and Sarkar reports 9301 Skylake cycles for
this inversion.

5https://github.com/armfazh/hp-ecc-vec (last accessed 2019-05-20)
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Measuring cycles. We measure cycles for variable-scalar variable-point multiplication
only. Our code changes base point and scalar at each iteration and excludes extra cycles
coming from this randomization. Our implementation chains the outputs to prevent the
compiler removing portions of the code. Measured cycle counts are given in Table 4.1
along with selected results from literature. The table is limited to our results and recently
published measurements available for the Skylake micro-architecture.

Table 4.1.. Skylake cycles for variable-scalar variable-point multiplication.

ladder method instr. set limbs cycles (median)

sq.Kum., 4× 1 AVX2 10 123 102, (Karati & Sarkar, 2017)

Montg., 4× 1 AVX2 10 116 654, this work

Montg., 1× 1 BMI2 4 113 874, (Oliveira, López, Hışıl, Faz-Hernández, & Rodríguez-Henríquez, 2017)

Montg., 2× 2 AVX2 5 99 400, (Faz-Hernández, López, & Dahab, 2019)

Montg., 4× 1 AVX2 9 98 484, this work

Montg., 4× 1 AVX2 10 95 437, (Nath & Sarkar, 2022a)

Montg., 2× 4 AVX-512 5 81 600, (Faz-Hernández et al., 2019)

Montg., 4× 2 AVX-512 5 74 368, this work

Table 4.1 justifies our motivation in proposing the 9 limb representation in Section 4.5.
The 9 limb method is solidly faster than 10 in the context of our 4 way ladder and
specified implementation platform. See (Nath & Sarkar, 2022a)6 for new results on
an other Skylake CPU with different microarchitecture. Nath and Sarkar’s fastest
implementation uses an extremely small curve constant where our proposed algorithm
does not require such an assumption.

Figure 4.1 shows its real potential in our AVX-512 implementation. The reported
74368 cycles sets the new record among curve25519 family of implementations, to
the best of our knowledge.

Variable-scalar fixed-base multiplication. Our implementation can be used directly
in a fixed-base multiplication without further modification. Nevertheless, one can make
precomputation on fixed-base point to get additional speed up. In that case, we refer to
Algorithm 5 of (Oliveira et al., 2017).

Apart from architecture dependent discussions, we expect that our 4 way ladder will
gradually become even more useful if the current trend of increasing the level of SIMD
parallelism in hardware continues. We reiterate that the speeds we achieve are common
for all Montgomery curves; not specific to ones with small constants.

6Nath and Sarkar’s work appeared at the time when this work was under review.
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CHAPTER 5

CASE STUDY #2: A KARATSUBA FRIENDLY PRIME FOR FAST
ELLIPTIC CURVE ARITHMETIC

We point to the cryptographic significance of the overlooked prime 2261 − 2131 − 1

which we dubbed p261. We explain our motivation behind searching for such a
prime. We present cryptographically secure elliptic curves over GF (p261). We
provide our speed oriented implementation of variable-base variable-scalar elliptic
curve scalar multiplication using the Montgomery ladder. In this setting, a single scalar
multiplication implemented with AVX2 instructions takes 82720 on a i7-6500U Skylake
processor, respectively. This gives similar performance in comparison with the previous
record 83424 Skylake cycles by Nath and Sarkar, which was achieved with a prime
having 10 less bits than p261.

5.1. The jungle of primes and curves

Fast integer arithmetic plays an important role in real-world applications of asymmetric
cryptography. The performance of most popular cryptosystems such as RSA and ECC
is centered around how fast we can multiply integers and reduce the product modulo
some fixed integer. For arbitrary modulus one can use the long division algorithm which
makes access to a built-in division instruction. However, using the division instruction
usually leads to poor performance and non-constant running time. A faster choice is to
use a general purpose modular arithmetic technique such as Barrett (Barrett, 1987) or
Montgomery (P. L. Montgomery, 1985) reduction. ECC applications can further benefit
from special prime modulus. These primes allows extremely fast reduction. Some of
the fastest primes that facilitate 128-bit conjectured security level are listed in Table 5.1.

Table 5.1.. List of selected fast primes

Name Prime Ref.
p2519 2251 − 9 (Karati & Sarkar, 2017)
p25519 2255 − 19 (D. Bernstein, 2006)
p2663 2266 − 3 (Karati & Sarkar, 2017)

There are several works in the literature which use these primes in order to provide
speed recording instances of cryptographic primitives such as Diffie-Hellmann Key
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Exchange. These implementations fix cryptographically interesting elliptic curves. See
(D. Bernstein, 2006), (Costigan & Schwabe, 2009), (Nath & Sarkar, 2022c), (Nath &
Sarkar, 2022b), (Nath & Sarkar, 2022a), (Karati & Sarkar, 2017), (Hamburg, 2015),
(Chou, 2015), (Hisil, Egrice, & Yassi, 2022). A list of selected curves are provided in
Table 5.2.

Table 5.2.. List of selected elliptic curves and DH Key Exchange cycle counts

Elliptic curve Prime Security Skylake

K683,18 (Nath & Sarkar, 2022b) p2663 132 (Nath & Sarkar, 2022b) 105328
M486662 (D. Bernstein, 2006) p25519 126 (Nath & Sarkar, 2022a) 95437
K838,831 (Nath & Sarkar, 2022b) p25519 126.5 (Nath & Sarkar, 2022b) 91151
M4698 (Nath & Sarkar, 2022c) p2519 124.5 (Nath & Sarkar, 2022c) 87807
K81,20 (Karati & Sarkar, 2017) p2519 124.5 (Nath & Sarkar, 2022b) 83424
K276,5 (this work) p261 128.5 82720

5.2. The Karatsuba friendly prime p261

Let f and g be integers written in radix 2ℓ in the form f0 + 2ℓf1 and g0 + 2ℓg1 for some
non-negative integer ℓ, respectively. The classic Karatsuba method for multiplying
integers modulo a prime of the form 22ℓ − t is given as

fg ≡ (A+ tB) + 2ℓ · (C − A−B) (mod 22ℓ − t)

where A = f0g0, B = f1g1, and C = (f0 + f1)(g0 + g1). Such a method requires one
multiplication by t and several linear operations. In comparison, the goldilock prime
p448 = 2448 − 2224 − 1 has a structure which eliminates the multiplication by t and one
linear operation. In particular, write f and g in the form f0 + 2224f1 and g0 + 2224g1,
respectively. Hamburg (Hamburg, 2015) showed that

fg ≡ (A+B) + 2224 · (C − A) (mod p448).

Building on this observation, one may question whether it is possible to do the same
at the conjectured 128-bit security level. At this stage, we need a prime of the form
22ℓ − 2ℓ − t with t = 1 and 2ℓ near 256. However, no such prime exist for 216 < 2ℓ <

322. One can pick t ̸= 1 as an alternative. For instance, 2ℓ = 256 and t = 79 gives a
prime. But in such a situation, one needs to bear the cost of several multiplications by
79. We note that the popular prime 2255 − 19 requires several multiplications by 19 in a
similar way. To this end, we simply cannot find a Karatsuba-friendly prime with t = 1

in the aforementioned scenario.

We now explain our approach to the problem and present our solution. We let our
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prime to be of the form r · 22ℓ − s · 2ℓ − t for extremely small integers r, s and t. Now,
the modular multiplication formulas read

fg ≡ (A+ tB/r) + 2ℓ · ((C − A−B) + sB/r) (mod r · 22ℓ − s · 2ℓ − t).

One obstacle in such a calculation is that division by r’s are unlikely to be exact. To
solve this problem we scale the congruence by r which gives

rfg ≡ (rA+ tB) + 2ℓ · (r(C − A−B) + sB) (mod r · 22ℓ − s · 2ℓ − t).

We arrived at an algorithm which produces rfg efficiently but not fg. This is of no
problem for elliptic curve arithmetic since the representation of points in homogeneous
projective coordinates allows non-zero scaling. For instance, a point (X : Z) in P can
also be represented by (rX : rZ) with r ̸= 0.

Now, we can search for primes satisfying this form. Since we target efficiency, it is
reasonable to make the following additional assumptions: r = s = 2 and t = 1. The
formula then simplifies to

2fg ≡(2A+B) + 2ℓ · (2C − 2A) (mod 2 · 22ℓ − 2 · 2ℓ − 1). (5.1)

At this stage, the question is whether there exist a prime of this form for 2ℓ close to 256.
The answer is yes: ℓ = 130 gives the Montgomery-friendly prime

p261 = 2261 − 2131 − 1.

The overhead of computing 2A and 2C are minor in comparison with the overhead of
several multiplications by small constants. We emphasize that since r = s, we also
eliminated an extra linear operation which is not possible for Karatsuba implementations
of multiplication modulo primes of the form 2α − t. In fact, even more optimizations
are possible, which are not obvious at this level. See Section 5.4 for clarification.

To sum up, we introduced a cryptographically interesting prime which suits perfectly
with fast elliptic curve arithmetic. We now investigate cryptographically secure elliptic
curve over GF (p261) in different elliptic curve forms.

5.3. Cryptographically interesting curves

We present cryptographically interesting elliptic curves over GF (p261) in this section.
All of the proposed curves are twist-secure and have large CM discriminants. The
numbers given in hexadecimal form are prime. The dash character is used to describe
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the non-trivial quadratic twists of the defined curve.

W16417 : y2 = x3 − 3x+ 16417 (Weierstrass)

#W16417 =1FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF\

674A29D591C4954F6E0E4B49E39D45597

#W ′
16417 =1FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF\

98B5D62A6E3B6AB091F1B4B61C62BAA69

K276,5 : y2 = x3 +

(
−276

5
− 5

276

)
x2 + x (Kummer)

#K276,5 =16× 1FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF\

73483AE694E73DDF48915F88662E6DAD

#K′
276,5 =16× 1FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF\

8CB7C5196B18C220B76EA07799D19253

M4318 : y2 = x3 + 4318x2 + x (Montgomery)

#M4318 = 4× 7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF\

CD18A213CBB39E6C7CECB70A57CD1B49B

#M′
4318 = 4× 7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF\

F2E75DEC344C6193831348F5A832E4B65

Some implementations use A24 = (A − 2)/4 instead of A. For our curve A24 =

(4318− 2)/4 = 1079 = 13× 83.

5.4. Implementation

There several different ways to carry out a modular multiplication. One classic approach
is to compute the integer product fg with Karatsuba multiplication and then reduce the
product modulo the prime. This approach is not able to benefit from the elimination of
the linear operation explained in Section 5.2. Therefore, we closely follow the outline
in therein.

10-limb representation. We provide implementation details in this part targeting
32 × 32 → 64 bit multipliers and 64 bit adders without carry handling. The typical
hardware platforms that suit this configuration are AVX, AVX2 and AVX-512. We
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set k = 226. We start by writing f = f0 + k5f1 where f0 and f1 are further specified
in the form f0 = f00 + kf01 + k2f02 + k3f03 + k4f04 and f1 = f10 + kf11 + k2f12 +

k3f13 + k4f14. Therefore, a field element is represented with 10 limbs. We note here
that f14 accommodates the single bit that would reside in f15 in a standard radix 226

representation.

Modular multiplication. We want to compute 2fg mod p for 10-limb integers f
and g, see Section 5.2. First, we carry out the three integer multiplications A = f0g0,
B = f1g1, C = (f0 + f1)(g0 + g1). We use schoolbook multiplication algorithm where
both A and B take 5× 5 = 25 multiplications and 16 additions, and C takes 5× 5 = 25

multiplications and 5 + 5 + 16 = 26 additions. At this stage, each of A, B, and C are
composed of 9 limbs where each limb fits into a 64 bit register. We access these limbs
with subscripts in the obvious way. E.g. A0 is the least significant limb of A. Now,
reducing (2A+B) + 2130 · (2C − 2A) modulo p261, the following the congruence is
obtained:

2fg ≡ ( 2A0+B0+C5 −A5 ) k0+

( 2A1+B1+C6 −A6 ) k1+

( 2A2+B2+C7 −A7 ) k2+

( 2A3+B3+C8 −A8 ) k3+

( 2A4+B4 ) k4+

( 2A5+B5+2C0− 2A0+2C5− 2A5 ) k5+

( 2A6+B6+2C1− 2A1+2C6− 2A6 ) k6+

( 2A7+B7+2C2− 2A2+2C7− 2A7 ) k7+

( 2A8+B8+2C3− 2A3+2C8− 2A8 ) k8+

( +2C4− 2A4+ ) k9 (mod p261).

The congruence reflects a redundant reduction modulo p261. In addition to the linear
simplification provided in (5.1), it is readily observed that several more additions can be
removed. In particular, we delete the terms1 2A5, 2A6, 2A7, 2A8, −2A5, −2A6, −2A7,
and −2A8.

The remaining single digit operations take only 27 additions and 9 subtractions. To
this end, we use 3× 25 = 75 multiplications and 16+ 16+ 26+ 27+ 9 = 94 additions
(or subtractions). In comparison, Chou (Chou, 2015) reported 109 multiplications and

1We note that all of the multiplications by 2 can be moved to the computation phase of A and C, which
saves even more additions if 2f0, 2f1, 2f2, 2f3, 2f4, 2(f0 + g0), 2(f1 + g1), 2(f2 + g2), 2(f3 + g3),
and 2(f4 + g4) are precomputed. Then, modular multiplication with a constant can be performed
faster. We do not exploit this property because our implementation uses the 4-way Montgomery
ladder in (Hisil et al., 2022), which does not require any such specialized multiplication. On the other
hand, this optimization can be useful in other settings where multiplication by curve constants and
base points are to be computed.
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95 additions for modular multiplication in GF (2255 − 19). So, we do one less addition
and save 109 − 75 = 34 multiplications for p261; a prime having 6 more bits than
p25519 and 10 more bits than p2519. Table 5.3 provides more detailed comparison
of modular multiplication for different primes.

Table 5.3.. Comparison of modular multiplication of different primes without carries.

p2519 p25519 p2663 p261

Multiplication (vpmuludq) 89 109 109 75
Addition (vpaddq) 80 95 90 85
Subtraction (vpsubq) 0 0 0 9
Data movement (vmovdqa) 11 20 27 18
Cycles (Skylake) 67.10 78.76 82.20 63.25

Table 5.4.. Comparison of modular squaring of different primes without carries.

p2519 p25519 p2663 p261

Multiplication (vpmuludq) 45 60 55 45
Shift left (vpsllq) 18 0 18 0
Addition (vpaddq) 55 53 62 52
Subtraction (vpsubq) 0 0 0 13
Data movement (vmovdqa) 3 10 12 10
Cycles (Skylake) 44.82 43.24 53.64 41.67

Table 5.5.. Comparison of doing the carries.

p2519 p25519 p2663 p261

Shift left (vpsllq) 2 2 0 0
Shift left (vpsrlq) 11 12 11 11
Addition (vpaddq) 12 14 13 13
Subtraction (vpand) 11 12 11 11
Cycles (Skylake) 17.48 16.14 24.75 16.45

Finally, we do the adjustments between the limbs in order to make them 26 bits,
where we do not have any multiplications by small constants.

Modular squaring. In a specialized squaring routine both A and B takes 15 multipli-
cations, 6 additions, and 4 multiplications by 2. C takes 15 multiplications, 11 additions,
and 4 multiplications by 2. These provide some saving in comparison with the modular
multiplication routine. Furthermore, one can delay some of the multiplications by 2
until reduction which save even more time. More precisely, our implementation uses 45
multiplications, 52 additions, 13 subtractions, and 10 data movement instructions in
total. We note that our implementation produces 2f 2 rather than f 2, see Section 5.2.
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4-way parallel Montgomery ladder. Our DH instances use the curvesM4318 and
K276,5. The implementation withM4318 is constructed with the 4-way ladder algorithm
from (Hisil et al., 2022), which makes no assumption on the underlying field, base
points, and curve constants. An alternative algorithm is given in (Nath & Sarkar, 2022a),
which works fast if the squaring step can be efficiently distributed to SIMD channels. It
is not clear how to perform such a distribution with p261 which requires frequently
horizontal data transfers. The implementation with K276,5 is constructed with the 4-way
ladder algorithm from (Karati & Sarkar, 2017).

Doing the carries. Since the arithmetic of p261 does not involve multiplications
with small constants, the limbs are allowed to accommodate some more bits before
entering the modular multiplication (or squaring) routine. These extra bits comes from
linear operations such as the Hadamard transform. We always delay doing the carries
which occur only inside multiplication and squaring routines. This is a side benefit of
using the prime p261 in the Montgomery ladder. The costs regarding doing carries is
depicted in Table 5.5.
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CHAPTER 6

CONCLUSIONS

This thesis proposes two concrete results. Firstly, a 4-way Montgomery ladder algorithm
is proposed, providing a new, convenient, and vectorizable arithmetic for the AVX2 and
AVX512 instruction extensions of Intel processors. Also, within this newly proposed
ladder, a 9-limb representation of the elements of GF (2255 − 19) is proposed. This
new representation uses one less number of limbs compared to the common 10-limb
notation. Our representation can be interesting on processors with slow multipliers.

Secondly, a framework is proposed to find fast prime numbers. Using this framework,
a cryptographically interesting new prime is found, which is 2261 − 2131 − 1. The
new prime has the distinctive feature of being Karatsuba friendly. That is, several
optimizations can be made when Karatsuba multiplication method is used on finite field
arithmetic. We put forward a 10-limb representation of this prime and implemented its
arithmetic on an AVX2 supported processor. Moreover, related finite field multiplication
algorithms are reviewed. In its most general form, the Karatsuba and Schoolbook
algorithms have been explored to find a better formula for performing a finite field
multiplication.

55





REFERENCES

Barrett, P. (1987). Implementing the Rivest Shamir and Adleman public key encryp-
tion algorithm on a standard digital signal processor. In A. M. Odlyzko (Ed.),
Advances in cryptology — crypto’ 86 (pp. 311–323). Springer Berlin Heidelberg.

Bernstein, D. (2006). Curve25519: New Diffie-Hellman speed records. In M. Yung,
Y. Dodis, A. Kiayias, & T. Malkin (Eds.), Public key cryptography - PKC 2006,

9th international conference on theory and practice of public-key cryptography,

new york, ny, usa, april 24-26, 2006, proceedings (Vol. 3958, pp. 207–228).
Springer. Retrieved from https://doi.org/10.1007/11745853_14

doi: 10.1007/11745853\_14

Bernstein, D., Chuengsatiansup, C., Lange, T., & Schwabe, P. (2014). Kummer strikes
back: New DH speed records. In P. Sarkar & T. Iwata (Eds.), Advances in

cryptology - ASIACRYPT 2014 - 20th international conference on the theory

and application of cryptology and information security, kaoshiung, taiwan, r.o.c.,

december 7-11, 2014. proceedings, part I (Vol. 8873, pp. 317–337). Springer. Re-
trieved from https://doi.org/10.1007/978-3-662-45611-8_17

doi: 10.1007/978-3-662-45611-8\_17

Bernstein, D., & Lange, T. (2017). Montgomery curves and the montgomery ladder.
In J. W. Bos & A. K. Lenstra (Eds.), Topics in computational number theory

inspired by Peter L. Montgomery (pp. 82–115). Cambridge University Press. doi:
10.1017/9781316271575.005

Bernstein, D., & Schwabe, P. (2012). NEON crypto. In E. Prouff & P. Schaumont
(Eds.), Cryptographic hardware and embedded systems – CHES 2012 (Vol. 7428,
pp. 320–339). Berlin, Heidelberg: Springer Berlin Heidelberg.

Bernstein, D. J., Lange, T., & Rezaeian Farashahi, R. (2008). Binary edwards curves. In
E. Oswald & P. Rohatgi (Eds.), Cryptographic hardware and embedded systems –

ches 2008 (pp. 244–265). Springer Berlin Heidelberg.

Bos, J. W., Costello, C., Longa, P., & Naehrig, M. (2016). Selecting elliptic curves
for cryptography: An efficiency and security analysis. Journal of Cryptographic

Engineering, 6(4), 259-286.

Brier, E., & Joye, M. (2002). Weierstraß elliptic curves and side-channel attacks.
In D. Naccache & P. Paillier (Eds.), Public key cryptography, 5th international

workshop on practice and theory in public key cryptosystems, PKC 2002, paris,

france, february 12-14, 2002, proceedings (Vol. 2274, pp. 335–345). Springer.
Retrieved from https://doi.org/10.1007/3-540-45664-3_24 doi:

57

https://doi.org/10.1007/11745853_14
https://doi.org/10.1007/978-3-662-45611-8_17
https://doi.org/10.1007/3-540-45664-3_24


10.1007/3-540-45664-3\_24

Castryck, W., Galbraith, S., & Farashahi, R. R. (2008). Efficient arithmetic on elliptic

curves using a mixed edwards-montgomery representation. Cryptology ePrint
Archive, Paper 2008/218. Retrieved from https://eprint.iacr.org/

2008/218 (https://eprint.iacr.org/2008/218)

Chou, T. (2015). Sandy2x: New Curve25519 speed records. In O. Dunkelman &
L. Keliher (Eds.), Selected areas in cryptography - SAC 2015 - 22nd international

conference, sackville, nb, canada, august 12-14, 2015, revised selected papers

(Vol. 9566, pp. 145–160). Springer. Retrieved from https://doi.org/

10.1007/978-3-319-31301-6_8 doi: 10.1007/978-3-319-31301-6\_8

Chudnovsky, D., & Chudnovsky, G. (1986). Sequences of numbers generated by
addition in formal groups and new primality and factorization tests. Advances in

Applied Mathematics, 7(4), 385–434.

Costello, C., & Smith, B. (2018). Montgomery curves and their arithmetic - The
case of large characteristic fields. J. Cryptographic Engineering, 8(3), 227–
240. Retrieved from https://doi.org/10.1007/s13389-017-0157

-6 doi: 10.1007/s13389-017-0157-6

Costigan, N., & Schwabe, P. (2009). Fast elliptic-curve cryptography on the Cell
Broadband Engine. In B. Preneel (Ed.), Progress in cryptology – africacrypt

2009 (pp. 368–385). Berlin, Heidelberg: Springer Berlin Heidelberg.

Diffie, W., & Hellman, M. (1976). New directions in cryptography. IEEE Transactions

on Information Theory, 22(6), 644-654. doi: 10.1109/TIT.1976.1055638

Farashahi, R., & Hosseini, G. (2016, 03). Differential addition on binary elliptic curves.
In (p. 21-35).

Farashahi, R. R., & Hosseini, S. G. (2017). Differential addition on twisted edwards
curves. In J. Pieprzyk & S. Suriadi (Eds.), Information security and privacy (pp.
366–378). Springer International Publishing.

Faz-Hernández, A., López, J., & Dahab, R. (2019, jul). High-performance implementa-
tion of elliptic curve cryptography using vector instructions. ACM Trans. Math.

Softw., 45(3). Retrieved from https://doi.org/10.1145/3309759 doi:
10.1145/3309759

Gaudry, P. (2007). Fast genus 2 arithmetic based on Theta functions. Journal of

Mathematical Cryptology (JMC), 1(3), 243–265.

Gaudry, P., & Lubicz, D. (2009). The arithmetic of characteristic 2 Kummer surfaces

58

https://eprint.iacr.org/2008/218
https://eprint.iacr.org/2008/218
https://eprint.iacr.org/2008/218
https://doi.org/10.1007/978-3-319-31301-6_8
https://doi.org/10.1007/978-3-319-31301-6_8
https://doi.org/10.1007/s13389-017-0157-6
https://doi.org/10.1007/s13389-017-0157-6
https://doi.org/10.1145/3309759


and of elliptic Kummer lines. Finite Fields and Their Applications, 15(2), 246
- 260. Retrieved from http://www.sciencedirect.com/science/

article/pii/S1071579708000804 doi: https://doi.org/10.1016/j.ffa
.2008.12.006

Gaudry, P., & Schost, E. (2012). Genus 2 point counting over prime fields. J. Symb.

Comput., 47(4), 368–400. Retrieved from http://dx.doi.org/10.1016/

j.jsc.2011.09.003 doi: 10.1016/j.jsc.2011.09.003

Hamburg, M. (2015). Ed448-Goldilocks, a new elliptic curve. Cryptology ePrint
Archive, Paper 2015/625. Retrieved from https://eprint.iacr.org/

2015/625 (https://eprint.iacr.org/2015/625)

Hankerson, D., Menezes, A. J., & Vanstone, S. (2003). Guide to elliptic curve

cryptography. Springer-Verlag.

Hisil, H., Egrice, B., & Yassi, M. (2022). Fast 4 way vectorized ladder for the complete
set of Montgomery curves. International Journal of Information Security Science,
11(2), 12 - 24.

Karati, S., & Sarkar, P. (2017). Kummer for genus one over prime order fields. In
T. Takagi & T. Peyrin (Eds.), Advances in cryptology – asiacrypt 2017 (pp. 3–32).
Cham: Springer International Publishing.

Karatsuba, A., & Ofman, Y. (1962, 12). Multiplication of multidigit numbers on
automata. Soviet Physics Doklady, 7, 595.

Knuth, D. E. (1997). The art of computer programming, volume 2 (3rd ed.): Seminu-
merical algorithms. In (p. 265-294). Addison-Wesley Longman Publishing Co.,
Inc.

Koblitz, N. (1987, January). Elliptic curve cryptosystems. Mathematics of Computation,
48(177), 203–209.

López, J., & Dahab, R. (1999). Fast multiplication on elliptic curves over GF(2m)
without precomputation. In Ç. Koç & C. Paar (Eds.), Cryptographic hardware

and embedded systems, first international workshop, ches’99, worcester, ma, usa,

august 12-13, 1999, proceedings (Vol. 1717, pp. 316–327). Springer. Retrieved
from https://doi.org/10.1007/3-540-48059-5_27 doi: 10.1007/
3-540-48059-5\_27

Miller, V. (1985). Use of elliptic curves in cryptography. In CRYPTO’85 (Vol. 218, pp.
417–426). Springer.

Montgomery, P. (1987). Speeding the Pollard and elliptic curve methods of factorization.

59

http://www.sciencedirect.com/science/article/pii/S1071579708000804
http://www.sciencedirect.com/science/article/pii/S1071579708000804
http://dx.doi.org/10.1016/j.jsc.2011.09.003
http://dx.doi.org/10.1016/j.jsc.2011.09.003
https://eprint.iacr.org/2015/625
https://eprint.iacr.org/2015/625
https://eprint.iacr.org/2015/625
https://doi.org/10.1007/3-540-48059-5_27


Mathematics of computation, 48(177), 243–264.

Montgomery, P. L. (1985). Modular multiplication without trial division. Mathematics

of Computation, 44(170), 519–521.

Nath, K., & Sarkar, P. (2018). Efficient arithmetic in (pseudo-)mersenne prime

order fields. Cryptology ePrint Archive, Paper 2018/985. Retrieved from
https://eprint.iacr.org/2018/985 (https://eprint.iacr
.org/2018/985)

Nath, K., & Sarkar, P. (2022a). Efficient 4-way vectorizations of the Montgomery
ladder. IEEE Transactions on Computers, 71(3), 712-723. doi: 10.1109/TC.2021
.3060505

Nath, K., & Sarkar, P. (2022b). Kummer versus Montgomery face-off over prime
order fields. ACM Trans. Math. Softw., 48(2), 1-28. Retrieved from https://

doi.org/10.1145/3503536 doi: 10.1145/3503536

Nath, K., & Sarkar, P. (2022c). Security and efficiency trade-offs for elliptic curve Diffie-
Hellman at the 128-bit and 224-bit security levels. Journal of Cryptographic

Engineering, 12, 107-121.
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APPENDIX A

SUPPLEMENTARY CODE

The following Maple script checks the multiplication formulas modulo p261.
k:=2^26:

f:=f0+k^5*f1:
g:=g0+k^5*g1:

f0:=f00+f01*k+f02*k^2+f03*k^3+f04*k^4:
f1:=f10+f11*k+f12*k^2+f13*k^3+f14*k^4:

g0:=g00+g01*k+g02*k^2+g03*k^3+g04*k^4:
g1:=g10+g11*k+g12*k^2+g13*k^3+g14*k^4:

######## Multiplication starts ########
A0:=f00*g00:
A1:=f00*g01+f01*g00:
A2:=f00*g02+f01*g01+f02*g00:
A3:=f00*g03+f01*g02+f02*g01+f03*g00:
A4:=f00*g04+f01*g03+f02*g02+f03*g01+f04*g00:
A5:=f01*g04+f02*g03+f03*g02+f04*g01:
A6:=f02*g04+f03*g03+f04*g02:
A7:=f03*g04+f04*g03:
A8:=f04*g04:

B0:=f10*g10:
B1:=f10*g11+f11*g10:
B2:=f10*g12+f11*g11+f12*g10:
B3:=f10*g13+f11*g12+f12*g11+f13*g10:
B4:=f10*g14+f11*g13+f12*g12+f13*g11+f14*g10:
B5:=f11*g14+f12*g13+f13*g12+f14*g11:
B6:=f12*g14+f13*g13+f14*g12:
B7:=f13*g14+f14*g13:
B8:=f14*g14:

f20:=f00+f10: g20:=g00+g10:
f21:=f01+f11: g21:=g01+g11:
f22:=f02+f12: g22:=g02+g12:
f23:=f03+f13: g23:=g03+g13:
f24:=f04+f14: g24:=g04+g14:

C0:=f20*g20:
C1:=f20*g21+f21*g20:
C2:=f20*g22+f21*g21+f22*g20:
C3:=f20*g23+f21*g22+f22*g21+f23*g20:
C4:=f20*g24+f21*g23+f22*g22+f23*g21+f24*g20:
C5:=f21*g24+f22*g23+f23*g22+f24*g21:
C6:=f22*g24+f23*g23+f24*g22:
C7:=f23*g24+f24*g23:
C8:=f24*g24:

Z0:=B0+2*A0+C5-A5:
Z1:=B1+2*A1+C6-A6:
Z2:=B2+2*A2+C7-A7:
Z3:=B3+2*A3+C8-A8:
Z4:=B4+2*A4:
Z5:=B5+2*(C5+C0-A0):
Z6:=B6+2*(C6+C1-A1):
Z7:=B7+2*(C7+C2-A2):
Z8:=B8+2*(C8+C3-A3):
Z9:= 2*( C4-A4):

######## Multiplication ends ########

expand(2*f*g-(
Z0*k^0+Z1*k^1+Z2*k^2+Z3*k^3+Z4*k^4+
Z5*k^5+Z6*k^6+Z7*k^7+Z8*k^8+Z9*k^9

)) mod (2*k^10-2*k^5-1); # Check.

Code A.1. Maple scripts for modulo p261 - multiplication
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