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ABSTRACT 

A PREDICTIVE CONTROLLER FOR EFFICIENT OPERATION OF HVAC 

SYSTEMS IN COMMERCIAL BUILDINGS: ALGORITHM DEVELOPMENT 

AND FIELD APPLICATION.  

Selek, Ali 

MSc, Electrical and Electronics Engineering 

Advisor: Assist. Prof. Dr. Emrah BIYIK 

January 2022 

The global warming and energy security issues require a change in the way we 

generate, transfer and utilize energy. Buildings are among the largest overall energy 

consumers. People spend most of their time in buildings and therefore proper 

management of buildings are crucial for comfort, health and productivity. In buildings, 

heating, ventilation and air conditioning (HVAC) systems account for, on average, 

40% of the overall energy use. Thus, proper and effective operation of HVAC systems 

is very important for energy efficiency and thermal comfort. Addressing this problem 

by merely installing new sophisticated equipment may not be feasible due to economic 

and technical reasons. In this case, advanced control techniques should be utilized to 

better operate existing infrastructure.  

In this thesis, a predictive control technique (MPC) to optimally operate an HVAC unit 

is developed, implemented and tested in real-world environment. The control 

algorithm is implemented in Python and integrated into the embedded system that 

controls the HVAC unit. The performance of the predictive controller is compared 

against a PID controller, which is a commonly preferred method in the industry. Test 

results show that the MPC controller presented in this thesis outperforms PID in terms 

of reference tracking and energy consumption. 

keywords: building energy management, heating-ventilation-air-conditioning 

systems, model predictive control, PID control, energy efficiency, telemetry platform, 

internet of things 
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ÖZ 

TİCARİ BİNALARDA HVAC SİSTEMLERİNİN VERİMLİ ÇALIŞMASI 

İÇİN ÖNGÖRÜLÜ BIR KONTROLÖR TASARLANMASI: ALGORİTMA 

GELİŞTIRME VE SAHA UYGULAMASI. 

Selek, Ali 

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği 

Danışman: Dr. Öğr. Üyesi Emrah BIYIK 

Ocak 2022 

Küresel ısınma ve enerji güvenliği konuları enerjiyi dönüştürme, iletme ve kullanma 

yöntemlerimizde değişiklik yapmayı zorunlu kılmaktadır. Binalar, genel enerji 

kullanımı açısından üst sıralardadır. İnsanlar zamanlarının çoğunu binaların içinde 

geçirmekte; bu sebeple, binaların doğru bir şekilde yönetilmesi konfor, sağlık ve 

üretkenlik açısından kritik önem taşımaktadır. Isıtma-havalandırma-iklimlendirme 

sistemlerinin yükü (HVAC) binalarda kullanılan enerjinin yaklaşık %40’ına tekabül 

etmektedir. Bu sebeple, HVAC sistemlerinin doğru ve etkili yönetimi enerji verimliliği 

ve ısıl konfor açısından büyük önem taşımaktadır. Daha yeni ve gelişmiş ekipmanların 

kurulumu ile bu konuda iyileştirme yapmak Teknik veya ekoomic sebeplerden ötürü 

her zaman mümkün olmayabilir. Bu surumda, gelişmiş control tekniklerinden 

yararlanarak mevcut altyapı daha iyi işletilmelidir. 

Bu tezde, bir HVAC sisteminin en iyi şekilde işletilmesi için öngörülü bir kontrol 

(MPC) tekniği geliştirilmiş, sahada uygulanmış ve test edilmiştir. Geliştirilen kontrol 

algoritması Python dilinde yazılarak sahada HVAC kontrolünü sağlayan gömülü 

sistem kartına entegre edilmiştir. Bu öngörülü kontrolörün performansı endüstride 

yaygın olarak kullanılan PID kontrolör ile karşılaştırmalı olarak test edilmiştir. Test 

sonuçları, MPC kontrolörün referans sıcaklık takibi ve enerji tüketimi açılarından PID 

kontrolöre göre üstün olduğunu göstermektedir.  

Anahtar Kelimeler: bina enerji yönetimi, ısıtma-havalandırma-iklimlendirme 

sistemleri, model öngörülü kontrol, PID kontrol, enerji verimliliği, telemetri 

platformu, nesnelerin interneti 
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CHAPTER 1 

INTRODUCTION 

Energy consumption is a significant issue in our time because of the leakage of fossil 

fuel energy sources and the ecological consequences of associated energy pollutants. 

In Europe, total energy consumption is increasing by 1.5% per year due to various 

factors such as economic growth, expansion of the construction sector and expansion 

of building services. As a direct result of this, the scientific community worldwide is 

making many efforts to improve the overall energy efficiency of human activities. In 

particular, European energy consumption presents the following energy breakdown: 

34.6% in transport, 24.6% in household management, 27.9% in industry and 14.9% in 

commercial and others (Boyano et al., 2013). To summarize, these statistics show how 

both residential and commercial buildings account for around 40% of total energy 

consumption. Given these numbers, it's not surprising that academic and industrial 

research groups are working to achieve energy-saving improvements for buildings. 

The focus is placed on heating, ventilation, and air conditioning systems, i.e. the set of 

equipment that conditions and distributes a building's indoor air and is dedicated to 

maintaining its quality. In this texture, it is worth knowing that HVAC systems account 

for 50% of the energy consumption of buildings and about 20% of the total 

consumption. 

It is also well known that HVAC systems use more energy than expected or desired, 

and potential energy savings are estimated to be between 5% and 30% (Chua et al., 

2013).  Because of this need, the concept of smart building is becoming more common 

today. The current trend is to equip buildings with tools and sensors that collect data 

that is then used by complex control techniques to improve energetic performances 

while maintaining comfort levels. Control algorithms have received much attention in 

recent years, especially for the control of buildings (Sturzenegger et al., 2016). 
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The Independent Statistics & Analysis of the U.S. Energy Information Administration 

in 2015 found that offices utilize approximately one-fifth of all commercial buildings' 

energy deliveries, making them a prime target for energy efficiency upgrades. It is 

estimated that commissioning an existing building may save 15 percent of the 

building's energy usage (Wall et al., 2008). The Building Energy Management System 

(BEMS) is responsible for lowering energy usage while maintaining user comfort. The 

creation of appropriate energy-efficient methods and their integration for interfacing 

with BEMS are now separated by a lack of methodologies. According to Aune et al. 

(2009), there is already a gap between sensor deployment infrastructure and facility 

managers' actual actuations in this context. 

In office buildings, energy demand varies greatly depending on the time of day and 

week, which has a significant impact on energy usage. It follows that automating 

optimization methods that dynamically adjust the HVAC operating mode to the 

interior and outside circumstances is important in order to optimize energy savings in 

an office building's domain. Another essential human component in maintaining 

energy efficiency is the building's facilities manager. This person should monitor the 

BEMS at certain times to ensure energy efficiency. 

A smart city uses technology to improve humanity by achieving the targets of every 

single human that contributes to society, such as government, inhabitants, and 

economy. Energy is the lifeblood of a city, and energy conservation is a global priority. 

Alternative energy sources, greenhouse gas emissions reduction, and the use of 

Internet of Things technologies to monitor and regulate energy performance are all 

crucial. Suppose that the smart city and energy efficiency targets are to be achieved. 

In that case, it is necessary to develop new smart buildings and convert existing 

structures to Energy Efficient Buildings and increase the reliability of Performance 

Certificates. 

All energy certificates should ensure the performance of established or upgraded 

technical building systems, that all critical parameters are used to calculate energy 

consumption, and that all strict emission criteria are validated. The application of IoT 

technology to building certification and compliance audits may enhance evaluations. 

(Metallidou et al., 2020). 
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With this thesis, it is aimed to explain the optimum energy efficiency control of the 

HVAC system. PID and MPC methods are used to achieve this goal. The automation 

of these optimization methods integrated with BEMS was implemented in a real office 

building in Izmir, Turkey, and it was aimed to prove the energy saving possibilities. 

In order to perform the simulations, certain interior features of the office building in 

Izmir were taken into account in accordance with the Royal Decree 1826/2009 

(Manjarres et al., 2017). In a nutshell, it states, among other things, that temperatures 

between 21 and 26 degrees Celsius (degrees Celsius) are preferred. 
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CHAPTER 2 

LITERATURE REVIEW 

There are many uncertainties in occupancy-building interactions, both internal and 

external, that make HVAC systems difficult to predict. Relevant research on topics 

such as distributed energy sources, building HVAC modeling, and building HVAC 

control utilizing MPC and PID in this thesis. Moreover, some studies underline that, 

in order to achieve a manipulated variable, MPC uses a process model, with the goal 

of optimizing an objective over time. Because it can foresee future occurrences and 

take control actions in response, MPC is a better alternative to PID systems (Iddio et 

al., 2020). MPC is named rolling or receding horizon because it takes initial 

measurements and then applies the first decision, refreshes the measurements, and 

solves the problem for the horizon again, which is why it is referred to as rolling or 

receding horizon. This procedure is repeated, and as a result, MPC switches from an 

open-loop to a feedback loop design and takes recent changes into account while 

solving the problem. (Bemporad, 2006). However, developing models that describe 

HVAC dynamics can be time consuming and require a lot of domain knowledge. 

Commercial buildings consume more than 35% of electricity in the United 

States.  Around 15% of the electricity consumed in business buildings is for heating, 

ventilation, and air conditioning systems. HVAC systems are critical components of 

building HVAC systems because they deliver conditioned air from air handling units 

to individual rooms for heating and cooling the building's indoor temperature 

(Maasoumy et al., 2014). Several energy efficiency solutions can be used during the 

design phase; others can retrofit existing air conditioning systems. Still, others can be 

done with minimal modification to presently installed equipment. Several techniques 

are proposed (Al-Rabghi et al., 2004): 

 Turning old HVAC programs into smart systems 

 Cost-effective ways for dehumidifying the air. 

 The establishment of conservation projects and initiatives. 
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The 1970s had seen a rise in popularity in adaptive control. The advancements in 

control theory over the last decade have resulted in a better understanding of adaptive 

control. Microelectronics' quick and innovative advancements have enabled the 

implementation of adaptive regulators cost-effectively (Åström, 1983). The field is 

currently undergoing rapid development at both the university and industrial levels. 

Using a feed-forward controller to account for meteorological uncertainty, (Wang & 

Ma, 2008) proposes an interior zone temperature prediction technique based on model 

predictive control. The authors, on the other hand, adopt a linear thermal model of in 

(Baldi et al., 2015; Ghiaus & Hazyuk, 2010), physics-based models were used to 

optimize HVAC system scheduling by reducing energy and thermal discomfort costs. 

Using model identification approaches, the authors of (Azuatalam et al., 2017) 

compare the outcomes of data-driven and physics-based A data-driven strategy leads 

to fewer prediction errors and model complexity, the study concludes. Liang et al. 

(2018) provides a detailed evaluation of HVAC system modeling alternatives. Due to 

major HVAC systems' non-linearity and time-variance features, tuning them is a 

difficult and time-consuming procedure. As a result, setting an HVAC system's PID 

controller to achieve optimal tracking control performance is a difficult challenge 

(Almabrok et al., 2018). A basic PID or ON/OFF control, which is common in older 

buildings, is inefficient due to the non-linear and complicated nature of HVAC systems 

(Zhou et al., 2017). Numerous researchers have improved the PID algorithm and 

provided innovative tuning rules since the well-known Ziegler-Nichols technique 

(Geng et al., 1993). The employment of supervisory (optimal) control methods in 

modern buildings equipped with building automation systems, on the other hand, can 

increase energy efficiency by optimizing energy usage while ensuring adequate 

interior thermal comfort (Amara et al., 2015). It has been shown that machine learning 

or optimization approaches may be used to both estimate and execute a building's 

demand response potential for regulated loads like HVAC and electric water heaters 

(Lazic et al., 2018; ATP et al., 1995; Kim et al., 2020). 

Energy performance analysis tools are used to forecast an HVAC system's annual 

energy consumption. These tools execute (hourly or sub-hourly) simulations based on 

a system of equations that determine the thermal efficiency and techniques and with 

specified boundary conditions, operation strategy, and controls (Trčka et al., 2010). A 

comparison of simulated and actual heating demand and average interior temperature 
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was made after their Algorithm was deployed in a real building. (Li et al., 2020). This 

is a broad framework used for much more than simple HVAC systems, so PID control 

is intended to be used to collect data for MPC and other approaches. (Han et al., 2018). 

HVAC control has been a very active area of research and development, intending to 

optimize HVAC system functioning in cost savings, occupant thermal comfort, and 

indoor air quality. Numerous attempts in the control of building HVAC systems have 

often resulted in benefits at the local level (Wang et al., 2008). The advantages of MPC 

are shown to include the ease with which time depended restrictions could be 

calculated, such as adjusting the acceptable room temperature range based on 

occupancy or non-occupation and the use of weather and occupancy predictions. It 

proposes a stochastic MPC controller for dealing with uncertainty in weather 

forecasting (Oldewurtel et al., 2010). In this thesis, the effects of ambient sensors such 

as temperature are mainly examined. Also, there is a similar understanding with 

another research that decides which cooling system is more useful according to 

temperature, humidity, and various sensors with a control algorithm (Şahin et al., 

2016). 

The starting point in the creation of this thesis was to contribute to the literature by 

providing real-life applications of PID and MPC methods for HVAC management. 

The basis of the work carried out in line with this goal is the temperature set points 

that communicate with each other and collect information in an integrated manner. 

The MQTT approach is explained with communication between Matlab and a Linux 

device during the determination of temperature set points. According to the results for 

applications, it appears that is a convenient strategy for maintaining a suitable solution 

time. 
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CHAPTER 3 

PROBLEMS AFFECTING ENERGY EFFICIENCY 

3.1. Overview and General Efficiency Solutions  

There is an increasing interest in creating solutions for low-energy buildings due to the 

growing concern about energy usage in buildings. By utilizing a two-level 

management framework, optimal HVAC system control tries to offer desired indoor 

comfort and atmosphere while using the least amount of energy. An actuator performs 

low-level local control of a single set point. For example, the supply air temperature 

from a coil. Adjusting the opening of a valve that provides cold water to the coil 

controls the coil. Surveillance control is a high-level control that aims to provide 

satisfactory indoor comfort and a healthy environment with the least amount of energy 

input or operating cost possible, while taking into account the constantly changing 

indoor and outdoor conditions as well as the characteristics of the HVAC system. 

Modern buildings with energy BAS and EMCS ensure that control for the HVAC 

system is adjusted to optimize set points and operating modes while maintaining the 

appropriate quality of the indoor environment at the lowest possible prices. 

Recently, building commissioning and energy audits (Alajmi, 2012). Literature has 

reported on a large number of difficulties relating to energy. Every one of them come 

to same result: most buildings don't operate correctly and should be repaired (Balaras 

et al.., 2007). There are instruments for commissioning HVAC systems as well as 

techniques for assessing cost-benefit and the persistence of current building 

commissioning in the Annex 40 (IEA, 2004) and Annex 47 (Neumann et al., 2012) 

project study. As a result of these multinational research initiatives, commissioning 

approaches can be disseminated and used internationally. According to a recent 

research on commissioning (Castro et al., 2006), the majority of problems were 

observed in air handling systems, heating water plants, and chilled water plants during 

the commissioning process.  
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HVAC is an acronym for Heating, Ventilation, and Air Conditioning. Currently, the 

HVAC system is considered a component of the air conditioning system, which 

regulates the temperature, humidity in the air, outdoor air for ventilation, particle 

filtering, and air movement within a confined space. HVAC processes include the 

following: 

 Heating – adding thermal energy to the air to maintain the zone's temperature 

 Cooling - extracting heat energy from the air to keep the zone's temperature 

 Humidifying – adding moisture into the air to preserve the area's humidity 

 Dehumidifying – replacing moisture from the air to maintain the zone's humidity 

 Ventilation – substituting outside air for inside air to keep the zone's air quality 

 Cleaning – reduction of pollutants to preserve the area's air quality 

 Air movement – the movement of air to keep the zone's temperature, humidity, and 

air quality 

3.2. Factors Affecting Efficiency 

Using a scale of 1 to 100, the U.S. Environmental Protection Agency's Energy Star 

program established an energy performance rating system as a way to measure a 

building's energy efficiency and evaluate its energy efficiency. In order to qualify for 

Energy Star certification, a score of 75 is necessary (Fuerst, 2009). Using the Energy 

Star Portfolio Manager APIs, City BES gets Energy Star scores for each selected 

building, visualizes the scores by color-coding 3D building forms, and filters the 

building stock based on the score. Buildings having an Energy Star score of less than 

a particular number, say 50, may be of interest to municipal authorities. Commercial 

and residential buildings' energy-related features are tracked by BPD, the biggest 

dataset of its kind in the United States. For the first time in the United States, it brings 

together and anonymizes data from federal, state, and municipal governments as well 

as utility providers and energy-saving initiatives. It is possible for City BES to 

benchmark building energy performance on a district basis by comparing the EUI 

distribution of chosen buildings with that of peer buildings in BPD. 

Although humidity and latent heat play a crucial role in building temperature control, 

they are mostly ignored in present control models. The fundamental challenge in 

incorporating humidity and latent heat is that the factors that affect the building's 

temperature and humidity are a complex function of control orders that cannot be set 
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independently. In some cases, the cooling coil is in one of three states: fully dry, 

entirely wet, or partially wet. Some are simple differential equations, while others are 

static models with a huge number of empirical relationships that change depending on 

coil geometry, setup, and manufacturer. Current rule-based controllers employ 

conservatively crafted rules that have been agreed at after decades of experience. In 

hot humid conditions, for example, a conventional rule is to keep the conditioned air 

set point around 12.8 ◦C (55 ◦F) (Klein et al., 2009). Even in worst-case scenarios, this 

lower number ensures that interior air is dry enough to keep humidity within 

recommended limits. The downside is that worst-case conditions rarely occur, 

resulting in higher energy cost. 

Solar radiation alters the microclimate of modern urban development's surrounding 

land and has a substantial influence on the energy efficiency of high-rise structures. 

The intensity of solar radiation is affected by the atmosphere of a city. As much as 

20% of solar radiation can be lost owing to turbidity in large industrial towns with 

densely built-up areas. During the summer, there is a 20-22 percent difference in direct 

solar radiation intensity among residential and industrial portions of the city. Near to 

any kind of large industrial companies, the intensity of direct sun radiation in a 3 km 

radius is waning and can approach 35-40 percent. Similar processes, along with a 

breach of the area's aerodynamic conditions, result in the formation of an urban heat 

island. It's a phenomenon in which the temperature in metropolitan regions is greater 

than in rural areas nearby. A controller that minimizes energy/cost without including 

moisture and latent heat in the problem formulation can have two potential problems. 

First, it can lead to poor moisture control. Second, because the objective function 

doesn't always account for the latent component of cooling, the energy usage projected 

by the controller may differ significantly from the actual energy use when the 

controller is utilized in practice. 
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CHAPTER 4 

SMART HVAC MANAGEMENT 

A new age of possibilities is opening up thanks to the Internet of Things, making it 

easier to work with partners and provide new goods. Other operational problems and 

adoption obstacles range from data exchange to data storage and security. Data 

gathering has no use if it cannot be used or interpreted by the end user. By enhancing 

system performance, manufacturers provide analytical algorithms for HVAC 

equipment to assist the operation and maintenance teams save time and money. For 

example, many systems provide reports on system performance that identify faults 

and provide solutions for them. These devices are equipped with failure analysis and 

system optimization logic that is built into their design from the ground up. They 

automatically detect the issue from the start, allowing maintenance downtime to be 

kept to a minimum. HVAC systems that function on a dynamic basis run more 

efficiently and consume less energy. 

By monitoring, operating, and collecting data in real-time, experts and supervisors 

can make more certain diagnoses. Smart controllable devices provide remote 

monitoring and real-time alarms. You may monitor and gather data via an internet 

connection. Corrective measures may be taken anywhere and without the need to be 

in the building, thanks to real-time data. HVAC monitoring is particularly useful in 

hospitals and labs, where contamination risks are significant and exposure to 

contaminants must be minimized. 

In order to monitor and enhance systems, IoT devices exchange information and 

analyze data. The information gathered may be used to automate, plan maintenance, 

and optimize a building's systems, among other things. In order to meet energy and 

efficiency targets, building managers and owners need more cost-effective and 

sophisticated solutions. 

In the HVAC sector, IoT may be used to measure vibration, airflow, pollutants, the 

number of occupants, weather conditions, and other factors, among other things. Key 
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stress indicators and remote analysis improve troubleshooting and preventative 

maintenance. The combination of smart HVAC and IoT enhances metering and 

feedback.  

As a result, the system's functional needs are broken down into general functional 

requirements and system-specific requirements. There are basic needs for the system's 

functioning, and there are particular requirements for the individual business 

operations that will be supplied. Scalability, security and privacy are examples of non-

functional needs. 

• System should collect power usage and ambient condition data regularly, and 

communicate it to a centralized server. 

 It's important that the server parses the information and sends the readings to 

a central database. 

 The analytics engine should use the stored data to process it and produce 

reports, graphs, and charts from it. 

 Clients should be able to see the produced graphs using a cross-platform 

mobile application. 

 Users should be able to access different services based on their rights, such as 

reading reports, device status, remote control of devices, or bill payment. 

According to the system's business operations, particular functional needs exist. 

To meet these requirements, six categories of business procedures have been 

identified: (Al-Ali et al., 2017). 

 Analysis of Consumption for Monitoring 

 Analysis of Asset Efficiency 

 Analysis of the Root Causes 

 Indicators of Predictive Performance 

 The ability to control remote and local devices 

 Utility for keeping track of your bills 

They also show that the system is scalable and dependable, as well as safe and readily 

managed. It is also easy to install as well as remotely accessible. Elements like 

scalability, security, and privacy are significant non-functional aspects of the 

suggested systems. 
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A. In terms of scalability 

A rapidly growing subject, Internet of Things (IoT) is thought to be made possible by 

scalability. A large number of linked devices or "things" must be supported, as well 

as a variety of users and application functionalities. 

B. Securing the business 

As a result, even a tiny mistake in the system might have serious consequences. It is 

possible for a system's design to cause catastrophic failures. Multiple safe web service 

calls using https must be established in order to ensure the protection of the 

connection between it is a system 

C. Protecting the privacy 

As a result of privacy, users or "things" might remain anonymous and unique. Since 

IoT requires that "things" or people's information not be disclosed, privacy is a major 

problem in the IoT world. Due to the fact that IoT objects may freely distribute data 

and communicate with one other, IoT objects also serve as part of a network of other 

"things." A network's interoperability is essential because it ensures that the various 

parts of the network can communicate with one another in a timely manner (Sarkar et 

al., 2014). 

4.1. System Architecture  

HVAC systems with the most efficient control actions for energy consumption and 

comfort over a certain period. These control operations are transmitted to the devices 

that operate the HVAC via a gateway that change the room temperature by the 

decisions made by the intelligent Algorithm. The pilot office room is shown in Figure 

4.1.; 
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Figure 4. 1. Pilot office room 

 

Additionally, the database server stores temperature and energy consumption readings. 

These measurements are displayed to the end-user through an IoT platform. Users can 

communicate with the control unit via the platform, selecting the ideal temperature 

range (Carli et al., 2020). 
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Figure 4. 2. System architecture 

 

The Algorithm provides HVAC systems with the most efficient optimization decisions 

for electricity consumption and comfort over a certain period. These control actions 

are transmitted to the VRF system via a gateway. VRF module is communicating via 

RS-485 through the MODBUS just like the common PLC communication protocols 

which are RS-232, CAN-Bus and TTL UART (Kanmaz et al., 2018).  Also, energy 

analyzer of the system is using the Modbus RTU protocol. Instant measurements from 

the AC unit are seen on the screen of the energy analyzer. 
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Figure 4. 3. Energy analyzer 

 

The HVAC modules adjust the room temperature in accordance with the smart 

Algorithm's decisions. In addition, the database server saves temperature and energy 

usage measurements.  

 

 

 

Figure 4. 4. Data flow diagram of the system 
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4.2. Software Architecture 

A reference architecture for web platform is presented in this part. As shown in Figure 

4.5, basically all data is collected from the gateway via the MQTT protocol. After that 

data is filtered as a JSON payload. 

 

 

 

Figure 4. 5. Web platform layers 

 

IoT Integration acts as an integration layer for various types of sensors and controllers 

as well as devices. In addition to receiving data from linked devices, it is also 

responsible for processing the received data, distributing it to web based applications, 

and controlling connected devices. For example, evaluating condition-action rules and 

sending commands to Thermostats. 

 

 

 

Figure 4. 6.  Thermostat web management widget 
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Device can connect directly with IoT Integration Middleware via IP over Ethernet or 

GSM, HTTP or MQTT. To interact with IoT Integration Middleware, Devices must 

use a Gateway. As an example, it might include a comparison charts like line or bar. 

It's also possible to manage the Devices and users and to aggregate and utilize the 

received data (Guth et al., 2017). 

 

 

 

Figure 4. 7.  Energy consumption trend of HVAC system 
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CHAPTER 5 

METHODS AND APPLICATIONS 

5.1. PID 

Sensors are used to measure the variables in a process. To determine whether or not 

the measurement is in line with the set point value, a controller receives the sensor data 

signal. Process variables are continuously monitored with sensors to form the 

measured process variables. These values are evaluated by the PID controller and a set 

point value is created, thus ensuring stable operation of the system as shown in Figure 

5. 1. 

 

 

Figure 5. 1. PID control 

 

Example for the PID control system, when a fan motor speed or water flow rate is 

changed, a controller tells the relevant equipment to take action. As new sensor 

measurements are received, the PID controller re-evaluates them, restarting the loop. 

In systems where the load changes often and the controller is required to adapt 

automatically owing to frequent changes in set point, energy available, or mass to be 

managed, PID controllers are suggested for precision and stability. For this reason, 

PID controllers are inappropriate for operations in which the measurement noise from 

sensors cannot be regulated. Automating HVAC systems with PID controllers has a 

variety of benefits. Temperature management in HVAC systems is dependent on a 
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number of variables. Temperatures and pressures of cooling/heating fluids directly 

affect the system's ability to exchange heat. As an example, consider the following:  

 Changing HVAC set point according to inside and outside temperature. 

 Setting the maximum energy consumption according to energy efficiency 

target. 

 Heating and cooling systems that use PID control are less prone to temperature 

fluctuations.  

Within the scope of this study, a demo application area was created for the analysis of 

real data and the temperature set point control technique was used. Within the scope 

of this application area, an algorithm that can control the temperature according to the 

indoor and outdoor temperature has been developed, taking into account the Royal 

Decree No. 1826/2009 (Manjarres et al., 2017). In summary, it specifies, that 

temperatures between 21 and 26 degrees Celsius are preferred.  

A PID controller is a mathematical expression that manages the Q(t) which is the 

controller's output. It is the difference between the setpoint and the process variable 

that is calculated. The controller gain and the controller reset time are all configurable 

parameters. A high gain or a small controller reset time results in a controller that 

rapidly reacts to a gap between the measured PV and desired SP. (Apmonitor, 2020) 

 𝒆(𝒕) = 𝑻𝑺𝑷 − 𝑻𝑷𝑽 (1) 

In this study, the  𝑸𝒃𝒊𝒂𝒔 was initially set to zero. It is assumed that the heater is turned 

off (2). 

 

 𝑸(𝒕) = 𝑲𝒄𝒆(𝒕) +
𝑲𝒄

𝝉 𝑰
∫ 𝒆(𝒕)𝒅𝒕 − 𝑲𝒄𝝉𝑫

𝒅(𝑻𝑷𝑽)

𝒅𝒕

𝒕

𝟎

 (2) 

 

The continuous integral is approximated as the total of the error multiplied by the 

sampling duration (3). 

 
𝑲𝒄

𝝉 𝑰
∫ 𝒆(𝒕)𝒅𝒕 ≈

𝑲𝒄

𝝉 𝑰
∑ 𝒆𝒊(𝒕)∆𝒕

𝒏𝒕

𝒊=𝟏

𝒕

𝟎

 (3) 
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The current slope is frequently determined by the difference between the present and 

former values of the PV (4). 

 

 
𝒅(𝑻𝑷𝑽)

𝒅𝒕
≈

𝑻𝑷𝑽,𝒏𝒕
− 𝑻𝑷𝑽,𝒏𝒕−𝟏

∆𝒕
 (4) 

 

The PID control equation is defined in discrete form (5). 

 𝑸(𝒕) = 𝑲𝒄𝒆(𝒕) +
𝑲𝒄

𝝉 𝑰
∑ 𝒆𝒊(𝒕)∆𝒕

𝒏𝒕

𝒊=𝟏

− 𝑲𝒄𝝉𝑫

𝑻𝑷𝑽,𝒏𝒕
− 𝑻𝑷𝑽,𝒏𝒕−𝟏

∆𝒕
 (5) 

 

PID parameters found with trial and error method as shown in Table 5.1. These 

parameters found according to the algorithm that explained below. 

 

Table 5. 1. PID variables  

 

 

If the heating level is between 0% and 15%, HVAC is working as used to as it seems 

in the below figure set temperature and present temperature variables are relatively 

close that’s why HVAC set temperature does not increase by our controller working 

condition algorithm. As it seems from the Figure 5.2, according to the last 1-hour 

ambient temperature measurement, difference between set point and ambient 

temperature is less than 1 so that system did not change the set point of the HVAC 

system. 
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Figure 5. 2. PID control outputs for lower temperature differences 

 

On the other hand, if the heating level is higher than the 15%, HVAC set temperature 

will be increased by the controller until the heating level will be below the 15%. As it 

seems from the Figure 5.3, according to the last 1-hour ambient temperature 

measurement, difference between set point and ambient temperature is much higher 

than 1 so that system increase the HVAC set point until the difference between ambient 

and set point is equal to 1.  
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Figure 5. 3. PID control outputs for higher temperature differences 

 

Mean absolute error and error analyses of the lower set point environment can be 

analyzed in Figure 5.4.   

 

 

 

Figure 5. 4. PID control outputs for higher temperature differences 
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Mean absolute error and error analyses of the higher set point environment can be 

analyzed in Figure 5.5.   

 

 

 

Figure 5. 5. PID control outputs for higher temperature differences 
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By looking at the result of the PID controlled system, PID results will be slightly 

different. Because, before day 1, system is uncontrolled and ambient temperature is 

controlled by human. 

 

 
 

Figure 5. 6. PID controlled system day 1 

 

On the other hand, in Figure 5.7, energy consumption is less than PID controlled day 

1 in Figure 5.6. On day 2, ambient temperature is more stable, because it is controlled 

by the system automatically. 

 

 
 

Figure 5. 7. PID controlled system day 2 
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5.2. MPC 

MPC concept have gained widespread acceptance in industry and are being 

investigated in academics. This popularity is because MPC designs can result in high-

performance control systems that can operate for extended periods without 

professional supervision. By definition, MPC integrates all components of decision-

making process automation. Decision-making methods can be handled in stages as 

shown below; (García et al., 1989) 

 Instrumentation: Gathering data from the process 

 Control: This is often implemented in two layers: single-loop control via 

analog or rapid sampling digital controllers and real-time control using real-

time computers. 

 Optimization: It aims to achieve economic objectives for the plant. It is often 

applied at a rate that assumes the controlled plant is in stable condition. 

As a result, the primary contrast between control and optimization is one of 

implementation frequency. These automation layers contribute something distinct and 

complementary to a system's ability to react fast to changes.  

Numerous MPC typologies can be used when solving a building control problem, each 

with its prediction model. There are three main points that MPC system occur which 

are; Zone thermal model, predictive controller and the comfort model that can be seen 

in Figure 5.8. As a result, the optimization strategies used will vary according to the 

optimization problem's nature. The main purpose of the method called MPC tracking 

is to reach and closely follow a predefined reference trajectory for a controlled 

variable. The MPC problem might be linear or nonlinear, depending on the nature of 

the controlled system dynamics. Extending MPC to nonlinear situations is not 

straightforward because of the increased computing complexity, the dependability of 

nonlinear programming solvers, and the absence of general-purpose nonlinear systems 

identification approaches (Serale et al., 2018). 
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Figure 5. 8. MPC model 

 

External and internal disturbances such as weather and tenant activities are also 

modeled, and their expected effects on the system are used to compute the control 

vectors. This work results in a durable controller to time-varying disturbances and 

system characteristics and firmly control the process within the specified constraints. 

MPCs are utilized in HVAC systems at both the administrative and operational levels 

of control. MPC also provides various chances for improving the energy efficiency of 

Heating, Ventilation, and Air Conditioning (HVAC) systems through its capacity to 

address restrictions, disruption prediction, and multiple conflicting objectives such as 

interior thermal comfort and building energy consumption.  

The MPC predicts future states of the system using a system model and creates a 

control vector that minimizes a specified cost function over the prediction horizon in 

the presence of disturbances and restrictions. At each sampling moment, the first 

element of the computed control vector is applied to the system input, and the 

remainder is discarded. The entire procedure is repeated in the subsequent instant of 

time. Costs can be expressed as tracking inaccuracy, control effort, energy cost, 

demand cost, power consumption, or a combination of these elements. The rate and 

range limits of the actuators and the manipulated and controlled variables can be 

constrained (Afram et al., 2014). 

 



27 

 

In this thesis, the resistance-capacitance (RC) model is defined and the problem is 

formulated. The model of the system was extensively used in the literature (Mathieu 

et al., 2013). Considering the system described below, which is based on the dynamics 

of the room temperature, capacity, outside air temperature, neighboring air 

temperature, and disturbance (6), the thermal dynamics of the room can be modeled as 

 

 �̇�1 = [
−1

𝑅0𝐶1
−

1

𝑅𝑛𝐶1
] 𝑇1 +

1

𝐶1
𝑄 +

1

𝑅0𝐶1
𝑇𝑜𝑢𝑡 +

1

𝑅𝑛𝐶1
𝑇𝑛 +

1

𝐶1
∗ 𝑃𝑑 (6) 

 

The variables and parameters in (6) are explained in Table 5.2. 

 

Table 5. 2. MPC definitions 

Variables Definition 

𝑇𝑛 Neighbour air temperature [◦C] 

𝑇𝑜𝑢𝑡 Outside air temperature [◦C] 

𝑇1 Indoor air temperature [◦C] 

𝐶1 Thermal capacity of the room 

𝑅0 Thermal resistance between the room and outside 

𝑅𝑛 Thermal resistance between the room and outside 

Q Thermal heat input from the HVAC system  

𝑃𝑑 Disturbance (occupancy, equipment, solar gains) 

 

To obtain the model in standard state-space form 

 

 

 

�̇� = 𝐴𝑥 + 𝑩𝒖 

 𝑦 = 𝐶𝑥 + 𝐷𝒖 
(7) 

the following assignments are made: 

 𝑥 = 𝑇1,  𝒖 = [

𝑄
𝑇𝑜𝑢𝑡

𝑇𝑛
𝑃𝑑

]  ,   𝑦 = 𝑇1 (8) 

Using (8), the state space-model matrices are obtained as 

 

 

 

𝐴 =  
−1

𝑅0𝐶1
−

1

𝑅𝑛𝐶1
, 𝑩 = [

1

𝐶1
    

1

𝑅0𝐶1
    

1

 𝑅𝑛𝐶1
    

1

𝐶1
] 

 
𝐶 = 1, 𝐷 = 0 

 
 

(9) 
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MPC incorporates both the control-oriented building zone and HVAC system models, 

considering the mutual interaction between the thermal behavior of the building zone 

and the HVAC energy components (Lee et al., 2015). MPC principle is defined in 

terms of an output-feedback model. State-space model of the MPC can be seen in 

Figure 5.9.  

 

 

 

Figure 5. 9. State-space model in Simulink 

 

The optimization problem determines the controlling variables, while the measured 

responses correspond to the major thermal parameters monitored by the available 

sensors deployed in the indoor environment. The accuracy of the model response is 

affected by the estimation of all variables affecting thermal comfort that are not 

monitored by sensors and the existence of disturbances (Carli et al., 2020). 

MPC parameters found according to the cost function as shown in Table 5.3.  

 

Table 5. 3. MPC variables 

 

 

The primary benefit of MPC is that the engineer or operator may directly enter 

constraints, and the algorithm will automatically identify the optimal solution that 

satisfies all of them. 1 zone model in Simulink as shown in Figure 5.10. 
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Figure 5. 10. Thermal comfort model in Simulink 

 

While creating the thermal comfort model, predicted mean vote is used. It allows to 

assess the global thermal comfort and to predict the mean value of the votes of a large 

group of people that perform similar activities. The predicted mean vote model is  

 

 PMV = (0.303 ∗ 𝑒−0.036𝑀 + 0.028) ∗ 𝐿 (11) 

 

 
 

Figure 5. 11. MPC framework 
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Constraints imposed by MPC are always present in real-world process control 

situations. Constraints are handled in most of today's control implementations via split 

range controllers, overrides, and more general min-max selectors with some logic. 

These methods are challenging to design, debug, communicate to operators, and 

maintain. The primary benefit of MPC is that the engineer or operator may directly 

enter constraints, and the algorithm will automatically identify the optimal solution 

that satisfies all of them (García et al., 1989). The cost function and its constraint are 

shown in the equations below. Sampling period is 1 hour and the prediction horizon is 

24 steps. The MPC controller solves the following constrained optimization problem: 

 

 min ∑ 𝛼(Tref − 𝑇1(𝑘))2 + 𝛽𝑓(𝑄(𝑘)) (12) 

 

subject to: 

 �̇�1 = [
−1

𝑅0𝐶1
−

1

𝑅𝑛𝐶1
] 𝑇1 +

1

𝐶1
𝑄 +

1

𝑅0𝐶1
𝑇𝑜𝑢𝑡 +

1

𝑅𝑛𝐶1
𝑇𝑛 +

1

𝐶1
∗ 𝑃𝑑 (13) 

 

 21 ≤ 𝑇1 ≤˙ 26 (14) 

 

 0 ≤ 𝑄 ≤ 𝑄𝑚𝑖𝑛  (15) 

 

MPC thermal model is working according to the cost minimization function that shown 

as above. An attempt is made to achieve a comfort temperature range of 21℃ to 26℃. 
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Figure 5. 12. Principle of receding horizon (Serale et al., 2018). 

 

The graphic quoted above with reference can be explained in detail as follows. 

 Current instant (𝑘): Current sampling steps  

 Control time-step (𝑇𝑠): Time between control updates and iterative receding 

horizon optimizations.  

 Prediction horizon (𝑁𝑝): the number of control time-steps the controller looks 

ahead in the future to optimize the cost function under constraints.  

 Control horizon (𝑁𝑐): The number of possible different values the manipulated 

variables can take in the future that relate to the dimension of the optimization 

vector.  
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While building the simulation algorithm, grey-box model is preferred. Because the 

grey-box models provide some advantages in the buildings’ thermal modeling process, 

in particular, ease of their use and the possibility to link their parameters to global 

buildings’ physical characteristics, such as the heat resistance and the mass capacity.   

Simulink model and simulation result can be seen in Figure 5.13 and 5.14. 

 

 

 

Figure 5. 13. Simulation simulink model 

 

. 

 

 

Figure 5. 14. Simulation comparison 
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If we look at the result of the MPC controlled system, MPC results will be slightly 

different. Because, before day 1, system is PID controlled. 

 

 

 
 

Figure 5. 15. MPC controlled system day 1 

 

On the other hand, in Figure 5.16, energy consumption is less than MPC controlled 

day 1 in Figure 5.15. On day 1, ambient temperature and supply air are more stable, 

because it is controlled by the system automatically. 

 

 

 
 

Figure 5. 16. MPC controlled system day 2 
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CHAPTER 6  

CONCLUSION AND FUTURE RESEARCH 

6.1. Conclusion 

As a result, when it comes to converting inefficient buildings into smart and 

sustainable ones, the Internet of Everything and the Internet of Things can help. 

On the basis of simulation-optimization techniques, a set point control scheme for the 

HVAC control system in fabric production facilities was devised. As a result of the 

complicated interaction between HVAC system characteristics, it is required to 

recommend optimal settings for different activities in response to dynamic cooling or 

heating demands and changing weather conditions throughout the year there has been 

a development of MPC (model predictive control) programming that can successfully 

handle discrete, nonlinear, and very restricted optimization It has been successfully 

developed and the dynamic model of the regulated zone produced for a building in 

Turkey to overcome this problem. In this thesis, PID and MPC control methods are 

analyzed so that the important points can be written as follows (Balaji et al., 2013); 

 A PID controller is limited to one input and one output. 

 MPC controllers are a more sophisticated form of process control that are 

utilized in MIMO (Multiple Inputs, Multiple Outputs) systems. 

 There is no information of restrictions in a PID controller. 

 MPC's key advantage is its capacity to handle restrictions. 

 The PID controller is incapable of dealing with restrictions. 

 PID controllers do not require a process model. 

 MPC controllers require a process model. 

The pilot office is closed on the weekend. Employees somehow forget about the 

HVAC return, so there is an uncontrollable power consumption seen in Table 6.1 

below. 
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Table 6. 1. Weekend consumption before management 

 

 

Table 6. 2. Weekend consumption after management 

 
 

Looking at the difference between PID and MPC control methods, MPC can control 

HVAC for future reference, on the other hand PID need real time data. In this thesis, 

we analyze the PID and MPC from the different perspectives because for the PID 

method, we have used the trial and error method. If we use another method like 
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Ziegler-Nichols or Cohen-Coon, we could see higher performance for the PID. 

Eventually, when we look at the result of the controlled days, last day of the MPC is 

more efficient according to the other days. When we look at the result Figure 6.1 as 

shown in below, X axis shows the energy consumption value in kWh, y axis represents 

the control type of the day. 

 

 

 

Figure 6. 1. Controlled days’ results  

 

Our research also includes an extensive literature study to identify all representative 

technological approaches that may be used to smart buildings. A smart template for 

the construction of energy-efficient buildings is then presented, based on IoT 

technology, for both the short and long term. We're ready and willing to make a further 

contribution to the gradual transformation of existing buildings into energy efficient 

buildings, by proposing a management system as well as solutions for addressing and 

controlling energy inefficiency in existing buildings. By providing remote and 

continuous measurements of all building's technical systems, the suggested 

management system may also contribute to Building Certification and Compliance 

Checking of buildings. 

 

6.2. Future Work 

To recreate both the smart technology building template and the management system 

that analyzes power consumption in existing structures, technological tools and 

equipment, as well as financial aid, are clearly necessary. 
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These finer details limited our investigation. As a result, a desirable and reasonable 

future goal of this research is the implementation and testing of both the management 

system that monitors and controls the smart building template and the management 

system that confirms the energy efficiency of a current structures and proposes 

solutions to transform the building into an e-building in accordance with current 

legislation. When all the energy data from other buildings are collected, the best 

control model for autonomous control of the building's HVAC system will be created. 

The future centralized resource management system will enable the monitoring of 

detailed statistics and the ability to respond automatically to the building's demand 

requirements. Additionally, some machine learning models are being developed to 

forecast future scenarios based on existing measures. At the top of the hierarchy, an 

intelligent, automatic reaction will be created to monitor all available factors and 

advise steps to reduce energy use while maintaining user comfort. Additionally, 

condition monitoring and predictive maintenance are possible additions to the system 

(Blasco et al., 2012). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



38 

 

REFERENCES 

Afram, A., & Janabi-Sharifi, F. (2014). Theory and applications of HVAC control 

systems – a review of Model Predictive Control (MPC). Building and 

Environment, 72, 343–355. https://doi.org/10.1016/j.buildenv.2013.11.016  

Alajmi, A. (2012). Energy audit of an educational building in a hot summer climate. 

Energy and Buildings, 47, 122–130. 

https://doi.org/10.1016/j.enbuild.2011.11.033  

Al-Ali, A. R., Zualkernan, I. A., Rashid, M., Gupta, R., & Alikarar, M. (2017). A smart 

home energy management system using IoT and big data Analytics approach. 

IEEE Transactions on Consumer Electronics, 63(4), 426–434. 

https://doi.org/10.1109/tce.2017.015014  

Almabrok, A., Psarakis, M., & Dounis, A. (2018). Fast tuning of the PID controller in 

an HVAC system using the big bang–big crunch algorithm and FPGA 

technology. Algorithms, 11(10), 146. https://doi.org/10.3390/a11100146  

Al-Rabghi, O. M., & Akyurt, M. M. (2004). A survey of energy efficient strategies for 

Effective Air Conditioning. Energy Conversion and Management, 45(11-12), 

1643–1654. https://doi.org/10.1016/j.enconman.2003.10.004  

Amara, F., Agbossou, K., Cardenas, A., Dubé, Y., & Kelouwani, S. (2015). 

Comparison and simulation of BUILDING thermal models for effective energy 

management. Smart Grid and Renewable Energy, 06(04), 95–112. 

https://doi.org/10.4236/sgre.2015.64009  

Apmonitor. (2020). Proportional Integral Derivative (PID). Retrieved June 9, 2021, 

from https://apmonitor.com/pdc/index.php/Main/ProportionalIntegralDerivative 

Åström, K. J. (1983). Theory and applications of Adaptive Control—A survey. 

Automatica, 19(5), 471–486. https://doi.org/10.1016/0005-1098(83)90002-x  

ATP, S., Chow T., Chan W., Tse W. (1995) Neural-network-based identifier/controller 

for modern HVAC control. ASHRAE Trans. 1995;101(2), 14–31. 

Aune, M., Berker, T., Bye, R. (2009). Building operators and energy management in 

non-residential buildings. Facilities. 27, 44-55. 10.1108/02632770910923081. 

Azuatalam, D., Mhanna, S., Chapman, A., & Verbic, G. (2017). Optimal HVAC 

scheduling using phase-change material as a demand response resource. IEEE 

Innovative Smart Grid Technologies, Asia (ISGT-Asia). 

https://doi.org/10.1109/isgt-asia.2017.8378315  

Balaji, V., & Rajaji, D.L. (2013). Comparative Study of PID and MPC Controller 

Using Lab View. 



39 

 

Balaras, C. A., Dascalaki, E., & Gaglia, A. (2007). HVAC and indoor thermal 

conditions in hospital operating rooms. Energy and Buildings, 39(4), 454–470. 

https://doi.org/10.1016/j.enbuild.2006.09.004  

Baldi, S., Michailidis, I., Ravanis, C., & Kosmatopoulos, E. B. (2015). Model-based 

and model-free “plug-and-play” building energy efficient control. Applied 

Energy, 154, 829–841. https://doi.org/10.1016/j.apenergy.2015.05.081  

Bemporad, A. (2006, December). Model predictive control design: New trends and 

tools. In Proceedings of the 45th IEEE Conference on Decision and Control (pp. 

6678-6683). IEEE. 

Blasco, C., Monreal, J., Benítez, I., & Lluna, A. (2012). Modelling and PID control of 

HVAC system according to energy efficiency and comfort criteria. 

Sustainability in Energy and Buildings, 365–374. https://doi.org/10.1007/978-3-

642-27509-8_31  

Boyano, A., Hernandez, P., & Wolf, O. (2013). Energy demands and potential savings 

in European office buildings: Case studies based On ENERGYPLUS 

SIMULATIONS. Energy and Buildings, 65, 19–28. 

https://doi.org/10.1016/j.enbuild.2013.05.039  

Carli, R., Cavone, G., Ben Othman, S., & Dotoli, M. (2020). Iot based architecture for 

model predictive control of hvac systems in smart buildings. Sensors, 20(3), 781. 

https://doi.org/10.3390/s20030781  

Castro, N., Friedman, H., & Frank, M. (2006). Cost effective commissioning for 

existing and low energy building. ECBCS Annex 47: Cost-Effective 

Commissioning Research.  

 Chua, K. J., Chou, S. K., Yang, W. M., Yan, J. (2013). Achieving better energy-

efficient air conditioning – a review of technologies and strategies. Applied 

Energy, 104, 87–104. https://doi.org/10.1016/j.apenergy.2012.10.037  

Iddio, E., Wang, L., Thomas, Y., McMorrow, G., & Denzer, A. (2020). Energy efficient 

operation and modeling for Greenhouses: A literature review. Renewable and 

Sustainable Energy Reviews, 117, 109480. 

https://doi.org/10.1016/j.rser.2019.109480  

Fuerst, F. (2009). Building momentum: An analysis of investment trends IN LEED and 

ENERGY star-certified properties. Journal of Retail & Leisure Property, 8(4), 

285–297. https://doi.org/10.1057/rlp.2009.18  

García, C. E., Prett, D. M., & Morari, M. (1989). Model predictive control: Theory 

and practice—A survey. Automatica, 25(3), 335–348. 

https://doi.org/10.1016/0005-1098(89)90002-2  



40 

 

Geng, G., & Geary, G. M. (1993). On performance and tuning of PID controllers in 

HVAC systems. Proceedings of IEEE International Conference on Control and 

Applications. https://doi.org/10.1109/cca.1993.348229  

Ghiaus, C., & Hazyuk, I. (2010). Calculation of optimal thermal load of intermittently 

heated buildings. Energy and Buildings, 42(8), 1248–1258. 

https://doi.org/10.1016/j.enbuild.2010.02.017  

Guth, J., Breitenbücher, U., Falkenthal, M., Fremantle, P., Kopp, O., Leymann, F., & 

Reinfurt, L. (2017). A detailed analysis of iot platform architectures: Concepts, 

similarities, and differences. Internet of Things, 81–101. 

https://doi.org/10.1007/978-981-10-5861-5_4  

Han, M., Zhang, X., Xu, L., May, R., Pan, S., Wu, J. (2018) A review of reinforcement 

learning methodologies on control systems for building energy. Sustainable Cities 

and Society. 51, 2210-6707. https://doi.org/10.1016/j.scs.2019.101748. 

IEA (2004), Energy Policies of IEA Countries: France 2004, IEA, Paris 

https://doi.org/10.1787/9789264107984-en 

Kanmaz, A., Orenbas, H., & Sahin, S. (2018). Android based PLC Data Monitoring 

Interface with Industrial Data Communication Port. 2018 26th Signal Processing 

and Communications Applications Conference (SIU). 

https://doi.org/10.1109/siu.2018.8404576  

Kim, Y.-J. (2020). A supervised-learning-based strategy for optimal demand response 

of an hvac system in a multi-zone office building. IEEE Transactions on Smart 

Grid, 11(5), 4212–4226. https://doi.org/10.1109/tsg.2020.2986539  

Klein, S.A., Beckman, W.A., Mitchell, J., Duffie, J., Duffie, N., Freeman, T., Braun, 

J., Evans, B., Kummer, J., (2009). TRNSYS 17: A transient system simulation 

program: mathematical reference. University of Wisconsin: Madison, WI, USA. 

Lazic N., Boutilier C., Lu T., Wong E., Roy B., Ryu M. (2018) Data center cooling 

using model-predictive control, 3814–23. 

Lee, Y. M., Horesh, R., & Liberti, L. (2015). Optimal Hvac Control as demand 

response with on-site energy storage and generation system. Energy Procedia, 

78, 2106–2111. https://doi.org/10.1016/j.egypro.2015.11.253  

Li, H., Wan, Z., & He, H. (2020). Real-time residential demand response. IEEE 

Transactions on Smart Grid, 11(5), 4144–4154. 

https://doi.org/10.1109/tsg.2020.2978061  

Liang, Y., Di, X., Chongxin, H., Tao, Jiang, T., Yulong, Z. (2018). Energy Optimization 

of HVAC Systems in Commercial Buildings Considering Indoor Air Quality 

Management. IEEE Transactions on Smart Grid. PP. 

10.1109/TSG.2018.2875727. 



41 

 

Maasoumy, M., Sanandaji, B. M., Sangiovanni-Vincentelli, A., & Poolla, K. (2014). 

Model predictive control of regulation services from commercial buildings to 

the smart grid. 2014 American Control Conference. 

https://doi.org/10.1109/acc.2014.6859332  

Manjarres, D., Mera, A., Perea, E., Lejarazu, A., & Gil-Lopez, S. (2017). An energy-

efficient predictive control for HVAC systems applied to tertiary buildings based 

on regression techniques. Energy and Buildings, 152, 409-417. 

Mathieu, J. L., Koch, S., & Callaway, D. S. (2013). State estimation and control of 

electric loads to manage real-time energy imbalance. IEEE Transactions on 

Power Systems, 28(1), 430–440. https://doi.org/10.1109/tpwrs.2012.2204074  

Metallidou, C. K., Psannis, K. E., Egyptiadou, E. A. (2020). Energy efficiency in smart 

buildings: Iot approaches. IEEE Access, 8, 63679–63699. 

https://doi.org/10.1109/access.2020.2984461  

Mills, E., Friedman, H., Powell, T., Bourassa, N., Claridge, D., Piette, M.. (2004). The 

cost-effectiveness of commercial-buildings commissioning. Berkeley National 

Laboratory. Portland Energy Conservation Inc., Energy Systems Laboratory, 

Texas A&M University 

Neumann, C., Jacob, D., Peitsman, H., Yoshida, H., Yuzawa, H., Watanabe, T., 

Kamitani, K., Kikuchi, H., Baumann, O., Choiniére, D., & Milesi Ferretti, N. 

(2012). Annex 47 report 2: Commissioning tools for existing and low ENERGY 

BUILDINGS. https://doi.org/10.6028/nist.tn.1744  

 Oldewurtel, F., Ulbig, A., Parisio, A., Andersson, G., & Morari, M. (2010). Reducing 

peak electricity demand in building climate control using real-time pricing and 

model predictive control. 49th IEEE Conference on Decision and Control 

(CDC). https://doi.org/10.1109/cdc.2010.5717458  

Şahin, S., Alkuş, İ., Yağbasan, S. (2016). Automatic error detection and control of air 

conditioners placed in GSM base stations. 2016 National Conference on 

Electrical, Electronics and Biomedical Engineering (ELECO), 165-169. 

Sarkar, C., Nambi, S. N., Prasad, R. V., & Rahim, A. (2014). A scalable distributed 

architecture towards unifying iot applications. 2014 IEEE World Forum on 

Internet of Things (WF-IoT). https://doi.org/10.1109/wf-iot.2014.6803220  

Serale, G., Fiorentini, M., Capozzoli, A., Bernardini, D., & Bemporad, A. (2018). 

Model Predictive Control (MPC) for enhancing building and HVAC system 

energy efficiency: Problem formulation, applications and opportunities. 

Energies, 11(3), 631. https://doi.org/10.3390/en11030631  

Sturzenegger, D., Gyalistras, D., Morari, M., Smith, R. S. (2016). Model predictive 

climate control of a Swiss Office BUILDING: Implementation, results, and Cost–

Benefit Analysis. IEEE Transactions on Control Systems Technology, 24(1), 1–



42 

 

12. https://doi.org/10.1109/tcst.2015.2415411  

Trčka, M., & Hensen, J. L. M. (2010). Overview of HVAC system simulation. 

Automation in Construction, 19(2), 93–99. 

https://doi.org/10.1016/j.autcon.2009.11.019  

Wall, J., Ward, J., West, S., Piette, M. (2008). Comfort, Cost and CO2 Intelligent 

HVAC Control for Harmonising HVAC Operating Principles, IIR HVAC Energy 

Efficiecy Best Practice Conference, Melbourne, Australia, 2008. 

Wang, S., & Ma, Z. (2008). Supervisory and optimal control of building hvac systems: 

A review. HVAC&R Research, 14(1), 3–32. 

https://doi.org/10.1080/10789669.2008.10390991  

Wang, S., & Ma, Z. (2008). Supervisory and optimal control of Building HVAC 

systems: A Review. HVAC&R Research, 14(1), 3–32. 

https://doi.org/10.1080/10789669.2008.10390991  

Zhou, D. P., Hu, Q., & Tomlin, C. J. (2017). Quantitative comparison of data-driven 

and physics-based models for commercial building hvac systems. 2017 American 

Control Conference (ACC). https://doi.org/10.23919/acc.2017.7963391  

 

 

  



43 

 

APPENDIX 1 – MPC Base Code 

Demonstrates the basic MPC algorithm code used to develop our own MPC control 
software in MATLAB. The details of the reading area data are shown as follows; 
 

 

 

 

  
cp = 1.005; %kJ/K 

m = 0.54;  

nz = 1; % number of zones 

ns = 1*nz; %number of states (1 x nz number of zones) 

  

fielddata = load('hvac.dat'); 

  

Tair    = fielddata(:,1); 

Tn      = fielddata(:,2); 

Tsa     = fielddata(:,3); 

Tout    = fielddata(:,4); 

Pd      = 0.08 * fielddata(:,5); 

  

Tair2 = reshape(Tair,[30,240]); 

Tn2 = reshape(Tn,[30,240]); 

Tsa2 = reshape(Tsa,[30,240]); 

Tout2 = reshape(Tout,[30,240]); 

Pd2 = reshape(Pd,[30,240]); 

  

Tair3 = sum(Tair2(:,1:160))'/30; 

Tn3 = sum(Tn2(:,1:160))'/30; 

Tsa3 = sum(Tsa2(:,1:160))'/30; 

Tout3 = sum(Tout2(:,1:160))'/30; 

Pd3 = sum(Pd2(:,1:160))'/30; 

  

  

delta_T = (Tsa3 - Tair3); 

Q = m * cp * delta_T; 

  

Uvec  = [Q Tout3 Tn3 Pd3]; 

Ymeas = Tair3;  

  

save field_data_systemID.mat Uvec Ymeas 

  

ndata = length(Pd3); Ts = 1800; 

Tvec = [0:Ts:(ndata-1)*Ts]'; 

dist_val = [Tout3 Tn3 Pd3]; 

md.signals.values = dist_val; 

md.time = Tvec; 

  

save mpc_dist md 
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               The details of the single zone situation are as follows; 

 

 

 

 

  

global xInitial 

%% Original parameters 

  

Ts = 1800; 

load field_data_systemID.mat 

ndata = length(Ymeas); 

Tvec = [0:Ts:(ndata-1)*Ts]'; 

C1 = 3000; 

Ro = 0.1; 

Rn = 0.1; 

data = iddata(Ymeas, Uvec, Ts);  %% If looking only at Tair 

xInitial = Ymeas(1,:)'; 

  

%% Construct the linear model 

linear_model_z = idgrey('singlezoneRC_1state',{C1,Ro,Rn},'c'); 

  

n_param = length({C1,Ro,Rn}); 

  

for kk = 1:n_param 

    linear_model_z.Structure.Parameters(kk).Minimum = 0.0; 

    linear_model_z.Structure.Parameters(kk).Maximum = 10; 

end 

% Modify C bounds 

for nn = 1 

    linear_model_z.Structure.Parameters(nn).Minimum = 1000.0; 

    linear_model_z.Structure.Parameters(nn).Maximum = 500000; 

end 

  

opt = greyestOptions('InitialState',xInitial,'Display','on'); 

opt.EnforceStability = true; 

opt.SearchMethod = 'fmincon'; 

%opt.SearchMethod = 'lsqnonlin'; 

  

opt.SearchOption.MaxIter = 200; 

  

opt.DisturbanceModel = 'model'; 

%%%opt.OutputWeight = eye(size(Yc,2)); 

%opt.Regularization.Lambda = 100; 

%% Specify initial  guess as Nominal. 

%opt.Regularization.Nominal = 'model'; 

  

linear_model_est = greyest(data,linear_model_z,opt); 

  

[param_est,dparam_est] = getpvec(linear_model_est,'free'); 

  

compare(data,linear_model_est) 

  

save linear_model_1state_estimate.mat linear_model_est data 

  

Aest = linear_model_est.A; 

Best = linear_model_est.B; 

Cest = linear_model_est.C; 

Dest = linear_model_est.D; 

  

RCmodel = ss(Aest,Best,Cest,Dest); 

[Yrc,Trc,Xrc]=lsim(RCmodel,Uvec,Tvec,xInitial,'zoh'); 
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    Details of the single zone RC thermal model are as follows; 

 

 

 

 

 

function [A,B,C,D,K,x0] = singlezoneRC_1state(C1,Ro,Rn,~) 

  

global xInitial 

  

A  = (-1/C1)*(1/Ro+1/Rn); 

  

B  = [1/C1    1/(Ro*C1)   1/(Rn*C1)   1/C1]; 

% Q, Tamb, Tn, Pd 

  

C  = 1; 

D  = zeros(1,4); 

K  = 0; % for modeling noise, nx-by-ny. 

x0 = xInitial; 

  

end 
 


