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ABSTRACT 

A STUDY ON UNIFORM PARALLEL MACHINE SCHEDULING WITH 

SEQUENCE DEPENDENT SETUP TIMES 

Yıldız, Beste 

MSc, Master's in Industrial Engineering with Thesis 

Advisor: Assoc. Prof. Ayhan Özgür TOY 

Co-Advisor: Prof. Dr. Levent KANDİLLER 

January 2022 

Scheduling problems are essential for decision-making in many academic disciplines, 

including operations management, computer science, and information systems. Since 

many scheduling problems are NP-hard in the strong sense, there is only limited 

research on exact algorithms and their efficiency. This thesis considers the uniform 

parallel machine scheduling problem with sequence-dependent setup times to 

minimize the maximum completion time (makespan). We present an IP formulation, 

which clearly describes our problem and can be used to obtain optimal solutions for 

small-sized problems. As our problem is NP-hard, we propose a randomized heuristic 

with an improvement subroutine. The performance of the proposed heuristic through 

a computational study was tested with 320 instances. We created these instances using 

the full factorial design of experiment (DOE) with five different factors. Our 

computational study indicates that the proposed mathematical model takes 22.88 

minutes on average, and the heuristic algorithm achieves these results only in 0.062 

minutes. The average solutions obtained with the heuristic have an approximately 4% 

Gap value for average CPLEX solutions. Also, the contribution of the improvement 

subroutine step to the overall performance of the heuristic is 73.34%. 

keywords: parallel machine scheduling, sequence-dependent setup time, full factorial 

design, randomized heuristic, uniform machines, total completion times
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ÖZ 

SIRAYA BAĞIMLI KURULUM SÜRELERİ İLE TEK TİP PARALEL 

MAKİNE ÇİZELGELEMESİ ÜZERİNE BİR ÇALIŞMA 

Yıldız, Beste 

Yüksek Lisans, Endüstri Mühendisliği Tezli Yüksek Lisans 

Danışman: Doç. Dr. Ayhan Özgür TOY 

Yardımcı Danışman: Prof. Dr. Levent KANDİLLER 

Ocak 2022 

Çizelgeleme problemleri; operasyon yönetimi, bilgisayar bilimi ve bilgi sistemleri 

dahil olmak üzere birçok akademik disiplinde karar vermek için gereklidir. Çoğu 

çizelgeleme problemi güçlü anlamda NP-zor olduğundan, kesin algoritmalar ve 

verimliliklerinin nasıl ölçeklendiği konusunda sınırlı araştırma vardır. Bu çalışmada, 

maksimum tamamlama süresini en aza indirmek için sıraya bağlı kurulum süreleriyle 

tek tip paralel makine çizelgeleme problemini ele alıyoruz. Problemimizi açık bir 

şekilde tanımlayan ve küçük boyutlu problemler için en uygun çözümleri elde etmek 

için kullanılabilecek bir tam sayılı problem formülasyonu sunuyoruz. Sonrasında, 

problemimiz NP-zor olduğundan, iyileştirme alt rutini ile rastgele bir buluşsal yöntem 

öneriyoruz. Hesaplamalı bir çalışma yoluyla önerilen sezgisel yöntemin performansı 

320 örnekle test edilmiştir. Bu örnekleri, beş farklı faktörlü deneyin tam faktöriyel 

tasarımını (DOE) kullanarak oluşturduk. Hesaplamalı çalışmamız, önerilen 

matematiksel modelin ortalama 22.88 dakika sürdüğünü ve sezgisel algoritmanın bu 

sonuçları yalnızca 0.062 dakikada elde ettiğini göstermektedir. Sezgisel yöntem 

sonuçları ile matematiksel model sonuçları karşılaştırıldığında, CPLEX yazılımında 

yapılan sezgisel yöntem ortalama olarak yaklaşık %4 Gap değerine sahiptir. Ayrıca, 

iyileştirme adımının sezgisel yöntemin genel performansına katkısı %73,34'tür. 

Anahtar Kelimeler: paralel makine çizelgelemesi, sıraya bağlı kurulum süresi, tam-

etkenli tasarım, sezgisel yöntem, tek tip makine, toplam tamamlanma süresi
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CHAPTER 1 

INTRODUCTION 

This thesis investigates the fundamental properties of a class of scheduling models 

commonly used in industrial engineering. Unlike most studies that develop extensions 

to known models, approaches, or techniques, the emphasis here is to gain insight and 

understanding. As a direct result of our aspirations, much research was needed before 

finally developing the ideas presented here. This work considers a uniform parallel 

machine scheduling problem with sequence-dependent setup times to minimize the 

maximum completion times (makespan). Tens of thousands of papers addressing 

different scheduling problems have appeared in the literature since the first systematic 

approach to scheduling problems was undertaken in the mid-1950s. In this way, 

parallel machine scheduling problems have an important place in the literature among 

machine scheduling problems. On the contrary, work on the uniform parallel machine 

scheduling problem with sequence-dependent setup time is quite limited. We aim to 

add value by shedding light on this point. 

Pinedo (2012) described scheduling as a decision-making process of assigning jobs to 

resources in a particular order to meet one or more objectives. Also, Allahverdi (2015) 

stated that scheduling problems can be classified based on the number of stages for 

jobs to be processed, the number of machines in each stage, job processing 

requirements, setup time or cost requirements, and the performance metrics to be 

optimized. Scheduling means determining which jobs can be processed by which 

machines in what order within a certain period for purposes set, such as ensuring that 

products are delivered to customers when promised, more efficient use of production 

resources, and minimization of the total completion time in a manufacturing 

environment. Ying and Liao (2004) mentioned that efficient scheduling is one of the 

most critical issues in manufacturing and services in today's competitive industrial 

world. In addition to the industrial field, other areas benefited from scheduling, such 

as education, agriculture, transportation, or health research. 
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Behnamian (2015) stated that scheduling problems are first divided into two classes 

according to the nature of the problem. The first of these classes is deterministic 

problems in which the processing constraints and parameters can be ascertained with 

certainty. The second class is the uncertain scheduling problems in which some 

processing conditions or parameters cannot be determined in advance. In this context, 

the uncertain scheduling problems are divided into three types, considering the method 

of definition of uncertainty. The first one is a fuzzy scheduling problem in which the 

processing conditions and parameters are modeled using fuzzy numbers. The second 

one is the stochastic scheduling problem that the stochastic variable is used to specify 

the processing constraints and parameters. The third one is robust scheduling. Robust 

approaches aim to create solutions that can absorb some level of the unexpected event 

without rescheduling. Also, all scheduling problems are classified into five parts. 

These parts are single machine, parallel machine, flow shop, job shop, and lastly, open 

shop. In our thesis, we focus on parallel machine scheduling problems and describe 

the detailed information and sub-headings on this subject in the following sections. 

Figure 1.1. and Figure 1.2. show the classification of scheduling problems. 

                       

Figure 1.1. A Classification of Scheduling Problems – Part 1 

 

 
Figure 1.2. A Classification of Scheduling Problems – Part  2 
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Allahverdi (2015) indicated that in a parallel machine environment, all jobs should be 

done in a single operation, as in the case of a single machine environment. Also, the 

operation can be performed by any of m machines, which means that m machines are 

running in parallel. In other words, arriving jobs in parallel machine scheduling 

problems can be processed on any available machines. Each job with different 

characteristics has a single operation that can be performed on any machine, and job 

schedules can meet certain criteria based on various performance measures. 

Let the number of jobs be denoted by n, where the index i refers to a job and the number 

of machines in parallel by m, where the index k refers to the machines. Each job i as 

to be processed at one of the machines k and any machine can do it. Figure 1.3. shows 

the general representation of this environment. 

 

Figure 1.3. The Parallel Machine Environment 

The primary work on the parallel machine scheduling problem (PMSP) is by 

McNaughton (1959) and dates back to the late 1950s. PMSP can be classified into 

three main categories: (1) identical machines (P), where the processing times are the 

same for all machines, (2) uniform machines (Q), where the machines have different 

speeds but each machine process at a consistent rate, (3) unrelated machines (R) where 

the processing times are arbitrary and have no unique characteristics. 

Allahverdi and Soroush (2008) described that setup time is the time it takes to prepare 

the necessary resource, such as people and machines, required to perform a task, job, 

or operation. The setup cost is the cost to set up resources before executing a task. 

Another necessary definition for this thesis is processing time. Processing time is the 

time required to process a work item. Therefore, the time taken to manufacture a 

product or provide a service is called processing time. It can be assigned to activities 

and the entire process. Steps such as reviewing an order, printing shipping labels and 

packing items, or delivering shipments to a customer can reduce an order's processing 

time. 
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Kopanos et al. (2009) pointed out that setup times occur in a large number of industrial 

and service applications, while a literature review on scheduling problems shows that 

more than 90 percent of the literature on scheduling problems ignores setup times. 

Ignoring setup times may be valid for some applications; however, it negatively affects 

the solution quality of some other scheduling applications. This is because the setup 

process is not a value-added factor. Hence, setup times need to be clearly considered 

when planning decisions for industry-critical topics such as increasing efficiency, 

eliminating waste and improving resource utilization. For the sake of a real-life 

example of this topic, Loveland et al. (2007) considered the scheduling problem in 

Dell Inc. They proposed a methodology to minimize the setup cost in the 

manufacturing system. As a result of this methodology, the production volume was 

increased by up to 35 percent, and thereby Dell Inc. has saved over $1 million a year. 

 

Figure 1.4. Parallel Machine Scheduling with Setup Time Illustration 

Figure 1.4. illustrates a simplified example for parallel machine scheduling with setup 

times. There are five job types and three parallel machines in the system in the example. 

Jobs are assigned to machines randomly. In this example, jobs of Type 1 and 3 are 

processed on Machine 1, jobs of Type 2 and 4 are processed on Machine 2, and finally, 

the job of Type 5 is processed on Machine 3. In each machine, when job types change, 

a setup is required, and it is performed by a human operator and setup times are 

different. 

Allahverdi et al. (1999) showed that there are two common types of setup (or 

changeover) structures in classical scheduling problems: (i) sequence-independent- the 



5 

setup times are usually added to the jobs' processing times, and (ii) sequence-

dependent- the setup times depend not only on the job currently being scheduled but 

also on the immediate preceding job. To give a real-life example of sequence-

dependent setup time, Hsu et al. (2009) observed in one of his studies: In 

manufacturing clothes, the setup (cleaning) time required to prepare for dyeing a future 

job may differ depending on the colors of the incoming yarn and the color of the yarn 

that has just finished dyeing. Because before dyeing the yarn, the machine that 

processes the yarn to be dyed (dyeing tank) must be cleaned. If the previous job is 

black and the next job is white, the dyeing tank needs to be cleaned completely. On the 

other hand, if the previous job is white and the next one is black, the dyeing tank needs 

to be cleaned roughly. Because it is much easier in the system to switch from a light 

color to dark color; therefore, it requires less setup (cleaning) time when the tank is 

changed from white to black versus black to white. For this reason, if company owners 

want to reduce the completion time in the textile industry, these color changes are an 

important constraint for them. They should care about setup times in their production 

system. 

Ahmarofi et al. (2017) stated that completion time in the manufacturing sector is 

needed to produce a product through production processes in sequence. Oyetunji (2009) 

showed that several performance measures are used to evaluate the quality of a 

schedule. Minimization of the maximum completion time (makespan), minimization 

of tardiness/earliness, and minimization of the total completion time (TCT) are the 

most common criteria for scheduling problems. Garey and Johnson (1979) pointed out 

that the PMSP with minimizing the makespan with two identical machines is known 

to be NP-hard; likewise, Tahar et al. (2006) mentioned a more complex problem with 

m identical parallel machines and sequence-dependent setup times is also NP-hard. 

Therefore, heuristics algorithms providing near-optimal solutions in a reasonable 

runtime are advantageous. We refer the reader to Allahverdi (2015), Allahverdi et al. 

(1999), Allahverdi et al. (2008), and Gedik et al. (2016) for a comprehensive review 

of literature on solution methods for different types of PMSP. 

Graham et al. (1979) presented that a triplet of notations, α/β/γ, commonly describes a 

scheduling problem. The first field (α) relates to the machine setting. The second field 

(β) describes the setup information and details of the processing characteristics, 

containing multiple entries. The third field (γ) defines the performance measure.  
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Table 1.1. Field Indicators for the Problem Identifier Triplet of Scheduling Problems 

 

In Table 1.1., we present the values for each field of this triplet we use in the rest of 

this paper. For example, a single machine scheduling problem to minimize makespan 

with sequence-dependent setup times will be noted as 1/𝑆𝑇𝑠𝑑/𝐶𝑚𝑎𝑥 . Also, many 

different solution methods have been proposed in the literature to solve scheduling 

problems. Table 1.2. gives the abbreviations of the solution methods used in the 

literature reviewed in this thesis. The first column of the table provides the short 

encodings of the solution methods. In the second column, the expansions of these 

succinct encodings are given. For example, the solution method of the abbreviation 

𝜶 𝜸 

Notation Description Notation Description 

1 Single machine  𝐶𝑚𝑎𝑥 Makespan 

𝑃  Parallel machines(identical)  𝐸𝑚𝑎𝑥 Maximum earliness 

𝑄  Parallel machines(uniform)  𝐿𝑚𝑎𝑥 Maximum lateness 

𝑅  Parallel machines(unrelated)  𝑇𝑚𝑎𝑥  Maximum tardiness 

𝐹𝑚 m-stage flowshop  𝐷𝑚𝑎𝑥  Maximum delivery time 

𝐽  Job shop  𝑇𝑆𝐶  Total setup/changeover cost 

𝐹𝐽 Flexible job shop  𝑇𝑆𝑇  Total setup/changeover time 

𝑂  Open shop 𝑇𝑁𝑆  Total number of setups 

𝜷 𝑇𝐸𝐶 Total energy consumption 

Notation Description 𝛴𝐹𝑗 Total flow time 

𝑆𝑇𝑠𝑖 
Sequence-independent setup 

time 
𝛴𝐶𝑗  Total completion time 

𝑆𝐶𝑠𝑑 Sequence-dependent setup cost  𝛴𝐸𝑗  Total earliness 

𝑆𝑇𝑠𝑑  Sequence-dependent setup time  𝛴𝑇𝑗 Total tardiness 

𝑆𝑇𝑠𝑖,𝑓  
Sequence-independent family 

setup time  
𝛴𝑈𝑗  Number of tardy(late)jobs 

𝑆𝐷𝑠𝑖,𝑓 
Sequence-dependent family 

setup time  
𝛴𝑤𝑗𝐶𝑗  

Total weighted completion 

time 

𝑆𝐶𝑠𝑑,𝑓  
Sequence-dependent family 

setup cost  
𝛴𝑤𝑗𝐹𝑗   Total weighted flow time 

𝑆𝑇𝑝𝑠𝑑  
Past-sequence-dependent setup 

time  
𝛴𝑤𝑗𝑈𝑗 

Weighted number of tardy 

jobs 

𝑃𝑟𝑒𝑐  Precedence constraints  𝛴𝑤𝑗𝐸𝑗   Total weighted earliness 

𝑟𝑗 
Non-zero release date (ready 

times) 
𝛴𝑤𝑗𝑇𝑗  Total weighted tardiness 

𝑑𝑗 Due date 𝛴𝑤𝑗𝑇𝑁𝑆  Total weighted setup times 

𝑠𝑝𝑙𝑖𝑡 Job splitting 𝛴𝑤𝑗𝑊𝑗 Total weighted waiting time 

𝑀𝑗  Machine eligibility 𝛴ℎ(𝐸𝑗)  Total earliness penalties 

𝑆 Single Server 𝛴ℎ(𝑇𝑗) Total tardiness penalties 

ℎ𝑗  Maintenance activities 𝑇𝐴𝐷𝐶  Total absolute differences 

incompletion times 𝑟𝑒𝑠 Resource constraints   
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given with SA is the Simulated Annealing solution method for scheduling problems in 

the literature. 

Table 1.2. Abbreviations of The Solution Methods of Scheduling Problems 

Description of Abbreviations 

ABC Artificial Bee Colony ICA Imperialist Competitive Alg. 

ACO Ant Colony Optimization IG Iterated Greedy Algorithm 

AIS Artificial Immune System ILS Iterated Local Search 

ALNS 
Adaptive Large Neighborhood 

Search 
MA Memetic Algorithm 

ATCS 
Apparent Tardiness Cost with 

Setups 
MILP 

Mixed Integer Linear 

Programming 

ATCSR 
Apparent Tardiness Cost with 

Setups and Ready Times 
MIP Mixed Integer Programming 

B&B Branch-and-Bound PSO Particle Swarm Optimization 

B&P Branch-and-Price RKGA Random Key Genetic Alg. 

BRKGA 
Parallel Biased Random-Key 

Genetic Algorithm 
RNG Random Number Generation 

CP Constraint Programming RSA Restricted Simulated Annealing 

DE Differential Evolution SA Simulated Annealing 

EDA 
Estimation of Distribution 

Algorithm 
SEA Self-Evolution Algorithm 

EMA Electromagnetism-like Alg. SOS Symbiotic Organisms Search 

FA Firefly Algorithm TS Tabu Search 

GA Genetic Algorithm VND Variable Neighborhood Descent 

GRASP 
Greedy Randomized Search 

Procedure 
VNS Variable Neighborhood Search 

IA Immune Algorithm   

 

In this study, we address the problem of scheduling n jobs on m uniform parallel 

machines with sequence-dependent setup times to minimize the maximum completion 

time (makespan). To the best of our knowledge, there are few studies in the literature 

for this problem. In this context, we provide an IP formulation and propose a 

randomized heuristic with an improvement subroutine to solve the problem. We 

evaluate the performance of the proposed algorithm through a computational study. 

The rest of this thesis is organized as follows: Chapter 2 gives the literature review for 

the scheduling problems; Chapter 3 defines the problem, introduces the formulation of 

the mathematical model, and presents the developed randomized heuristic. Results of 

computational experiments and comparisons are provided in Chapter 4. Chapter 5 

gives the conclusion and direction for further research in related fields. 
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CHAPTER 2 

LITERATURE REVIEW 

The parallel machines scheduling problem is one of the most challenging classes of 

the scheduling problem. Many studies have been conducted on various commercial, 

industrial and academic fields. Cheng and Sin (1990) considered that parallel machine 

scheduling problems could be roughly classified into three categories: (1) identical 

parallel machines, (2) unrelated parallel machines, and (3) uniform parallel machines. 

In our literature review, we first considered general parallel machine scheduling 

definitions, divided them into these three main classes, and examined them separately. 

2.1. Parallel Machines 

In this section, we review papers related to our problem. In a parallel machine 

environment, all the jobs are required to have a single operation, as in the case of a 

single machine environment. However, the operation can be performed by any m 

machines, i.e., the m machines are working in parallel. In other words, arriving jobs in 

parallel machine scheduling problems can be processed on any available machines. 

PMSP can be classified into three main categories mentioned in the introduction 

chapter. The m machines may have the same speed, i.e., identical (P); or have different 

speeds, i.e., uniform (Q); or completely unrelated (R). A summary of the scheduling 

literature in parallel machine environments is presented in Table 2.1, Table 2.2 and 

Table 2.3, where the identical, uniform, or unrelated machines are indicated by the 

letter P, Q, or R in the second column first indices. To summarize the table structure, 

the first column shows who wrote the paper and its published year. The second column 

classifies the problem following Graham et al.'s (1979) 's triple taxonomy, which we 

mentioned in the previous chapter. The paper examined in this column indicates what 

kind of machine setting, the performance measure, and the setup information and 

details of the processing characteristics. Finally, the last column gives the solution 

methodologies of these papers. 
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2.1.1. Identical Parallel Machine 

First, numerous papers address identical parallel machines. Turker and Sel (2011) 

studied the 𝑃2/𝑆𝑇𝑠𝑑/𝐶𝑚𝑎𝑥 problem. GA algorithm is developed using random data 

sets and setup operations performed by a single server. The optimum results are 

obtained using a string-based permutation algorithm. 

The problem of 𝑃/𝑆𝑇𝑠𝑑/𝐶𝑚𝑎𝑥  is addressed by many researchers. Behnamian et al. 

(2009) presented the hybridization of an ACO, SA with VNS; combining the 

advantages of these three individual components is the key innovative aspect of the 

approach. This proposed algorithm stressed the balance between global exploration 

and local exploitation. Báez et al. (2019) proposed a hybrid algorithm that combines 

GRASP and VNS as the improvement procedure. The designed algorithm consists of 

two phases: construction and improvement, performed using a general VNS. Xu et al. 

(2013) developed a robust (min-max regret) scheduling model for identifying a robust 

schedule with minimal maximal deviation from the corresponding optimal schedule 

across all possible job-processing times. These scenarios are specified as closed 

intervals. Soares and Carvalho (2020) and Beezão et al. (2017) addressed the problem 

of 𝑃/𝑆𝑇𝑠𝑑/𝐶𝑚𝑎𝑥   with tooling constraint in a flexible manufacturing system (FMS). 

As main contributions, Soares and Carvalho (2020) studied using a parallel biased 

random-key genetic algorithm (BRKGA) hybridized with local search procedures 

organized using VND and they published the results for single benchmark instances 

available in the literature, which will contribute consistently to the future of the study 

of the problem. Beezão et al. (2017) proposed two mathematical formulations of the 

problem and an ALNS metaheuristic. The destroy and repair operators exploit the 

structures of two well-known and related combinatorial optimization problems, 

namely the PMSP and the job sequencing and tool switching problem on a single 

machine. 

Hamzadayi and Yildiz (2007) considered the 𝑃/𝑆𝑇𝑠𝑑 , 𝑆/𝐶𝑚𝑎𝑥 problem. Motivated by 

a real-life problem from the textile industry, Hamzadayi and Yildiz (2007) developed 

a new MILP model. Also, they considered SA and GA-based metaheuristics. After, 

they compared the performance of the proposed metaheuristic algorithm solution with 

basic dispatching rules. This is the first time dealing with the static m identical PMSP 

with a common server and sequence-dependent setup times. 
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Arbaoui and Yalaoui (2016) and Tahar et al. (2006) presented the problem of 

𝑃/𝑆𝑇𝑠𝑑 , 𝑠𝑝𝑙𝑖𝑡/𝐶𝑚𝑎𝑥. Arbaoui and Yalaoui (2016) suggested new approach based on 

the Benders Decomposition, which can optimally solve the examples discussed in the 

literature.The problem is divided into two parts. The master problem and the 

subproblems that using a Traveling Salesman Problem (TSP) exact algorithm. Tahar 

et al. (2006) studied a new method based on LP techniques. They introduced a lower 

bound to evaluate the performance of their new approach on a large number of 

randomly generated instances.  

Expósito-Izquierdo et al. (2019) considered the 𝑃/𝑆𝑇𝑠𝑑/ ∑ 𝐶𝑗  problem. They firstly 

proposed a VNS metaheuristic algorithm aimed at finding high-quality and diverse 

solutions ignoring the learning/tiredness. Then, they studied the effects of learning or 

tiredness on the obtained solutions in a real-world scenario using a multi-agent 

simulation approach. 

Driessel and Mönch, (2009,2011) presented the problem of 𝑃/𝑆𝑇𝑠𝑑 , 𝑟𝑗 , 𝑝𝑟𝑒𝑐/ ∑ 𝑤𝑗𝑇𝑗. 

Driessel and Mönch (2009) suggested a VNS approach that can outperform schedules 

obtained by a list-based scheduling approach using the ATCSR dispatching rule. 

Driessel and Mönch (2011) is a considerably extended version of the previous paper, 

containing more results of computational experiments for various VNS schemes. 

Kim et al. (2020) developed a MIP model for the problem of 𝑃/𝑆𝑇𝑠𝑑, 𝑠𝑝𝑙𝑖𝑡/ ∑ 𝑇𝑗. They 

also proposed a novel mathematical model to offer metaheuristic approaches with new 

solution representation schemes, solution encoding schemes, and decoding methods 

by utilizing metaheuristics such as the SA and the GA.  

Joo and Kim (2012) considered the problem of 𝑃/𝑆𝑇𝑠𝑑 , 𝑟𝑗/ ∑ 𝑤𝑗𝑇𝑁𝑆, 𝑇𝑗 , 𝑈𝑗 . First, they 

presented the MIP model. Since this mathematical model is not tractable for large 

problems, GA and SEA metaheuristics are applied to improve the solution efficiency. 

This is the first time that SEA is a new population-based evolutionary metaheuristic. 

Ying and Cheng (2010) and Lee et al. (2010) addressed the problem of 

𝑃/𝑆𝑇𝑠𝑑 , 𝑟𝑗/𝐿𝑚𝑎𝑥 . Ying and Cheng (2010) presented IG algorithm. Extensive 

computational experiments reveal that the proposed heuristic is more effective than 

state-of-the-art algorithms on the same benchmark problem data set. Lee et al. (2010) 

proposed SA and RSA algorithms that incorporate a restricted search strategy to 

eliminate non-effect job moves to find the best neighborhood schedule. 
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Park et al. (2012) analyzed the problem of 𝑃/𝑆𝑇𝑠𝑑, 𝑠𝑝𝑙𝑖𝑡, 𝑡𝑗 , 𝑏𝑗/ ∑ 𝑇𝑗 . This paper 

presented heuristic algorithms that consider job splitting and sequence-dependent 

major/minor setup times. The performance of the proposed heuristics is compared with 

the split algorithm, which is embedded into the three heuristics as a slack-based 

heuristic, dynamic scheduling window-based heuristic, and the latest starting time-

based heuristic.  

Queiroz and Mundim (2019) solved the 𝑃/𝑆𝑇𝑠𝑑/𝐶𝑚𝑎𝑥, ∑ 𝐶𝑗 problem with a heuristic 

that was based on the multiobjective VND and can satisfactorily construct the Pareto 

front. They recommended neighborhood structures with swap, remove and insertion 

moves. To the best of our knowledge, there is no application of such a heuristic to 

solving this problem. 

Bosman et al. (2019) addressed the problem of 𝑃/𝑆𝑇𝑠𝑑/𝑤𝑗 𝐶𝑗 . The twist is that the 

jobs assigned to the machine must obey the order of the input sequence, as is the case 

in multi-server queuing systems. They establish a constant-factor approximation 

algorithm. Their approach is very different from what has been used for similar 

scheduling problems without the fixed-order assumption. They also give a 

quasipolynomial time approximation scheme (QPTAS) for the particular case of unit 

processing times. 

Ozer and Sarac (2019) proposed the problem of 𝑃/𝑆𝑇𝑠𝑑 , 𝑀𝑗/𝑤𝑗 𝐶𝑗 . In this study, an 

identical parallel machine scheduling problem with sequence-dependent setup times, 

machine eligibility restrictions, and multiple copies of shared resources (IPMSP-SMS) 

are considered. MIP models and a model-based GA matheuristic are proposed. 

Ying (2012) studied the wafer sorting scheduling problem (WSSP), with minimization 

of total setup time as the primary criterion and minimization of the number of testers 

used as the secondary criterion with due dates and maximum machine capacity 

constraints. Given the strongly NP-hard nature of this problem, a simple and effective 

IG heuristic is presented. Behnamian et al. (2011) considered a min–max 

multiobjective procedure for a dual-objective; 𝐶𝑚𝑎𝑥  and ∑ 𝐸𝑗 + 𝑇𝑗  in due window 

problems. Several hybrid metaheuristics were proposed for the addressed problem 

with three unique features: its population-based evolutionary searching ability 

belonging to ACO, its ability to balance exploration and exploitation belonging to SA, 

and its local improvement ability belonging to VNS.  
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Table 2.1. Literature Review for Identical Parallel Machine 

References Problem Approach 

Turker and Sel (2011) 
𝑃2/𝑆𝑇𝑠𝑑/𝐶𝑚𝑎𝑥 (Identical 

2 Machines) 

GA, String based permutation 

algorithm 

Expósito-Izquierdo et 

al.(2019) 

𝑃/𝑆𝑇𝑠𝑑/𝛴𝐶𝑗 with learning 

or tiredness effect 
VNS algorithm 

Arbaoui and Yalaoui 

(2016) 
𝑃/𝑆𝑇𝑠𝑑, 𝑠𝑝𝑙𝑖𝑡/𝐶𝑚𝑎𝑥 

Bender's decomposition and 

TSP exact algorithm 

Behnamian et al.(2009) 𝑃/𝑆𝑇𝑠𝑑/𝐶𝑚𝑎𝑥 
Hybridization of an ACO, SA 

with VNS algorithms 

Ying and Cheng 

(2010) 
𝑃/𝑆𝑇𝑠𝑑, 𝑟𝑗/𝐿𝑚𝑎𝑥 IG algorithm 

Hamzadayi and Yildiz 

(2007) 
𝑃/𝑆𝑇𝑠𝑑, 𝑆/𝐶𝑚𝑎𝑥 

MILP model - SA and GA 

metaheuristics 

Driessel and Mönch 

(2009) 
𝑃/𝑆𝑇𝑠𝑑 , 𝑟𝑗 , 𝑝𝑟𝑒𝑐/𝛴𝑤𝑗𝑇𝑗  

VNS algorithm and ATCSR 

dispatching rule 

Kim et al.(2020) 𝑃/𝑆𝑇𝑠𝑑 , 𝑠𝑝𝑙𝑖𝑡/𝛴𝑇𝑗 
MIP model - SA and GA 

metaheuristics 

Driessel and Mönch 

(2011) 
𝑃/𝑆𝑇𝑠𝑑 , 𝑟𝑗 , 𝑝𝑟𝑒𝑐/𝛴𝑤𝑗𝑇𝑗  VNS algorithm 

Park et al.(2012) 𝑃/𝑆𝑇𝑠𝑑 , 𝑠𝑝𝑙𝑖𝑡, 𝑡𝑗 , 𝑏𝑗/𝛴𝑇𝑗  

Slack-based heuristic, 

dynamic scheduling window-

based heuristic and latest 

starting time-based heuristic 

Lee et al.(2010) 𝑃/𝑆𝑇𝑠𝑑, 𝑟𝑗/𝐿𝑚𝑎𝑥 SA and RSA algorithms 

Joo and Kim (2012) 
𝑃/𝑆𝑇𝑠𝑑 , 𝑟𝑗

/𝛴𝑤𝑗, 𝑇𝑁𝑆, 𝑇𝑗 , 𝑈𝑗 

MIP model - SA and SEA 

metaheuristics 

Tahar et al.(2006) 𝑃/𝑆𝑇𝑠𝑑, 𝑠𝑝𝑙𝑖𝑡/𝐶𝑚𝑎𝑥 
LP techniques and lower 

bound 

Xu et al. (2013) 𝑃/𝑆𝑇𝑠𝑑/𝐶𝑚𝑎𝑥 
Robust min-max regret 

scheduling model 

Soares and Carvalho 

(2020) 

𝑃/𝑆𝑇𝑠𝑑/𝐶𝑚𝑎𝑥 with tooling 

constraint 

BRKGA hybridized with local 

search procedures using VND  

Queiroz and Mundim 

(2019) 
𝑃/𝑆𝑇𝑠𝑑/𝐶𝑚𝑎𝑥, 𝛴𝐶𝑗 

Multiobjective VND and 

Pareto front neighborhood 

structure 

Báez et al. (2019) 𝑃/𝑆𝑇𝑠𝑑/𝐶𝑚𝑎𝑥 GRASP and VNS algorithm 

Bosman et al. (2019) 𝑃/𝑆𝑇𝑠𝑑/𝑤𝑗 𝐶𝑗  

Quening systems and 

quasipolynomial time 

approximation scheme 

(QPTAS)  

Beezão et al. (2017) 
𝑃/𝑆𝑇𝑠𝑑/𝐶𝑚𝑎𝑥 with tooling 

constraint 

Two mathematical formula 

and ALNS metaheuristic 

Ozer and Sarac (2019) 𝑃/𝑆𝑇𝑠𝑑 , 𝑀𝑗/𝑤𝑗 𝐶𝑗  MIP model - GA matheuristic 



13 

2.1.2. Unrelated Parallel Machine 

For unrelated parallel machine scheduling, many researchers addressed the problem of 

𝑅/𝑆𝑇𝑠𝑑/𝐶𝑚𝑎𝑥 in the literature. Wang et al. (2016) developed a Hybrid Estimation of 

Distribution Algorithm with Iterated Greedy Search (EDA-IG). This is the first study 

in the literature dealing with the Estimation of Distribution Algorithm (EDA) applied 

to the UPMSP-SDST. Abreu and Prata (2019) presented a hybrid meta-heuristic based 

on GA, SA, VND, and path relinking. The proposed algorithm showed competitive 

results with an innovative hybridization of GA and neighborhood search algorithms, 

tested in diverse instances of literature. Furthermore, they presented a granite industry 

case study to solve real-world problems. Ezugwu et al. (2018) improved the SOS 

algorithm. They used the ILS strategy to combine variable numbers of insertion and 

swap moves and LPT rules to enhance the solution quality, performance, and speed. 

This work is the first to apply an SOS metaheuristic algorithm to solve the UPMSP-

SDST. Ezugwu and Akutsah (2018) applied Firefly Algorithm (FA), refined with a 

robust local search solution improvement mechanism. GA, Invasive Weed 

Optimization (IWO) and ACO metaheuristic algorithms were developed in parallel to 

verify and measure the effectiveness of the proposed algorithm. Silva et al. (2019) 

implemented five algorithms to find solutions for UPMSP-SDST. (1) An exact method 

(2) VNS, which consists of a metaheuristic that uses the concept of neighborhood 

structures to find better solutions and escape the local optimum. (3) GA, an 

optimization method based on the natural evolution process. (4), (5) Two heuristics 

based on the mathematical modeling called Relax-and-Fix (R&F) and Fix-and-

Optimize (F&O) were developed. Ezugwu (2019) proposed three different approaches 

to solve the problem, including An Enhanced Symbiotic Organisms Search (ESOS) 

algorithm, a Hybrid Symbiotic Organisms Search with Simulated Annealing 

(HSOSSA) algorithm and an Enhanced Simulated Annealing (ESA) algorithm.  

Tozzo et al. (2018) used GA and VNS to solve the problem due to the difference among 

their characteristics: the GA is classified as a metaheuristic inspired by nature and 

based on population, whereas the metaheuristic VNS is not inspired by nature and 

performs a punctual search through several neighboring structures. These peculiarities 

allow a complete diversification of the resolution method for the same problem. Diana 

et al. (2015) proposed an immune-inspired algorithm. The initial population was 

generated through the construction phase of the GRASP. An evaluation function was 
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applied to help the algorithm escape from local optima. VND local search heuristic 

developed as a somatic hypermutation operator to accelerate the algorithm's 

convergence. Lin and Ying (2014) presented a Hybrid Artificial Bee Colony (HABC) 

algorithm to solve the problem. The performance of the proposed algorithm was 

evaluated by comparing its solutions to state-of-the-art metaheuristic algorithms and a 

high-performing ABC-based algorithm. Avalos-Rosales et al. (2015) considered a new 

makespan linearization and several MIP formulations. These formulations outperform 

the previously published formulations regarding the size of instances and 

computational time to reach optimal solutions. A metaheuristic algorithm based on a 

multi-start algorithm and VND was analyzed. Müller et al. (2015) developed a new 

MIP-based heuristic combining atomic moves such as insertion, rejection, and closure 

to generate sequences of such atomic movements minimizing the makespan. This 

heuristic employed a commercial solver to search the neighborhood in a multi-start 

algorithm. Vallada and Ruiz (2011) addressed the Genetic Algorithm (GA) for the 

unrelated parallel machine scheduling problem with sequence-dependent setup times 

with the objective to minimize the makespan. The proposed GA involved a new 

crossover operator, which includes a limited local search procedure which was very 

fast. Two versions of the algorithm were obtained after extensive calibrations using 

the Design of Experiments (DOE) approach. They reviewed, evaluated and compared 

the proposed algorithm against the best methods known from the literature. Fanjul-

Peyro et al. (2019) suggested a new MILP and a mathematical programming-based 

algorithm. These new models and algorithms are tested and compared in an extensive 

and comprehensive computational campaign with the existing ones. The performance 

of two commercial solvers was also compared in the experiments. Gedik et al. (2018) 

suggested a novel CP model with two customized branching strategies that utilize CP's 

global constraints, interval decision variables, and domain filtering algorithms. The 

performance of the model was evaluated with the state-of-art algorithms. Cheng et al. 

(2020) studied Random Forest (RF) and Random-Forest-based Hybrid Artificial Bee 

Colony (RF-HABC) metaheuristics. The main objective of this study was to minimize 

the makespan in an unrelated PMSP with uncertain machine-dependent and job 

sequence-dependent setup times (MDJSDSTs). 

Arbaoui and Yalaoui (2018) and Fanjul-Peyro et al. (2017) addressed the problem of 

𝑅/𝑆𝑇𝑠𝑑, 𝑟𝑒𝑠/𝐶𝑚𝑎𝑥. Arbaoui and Yalaoui (2018) formulated the problem using a CP 
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model and solved it using the state-of-the-art solver. They compared this model's 

results against the existing literature approaches on two sets of small and medium 

instances. Fanjul-Peyro et al. (2017) modeled two integer linear programming models. 

The first one was previously proposed in the literature, which was the adaptation of an 

existing formulation (named UPMR-S). The second one was based on the resemblance 

to strip packing problems. It was an original contribution of this paper and a novel 

reformulation of the problem inspired by the strip packing model (named UPMR-P).  

Hu et al. (2016) considered the 𝑅/𝑆𝑇𝑠𝑑 , 𝑟𝑗/𝐶𝑚𝑎𝑥  problem. This paper identified a 

robust schedule by the min-max regret criterion. To the best of our knowledge, PMSP 

with uncertain processing time, ready time, and mold change consideration have not 

been studied in the literature. MILP formulation and an exact algorithm were proposed. 

Also, they developed a modified ABC algorithm to solve large-sized problems. Al-

Harkan and Qamhan (2019) studied the problem of 𝑅/𝑆𝑇𝑠𝑑 , 𝑟𝑗 , 𝑟𝑒𝑠/𝐶𝑚𝑎𝑥. In order to 

find an optimal solution for this problem, a new MILP was presented. Moreover, a 

two-stage hybrid metaheuristic based on VNS Hybrid and SA (TVNS_SA) was 

proposed. 

Angel Bello et al. (2018) analyzed the 𝑅/𝑆𝑇𝑠𝑑, ℎ𝑗/𝐶𝑚𝑎𝑥 problem. They presented a 

mathematical formulation for this problem and derived valid inequalities to improve 

its performance, allowing the model to obtain optimal solutions for small, medium 

instances. In addition, they designed an efficient metaheuristic algorithm based on the 

multi-start strategy for solving larger instances. 

Afzalirad and Rezaeian (2016) considered the problem of 𝑅/𝑆𝑇𝑠𝑑 , 𝑟𝑗 , 𝑀𝑗 , 𝑃𝑟𝑒𝑐, 𝑟𝑒𝑠/

𝐶𝑚𝑎𝑥 . They created a new pure integer mathematical modeling formula. They 

developed two new metaheuristic algorithms, including GA and AIS, to detect optimal 

or near-optimal solutions. They also set the parameters of these algorithms using the 

Taguchi method. 

Caniyilmaz et al. (2015) examined the problem of of 𝑅/𝑆𝑇𝑠𝑑 , 𝑀𝑗/𝐶𝑚𝑎𝑥 + ∑ 𝑇𝑗 . This 

paper used the new neighborhood approach that gives the different machine 

assignments for every candidate-job sequence. They took advantage of ABC and GA 

metaheuristics and this integration benefits to evaluate performances of the algorithms 

with the real-life problem about quilting work center. 

Rauchecker and Schryen (2019) solved the of 𝑅/𝑆𝑇𝑠𝑑, 𝑀𝑗/ ∑ 𝑤𝑗𝐶𝑗 problem. This study 
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adapted an exact B&P algorithm to UPMSP-SDST, parallelized the concerted 

algorithm by implementing a distributed-memory parallelization with a master/worker 

approach, and conducted prevalent computational experiments modern high 

performance computing cluster.  

Zeidi et al. (2017) addressed the problem of 𝑅/𝑆𝑇𝑠𝑑, 𝑟𝑗 , 𝑀𝑗/(∑ 𝛼𝑗𝐸𝑗 + 𝛽𝑗𝑇𝑗 , ∑ 𝐶𝑗) . 

This study introduced the MIP model to formulate the considered multi-criteria 

problem. They proposed the namely Controlled Elitism Non-Dominated Sorting 

Genetic Algorithm (CENSGA) solve the model for real-sized applications. Also, to 

validate its performance, the algorithm was examined under six metric performance 

measures and compared with a Pareto-Based Algorithm, namely NSGA-II.  

Naderi-Beni et al. (2014) developed the problem of 𝑅/𝑆𝑇𝑠𝑑, 𝑀𝑗 , 𝑟𝑗/ ∑ 𝑀𝐿𝑚𝑎𝑥 −

𝑀𝐿𝑗), ∑ 𝑇𝑗 .In this paper, a Fuzzy Bi-objective Mixed Integer Linear Programming 

(FBOMILP) model was presented. The proposed model was solved by two meta-

heuristic algorithms, namely Fuzzy Multi-Objective Particle Swarm Optimization 

(FMOPSO) and Fuzzy Non-dominated Sorting Genetic Algorithm (FNSGA-II) for 

solving large-scale instances. 

Lopes and Carvalho (2007) studied the 𝑅/𝑆𝑇𝑠𝑑, 𝑀𝑗 , 𝑟𝑗/ ∑ 𝑤𝑗𝑇𝑗  problem. They 

developed a new B&P optimization algorithm for the general class of PMSP. A new 

column generation accelerating method termed 'primal box', Dantzig–Wolfe 

decomposition, and a specific branching variable selection rule that significantly 

reduces the number of explored nodes were proposed. 

Tavakkoli-Moghaddam et al. (2009) solved the 𝑅/𝑆𝑇𝑠𝑑 , 𝑟𝑗 , 𝑃𝑟𝑒𝑐/ ∑ 𝑈𝑗 , 𝐶𝑚𝑎𝑥 problem. 

They studied a two-level MIP model to minimize bi-objectives. Since solving the 

large-sized problem in a reasonable computational time or optimization tools was 

extremely difficult, this paper presented an efficient GA model to solve the bi-

objective PMSP. 

Safaei et al. (2015) analyzed the problem of 𝑅/𝑆𝑇𝑠𝑑, 𝑟𝑗 , 𝑃𝑟𝑒𝑐/ ∑ 𝑈𝑗+𝐶𝑚𝑎𝑥 . They 

proposed two Multiobjective Genetic Algorithms (MOGA). Random test problems 

were produced in medium and large-sized to evaluate the proposed algorithms with 

tight due dates large-sized with tight due dates. The performances of algorithms were 

evaluated using the concept of Data Envelopment Analysis (DEA), distance method, 

and some non-dominated solutions. 
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Bektur and Sarac (2019) used the 𝑅/𝑆𝑇𝑠𝑑 , 𝑆, 𝑀𝑗/ ∑ 𝑤𝑗𝑇𝑗 problem. A MILP model was 

developed, and due to the NP-hardness of the problem, TS and SA algorithms were 

presented. A modified ATCS dispatching rule obtained the initial solutions of the 

algorithms. 

Cota et al. (2019) addressed the problem of 𝑅/𝑆𝑇𝑠𝑑/𝐶𝑚𝑎𝑥, 𝑇𝐸𝐶 . They considered 

multiobjective extensions of the Adaptive Large Neighborhood Search (ALNS) 

metaheuristic with Learning Automata (LA). They solved the large-sized test instances 

by improving the search process. Moreover, They developed two new algorithms: the 

Mono-Objective ALNS with Learning Automata (MO-ALNS) and the MO-ALNS/D. 

Kongsri and Buddhakulsomsiri (2020) considered the 𝑅/𝑆𝑇𝑠𝑑/𝐶𝑚𝑎𝑥 + ∑ 𝑇𝑗 problem. 

This paper formulated a MIP model for the UPMSP-SDST that total tardiness. A 

compromise solution was found with a proper weight between the two measures. 

Rocha et al. (2008) analyzed the 𝑅/𝑆𝑇𝑠𝑑/𝐶𝑚𝑎𝑥 + ∑ 𝑤𝑗𝑇𝑗problem. They used Branch 

and Bound methods and they ensured the solution by using the GRASP metaheuristic 

as an upper bound. They suggested some test instances and the metaheuristic results 

for this type of problem compared with two MIP models. 

Zeidi and Hosseini (2015) presented the problem of 𝑅/𝑆𝑇𝑠𝑑/ ∑ 𝑒𝑗 ∗ 𝐸𝑗 + 𝑡𝑗 ∗ 𝑇𝑗 . A 

new mathematical model was provided for the considered problem, and due to the 

complexity of the problem, an integrated meta-heuristic algorithm is designed to solve 

the problem. The proposed algorithm consisted of GA as the basic algorithm and SA 

method as the local search procedure. 

Chen (2009) solved the 𝑅/𝑆𝑇𝑠𝑑/ ∑ 𝑇𝑗 problem. An effective heuristic based on a 

modified ATCS dispatching rule, the SA method and designed improvement 

procedures were proposed to minimize the total tardiness of this scheduling problem. 

Ekici et al. (2019) examined the problem of 𝑅/𝑆𝑇𝑠𝑑/ ∑ 𝑇𝑗 + 𝐸𝑗 and machine-job 

compatibility restrictions and workload balance requirements. They studied a wide 

range of heuristics, including (i) a sequential algorithm, (ii) a TS algorithm, (iii) a 

random set partitioning approach, and (iv) a novel matheuristic approach utilizing the 

local intensification and global diversification powers of a TS algorithm. This study 

was motivated by the production scheduling operations at a television manufacturer, 

Vestel Electronics. 
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Paula et al. (2010) addressed the problem of 𝑅/𝑆𝑇𝑠𝑑/ ∑ 𝑤𝑗𝑇𝑗. This work presented a 

non-delayed relax and cut algorithm based on a Lagrangean Relaxation of a time-

indexed formulation of the problem. Also, Lagrangean pure VNS heuristics were 

developed to obtain approximate solutions. 

Chen and Chen (2009) considered the 𝑅/𝑆𝑇𝑠𝑑/ ∑ 𝑤𝑗𝑈𝑗problem. They studied several 

hybrid metaheuristics. These metaheuristics began with effective initial solution 

generators to generate initial feasible solutions; then, they improved the initial 

solutions by an approach that integrates the VND and TS principles.  

Table 2.2. Literature Review for Unrelated Parallel Machine 

References Problem Approach 

Hu et al.(2016) 𝑅/𝑆𝑇𝑠𝑑 , 𝑟𝑗/𝐶𝑚𝑎𝑥 

Robust min-max regret 

scheduling model - MILP 

and exact model - ABC 

algorithm 

Al-Harkan and 

Qamhan (2019) 
𝑅/𝑆𝑇𝑠𝑑 , 𝑟𝑗 , 𝑟𝑒𝑠/𝐶𝑚𝑎𝑥 

MILP model - hybrid VNA 

and SA (TVNS_SA) 

metaheuristic 

Bektur and Sarac 

(2019) 
𝑅/𝑆𝑇𝑠𝑑 , 𝑆, 𝑀𝑗/𝛴𝑤𝑗𝑇𝑗 

MILP model - TS and SA 

algorithms - ATCS 

dispatching rule 

Naderi-Beni et 

al.(2014) 

𝑅/𝑆𝑇𝑠𝑑 , 𝑀𝑗 , 𝑟𝑗/𝛴(𝑀𝐿𝑚𝑎𝑥

− 𝑀𝐿𝑗), 𝛴𝑇𝑗 

Fuzzy bi-objective MILP 

(FBOMILP) model - Fuzzy 

multiobjective particle 

swarm optimisation 

(FMOPSO) and Fuzzy non-

dominated sorting genetic 

algorithm (FNSGA-II)  

Wang et al.(2016) 𝑅/𝑆𝑇𝑠𝑑/𝐶𝑚𝑎𝑥 
Hybrid EDA and IG 

(EDA_IG) metaheuristic 

Abreu and Prata (2019) 𝑅/𝑆𝑇𝑠𝑑/𝐶𝑚𝑎𝑥 

Hybrid meta-heuristic based 

on GA, SA, VND and path 

relinking 

Rauchecker and 

Schryen (2019) 
𝑅/𝑆𝑇𝑠𝑑 , 𝑀𝑗/𝛴𝑤𝑗𝐶𝑗 

B&P algorithm - 

Distributed-memory 

parallelization with a 

master/worker approach 

Tozzo et al.(2018) 𝑅/𝑆𝑇𝑠𝑑/𝐶𝑚𝑎𝑥 GA and VNS metaheuristic 

Ezugwu et al.(2018) 𝑅/𝑆𝑇𝑠𝑑/𝐶𝑚𝑎𝑥 
ILS strategy - SOS 

metaheuristic - LPT rules 

Afzalirad and Rezaeian 

(2016) 

𝑅/𝑆𝑇𝑠𝑑 , 𝑟𝑗 , 𝑀𝑗 , 𝑃𝑟𝑒𝑐, 𝑟𝑒𝑠

/𝐶𝑚𝑎𝑥 

Pure integer mathematical 

model - GA and AIS 

algorithms 
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Table 2.2 (cont’d). Literature Review for Unrelated Parallel Machine 

References Problem Approach 

Zeidi and Hosseini 

(2015) 
𝑅/𝑆𝑇𝑠𝑑/(𝛴𝑒𝑗𝐸𝑗 + 𝑡𝑗𝑇𝑗) 

Mathematical model - GA 

and SA metaheuristic 

Diana et al.(2015) 𝑅/𝑆𝑇𝑠𝑑/𝐶𝑚𝑎𝑥 
Immune-inspired algorithm - 

GRASP and VND algorithm 

Lin and Ying (2014) 𝑅/𝑆𝑇𝑠𝑑/𝐶𝑚𝑎𝑥 
Hybrid artificial bee colony 

(HABC) algorithm 

Caniyilmaz et 

al.(2015) 
𝑅/𝑆𝑇𝑠𝑑 , 𝑀𝑗/𝐶𝑚𝑎𝑥 + 𝛴𝑇𝑗 ABC and GA metaheuristics 

Avalos-Rosales et 

al.(2015) 
𝑅/𝑆𝑇𝑠𝑑/𝐶𝑚𝑎𝑥 MIP model - VND algorithm 

Ezugwu and Akutsah 

(2018) 
𝑅/𝑆𝑇𝑠𝑑/𝐶𝑚𝑎𝑥 

FA, GA and ACO 

metaheuristics and Invasive 

weed optimization (IWO) 

Müller et al.(2015) 𝑅/𝑆𝑇𝑠𝑑/𝐶𝑚𝑎𝑥 

MIP-based heuristic 

combining atomic moves - 

Multi-start algorithm 

Vallada and Ruiz 

(2011) 
𝑅/𝑆𝑇𝑠𝑑/𝐶𝑚𝑎𝑥 

GA - Design of Experiments 

(DOE) approach 

Silva et al.(2019) 𝑅/𝑆𝑇𝑠𝑑/𝐶𝑚𝑎𝑥 

Exact algorithm - VNS, GA 

- Relax-and-Fix (R&F) and 

Fix-and-Optimize (F&O) 

heuristics 

Paula et al. (2010) 𝑅/𝑆𝑇𝑠𝑑/𝛴𝑤𝑗𝑇𝑗 
VNS algorithm - Lagrangean 

relaxation 

Rocha et al.(2008) 𝑅/𝑆𝑇𝑠𝑑/𝐶𝑚𝑎𝑥 + 𝛴𝑤𝑗𝑇𝑗 
Two MIP models - B&B 

algorithm - GRASP 

metaheuristic 

Tavakkoli-

Moghaddam et 

al.(2009) 

𝑅/𝑆𝑇𝑠𝑑 , 𝑟𝑗 , 𝑃𝑟𝑒𝑐/𝛴𝑈𝑗 , 𝐶𝑚𝑎𝑥 
Novel two-level MIP model 

- GA to solve bi-objective 

PMSP 

Chen (2009) 𝑅/𝑆𝑇𝑠𝑑/𝛴𝑇𝑗 
SA and modified ATCS 

dispatching rule 

Chen and Chen (2009) 𝑅/𝑆𝑇𝑠𝑑/𝛴𝑤𝑗𝑈𝑗 VND and TS metaheuristics 

Safaei et al.(2015) 
𝑅/𝑆𝑇𝑠𝑑 , 𝑟𝑗 , 𝑃𝑟𝑒𝑐/𝛴𝑈𝑗

+ 𝐶𝑚𝑎𝑥 

Multi objective genetic 

algorithms (MOGA) - Data 

envelopment analysis 

(DEA),  

Lopes and Carvalho 

(2007) 
𝑅/𝑆𝑇𝑠𝑑 , 𝑀𝑗 , 𝑟𝑗/𝛴𝑤𝑗𝑇𝑗 

B&P algorithm - Dantzig-

Wolfe decomposition and a 

specific branching variable 

selection rule  

Zeidi et al.(2017) 
𝑅/𝑆𝑇𝑠𝑑, 𝑟𝑗 , 𝑀𝑗/(𝛴𝛼𝑗𝐸𝑗

+ 𝛽𝑗𝑇𝑗 , 𝛴𝐶𝑗) 

MIP model - Controlled 

elitism non-dominated 

sorting genetic algorithm 

(CENSGA) - Pareto-based 

algorithm (NSGA-II) 
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Table 2.2 (cont’d). Literature Review for Unrelated Parallel Machine 

References Problem Approach 

Kongsri and 

Buddhakulsomsiri 

(2020) 

𝑅/𝑆𝑇𝑠𝑑/𝐶𝑚𝑎𝑥 + 𝛴𝑇𝑗 MIP model 

Cheng et al. (2020) 𝑅/𝑆𝑇𝑠𝑑/𝐶𝑚𝑎𝑥 

Random Forest (RF) and 

Random-Forest-based 

Hybrid Artificial Bee 

Colony (RF-HABC)  

Cota et al. (2019) 𝑅/𝑆𝑇𝑠𝑑/𝐶𝑚𝑎𝑥, 𝑇𝐸𝐶 
ALNS metaheuristic with 

Learning Automata (LA)  

Fanjul-Peyro et al. 

(2019) 
𝑅/𝑆𝑇𝑠𝑑/𝐶𝑚𝑎𝑥 

MILP and mathematical 

programming 

Angel-Bello et al. 

(2018) 
𝑅/𝑆𝑇𝑠𝑑, ℎ𝑗/𝐶𝑚𝑎𝑥 

Mathematical model - Multi-

start algorithm 

Arbaoui and Yalaoui 

(2018) 
𝑅/𝑆𝑇𝑠𝑑 , 𝑟𝑒𝑠/𝐶𝑚𝑎𝑥 CP model 

Fanjul-Peyro et al. 

(2017) 
𝑅/𝑆𝑇𝑠𝑑 , 𝑟𝑒𝑠/𝐶𝑚𝑎𝑥 

Two integer linear 

programming problems 

(resemblance to strip 

packing problems) 

Ezugwu (2019) 𝑅/𝑆𝑇𝑠𝑑/𝐶𝑚𝑎𝑥 

Enhanced Symbiotic 

Organisms Search (ESOS) 

algorithm, a Hybrid 

Symbiotic Organisms Search 

with Simulated Annealing 

(HSOSSA) algorithm, and 

an Enhanced Simulated 

Annealing (ESA) algorithm.  

Gedik et al. (2018) 𝑅/𝑆𝑇𝑠𝑑/𝐶𝑚𝑎𝑥 

Noval CP model with two 

customized branching 

strategies  

Ekici et al.(2019) 𝑅/𝑆𝑇𝑠𝑑/𝛴𝑇𝑗 + 𝐸𝑗 
TS and sequential algorithm, 

random set partitioning and 

novel matheuristic approach 

2.1.3. Uniform Parallel Machine 

Lastly, some papers considered resources in scheduling uniform parallel machines, 

Armentano and Franca (2007) addressed the problem of 𝑄/𝑆𝑇𝑠𝑑/𝛴𝑇𝑗. They proposed 

GRASP versions that incorporate adaptive memory principles for solving this problem 

to minimize the total tardiness with respect to job due dates. Initially, they adapted 

suitable components for any GRASP procedure, namely, a greedy function and 

neighborhoods together with a candidate list. Then, they examined the use of long-

term memory composed of an elite set of high quality and sufficiently distant solutions.  
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Balakrishnan et al. (1999) studied the problem of 𝑄/𝑆𝑇𝑠𝑑, 𝑟𝑗/𝛴𝑒𝑗𝐸𝑗 + 𝛴𝑡𝑗𝑇𝑗. For this 

complex problem, they presented a compact mathematical model and described their 

computational experience in using this model to solve small-sized problems. 

Table 2.3. Literature Review for Uniform Parallel Machine 

References Problem Approach 

Armentano and Franca 

(2007) 
𝑄/𝑆𝑇𝑠𝑑/𝛴𝑇𝑗 

GRASP and adaptive 

memory principles  

Balakrishnan et al. 

(1999) 
𝑄/𝑆𝑇𝑠𝑑 , 𝑟𝑗/𝛴𝑒𝑗𝐸𝑗 + 𝑡𝑗𝑇𝑗 Mathematical model 
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CHAPTER 3 

PROBLEM DESCRIPTION & ANALYSIS 

In this thesis, we consider the uniform parallel machine scheduling problem with 

sequence-dependent setup times, denoted as 𝑄/𝑆𝑇𝑠𝑑/𝐶𝑚𝑎𝑥 . In uniform parallel 

machine scheduling, 𝑛 jobs are processed on 𝑚 machines in parallel (𝑛 > 𝑚), where 

machines have different processing speeds. The processing speed of machine 𝑘, (𝑘 =

 1, 2, . . , 𝑚), is denoted by 𝑣𝑘. For example, if  𝑣1 =  2𝑣2, then Machine 1 processes a 

job twice as fast as Machine 2. Job 𝑖, (𝑖 = 1, 2, . . . , 𝑛), has the processing time of 𝑝𝑖 at 

the unit processing speed. Therefore, the processing time of job 𝑖  on machine 𝑘  is 

𝑝𝑖𝑘 = 𝑝𝑖/𝑣𝑘. Note that when all machines have identical speeds, i.e., 𝑣1 = … = 𝑣𝑚, 

the problem we consider herein transforms into the identical parallel machine 

scheduling problem. Hence the latter is a special case of the problem we consider. A 

setup is required before processing a job in a machine. We consider the setting where 

these setup times are sequence-dependent. Similar to the processing times, setup times 

depend on the machine speeds. Namely, if job 𝑗 will be processed immediately after 

job 𝑖 on the same machine, the setup time is 𝑠𝑖𝑗 at the unit processing speed. For a 

particular machine 𝑘,  the setup time of job 𝑗  immediately after job 𝑖  is denoted by 

𝑠𝑖𝑗𝑘 = 𝑠𝑖𝑗/𝑣𝑘. The objective is to minimize the maximum completion time (makespan).  

Example 1. Suppose that there are eight jobs and three machines in the manufacturing 

system. All job has a processing time at the base speed, which we denoted by 𝑝𝑖  , 

𝑤ℎ𝑒𝑟𝑒 1 ≤ 𝑖 ≤ 8 . In addition, setup time is required if job 𝑗  will be processed 

immediately after job 𝑖  on the same machine and denoted by 𝑠𝑖𝑗 , 𝑤ℎ𝑒𝑟𝑒 1 ≤ 𝑖, 𝑗 ≤

8 𝑎𝑛𝑑 𝑖 ≠ 𝑗. Table 3.1. gives the processing times of each job and Table 3.2. provides 

the setup time at unit processing speed.  

Table 3.1. Processing Times for Example 1 

Jobs (𝒊) Job 1 Job 2 Job 3 Job 4 Job 5 Job 6 Job 7 Job 8 

Processing 

Time (𝒑𝒊) 
4 6 3 5 5 6 5 3 
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Table 3.2. Setup Time Matrix for Example 1 

Setup 

Time (𝒔𝒊𝒋) 
Job 1 Job 2 Job 3 Job 4 Job 5 Job 6 Job 7 Job 8 

Job 1 - 6 3 5 3 6 5 2 

Job 2 6 - 1 2 2 4 5 5 

Job 3 3 1 - 2 6 4 4 2 

Job 4 5 2 2 - 2 1 2 1 

Job 5 3 2 6 2 - 4 1 2 

Job 6 6 4 4 1 4 - 2 1 

Job 7 5 5 4 2 1 2 - 3 

Job 8 2 5 2 1 2 1 3 - 

 

Figure 3.1. and Figure 3.2. show two Gantt charts for production schedules in identical 

and uniform parallel machines with one setup operator . In the Gantt chart, numbers in 

white bars indicate job indices, and black bars represent setup operations. Numbers in 

the bottom denote time stamps; for example, in Figure 3.1., Machine 1 finishes at 20 

while the completion time of Machines 2 is 18 and Machine 3 is 19. Assume that jobs 

are processed in their index order, the jobs processed for the first time on each machine 

do not require setups, and there is no dedicated machine constraint. When jobs are 

processed on identical parallel machines, their makespan is 20, as illustrated in Figure 

3.1. However, the processing speed of machine 𝑘 is denoted by 𝑣𝑘, 𝑤ℎ𝑒𝑟𝑒 1 ≤ 𝑘 ≤ 3. 

When the machines have different speeds, i.e., 𝑣1 , 𝑣2 , and 𝑣3  are 0.8, 1, and 1.2, 

respectively, the processing times change. Therefore, the processing time of job 𝑖 on 

machine  𝑘  is calculated with this formulation: 𝑝𝑖𝑘 = 𝑝𝑖/𝑣𝑘 . In addition, for a 

particular machine 𝑘, the setup time of job 𝑗 immediately after job 𝑖 is calculated by 

𝑠𝑖𝑗𝑘 = 𝑠𝑖𝑗/𝑣𝑘. After these calculations, the schedule becomes the same as the Gantt 

chart in Figure 3.2. The makespan is 22.5. 

 

Figure 3.1. Schedule in Identical Parallel Machine for Example 1 
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Figure 3.2. Schedule in Uniform Parallel Machine for Example 1 

We now propose an integer programming (IP) model for uniform parallel machine 

scheduling with sequence-dependent setup times with the objective of minimizing the 

maximum of machine completion times (makespan), which we denoted  𝑄/𝑆𝑇𝑠𝑑/

𝐶𝑚𝑎𝑥 . It is assumed that the machines are not malfunctioning and that jobs are 

available at time zero. The machines are ready at the beginning of the scheduling 

period. Data is deterministic and known in advance. Breakdown and maintenance 

times are not considered and machines are always available if not busy. All jobs must 

be completed without interruption. Each job should be completed on one machine and 

machines can perform only one job at a given time. 

Most importantly, machines are uniform (Q), where the machines have different speeds 

but each machine processes at a consistent rate. Moreover, setup times are sequence-

dependent which means the setup times not only depend on the job currently being 

scheduled but also on the immediate preceding job. Also, setup times depend on the 

machine speeds. An IP model is proposed for the problem. We list the rest of our sets, 

indices, parameters and decision variables. 

Sets and indices 

𝑁: Set of jobs to be processed, 𝑁 = {1,2, … , 𝑛} 

𝑀: Set of uniform parallel machines, 𝑀 = {1,2, … , 𝑚} 

𝑖, 𝑗: Indices of jobs, where 𝑖, 𝑗 ∈ 𝑁 

𝑘: Index of machines, where 𝑘 ∈ 𝑀 

Parameters 

𝑣𝑘 ∶ processing speed of machine k 

𝑝𝑖 : processing time for job i at the base speed 

𝑝𝑖𝑘 : processing time for job i on machine k 
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𝑠𝑖𝑗 : setup time of job j immediately after job i at the base speed 

𝑠𝑖𝑗𝑘 : setup time of job j immediately after job i on machine k 

L: a large number 

Decision Variables 

𝑥𝑖𝑗𝑘 =  {
1, if job 𝑖 is immediately after job 𝑗 on machine 𝑘  
0, otherwise                                                                        

𝑦𝑖𝑘 =  {
1, if job 𝑖 is assigned to machine 𝑘  
0, otherwise                                             

𝐶𝑖  =  completion time of job i 

𝑐𝑚𝑎𝑥  = the maximum copletion time (makespan) 

Next, we provide the IP formulation of the uniform machine scheduling problem with 

sequence-dependent setup times. 

Model 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐶𝑚𝑎𝑥        (1) 
 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 
 

∑ 𝑥0𝑖𝑘 = 1                                              ∀𝑘𝑛
𝑖=1      (2) 

  
𝐶𝑖 ≥ 𝑠0𝑖𝑘 + 𝑝𝑖𝑘 − 𝐿(1 − 𝑥0𝑖𝑘)                ∀𝑖, 𝑘     (3) 

 
∑ 𝑥𝑖𝑗𝑘 = 𝑦𝑗𝑘                                    𝑛

𝑖=0,𝑖≠𝑗  ∀𝑗, 𝑘     (4) 
 

∑ 𝑥𝑖𝑗𝑘
𝑛
𝑗=1,𝑖≠𝑗 ≤ 𝑦𝑖𝑘                                     ∀𝑖, 𝑘     (5)  

 
𝐶𝑗 ≥ 𝐶𝑖 + (𝑠𝑖𝑗𝑘 + 𝑝𝑗𝑘) − 𝐿(1 − 𝑥𝑖𝑗𝑘)   ∀𝑖, 𝑗, 𝑘     (6) 

 
∑ 𝑦𝑖𝑘 = 1                                                ∀𝑖 𝑚

𝑘=1      (7) 
 

𝐶𝑚𝑎𝑥 ≥ 𝐶𝐽,                                                     ∀𝑗     (8) 
 

𝐶𝑖 ≥ 0                                                             ∀𝑖      (9) 
 

𝑥𝑖𝑗𝑘 ∈ {0,1}                                                  ∀i, 𝑗, 𝑘             (10) 
 

𝑦𝑖𝑘 ∈ {0,1}                                                     ∀𝑖, 𝑘             (11) 
 

For notational convenience, we introduced a dummy job, 𝑖 = 0, for each machine. The 

objective function (1) is the minimization of the maximum completion time of all jobs. 

Constraint set (2) ensures that the dummy job 0 is the initial job for each machine. 

Constraint (3) ensures that the completion of the very first job of every machine is at 

least as much as the sum of its setup time and the processing time at that machine. 
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Constraint set (4) establishes that the precedence relationship exists between jobs 

assigned to a particular machine. Similarly, if a real job is assigned to a machine, it 

can succeed by at most one job. The job in the last position of the sequence on a 

machine will not have a succeeding job. Constraint sets (4) and (5) together verify that 

𝑛 jobs are assigned to 𝑚 machines. They also ensure that if job 𝑖 immediately precedes 

job 𝑗 on machine 𝑘, then both jobs 𝑖 and 𝑗 belong to machine 𝑘. Constraint set (6) 

guarantees that the finishing time of a real job in a sequence of a machine will be more 

than or equal to the sum of processing time of the current job, the sequence-dependent 

setup time and the finishing time of the preceding job. Constraint set (7) ensures that 

a real job is assigned to exactly one machine. The makespan is obtained in Constraint 

(8) and Constraint (9) ensure a non-negative completion time for regular jobs. Finally, 

Constraint (10) and (11) specify that the variables in the model are binary. 

The problem we consider belongs to the set of NP-hard problems. Garey and Johnson 

(1979) mentioned that a problem is NP-hard if an algorithm for solving it can be 

translated into one for solving any NP (Nondeterministic Polynomial-Time) problem.  

Owing to its academic and industrial importance, the UPMSP has been extensively 

investigated in recent decades and heuristics algorithms represent an alternative way 

of dealing with large-sized problems or combinatorial optimization problems. Despite 

the available technologies in today’s sector, the computation time for the exact 

methods for most large-sized problems in the literature is very long and unrealizable 

because the time to obtain the optimal solution to the NP-hard problem increases 

exponentially as the size of the problem increases.  

The difficulty of getting the optimal solution in a reasonable time motivated many 

studies, including ours, to consider heuristic solutions to obtain a near-optimal solution 

in a reasonable time. As a result, exact methods become ineffective for large problems, 

and heuristics approaches can significantly reduce computation time without 

necessarily leading to the optimal solution. As we mentioned in the literature review, 

many heuristic models such as Genetic Algorithm (GA), Simulated Annealing (SA), 

Variable Neighborhood Search (VNS) have been studied for parallel machine 

scheduling problems. This thesis proposes a simple randomized heuristic with an 

improvement subroutine. The following sections give a detailed description of the 

developed heuristic. 
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Algorithm 

𝐒𝐞𝐭 Ꜫ,  Cmax = ∞, ΔCmax = ∞, N  

𝐰𝐡𝐢𝐥𝐞 ΔCmax > Ꜫ  

𝐫𝐞𝐩𝐞𝐚𝐭 N times  

Cmax
best = ∞  

Assign jobs randomly to machines in a random order  

Calculate Cm , ∀m and Cmax
new  

Cmax
old = ∞  

𝐰𝐡𝐢𝐥𝐞  Cmax
new  < Cmax

old   

Assign last job of machine with the largest Cm to the machine with the smallest Cm  

Cmax
old = Cmax

new  

Calculate Cmax
new and Cm , ∀m with the updated schedule  

If Cmax
old < Cmax

best    Cmax
best = Cmax

old   

ΔCmax = 100 ×
 Cmax  −  Cmax

best

Cmax
 

 

Cmax = Cmax
best  

𝐞𝐧𝐝  

Figure 3.3. Pseudo-Code of the Randomized Heuristic 

The proposed heuristic is based on iterating a two-stage algorithm as long as we obtain 

a schedule with a smaller objective function value. In the first stage of this two-stage 

algorithm, we randomly assign jobs to the machines in random order. To elaborate, we 

choose one of the jobs from the set of jobs via a roulette wheel selection and randomly 

assign that job to one of the machines as the last assigned job that machine. We update 

the set of jobs by removing the assigned job from the set. We continue this assignment 

until the set of jobs is empty. At the end of this first algorithm stage, we obtain a 

feasible solution. We calculate the job completion times and the makespan for this 

schedule and proceed to the second stage with this information. The second stage of 

the algorithm relies on the observation that in the optimal solution, completion times 

of the last jobs of every machine are in proximity of each other. Hence, we identify 

the job with the largest completion time, remove that job from its assigned machine's 

list and append it to the job list of the machine with the shortest completion time as the 

last job. When we make this modification in the schedule, we also take machine-

specific processing times of the jobs. After modifying the schedule, we update all the 

metrics, i.e., job completion times and the makespan, and repeat this improvement 
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process until makespan does not improve. We iteratively run this two-stage algorithm 

by new random assignments at every iteration until the objective function value does 

not improve. We present the pseudo-code of this heuristic in Figure 3.3. 

Heuristic Example. Suppose that there are fifteen jobs and three machines in the 

manufacturing system. Table 3.3. shows the processing times for each job and machine 

index. Table 3.4. gives the setup with a matrix. Processing times are randomly 

generated between 1 and 6 and setup times are generated between 1 and 5. Also, jobs 

are randomly assigned to machines.  

Table 3.3. Processing Times and Job Index for Heuristic Example 
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Processing 

Times 
3 3 4 1 2 3 2 3 3 4 5 2 6 5 2 

Machine 

Index 
2 2 2 2 3 1 3 2 2 3 3 1 1 3 2 

Table 3.4. Setup Time Matrix for Heuristic Example 
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Job 1 0 3 4 2 1 4 1 2 1 4 4 2 3 3 5 

Job 2 3 0 4 4 4 1 3 4 3 3 2 2 4 3 4 

Job 3 4 4 0 1 3 2 2 1 4 4 4 4 1 2 5 

Job 4 2 4 1 0 1 3 1 4 1 1 4 2 1 3 3 

Job 5 1 4 3 1 0 4 4 4 3 3 2 3 3 2 5 

Job 6 4 1 2 3 4 0 3 3 4 3 4 2 4 1 2 

Job 7 1 3 2 1 4 3 0 2 3 2 3 1 4 4 1 

Job 8 2 4 1 4 4 3 2 0 1 3 1 3 4 1 1 

Job 9 1 3 4 1 3 4 3 1 0 4 1 2 2 3 4 

Job 10 4 3 4 1 3 3 2 3 4 0 2 1 4 1 1 

Job 11 4 2 4 4 2 4 3 1 1 2 0 2 1 1 4 

Job 12 2 2 4 2 3 2 1 3 2 1 2 0 3 4 3 

Job 13 3 4 1 1 3 4 4 4 2 4 1 3 0 1 2 

Job 14 3 3 2 3 2 1 4 1 3 1 1 4 1 0 1 

Job 15 5 4 5 3 5 2 1 1 4 1 4 3 2 1 0 
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Figure 3.4. Gannt Charts for Heuristic Example 

According to the Table 3.3., we can see from the machine indices without any order 

yet, the list of jobs to be processed on the machines is as follows: 

Machine 1 Job List =  {6,12,13},  Machine 2 Job List =  {1,2,3,4,8,9,15} , and 

Machine 3 Job List =  {5,7,10,11,14}. Note that numbers in white bars indicate job 

indices, and black bars represent set up operations. Numbers in the bottom denote 

timestamps in the Gannt charts. The first step in our heuristic modeling, jobs assigned 

to machines are processed in random order. To elaborate, we choose one of the jobs 

from the set of jobs and randomly assign that job to one of the machines as the last 

assigned job that machine. We update the set of jobs by removing the assigned job 

from the set. We continue this assignment until the set of jobs is empty. For example, 

Machine 1

Machine 2 4 4

Machine 3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

Machine 1 4

Machine 2

Machine 3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Machine 1 4 1

Machine 2

Machine 3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

Machine 1 4 1

Machine 2

Machine 3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

Machine 1 4 1

Machine 2

Machine 3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

(e) Step 5 Heuristic Example - Cmax=28

1 9

5

(a) Step 1 for Heuristic Example - Cmax=35

(b) Step 2 Heuristic Example - Cmax=32

(c) Step 3 Heuristic Example - Cmax=28

(d) Step 4 Heuristic Example - Cmax=27
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jobs assigned to machine 3 are 11,7,10,14,5, respectively. The important thing is that 

each job transition has setup time. At this point, it should be noted that setup time is 

required for each job transition. Then the completion time is calculated for each 

machine. You can see all the steps in Figure 3.4. In the first step (a), completion times 

are 16, 26 and 35 for the machines and makespan is 35. In the improvement step, we 

remove the last job of the machine with the longest completion time from that machine 

and assign it to the machine with the shortest finishing time as the last job. When we 

make this modification in the schedule, we also take the jobs' processing times and 

setup times. For instance, in step 3 (c), the longest completion time is on the second 

machine. So, we cut Job 9, the last job of the second machine, and assigned it to the 

first machine with the shortest completion time. Thus, the makespan reduced from 28 

to 27. One can see the improved schedule in step 4 (d).  After modifying the schedule, 

we update all the metrics, i.e., job completion times and the makespan, and repeat this 

improvement process until makespan does not improve. In step 5 (e), there is no 

improvement in makespan. So, we need to stop the algorithm. 
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CHAPTER 4 

COMPUTATIONAL STUDY 

This section is devoted to analyzing the experiments carried out to minimize the 

maximum completion time in a parallel machines scheduling problem with sequence-

dependent setup times. To test the performance of our proposed heuristic, we have 

conducted a computational study. In this computation study, we have generated 320 

test instances. We solved the IP model of the problem for each test instance until we 

obtained the optimal solution or 1-hour runtime was exceeded, whichever occurs first. 

We compared heuristic solutions with the IP model solutions. We solved the IP model 

with CPLEX 12.8 (Zarnikau, 1994) on a computer Intel Core i5-1035G1 CPU 1.19 

GHz. Next, we will provide the details of our testbed and comparison results. 

 

Figure 4.1. Combinations for 3 Machines 

 

Figure 4.2. Combinations for 5 Machines 
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Our testbed comprises four different (number of machines-number of jobs) pairs. In 

two of these combinations, the number of jobs is twice the number of machines; and 

in the other combination, the number of jobs is four times the number of machines. 

The varieties we use are: (3M-6J), (3M-12J), (5M-10J), (5M-20J). We have 

constructed a setting for each pair for machine speeds, processing times, and setup 

times. The full factorial design is the most commonly utilized procedure for two or 

more factors. Our Design of Experiment (DOE) consists of all possible combinations 

of levels for all factors. . Kolisch et al. (1999) considered that the total number of 

experiments for studying k factors at 2-levels is 2𝑘. In our problem, we used 3 factors 

at 2-levels. These factors are machine speeds (V1, V2), process times (P1, P2) and 

setup times (S1, S2). Therefore, we have 8 × 4 =  32 combinations. 

As shown in Figure 4.1 and Figure 4.2, a total of 32 combinations were created in our 

experimental study, 16 combinations for 3 machines and 16 combinations for 5 

machines. For example, when considering 3 machines (3M) combinations, we must 

first look at how many jobs we select. For this, we have two options, 6 jobs or 12 jobs. 

When we continue with 6 jobs (6J), we will have to decide on the machine speed. 

Assuming that we have chosen the machine speed as the first machine speed range 

(V1), we must decide on the processing time in the next step. We have two options for 

this. Let's assume that we continue with the second processing time interval (P2); the 

situation we need to decide in the last step will be the setup time interval. Again, we 

have two options for this. Assuming we choose the first range (S1), finally, we will 

have the combination of 3M-6J-V1-P2-S1 as the encoding. 

Table 4.1. Testbed for the Computational Study 

Factors Notation 

3 Machines - 6 Jobs 3M-6J 

3 Machines - 12 Jobs 3M-12J 

5 Machines - 10 Jobs 5M-10J 

5 Machines - 20 Jobs 5M-20J 

  Machine Speed Range 1  = U [0.50,1.50] V1 

  Machine Speed Range 2 = U [0.85,1.15] V2 

  Process Times Range 1 = U [5,45] P1 

  Process Times Range 2 = U [15,35] P2 

  Setup Times Range 1 = U [1,5] S1 

  Setup Times Range 2 = U [2,4] S2 
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Machine speeds are randomly generated either from Uniform [0.50,1.50] distribution 

or Uniform [0.85,1.15]. Processing times are generated either from Uniform [5,45] 

distribution or Uniform [15,35], and setup times are generated either from Uniform 

[1,5] distribution or Uniform [2,4]. We also have ten different variates for each of 32 

combinations. We summarize our testbed in Table 4.1.  

Table 4.2. Average CPLEX and Heuristic Solutions 

# Combinations 

CPLEX Heuristic 
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1 3M-6J-V1-P1-S1 1 53.819 0.128 54.7181 0.037 1.67% 

2 3M-6J-V1-P1-S2 1 54.451 0.156 55.1682 0.0235 1.32% 

3 3M-6J-V1-P2-S1 1 53.958 0.164 54.7086 0.0324 1.39% 

4 3M-6J-V1-P2-S2 1 54.635 0.147 55.1078 0.047 0.87% 

5 3M-6J-V2-P1-S1 1 51.559 0.133 52.2999 0.0346 1.44% 

6 3M-6J-V2-P1-S2 1 51.979 0.158 52.4425 0.0333 0.89% 

7 3M-6J-V2-P2-S1 1 51.964 0.147 52.379 0.0289 0.80% 

8 3M-6J-V2-P2-S2 1 52.254 0.167 52.4746 0.0278 0.42% 

9 3M-12J-V1-P1-S1 0 100.236 3600.494 104.878 0.0476 4.63% 

10 3M-12J-V1-P1-S2 0 102.260 3600.599 105.339 0.0474 3.01% 

11 3M-12J-V1-P2-S1 0 103.110 3600.616 107.831 0.0655 4.58% 

12 3M-12J-V1-PS-S2 0 105.152 3600.653 107.947 0.1011 2.66% 

13 3M-12J-V2-P1-S1 0 99.544 3600.518 103.875 0.0595 4.35% 

14 3M-12J-V2-P1-S2 0 101.515 3600.670 104.242 0.066 2.69% 

15 3M-12J-V2-P2-S1 0 102.431 3601.070 107.159 0.0579 4.62% 

16 3M-12J-V2-P2-S2 0 104.211 3600.924 107.281 0.0882 2.95% 

17 5M-10J-V1-P1-S1 1 53.515 34.908 56.6446 0.0541 5.85% 

18 5M-10J-V1-P1-S2 1 53.671 42.700 56.8202 0.0721 5.87% 

19 5M-10J-V1-P2-S1 1 56.562 66.163 60.8473 0.0656 7.58% 

20 5M-10J-V1-P2-S2 1 57.333 80.002 61.0528 0.0907 6.49% 

21 5M-10J-V2-P1-S1 1 52.207 38.833 55.5779 0.1111 6.46% 

22 5M-10J-V2-P1-S2 1 52.536 46.024 55.5269 0.0908 5.69% 

23 5M-10J-V2-P2-S1 1 53.344 26.022 56.1497 0.0948 5.26% 

24 5M-10J-V2-P2-S2 1 53.784 30.281 56.5074 0.1553 5.06% 

25 5M-20J-V1-P1-S1 0 103.580 3600.728 108.895 0.1688 5.13% 

26 5M-20J-V1-P1-S2 0 105.403 3600.780 109.938 0.0667 4.30% 

27 5M-20J-V1-P2-S1 0 108.010 3601.233 114.281 0.1128 5.81% 

28 5M-20J-V1-PS-S2 0 109.874 3600.917 114.465 0.0838 4.18% 

29 5M-20J-V2-P1-S1 0 104.247 3600.644 110.179 0.0661 5.69% 

30 5M-20J-V2-P1-S2 0 105.790 3600.724 111.048 0.0643 4.97% 

31 5M-20J-V2-P2-S1 0 105.580 3600.431 112.523 0.0991 6.58% 

32 5M-20J-V2-P2-S2 0 107.593 3600.403 113.1 0.1045 5.12% 
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The computational results of the proposed heuristic algorithm are presented in this 

section. To evaluate the performance of the proposed heuristic methods, 320 instances 

with varying job sizes and machine sizes are developed. All proposed heuristic 

algorithms are coded in Python programming language and heuristic algorithms solve 

all instances within a few seconds on an Intel Core i5 2.40 GHz computer. The relative 

percent deviations (RPD) from the optimal results are reported for each heuristic 

algorithm as below:  

𝑅𝐻𝐷 (% 𝐺𝑎𝑝) =
𝐶𝑚𝑎𝑥

ℎ𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐 − 𝐶𝑚𝑎𝑥
𝑜𝑝𝑡𝑖𝑚𝑎𝑙

𝐶𝑚𝑎𝑥
𝑜𝑝𝑡𝑖𝑚𝑎𝑙

 × 100                  (1) 

 

It was explained in the previous sections that an experimental design was created by 

producing ten different instances for each of the 32 data combinations. In Table 4.2, 

solutions were obtained by taking the average of each combination's ten different 

instance files. If the algorithm could find the optimal value within the 1-hour time 

limit, the third column in the table was indicated as 1. If it could not reach the optimal 

within this time constraint, it was specified as 0. Also, the % Gap results in the eighth 

column were obtained using Equation (1) explained above.  

Table 4.3. CPLEX - Average Solutions 

 V1 V2 P1 P2 S1 S2 

3M-6J 54.22 51.94 52.95 53.20 52.83 53.33 

3M-12J 102.69 101.93 100.89 103.73 101.33 103.28 

5M-10J 55.27 52.97 52.98 55.26 53.91 54.33 

5M-20J 106.72 105.80 104.75 107.76 105.35 107.16 

Table 4.4. Heuristic - Average Solutions 

 V1 V2 P1 P2 S1 S2 

3M-6J 54.93 52.40 53.66 53.67 53.53 53.80 

3M-12J 106.50 105.64 104.58 107.55 105.94 106.20 

5M-10J 58.84 55.94 56.14 58.64 57.30 57.48 

5M-20J 111.89 111.71 110.01 113.59 111.47 112.14 

 

The most important result of this study is that while CPLEX 12.8 takes 22.88 minutes 

on average and the heuristic algorithm achieves these results only in 0.062 minutes. 

Moreover, Tables 4.3 and 4.4 show the average solutions of the CPLEX model and 
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heuristic model. The average solutions obtained with the heuristic have an 

approximately 4% Gap value for an average CPLEX solution. 

Table 4.5. Mean of Heuristic % Gap 

 V1 V2 P1 P2 S1 S2 

3M-6J 1.33% 0.97% 1.47% 0.83% 1.34% 0.96% 

3M-12J 3.74% 3.68% 3.68% 3.74% 4.59% 2.83% 

5M-10J 6.43% 5.75% 6.16% 6.02% 6.35% 5.83% 

5M-20J 4.90% 5.60% 5.10% 5.40% 5.85% 4.65% 

Table 4.6. Median of Heuristic % Gap 

 V1 V2 P1 P2 S1 S2 

3M-6J 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

3M-12J 0.88% 0.00% 0.00% 2.03% 1.47% 0.88% 

5M-10J 0.78% 0.00% 0.74% 0.00% 0.00% 0.35% 

5M-20J 0.39% 1.21% 0.39% 0.87% 1.20% 0.39% 

 

In Tables 4.5 and 4.6 you can see the impact of all our factors on the results. Table 4.5. 

indicates the mean calculations of these % Gap values, while Table 4.6. is for the 

median calculations.  

Table 4.7. % Gap Deviation for All Instances 

  ≤1% 1%-5% 5%-10% ≥10% 

Optimal 50 56 48 6 

Not Optimal 1 102 57 0 

 % 15.94% 49.38% 32.81% 1.88% 

 

We compared the results we obtained after solving the mathematical modeling and the 

proposed heuristic algorithm, and we calculated the % Gap deviations at certain 

percentage intervals using Equation (1). The percentage values in the last row of Table 

4.7. compare the solutions in that range with 320 instances. For example, 48 optimal 

and 57 non-optimal results were found between 5% and 10% gap intervals. In other 

words, a total of 105 instances gave a solution in this range, and this has a rate of 

32.81% among 320 instances. 

As we explained in the heuristic section, the system we have established consists of 

two main parts: random assignment and improvement subroutine. The contribution of 

the improvement subroutine step to the overall performance of the heuristic is 73.34% 
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on average. This means that the improvements made on the initial solution created due 

to random assignment have made the system much more intelligent. 

Another significant result in this experimental design is when the CPLEX 12.8 runs 

with a given one-hour time limitation. 160 out of 320 instances can be found optimal 

result and proposed randomized heuristic results found 19 out of these 160 instances. 

This means that our randomized heuristic algorithm can achieve optimal results with 

a rate of 11.88% on average. 
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CHAPTER 5 

CONCLUSION AND FUTURE RESEARCH 

This thesis considered a uniform parallel machine scheduling problem with sequence-

dependent setup times to minimize the maximum completion time (makespan). We 

present an IP formulation, which clearly describes our problem and can be used to 

obtain optimal solutions for small-sized problems. Our problem is NP-hard which 

means that the time to obtain the optimal solution to the problem increases 

exponentially as the size of the problem increases. Therefore, we propose a 

randomized heuristic algorithm with two stages: random assignment and improvement 

subroutine. In the first step of this two-stage algorithm, we assign random jobs to the 

machines in random order and continue this assignment until the job list is empty. We 

get a feasible solution at the end of this first algorithm step. Then, we calculate the 

completion times and the makespan and move on to the second step with this 

information. In the second step, we first determine the last job of the machine with the 

largest completion time and remove it from the machine with the shortest completion 

time as the last job. When we do these modifications, we consider the machine speeds 

and repeat this improvement process until makespan does not improve. The primary 

purpose of this improvement subroutine step is balancing loads of the machines, 

reducing the completion times, and reducing the makespan.  

Our thesis has four different (number of machines-number of jobs) pairs for data. In 

two of these combinations, the number of jobs is twice the number of machines and in 

the other combination, the number of jobs is four times the number of machines. The 

performance of the algorithm is tested with 320 instance sets. We create these instances 

using the full factorial design of experiments (DOE). The total number of experiments 

for studying k factors at 2-levels is 2𝑘. In our problem, we used 3 factors at 2-levels. 

These factors are machine speeds, process times and setup times. Also, all these data 

are randomly generated either from specified Uniform intervals. Therefore, we have 

32 combinations and all combinations have ten replications.  
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In this study, we compared the results after solving the mathematical modeling and the 

proposed heuristic algorithm, and we calculated the % Gap deviations at certain 

percentage intervals using. This study's most important numerical result is that the 

proposed mathematical model takes 22.88 minutes on average, and the heuristic 

algorithm achieves these results only in 0.062 minutes. The heuristic has an 

approximately 4% Gap value for an average. Also, the contribution of the 

improvement subroutine step to the overall performance of the heuristic is 73.34% on 

average. Another significant result in this experimental design is when the CPLEX 

runs with a given one-hour time limitation, we can find the optimal solution in half of 

the instances in CPLEX, whereas this number is only 19 out of 160 instances. This 

means that our randomized heuristic algorithm can achieve optimal results with a rate 

of 11.88% on average. Finally, we can conclude that the proposed randomized 

heuristic algorithm is very efficient and provides highly acceptable solutions. 

Future work can be addressed as follows: (1) The heuristic algorithm presented in this 

study can be more effective and intelligent. (2) While generating the data, the size of 

the problem can be increased by expanding the uniform intervals, or benchmarking 

examples in the literature can be used for computational experimentation. 
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APPENDIX 1 – CPLEX SOLUTIONS FOR ALL INSTANCES 

 

 

CPLEX Solution Lower Bound 

Opt? 𝑪𝒎𝒂𝒙 
Run Time 

(sec.) 

% 

Gap 
𝑪𝒎𝒂𝒙 

% 

Gap 

G
R

O
U

P
 1

 

3M-6J-V1-P1-S1-D1 1 45.256 0.109 0% 42.405 6.30% 

3M-6J-V1-P1-S1-D2 1 52.264 0.172 0% 47.511 9.09% 

3M-6J-V1-P1-S1-D3 1 63.314 0.14 0% 58.535 7.55% 

3M-6J-V1-P1-S1-D4 1 67.331 0.156 0% 62.057 7.83% 

3M-6J-V1-P1-S1-D5 1 68.858 0.094 0% 65.972 4.19% 

3M-6J-V1-P1-S1-D6 1 40.941 0.094 0% 37.528 8.34% 

3M-6J-V1-P1-S1-D7 1 42.482 0.14 0% 40.497 4.67% 

3M-6J-V1-P1-S1-D8 1 44.025 0.141 0% 39.905 9.36% 

3M-6J-V1-P1-S1-D9 1 57.809 0.157 0% 54.594 5.56% 

3M-6J-V1-P1-S1-D10 1 55.908 0.078 0% 48.16 13.86% 

G
R

O
U

P
 2

 

3M-6J-V1-P1-S2-D1 1 47.313 0.141 0% 42.405 10.37% 

3M-6J-V1-P1-S2-D2 1 51.89 0.141 0% 47.511 8.44% 

3M-6J-V1-P1-S2-D3 1 62.409 0.156 0% 58.535 6.21% 

3M-6J-V1-P1-S2-D4 1 67.331 0.078 0% 62.057 7.83% 

3M-6J-V1-P1-S2-D5 1 69.421 0.203 0% 65.972 4.97% 

3M-6J-V1-P1-S2-D6 1 42.305 0.188 0% 37.528 11.29% 

3M-6J-V1-P1-S2-D7 1 43.98 0.156 0% 40.497 7.92% 

3M-6J-V1-P1-S2-D8 1 45.359 0.188 0% 39.905 12.02% 

3M-6J-V1-P1-S2-D9 1 57.839 0.235 0% 54.594 5.61% 

3M-6J-V1-P1-S2-D10 1 56.664 0.078 0% 48.16 15.01% 

G
R

O
U

P
 3

 

3M-6J-V1-P2-S1-D1 1 49.37 0.25 0% 44.975 8.90% 

3M-6J-V1-P2-S1-D2 1 63.865 0.157 0% 60.014 6.03% 

3M-6J-V1-P2-S1-D3 1 54.411 0.172 0% 52.523 3.47% 

3M-6J-V1-P2-S1-D4 1 69.563 0.14 0% 64.835 6.80% 

3M-6J-V1-P2-S1-D5 1 52.065 0.14 0% 48.732 6.40% 

3M-6J-V1-P2-S1-D6 1 46.399 0.141 0% 41.907 9.68% 

3M-6J-V1-P2-S1-D7 1 50.794 0.156 0% 46.361 8.73% 

3M-6J-V1-P2-S1-D8 1 48.164 0.125 0% 46.261 3.95% 

3M-6J-V1-P2-S1-D9 1 55.844 0.125 0% 52.508 5.97% 

3M-6J-V1-P2-S1-D10 1 49.108 0.234 0% 46.365 5.59% 

G
R

O
U

P
 4

 

3M-6J-V1-P2-S2-D1 1 50.398 0.188 0% 44.975 10.76% 

3M-6J-V1-P2-S2-D2 1 65.33 0.172 0% 60.014 8.14% 

3M-6J-V1-P2-S2-D3 1 55.173 0.109 0% 52.523 4.80% 

3M-6J-V1-P2-S2-D4 1 71.174 0.156 0% 64.835 8.91% 

3M-6J-V1-P2-S2-D5 1 52.509 0.156 0% 48.732 7.19% 

3M-6J-V1-P2-S2-D6 1 46.019 0.125 0% 41.907 8.94% 

3M-6J-V1-P2-S2-D7 1 49.951 0.156 0% 46.361 7.19% 

3M-6J-V1-P2-S2-D8 1 50.84 0.172 0% 46.261 9.01% 

3M-6J-V1-P2-S2-D9 1 55.844 0.11 0% 52.508 5.97% 

3M-6J-V1-P2-S2-D10 1 49.108 0.125 0% 46.365 5.59% 
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CPLEX Solution Lower Bound 

Opt? 𝑪𝒎𝒂𝒙 
Run Time 

(sec.) 

% 

Gap 
𝑪𝒎𝒂𝒙 

% 

Gap 

G
R

O
U

P
 5

 

3M-6J-V2-P1-S1-D1 1 46.369 0.156 0% 43.509 6.17% 

3M-6J-V2-P1-S1-D2 1 38.307 0.125 0% 35.187 8.14% 

3M-6J-V2-P1-S1-D3 1 67.85 0.14 0% 60.693 10.55% 

3M-6J-V2-P1-S1-D4 1 53.589 0.109 0% 48.766 9.00% 

3M-6J-V2-P1-S1-D5 1 62.387 0.094 0% 59.17 5.16% 

3M-6J-V2-P1-S1-D6 1 41.24 0.172 0% 39.225 4.89% 

3M-6J-V2-P1-S1-D7 1 44.407 0.11 0% 41.309 6.98% 

3M-6J-V2-P1-S1-D8 1 40.878 0.156 0% 38.311 6.28% 

3M-6J-V2-P1-S1-D9 1 56.758 0.094 0% 52.992 6.64% 

3M-6J-V2-P1-S1-D10 1 63.805 0.172 0% 51.887 18.68% 

G
R

O
U

P
 6

 

3M-6J-V2-P1-S2-D1 1 47.394 0.157 0% 43.509 8.20% 

3M-6J-V2-P1-S2-D2 1 39.979 0.219 0% 35.187 11.99% 

3M-6J-V2-P1-S2-D3 1 66.881 0.187 0% 60.693 9.25% 

3M-6J-V2-P1-S2-D4 1 53.589 0.187 0% 48.766 9.00% 

3M-6J-V2-P1-S2-D5 1 61.877 0.203 0% 59.17 4.37% 

3M-6J-V2-P1-S2-D6 1 42.887 0.094 0% 39.225 8.54% 

3M-6J-V2-P1-S2-D7 1 44.885 0.141 0% 41.309 7.97% 

3M-6J-V2-P1-S2-D8 1 41.748 0.109 0% 38.311 8.23% 

3M-6J-V2-P1-S2-D9 1 57.659 0.141 0% 52.992 8.09% 

3M-6J-V2-P1-S2-D10 1 62.894 0.141 0% 51.887 17.50% 

G
R

O
U

P
 7

 

3M-6J-V2-P2-S1-D1 1 50.079 0.219 0% 46.146 7.85% 

3M-6J-V2-P2-S1-D2 1 48.623 0.141 0% 44.447 8.59% 

3M-6J-V2-P2-S1-D3 1 58.157 0.094 0% 54.459 6.36% 

3M-6J-V2-P2-S1-D4 1 54.196 0.172 0% 50.95 5.99% 

3M-6J-V2-P2-S1-D5 1 56.233 0.141 0% 52.74 6.21% 

3M-6J-V2-P2-S1-D6 1 45.627 0.156 0% 43.801 4.00% 

3M-6J-V2-P2-S1-D7 1 50.164 0.11 0% 46.342 7.62% 

3M-6J-V2-P2-S1-D8 1 46.967 0.125 0% 44.414 5.44% 

3M-6J-V2-P2-S1-D9 1 53.995 0.172 0% 50.966 5.61% 

3M-6J-V2-P2-S1-D10 1 55.602 0.141 0% 49.953 10.16% 

G
R

O
U

P
 8

 

3M-6J-V2-P2-S2-D1 1 49.411 0.125 0% 46.146 6.61% 

3M-6J-V2-P2-S2-D2 1 48.623 0.172 0% 44.447 8.59% 

3M-6J-V2-P2-S2-D3 1 58.157 0.094 0% 54.459 6.36% 

3M-6J-V2-P2-S2-D4 1 55.182 0.281 0% 50.95 7.67% 

3M-6J-V2-P2-S2-D5 1 55.152 0.218 0% 52.74 4.37% 

3M-6J-V2-P2-S2-D6 1 46.786 0.234 0% 43.801 6.38% 

3M-6J-V2-P2-S2-D7 1 50.164 0.156 0% 46.342 7.62% 

3M-6J-V2-P2-S2-D8 1 47.969 0.109 0% 44.414 7.41% 

3M-6J-V2-P2-S2-D9 1 55.168 0.14 0% 50.966 7.62% 

3M-6J-V2-P2-S2-D10 1 55.931 0.14 0% 49.953 10.69% 
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CPLEX Solution Lower Bound 

Opt? 𝑪𝒎𝒂𝒙 
Run Time 

(sec.) 

% 

Gap 
𝑪𝒎𝒂𝒙 

% 

Gap 
G

R
O

U
P

 9
 

3M-12J-V1-P1-S1-D1 0 109.776 3600.36 52% 105.117 4.24% 

3M-12J-V1-P1-S1-D2 0 74.013 3600.453 41% 70.429 4.84% 

3M-12J-V1-P1-S1-D3 0 110.393 3600.86 48% 106.158 3.84% 

3M-12J-V1-P1-S1-D4 0 80.741 3600.281 47% 76.653 5.06% 

3M-12J-V1-P1-S1-D5 0 105.959 3600.391 48% 101.011 4.67% 

3M-12J-V1-P1-S1-D6 0 86.795 3600.297 47% 81.708 5.86% 

3M-12J-V1-P1-S1-D7 0 138.631 3600.281 45% 131.798 4.93% 

3M-12J-V1-P1-S1-D8 0 83.196 3600.953 46% 78.909 5.15% 

3M-12J-V1-P1-S1-D9 0 93.325 3600.485 45% 89.9 3.67% 

3M-12J-V1-P1-S1-D10 0 119.529 3600.578 48% 112.76 5.66% 

G
R

O
U

P
 1

0
 

3M-12J-V1-P1-S2-D1 0 112.295 3600.547 52% 105.117 6.39% 

3M-12J-V1-P1-S2-D2 0 75.539 3600.484 48% 70.429 6.76% 

3M-12J-V1-P1-S2-D3 0 112.46 3600.844 49% 106.158 5.60% 

3M-12J-V1-P1-S2-D4 0 82.993 3600.625 49% 76.653 7.64% 

3M-12J-V1-P1-S2-D5 0 107.978 3600.312 48% 101.011 6.45% 

3M-12J-V1-P1-S2-D6 0 87.817 3600.344 44% 81.708 6.96% 

3M-12J-V1-P1-S2-D7 0 142.141 3600.266 46% 131.798 7.28% 

3M-12J-V1-P1-S2-D8 0 85.493 3600.656 49% 78.909 7.70% 

3M-12J-V1-P1-S2-D9 0 95.378 3600.344 48% 89.9 5.74% 

3M-12J-V1-P1-S2-D10 0 120.509 3601.563 51% 112.76 6.43% 

G
R

O
U

P
 1

1
 

3M-12J-V1-P2-S1-D1 0 96.167 3600.594 53% 91.716 4.63% 

3M-12J-V1-P2-S1-D2 0 77.883 3600.703 51% 73.571 5.54% 

3M-12J-V1-P2-S1-D3 0 100.793 3600.625 47% 96.243 4.51% 

3M-12J-V1-P2-S1-D4 0 86.892 3600.422 52% 82.737 4.78% 

3M-12J-V1-P2-S1-D5 0 102.088 3600.656 55% 97.405 4.59% 

3M-12J-V1-P2-S1-D6 0 89.867 3600.578 52% 85.34 5.04% 

3M-12J-V1-P2-S1-D7 0 139.407 3601.109 54% 132.954 4.63% 

3M-12J-V1-P2-S1-D8 0 91.277 3600.563 46% 87.75 3.86% 

3M-12J-V1-P2-S1-D9 0 90.504 3600.531 51% 87.019 3.85% 

3M-12J-V1-P2-S1-D10 0 156.225 3600.375 57% 149.007 4.62% 

G
R

O
U

P
 1

2
 

3M-12J-V1-P2-S2-D1 0 97.773 3600.218 54% 91.716 6.19% 

3M-12J-V1-P2-S2-D2 0 79.053 3600.531 51% 73.571 6.93% 

3M-12J-V1-P2-S2-D3 0 102.78 3600.688 51% 96.243 6.36% 

3M-12J-V1-P2-S2-D4 0 89.316 3600.531 54% 82.737 7.37% 

3M-12J-V1-P2-S2-D5 0 103.32 3600.641 54% 97.405 5.72% 

3M-12J-V1-P2-S2-D6 0 91.883 3600.609 54% 85.34 7.12% 

3M-12J-V1-P2-S2-D7 0 141.65 3600.781 55% 132.954 6.14% 

3M-12J-V1-P2-S2-D8 0 94.581 3600.687 51% 87.75 7.22% 

3M-12J-V1-P2-S2-D9 0 92.593 3601.062 53% 87.019 6.02% 

3M-12J-V1-P2-S2-D10 0 158.572 3600.782 57% 149.007 6.03% 

 

 

 



50 

 

CPLEX Solution Lower Bound 

Opt? 𝑪𝒎𝒂𝒙 
Run Time 

(sec.) 

% 

Gap 
𝑪𝒎𝒂𝒙 

% 

Gap 

G
R

O
U

P
 1

3
 

3M-12J-V2-P1-S1-D1 0 104.099 3601.032 51% 100.032 3.91% 

3M-12J-V2-P1-S1-D2 0 88.33 3601.078 50% 82.876 6.17% 

3M-12J-V2-P1-S1-D3 0 122.033 3600.666 50% 116.344 4.66% 

3M-12J-V2-P1-S1-D4 0 87.073 3600.082 51% 81.652 6.23% 

3M-12J-V2-P1-S1-D5 0 102.204 3600.076 51% 97.45 4.65% 

3M-12J-V2-P1-S1-D6 0 91.695 3600.081 55% 87.341 4.75% 

3M-12J-V2-P1-S1-D7 0 104.483 3601.07 49% 99.178 5.08% 

3M-12J-V2-P1-S1-D8 0 85.043 3600.076 54% 79.901 6.05% 

3M-12J-V2-P1-S1-D9 0 103.456 3601.012 49% 99.327 3.99% 

3M-12J-V2-P1-S1-D10 0 107.027 3600.005 49% 101.753 4.93% 

G
R

O
U

P
 1

4
 

3M-12J-V2-P1-S2-D1 0 107.161 3600.656 53% 100.032 6.65% 

3M-12J-V2-P1-S2-D2 0 89.29 3600.765 48% 82.876 7.18% 

3M-12J-V2-P1-S2-D3 0 123.124 3600.656 54% 116.344 5.51% 

3M-12J-V2-P1-S2-D4 0 87.999 3600.391 47% 81.652 7.21% 

3M-12J-V2-P1-S2-D5 0 104.454 3600.906 47% 97.45 6.71% 

3M-12J-V2-P1-S2-D6 0 94.439 3601.281 50% 87.341 7.52% 

3M-12J-V2-P1-S2-D7 0 107.927 3600.212 54% 99.178 8.11% 

3M-12J-V2-P1-S2-D8 0 86.326 3600.068 57% 79.901 7.44% 

3M-12J-V2-P1-S2-D9 0 105.24 3601.009 51% 99.327 5.62% 

3M-12J-V2-P1-S2-D10 0 109.189 3600.759 50% 101.753 6.81% 

G
R

O
U

P
 1

5
 

3M-12J-V2-P2-S1-D1 0 101.968 3600.687 48% 97.362 4.52% 

3M-12J-V2-P2-S1-D2 0 91.049 3600.969 49% 86.573 4.92% 

3M-12J-V2-P2-S1-D3 0 110.453 3600.766 49% 105.477 4.51% 

3M-12J-V2-P2-S1-D4 0 93.557 3600.843 51% 88.132 5.80% 

3M-12J-V2-P2-S1-D5 0 104.454 3601.125 50% 100.122 4.15% 

3M-12J-V2-P2-S1-D6 0 96.586 3600.922 50% 91.223 5.55% 

3M-12J-V2-P2-S1-D7 0 111.743 3600.656 51% 106.666 4.54% 

3M-12J-V2-P2-S1-D8 0 93.141 3600.75 51% 88.852 4.60% 

3M-12J-V2-P2-S1-D9 0 99.997 3603.609 48% 96.143 3.85% 

3M-12J-V2-P2-S1-D10 0 121.36 3600.375 52% 114.645 5.53% 

G
R

O
U

P
 1

6
 

3M-12J-V2-P2-S2-D1 0 104.38 3600.688 52% 97.362 6.72% 

3M-12J-V2-P2-S2-D2 0 93.05 3600.969 48% 86.573 6.96% 

3M-12J-V2-P2-S2-D3 0 112.034 3602.578 51% 105.477 5.85% 

3M-12J-V2-P2-S2-D4 0 94.483 3600.672 50% 88.132 6.72% 

3M-12J-V2-P2-S2-D5 0 106.255 3600.984 49% 100.122 5.77% 

3M-12J-V2-P2-S2-D6 0 98.113 3601.029 50% 91.223 7.02% 

3M-12J-V2-P2-S2-D7 0 114.183 3601.15 48% 106.666 6.58% 

3M-12J-V2-P2-S2-D8 0 95.341 3600.043 49% 88.852 6.81% 

3M-12J-V2-P2-S2-D9 0 102.827 3601.056 49% 96.143 6.50% 

3M-12J-V2-P2-S2-D10 0 121.444 3600.071 52% 114.645 5.60% 
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CPLEX Solution Lower Bound 

Opt? 𝑪𝒎𝒂𝒙 
Run Time 

(sec.) 

% 

Gap 
𝑪𝒎𝒂𝒙 

% 

Gap 
G

R
O

U
P

 1
7
 

5M-10J-V1-P1-S1-D1 1 55.568 27.187 0% 53.084 4.47% 

5M-10J-V1-P1-S1-D2 1 41.421 42.219 0% 38.877 6.14% 

5M-10J-V1-P1-S1-D3 1 64.218 55.438 0% 60.465 5.84% 

5M-10J-V1-P1-S1-D4 1 41.156 27.594 0% 38.509 6.43% 

5M-10J-V1-P1-S1-D5 1 55.633 36.172 0% 50.31 9.57% 

5M-10J-V1-P1-S1-D6 1 56.83 33.391 0% 54.309 4.44% 

5M-10J-V1-P1-S1-D7 1 52.655 14.047 0% 48.979 6.98% 

5M-10J-V1-P1-S1-D8 1 44.221 35.281 0% 40.559 8.28% 

5M-10J-V1-P1-S1-D9 1 58.209 25.938 0% 55.213 5.15% 

5M-10J-V1-P1-S1-D10 1 65.235 51.812 0% 61.421 5.85% 

G
R

O
U

P
 1

8
 

5M-10J-V1-P1-S2-D1 1 55.748 33.75 0% 53.084 4.78% 

5M-10J-V1-P1-S2-D2 1 42.328 57.844 0% 38.877 8.15% 

5M-10J-V1-P1-S2-D3 1 63.883 76.469 0% 60.465 5.35% 

5M-10J-V1-P1-S2-D4 1 42.281 32.875 0% 38.509 8.92% 

5M-10J-V1-P1-S2-D5 1 54.715 29.078 0% 50.31 8.05% 

5M-10J-V1-P1-S2-D6 1 57.643 29.203 0% 54.309 5.78% 

5M-10J-V1-P1-S2-D7 1 52.655 14.516 0% 48.979 6.98% 

5M-10J-V1-P1-S2-D8 1 43.789 48.75 0% 40.559 7.38% 

5M-10J-V1-P1-S2-D9 1 58.538 31.719 0% 55.213 5.68% 

5M-10J-V1-P1-S2-D10 1 65.128 72.797 0% 61.421 5.69% 

G
R

O
U

P
 1

9
 

5M-10J-V1-P2-S1-D1 1 58.393 79.641 0% 55.776 4.48% 

5M-10J-V1-P2-S1-D2 1 43.174 54.844 0% 40.998 5.04% 

5M-10J-V1-P2-S1-D3 1 57.887 49.766 0% 53.768 7.12% 

5M-10J-V1-P2-S1-D4 1 46.307 39.218 0% 44.01 4.96% 

5M-10J-V1-P2-S1-D5 1 58.935 81.797 0% 55.724 5.45% 

5M-10J-V1-P2-S1-D6 1 57.643 42.11 0% 54.991 4.60% 

5M-10J-V1-P2-S1-D7 1 73.903 69.265 0% 68.766 6.95% 

5M-10J-V1-P2-S1-D8 1 50.252 67.672 0% 46.233 8.00% 

5M-10J-V1-P2-S1-D9 1 56.418 126.657 0% 53.508 5.16% 

5M-10J-V1-P2-S1-D10 1 62.703 50.656 0% 58.475 6.74% 

G
R

O
U

P
 2

0
 

5M-10J-V1-P2-S2-D1 1 58.936 79.875 0% 55.776 5.36% 

5M-10J-V1-P2-S2-D2 1 44.021 71.641 0% 40.998 6.87% 

5M-10J-V1-P2-S2-D3 1 58.791 86.25 0% 53.768 8.54% 

5M-10J-V1-P2-S2-D4 1 47.043 40.594 0% 44.01 6.45% 

5M-10J-V1-P2-S2-D5 1 59.247 98.734 0% 55.724 5.95% 

5M-10J-V1-P2-S2-D6 1 58.654 38.094 0% 54.991 6.25% 

5M-10J-V1-P2-S2-D7 1 75.457 80.844 0% 68.766 8.87% 

5M-10J-V1-P2-S2-D8 1 50.252 66.625 0% 46.233 8.00% 

5M-10J-V1-P2-S2-D9 1 57.314 133.656 0% 53.508 6.64% 

5M-10J-V1-P2-S2-D10 1 63.614 103.703 0% 58.475 8.08% 
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CPLEX Solution Lower Bound 

Opt? 𝑪𝒎𝒂𝒙 
Run Time 

(sec.) 

% 

Gap 
𝑪𝒎𝒂𝒙 

% 

Gap 

G
R

O
U

P
 2

1
 

5M-10J-V2-P1-S1-D1 1 53.581 22.641 0% 50.45 5.84% 

5M-10J-V2-P1-S1-D2 1 46.472 34.172 0% 42.327 8.92% 

5M-10J-V2-P1-S1-D3 1 69.478 49.781 0% 62.354 10.25% 

5M-10J-V2-P1-S1-D4 1 40.401 15.828 0% 38.01 5.92% 

5M-10J-V2-P1-S1-D5 1 49.966 30.328 0% 46.471 6.99% 

5M-10J-V2-P1-S1-D6 1 52.174 34.672 0% 49.583 4.97% 

5M-10J-V2-P1-S1-D7 1 47.712 29.625 0% 44.484 6.77% 

5M-10J-V2-P1-S1-D8 1 42.203 26.235 0% 39.168 7.19% 

5M-10J-V2-P1-S1-D9 1 55.072 21.219 0% 52.779 4.16% 

5M-10J-V2-P1-S1-D10 1 65.006 123.828 0% 56.182 13.57% 

G
R

O
U

P
 2

2
 

5M-10J-V2-P1-S2-D1 1 54.659 30.891 0% 50.45 7.70% 

5M-10J-V2-P1-S2-D2 1 46.09 22.547 0% 42.327 8.16% 

5M-10J-V2-P1-S2-D3 1 69.789 53.828 0% 62.354 10.65% 

5M-10J-V2-P1-S2-D4 1 40.751 26.656 0% 38.01 6.73% 

5M-10J-V2-P1-S2-D5 1 50.426 45.016 0% 46.471 7.84% 

5M-10J-V2-P1-S2-D6 1 52.78 40.688 0% 49.583 6.06% 

5M-10J-V2-P1-S2-D7 1 47.712 61.703 0% 44.484 6.77% 

5M-10J-V2-P1-S2-D8 1 42.063 30.625 0% 39.168 6.88% 

5M-10J-V2-P1-S2-D9 1 56.086 51.437 0% 52.779 5.90% 

5M-10J-V2-P1-S2-D10 1 65.006 96.844 0% 56.182 13.57% 

G
R

O
U

P
 2

3
 

5M-10J-V2-P2-S1-D1 1 55.798 25.032 0% 53.224 4.61% 

5M-10J-V2-P2-S1-D2 1 48.369 38.75 0% 44.636 7.72% 

5M-10J-V2-P2-S1-D3 1 58.157 15.906 0% 55.448 4.66% 

5M-10J-V2-P2-S1-D4 1 45.721 32.11 0% 43.44 4.99% 

5M-10J-V2-P2-S1-D5 1 56.563 18.578 0% 53.933 4.65% 

5M-10J-V2-P2-S1-D6 1 52.864 20.266 0% 50.205 5.03% 

5M-10J-V2-P2-S1-D7 1 58.868 46.14 0% 54.126 8.06% 

5M-10J-V2-P2-S1-D8 1 47.106 15.437 0% 44.647 5.22% 

5M-10J-V2-P2-S1-D9 1 53.595 24.375 0% 51.149 4.56% 

5M-10J-V2-P2-S1-D10 1 56.403 23.625 0% 53.487 5.17% 

G
R

O
U

P
 2

4
 

5M-10J-V2-P2-S2-D1 1 56.326 23.828 0% 53.224 5.51% 

5M-10J-V2-P2-S2-D2 1 47.658 43.688 0% 44.636 6.34% 

5M-10J-V2-P2-S2-D3 1 58.4 16.968 0% 55.448 5.05% 

5M-10J-V2-P2-S2-D4 1 46.967 29.937 0% 43.44 7.51% 

5M-10J-V2-P2-S2-D5 1 57.248 20.453 0% 53.933 5.79% 

5M-10J-V2-P2-S2-D6 1 53.069 21.562 0% 50.205 5.40% 

5M-10J-V2-P2-S2-D7 1 59.704 44.938 0% 54.126 9.34% 

5M-10J-V2-P2-S2-D8 1 47.958 49.031 0% 44.647 6.90% 

5M-10J-V2-P2-S2-D9 1 54.106 27.125 0% 51.149 5.47% 

5M-10J-V2-P2-S2-D10 1 56.403 25.281 0% 53.487 5.17% 
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CPLEX Solution Lower Bound 

Opt? 𝑪𝒎𝒂𝒙 
Run Time 

(sec.) 

% 

Gap 
𝑪𝒎𝒂𝒙 

% 

Gap 
G

R
O

U
P

 2
5
 

5M-20J-V1-P1-S1-D1 0 122.334 3602.328 76% 115.476 5.61% 

5M-20J-V1-P1-S1-D2 0 91.433 3600.469 73% 86.983 4.87% 

5M-20J-V1-P1-S1-D3 0 122.481 3600.391 78% 115.773 5.48% 

5M-20J-V1-P1-S1-D4 0 101.281 3600.531 73% 93.495 7.69% 

5M-20J-V1-P1-S1-D5 0 98.262 3600.422 67% 92.189 6.18% 

5M-20J-V1-P1-S1-D6 0 88.571 3600.89 67% 83.611 5.60% 

5M-20J-V1-P1-S1-D7 0 96.786 3600.484 75% 90.566 6.43% 

5M-20J-V1-P1-S1-D8 0 89.752 3600.344 67% 82.502 8.08% 

5M-20J-V1-P1-S1-D9 0 127.121 3600.421 76% 121.275 4.60% 

5M-20J-V1-P1-S1-D10 0 97.782 3601 69% 91.825 6.09% 

G
R

O
U

P
 2

6
 

5M-20J-V1-P1-S2-D1 0 127.228 3601.156 85% 115.476 9.24% 

5M-20J-V1-P1-S2-D2 0 94.283 3600.344 76% 86.983 7.74% 

5M-20J-V1-P1-S2-D3 0 122.96 3600.953 73% 115.773 5.84% 

5M-20J-V1-P1-S2-D4 0 101.281 3600.609 79% 93.495 7.69% 

5M-20J-V1-P1-S2-D5 0 100.639 3600.438 74% 92.189 8.40% 

5M-20J-V1-P1-S2-D6 0 90.987 3600.968 76% 83.611 8.11% 

5M-20J-V1-P1-S2-D7 0 98.169 3600.375 70% 90.566 7.74% 

5M-20J-V1-P1-S2-D8 0 89.331 3601.219 85% 82.502 7.64% 

5M-20J-V1-P1-S2-D9 0 130.633 3601.204 80% 121.275 7.16% 

5M-20J-V1-P1-S2-D10 0 98.517 3600.532 80% 91.825 6.79% 

G
R

O
U

P
 2

7
 

5M-20J-V1-P2-S1-D1 0 99.898 3600.609 72% 94.039 5.86% 

5M-20J-V1-P2-S1-D2 0 88.816 3600.421 73% 83.853 5.59% 

5M-20J-V1-P2-S1-D3 0 112.201 3604.672 79% 104.765 6.63% 

5M-20J-V1-P2-S1-D4 0 105.227 3601.985 73% 99.325 5.61% 

5M-20J-V1-P2-S1-D5 0 117.719 3601.094 75% 109.562 6.93% 

5M-20J-V1-P2-S1-D6 0 89.431 3600.406 71% 84.479 5.54% 

5M-20J-V1-P2-S1-D7 0 93.753 3600.75 69% 87.748 6.41% 

5M-20J-V1-P2-S1-D8 0 137.567 3600.5 79% 128.282 6.75% 

5M-20J-V1-P2-S1-D9 0 122.76 3600.453 80% 115.639 5.80% 

5M-20J-V1-P2-S1-D10 0 112.73 3601.437 79% 106.386 5.63% 

G
R

O
U

P
 2

8
 

5M-20J-V1-P2-S2-D1 0 101.511 3601.546 72% 94.039 7.36% 

5M-20J-V1-P2-S2-D2 0 92.591 3600.75 74% 83.853 9.44% 

5M-20J-V1-P2-S2-D3 0 111.494 3600.578 78% 104.765 6.04% 

5M-20J-V1-P2-S2-D4 0 110.341 3601.782 74% 99.325 9.98% 

5M-20J-V1-P2-S2-D5 0 118.594 3601.031 75% 109.562 7.62% 

5M-20J-V1-P2-S2-D6 0 90.869 3600.89 71% 84.479 7.03% 

5M-20J-V1-P2-S2-D7 0 96.406 3600.797 70% 87.748 8.98% 

5M-20J-V1-P2-S2-D8 0 137.567 3600.531 79% 128.282 6.75% 

5M-20J-V1-P2-S2-D9 0 123.227 3600.515 80% 115.639 6.16% 

5M-20J-V1-P2-S2-D10 0 116.144 3600.75 77% 106.386 8.40% 
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CPLEX Solution Lower Bound 

Opt? 𝑪𝒎𝒂𝒙 
Run Time 

(sec.) 

% 

Gap 
𝑪𝒎𝒂𝒙 

% 

Gap 

G
R

O
U

P
 2

9
 

5M-20J-V2-P1-S1-D1 0 106.852 3600.312 81% 101.581 4.93% 

5M-20J-V2-P1-S1-D2 0 104.381 3600.484 69% 99.229 4.94% 

5M-20J-V2-P1-S1-D3 0 126.23 3600.625 69% 120.063 4.89% 

5M-20J-V2-P1-S1-D4 0 94.774 3600.406 74% 88.559 6.56% 

5M-20J-V2-P1-S1-D5 0 99.488 3600.437 69% 93.588 5.93% 

5M-20J-V2-P1-S1-D6 0 98.2 3600.469 63% 92.171 6.14% 

5M-20J-V2-P1-S1-D7 0 93.786 3601.25 81% 87.032 7.20% 

5M-20J-V2-P1-S1-D8 0 97.429 3601.61 72% 90.742 6.86% 

5M-20J-V2-P1-S1-D9 0 116.61 3600.328 67% 111.367 4.50% 

5M-20J-V2-P1-S1-D10 0 104.719 3600.516 76% 95.658 8.65% 

G
R

O
U

P
 3

0
 

5M-20J-V2-P1-S2-D1 0 109.723 3600.375 76% 101.581 7.42% 

5M-20J-V2-P1-S2-D2 0 107.08 3600.735 75% 99.229 7.33% 

5M-20J-V2-P1-S2-D3 0 127.828 3600.375 77% 120.063 6.07% 

5M-20J-V2-P1-S2-D4 0 96.909 3600.328 78% 88.559 8.62% 

5M-20J-V2-P1-S2-D5 0 100.879 3600.297 71% 93.588 7.23% 

5M-20J-V2-P1-S2-D6 0 99.708 3600.562 79% 92.171 7.56% 

5M-20J-V2-P1-S2-D7 0 94.131 3601.782 61% 87.032 7.54% 

5M-20J-V2-P1-S2-D8 0 98.08 3600.454 67% 90.742 7.48% 

5M-20J-V2-P1-S2-D9 0 119.771 3600.032 68% 111.367 7.02% 

5M-20J-V2-P1-S2-D10 0 103.786 3602.297 90% 95.658 7.83% 

G
R

O
U

P
 3

1
 

5M-20J-V2-P2-S1-D1 0 103.587 3600.359 75% 98.268 5.13% 

5M-20J-V2-P2-S1-D2 0 100.924 3600.468 69% 95.658 5.22% 

5M-20J-V2-P2-S1-D3 0 113.807 3600.36 74% 108.647 4.53% 

5M-20J-V2-P2-S1-D4 0 99.103 3600.453 71% 94.081 5.07% 

5M-20J-V2-P2-S1-D5 0 111.249 3600.297 77% 104.739 5.85% 

5M-20J-V2-P2-S1-D6 0 99.114 3600.515 70% 93.127 6.04% 

5M-20J-V2-P2-S1-D7 0 96.521 3600.375 78% 90.818 5.91% 

5M-20J-V2-P2-S1-D8 0 113.477 3600.515 77% 106.439 6.20% 

5M-20J-V2-P2-S1-D9 0 110.349 3600.453 74% 106.192 3.77% 

5M-20J-V2-P2-S1-D10 0 107.67 3600.516 74% 101.252 5.96% 

G
R

O
U

P
 3

2
 

5M-20J-V2-P2-S2-D1 0 105.02 3600.312 75% 98.268 6.43% 

5M-20J-V2-P2-S2-D2 0 102.581 3600.5 77% 95.658 6.75% 

5M-20J-V2-P2-S2-D3 0 116.172 3600.312 74% 108.647 6.48% 

5M-20J-V2-P2-S2-D4 0 103.766 3600.391 77% 94.081 9.33% 

5M-20J-V2-P2-S2-D5 0 111.473 3600.469 76% 104.739 6.04% 

5M-20J-V2-P2-S2-D6 0 100.107 3600.313 72% 93.127 6.97% 

5M-20J-V2-P2-S2-D7 0 99.054 3600.453 73% 90.818 8.31% 

5M-20J-V2-P2-S2-D8 0 114.579 3600.391 79% 106.439 7.10% 

5M-20J-V2-P2-S2-D9 0 114.448 3600.453 77% 106.192 7.21% 

5M-20J-V2-P2-S2-D10 0 108.726 3600.438 72% 101.252 6.87% 

 

 

 



55 

APPENDIX 2 – IMPROVED HEURISTIC SOLUTIONS FOR ALL 

INSTANCES WITH REPITATION TIMES 

  

H 100 

Cmax 

H 200 

Cmax 

H 400 

Cmax 

H 800 

Cmax 

H 1600 

Cmax 

H-Best 

Cmax 

G
R

O
U

P
 1

 

3M-6J-V1-P1-S1-D1 46.611 46.611       46.611 

3M-6J-V1-P1-S1-D2 53.221 52.265 52.265     52.265 

3M-6J-V1-P1-S1-D3 65.123 64.764       64.764 

3M-6J-V1-P1-S1-D4 67.658 67.331       67.331 

3M-6J-V1-P1-S1-D5 72.091 72.091       72.091 

3M-6J-V1-P1-S1-D6 40.941 40.941       40.941 

3M-6J-V1-P1-S1-D7 44.33 44.33       44.330 

3M-6J-V1-P1-S1-D8 46.139 44.693 44.693     44.693 

3M-6J-V1-P1-S1-D9 57.809 57.809       57.809 

3M-6J-V1-P1-S1-D10 58.066 56.346 56.346     56.346 

G
R

O
U

P
 2

 

3M-6J-V1-P1-S2-D1 48.342 48.342       48.342 

3M-6J-V1-P1-S2-D2 51.89 51.89       51.890 

3M-6J-V1-P1-S2-D3 62.41 62.41       62.410 

3M-6J-V1-P1-S2-D4 67.331 67.331       67.331 

3M-6J-V1-P1-S2-D5 69.751 69.751       69.751 

3M-6J-V1-P1-S2-D6 44.353 44.353       44.353 

3M-6J-V1-P1-S2-D7 45.254 45.254       45.254 

3M-6J-V1-P1-S2-D8 47.848 47.848       47.848 

3M-6J-V1-P1-S2-D9 57.839 57.839       57.839 

3M-6J-V1-P1-S2-D10 56.664 56.664       56.664 

G
R

O
U

P
 3

 

3M-6J-V1-P2-S1-D1 52.341 49.37 49.37     49.370 

3M-6J-V1-P2-S1-D2 65.991 65.991       65.991 

3M-6J-V1-P2-S1-D3 55.438 55.438       55.438 

3M-6J-V1-P2-S1-D4 72.422 72.422       72.422 

3M-6J-V1-P2-S1-D5 52.066 52.066       52.066 

3M-6J-V1-P2-S1-D6 46.94 46.47 46.47     46.470 

3M-6J-V1-P2-S1-D7 50.795 50.795       50.795 

3M-6J-V1-P2-S1-D8 52.178 48.695 48.695     48.695 

3M-6J-V1-P2-S1-D9 57.263 56.346 56.346     56.346 

3M-6J-V1-P2-S1-D10 49.568 49.493       49.493 

G
R

O
U

P
 4

 

3M-6J-V1-P2-S2-D1 51.427 51.427       51.427 

3M-6J-V1-P2-S2-D2 69.064 65.331 65.331     65.331 

3M-6J-V1-P2-S2-D3 55.174 55.174       55.174 

3M-6J-V1-P2-S2-D4 72.422 72.422       72.422 

3M-6J-V1-P2-S2-D5 54.077 54.077       54.077 

3M-6J-V1-P2-S2-D6 46.4 46.4       46.400 

3M-6J-V1-P2-S2-D7 49.952 49.952       49.952 

3M-6J-V1-P2-S2-D8 50.84 50.84       50.840 

3M-6J-V1-P2-S2-D9 56.346 56.346       56.346 

3M-6J-V1-P2-S2-D10 49.109 49.109       49.109 

*H is the reputation time 
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H 100 

Cmax 

H 200 

Cmax 

H 400 

Cmax 

H 800 

Cmax 

H 1600 

Cmax 

H-Best 

Cmax 
G

R
O

U
P

 5
 

3M-6J-V2-P1-S1-D1 46.686 46.686       46.686 

3M-6J-V2-P1-S1-D2 41.825 40.664 40.664     40.664 

3M-6J-V2-P1-S1-D3 67.851 67.851       67.851 

3M-6J-V2-P1-S1-D4 53.59 53.59       53.590 

3M-6J-V2-P1-S1-D5 65.966 62.388 62.388     62.388 

3M-6J-V2-P1-S1-D6 42.995 42.995       42.995 

3M-6J-V2-P1-S1-D7 44.407 44.407       44.407 

3M-6J-V2-P1-S1-D8 42.197 41.749 41.749     41.749 

3M-6J-V2-P1-S1-D9 57.952 57.952       57.952 

3M-6J-V2-P1-S1-D10 64.9 64.717       64.717 

G
R

O
U

P
 6

 

3M-6J-V2-P1-S2-D1 48.761 48.225 48.225     48.225 

3M-6J-V2-P1-S2-D2 41.825 40.496 39.979 39.979   39.979 

3M-6J-V2-P1-S2-D3 66.881 66.881       66.881 

3M-6J-V2-P1-S2-D4 55.182 54.73       54.730 

3M-6J-V2-P1-S2-D5 62.388 62.388       62.388 

3M-6J-V2-P1-S2-D6 43.873 43.873       43.873 

3M-6J-V2-P1-S2-D7 46.308 44.885 44.885     44.885 

3M-6J-V2-P1-S2-D8 42.618 42.618       42.618 

3M-6J-V2-P1-S2-D9 57.952 57.952       57.952 

3M-6J-V2-P1-S2-D10 62.894 62.894       62.894 

G
R

O
U

P
 7

 

3M-6J-V2-P2-S1-D1 51.934 50.079 50.079     50.079 

3M-6J-V2-P2-S1-D2 49.252 48.624 48.624     48.624 

3M-6J-V2-P2-S1-D3 58.579 58.579       58.579 

3M-6J-V2-P2-S1-D4 54.91 54.91       54.910 

3M-6J-V2-P2-S1-D5 56.336 56.336       56.336 

3M-6J-V2-P2-S1-D6 46.505 46.505       46.505 

3M-6J-V2-P2-S1-D7 51.077 51.077       51.077 

3M-6J-V2-P2-S1-D8 46.967 46.967       46.967 

3M-6J-V2-P2-S1-D9 55.169 54.954       54.954 

3M-6J-V2-P2-S1-D10 55.759 55.759       55.759 

G
R

O
U

P
 8

 

3M-6J-V2-P2-S2-D1 49.411 49.411       49.411 

3M-6J-V2-P2-S2-D2 48.624 48.624       48.624 

3M-6J-V2-P2-S2-D3 58.158 58.158       58.158 

3M-6J-V2-P2-S2-D4 55.182 55.182       55.182 

3M-6J-V2-P2-S2-D5 56.233 55.152 55.152     55.152 

3M-6J-V2-P2-S2-D6 47.761 47.383       47.383 

3M-6J-V2-P2-S2-D7 51.077 51.077       51.077 

3M-6J-V2-P2-S2-D8 47.97 47.97       47.970 

3M-6J-V2-P2-S2-D9 56.343 55.857       55.857 

3M-6J-V2-P2-S2-D10 55.932 55.932       55.932 

*H is the reputation time 
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H 100 

Cmax 

H 200 

Cmax 

H 400 

Cmax 

H 800 

Cmax 

H 1600 

Cmax 

H-Best 

Cmax 

G
R

O
U

P
 9

 
3M-12J-V1-P1-S1-D1 117.347 116.857       116.857 

3M-12J-V1-P1-S1-D2 78.175 76.418 76.418     76.418 

3M-12J-V1-P1-S1-D3 116.587 115.152 115.152     115.152 

3M-12J-V1-P1-S1-D4 84.496 84.496       84.496 

3M-12J-V1-P1-S1-D5 110.132 110.132       110.132 

3M-12J-V1-P1-S1-D6 93.708 91.404 91.07     91.070 

3M-12J-V1-P1-S1-D7 146.978 145.666       145.666 

3M-12J-V1-P1-S1-D8 87.579 87.579       87.579 

3M-12J-V1-P1-S1-D9 96.074 96.074       96.074 

3M-12J-V1-P1-S1-D10 126.388 125.334       125.334 

G
R

O
U

P
 1

0
 

3M-12J-V1-P1-S2-D1 117.347 117.347       117.347 

3M-12J-V1-P1-S2-D2 79.053 78.681       78.681 

3M-12J-V1-P1-S2-D3 117.055 114.99 114.99     114.990 

3M-12J-V1-P1-S2-D4 86.124 85.365       85.365 

3M-12J-V1-P1-S2-D5 112.962 111.3 111.3     111.300 

3M-12J-V1-P1-S2-D6 91.404 89.868 89.868     89.868 

3M-12J-V1-P1-S2-D7 146.737 145.117 145.117     145.117 

3M-12J-V1-P1-S2-D8 88.13 88.13       88.130 

3M-12J-V1-P1-S2-D9 98.163 98.163       98.163 

3M-12J-V1-P1-S2-D10 125.638 124.43       124.430 

G
R

O
U

P
 1

1
 

3M-12J-V1-P2-S1-D1 101.197 100.48       100.480 

3M-12J-V1-P2-S1-D2 81.27 81.27       81.270 

3M-12J-V1-P2-S1-D3 105.238 105.238       105.238 

3M-12J-V1-P2-S1-D4 92.807 92.807       92.807 

3M-12J-V1-P2-S1-D5 107.824 105.229 105.229     105.229 

3M-12J-V1-P2-S1-D6 95.135 95.135       95.135 

3M-12J-V1-P2-S1-D7 149.714 145.516 145.516     145.516 

3M-12J-V1-P2-S1-D8 96.962 96.524       96.524 

3M-12J-V1-P2-S1-D9 94.682 94.682       94.682 

3M-12J-V1-P2-S1-D10 162.612 161.433       161.433 

G
R

O
U

P
 1

2
 

3M-12J-V1-P2-S2-D1 103.35 101.197 101.145     101.145 

3M-12J-V1-P2-S2-D2 81.688 80.81 80.81     80.810 

3M-12J-V1-P2-S2-D3 105.762 105.053       105.053 

3M-12J-V1-P2-S2-D4 93.045 91.688 91.507     91.507 

3M-12J-V1-P2-S2-D5 106.726 106.726       106.726 

3M-12J-V1-P2-S2-D6 97.062 93.509 93.509     93.509 

3M-12J-V1-P2-S2-D7 149.714 145.516 145.516     145.516 

3M-12J-V1-P2-S2-D8 100.09 99.048 96.333 96.333   96.333 

3M-12J-V1-P2-S2-D9 96.074 96.074       96.074 

3M-12J-V1-P2-S2-D10 166.541 162.798 162.798     162.798 

*H is the reputation time 
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H 100 

Cmax 

H 200 

Cmax 

H 400 

Cmax 

H 800 

Cmax 

H 1600 

Cmax 

H-Best 

Cmax 
G

R
O

U
P

 1
3
 

3M-12J-V2-P1-S1-D1 111.744 111.744       111.744 

3M-12J-V2-P1-S1-D2 93.05 92.181       92.181 

3M-12J-V2-P1-S1-D3 128.268 124.146 124.146     124.146 

3M-12J-V2-P1-S1-D4 90.554 90.554       90.554 

3M-12J-V2-P1-S1-D5 108.957 107.156 105.784 105.784   105.784 

3M-12J-V2-P1-S1-D6 96.586 96.586       96.586 

3M-12J-V2-P1-S1-D7 110.194 110.194       110.194 

3M-12J-V2-P1-S1-D8 89.255 89.255       89.255 

3M-12J-V2-P1-S1-D9 106.993 106.993       106.993 

3M-12J-V2-P1-S1-D10 114.595 111.775 111.31     111.310 

G
R

O
U

P
 1

4
 

3M-12J-V2-P1-S2-D1 110.836 110.836       110.836 

3M-12J-V2-P1-S2-D2 92.946 91.998 91.998     91.998 

3M-12J-V2-P1-S2-D3 127.174 127.174       127.174 

3M-12J-V2-P1-S2-D4 91.732 91.732       91.732 

3M-12J-V2-P1-S2-D5 109.933 106.821 106.821     106.821 

3M-12J-V2-P1-S2-D6 97.196 97.196       97.196 

3M-12J-V2-P1-S2-D7 110.224 110.224       110.224 

3M-12J-V2-P1-S2-D8 91.117 88.241 88.241     88.241 

3M-12J-V2-P1-S2-D9 108.488 107.877       107.877 

3M-12J-V2-P1-S2-D10 114.291 112.304 110.316 110.316   110.316 

G
R

O
U

P
 1

5
 

3M-12J-V2-P2-S1-D1 107.391 106.521       106.521 

3M-12J-V2-P2-S1-D2 96.972 96.529       96.529 

3M-12J-V2-P2-S1-D3 114.016 114.016       114.016 

3M-12J-V2-P2-S1-D4 97.1 97.1       97.100 

3M-12J-V2-P2-S1-D5 109.2 109.2       109.200 

3M-12J-V2-P2-S1-D6 102.905 101.969       101.969 

3M-12J-V2-P2-S1-D7 117.894 115.325 115.325     115.325 

3M-12J-V2-P2-S1-D8 98.795 98.795       98.795 

3M-12J-V2-P2-S1-D9 106.293 106.109       106.109 

3M-12J-V2-P2-S1-D10 126.027 126.027       126.027 

G
R

O
U

P
 1

6
 

3M-12J-V2-P2-S2-D1 107.391 107.391       107.391 

3M-12J-V2-P2-S2-D2 95.791 95.791       95.791 

3M-12J-V2-P2-S2-D3 117.579 116.229 116.229     116.229 

3M-12J-V2-P2-S2-D4 99.988 99.115       99.115 

3M-12J-V2-P2-S2-D5 109.857 108.16 108.16     108.160 

3M-12J-V2-P2-S2-D6 100.879 100.879       100.879 

3M-12J-V2-P2-S2-D7 118.919 117.609 116.467     116.467 

3M-12J-V2-P2-S2-D8 97.369 97.369       97.369 

3M-12J-V2-P2-S2-D9 105.24 104.714       104.714 

3M-12J-V2-P2-S2-D10 127.379 126.697       126.697 

*H is the reputation time 
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H 100 

Cmax 

H 200 

Cmax 

H 400 

Cmax 

H 800 

Cmax 

H 1600 

Cmax 

H-Best 

Cmax 

G
R

O
U

P
 1

7
 

5M-10J-V1-P1-S1-D1 58.964 58.964       58.964 

5M-10J-V1-P1-S1-D2 46.554 45.714 45.714     45.714 

5M-10J-V1-P1-S1-D3 68.52 68.52       68.520 

5M-10J-V1-P1-S1-D4 47.043 43.072 43.072     43.072 

5M-10J-V1-P1-S1-D5 58.142 57.905       57.905 

5M-10J-V1-P1-S1-D6 59.801 59.801       59.801 

5M-10J-V1-P1-S1-D7 55.545 55.545       55.545 

5M-10J-V1-P1-S1-D8 46.415 46.415       46.415 

5M-10J-V1-P1-S1-D9 63.583 62.859 62.859     62.859 

5M-10J-V1-P1-S1-D10 67.651 67.651       67.651 

G
R

O
U

P
 1

8
 

5M-10J-V1-P1-S2-D1 62.459 61.109 58.936 58.936   58.936 

5M-10J-V1-P1-S2-D2 44.798 44.798       44.798 

5M-10J-V1-P1-S2-D3 65.303 65.303       65.303 

5M-10J-V1-P1-S2-D4 44.339 44.339       44.339 

5M-10J-V1-P1-S2-D5 60.175 60.175       60.175 

5M-10J-V1-P1-S2-D6 67.064 60.473 60.163     60.163 

5M-10J-V1-P1-S2-D7 57.459 57.459       57.459 

5M-10J-V1-P1-S2-D8 48.262 47.237 47.237     47.237 

5M-10J-V1-P1-S2-D9 65.448 61.792 61.792     61.792 

5M-10J-V1-P1-S2-D10 68 68       68.000 

G
R

O
U

P
 1

9
 

5M-10J-V1-P2-S1-D1 62.137 62.137       62.137 

5M-10J-V1-P2-S1-D2 44.021 44.021       44.021 

5M-10J-V1-P2-S1-D3 60.601 60.601       60.601 

5M-10J-V1-P2-S1-D4 49.664 49.664       49.664 

5M-10J-V1-P2-S1-D5 63.979 63.979       63.979 

5M-10J-V1-P2-S1-D6 63.232 63.232       63.232 

5M-10J-V1-P2-S1-D7 82.472 82.472       82.472 

5M-10J-V1-P2-S1-D8 55.173 55.173       55.173 

5M-10J-V1-P2-S1-D9 60.788 59.358 57.86 57.86   57.860 

5M-10J-V1-P2-S1-D10 69.334 69.334       69.334 

G
R

O
U

P
 2

0
 

5M-10J-V1-P2-S2-D1 63.253 63.253       63.253 

5M-10J-V1-P2-S2-D2 46.554 46.554       46.554 

5M-10J-V1-P2-S2-D3 62.41 62.41       62.410 

5M-10J-V1-P2-S2-D4 49.983 49.983       49.983 

5M-10J-V1-P2-S2-D5 65.011 65.011       65.011 

5M-10J-V1-P2-S2-D6 63.462 63.462       63.462 

5M-10J-V1-P2-S2-D7 80.645 80.645       80.645 

5M-10J-V1-P2-S2-D8 54.557 54.557       54.557 

5M-10J-V1-P2-S2-D9 58.21 58.21       58.210 

5M-10J-V1-P2-S2-D10 70.223 66.443 66.443     66.443 

*H is the reputation time 
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H 100 

Cmax 

H 200 

Cmax 

H 400 

Cmax 

H 800 

Cmax 

H 1600 

Cmax 

H-Best 

Cmax 

G
R

O
U

P
 2

1
 

5M-10J-V2-P1-S1-D1 61.492 60.215 58.173 56.132 56.132 56.132 

5M-10J-V2-P1-S1-D2 49.958 49.491       49.491 

5M-10J-V2-P1-S1-D3 76.605 70.92 70.92     70.920 

5M-10J-V2-P1-S1-D4 45.335 45.335       45.335 

5M-10J-V2-P1-S1-D5 54.509 53.128 52.984     52.984 

5M-10J-V2-P1-S1-D6 56.036 56.036       56.036 

5M-10J-V2-P1-S1-D7 52.542 52.283       52.283 

5M-10J-V2-P1-S1-D8 46.011 46.011       46.011 

5M-10J-V2-P1-S1-D9 60.624 60.624       60.624 

5M-10J-V2-P1-S1-D10 67.581 65.963 65.963     65.963 

G
R

O
U

P
 2

2
 

5M-10J-V2-P1-S2-D1 59.96 58.241 58.241     58.241 

5M-10J-V2-P1-S2-D2 49.491 47.83 47.83     47.830 

5M-10J-V2-P1-S2-D3 72.889 72.889       72.889 

5M-10J-V2-P1-S2-D4 43.765 43.765       43.765 

5M-10J-V2-P1-S2-D5 56.729 53.128 51.327 51.327   51.327 

5M-10J-V2-P1-S2-D6 58.373 57.567 57.567     57.567 

5M-10J-V2-P1-S2-D7 53.309 52.05 51.399 50.965   50.965 

5M-10J-V2-P1-S2-D8 45.642 45.081 45.081     45.081 

5M-10J-V2-P1-S2-D9 61.466 60.023 60.023     60.023 

5M-10J-V2-P1-S2-D10 71.556 67.581 67.581     67.581 

G
R

O
U

P
 2

3
 

5M-10J-V2-P2-S1-D1 61.492 61.492       61.492 

5M-10J-V2-P2-S1-D2 52.282 51.12 50.267 48.37 48.37 48.370 

5M-10J-V2-P2-S1-D3 62.578 60.571 60.571     60.571 

5M-10J-V2-P2-S1-D4 50.691 48.284 48.284     48.284 

5M-10J-V2-P2-S1-D5 60.562 60.562       60.562 

5M-10J-V2-P2-S1-D6 61.165 56.038 56.038     56.038 

5M-10J-V2-P2-S1-D7 62.001 59.949 59.949     59.949 

5M-10J-V2-P2-S1-D8 49.608 49.608       49.608 

5M-10J-V2-P2-S1-D9 57.987 57.987       57.987 

5M-10J-V2-P2-S1-D10 61.183 58.636 58.636     58.636 

G
R

O
U

P
 2

4
 

5M-10J-V2-P2-S2-D1 58.241 58.241       58.241 

5M-10J-V2-P2-S2-D2 51.308 51.308       51.308 

5M-10J-V2-P2-S2-D3 64.134 62.055 62.055     62.055 

5M-10J-V2-P2-S2-D4 47.299 47.299       47.299 

5M-10J-V2-P2-S2-D5 61.197 61.197       61.197 

5M-10J-V2-P2-S2-D6 58.373 55.768 55.768     55.768 

5M-10J-V2-P2-S2-D7 63.149 62.255 62.255     62.255 

5M-10J-V2-P2-S2-D8 50.713 50.713       50.713 

5M-10J-V2-P2-S2-D9 58.336 58.336       58.336 

5M-10J-V2-P2-S2-D10 57.902 57.902       57.902 

*H is the reputation time 
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H 100 

Cmax 

H 200 

Cmax 

H 400 

Cmax 

H 800 

Cmax 

H 1600 

Cmax 

H-Best 

Cmax 

G
R

O
U

P
 2

5
 

5M-20J-V1-P1-S1-D1 127.859 127.859       127.859 

5M-20J-V1-P1-S1-D2 98.466 98.378       98.378 

5M-20J-V1-P1-S1-D3 128.175 127.571       127.571 

5M-20J-V1-P1-S1-D4 110.342 106.338 106.076     106.076 

5M-20J-V1-P1-S1-D5 107.912 104.56 103.507 103.507   103.507 

5M-20J-V1-P1-S1-D6 95.208 93.69 93.581     93.581 

5M-20J-V1-P1-S1-D7 105.083 104.2       104.200 

5M-20J-V1-P1-S1-D8 94.164 93.243       93.243 

5M-20J-V1-P1-S1-D9 135.432 130.184 130.184     130.184 

5M-20J-V1-P1-S1-D10 104.355 104.355       104.355 

G
R

O
U

P
 2

6
 

5M-20J-V1-P1-S2-D1 129.616 129.616       129.616 

5M-20J-V1-P1-S2-D2 99.535 97.221 97.221     97.221 

5M-20J-V1-P1-S2-D3 129.108 126.888 126.888     126.888 

5M-20J-V1-P1-S2-D4 110.277 110.277       110.277 

5M-20J-V1-P1-S2-D5 101.432 101.432       101.432 

5M-20J-V1-P1-S2-D6 93.731 93.731       93.731 

5M-20J-V1-P1-S2-D7 103.776 103.776       103.776 

5M-20J-V1-P1-S2-D8 95.422 95.181       95.181 

5M-20J-V1-P1-S2-D9 137.491 136.854       136.854 

5M-20J-V1-P1-S2-D10 104.399 104.399       104.399 

G
R

O
U

P
 2

7
 

5M-20J-V1-P2-S1-D1 107.246 107.246       107.246 

5M-20J-V1-P2-S1-D2 97.221 91.81 91.81     91.810 

5M-20J-V1-P2-S1-D3 119.879 117.195 115.433 115.433   115.433 

5M-20J-V1-P2-S1-D4 115.528 113.12 113.12     113.120 

5M-20J-V1-P2-S1-D5 127.2 124.83 124.442     124.442 

5M-20J-V1-P2-S1-D6 99.095 94.036 94.036     94.036 

5M-20J-V1-P2-S1-D7 101.803 101.803       101.803 

5M-20J-V1-P2-S1-D8 143.016 143.016       143.016 

5M-20J-V1-P2-S1-D9 132.388 132.388       132.388 

5M-20J-V1-P2-S1-D10 120.559 119.514       119.514 

G
R

O
U

P
 2

8
 

5M-20J-V1-P2-S2-D1 107.747 107.242       107.242 

5M-20J-V1-P2-S2-D2 94.204 94.204       94.204 

5M-20J-V1-P2-S2-D3 117.64 117.64       117.640 

5M-20J-V1-P2-S2-D4 114.435 114.215       114.215 

5M-20J-V1-P2-S2-D5 121.385 121.385       121.385 

5M-20J-V1-P2-S2-D6 99.679 95.871 94.977     94.977 

5M-20J-V1-P2-S2-D7 98.371 98.371       98.371 

5M-20J-V1-P2-S2-D8 155.772 143.553 143.553     143.553 

5M-20J-V1-P2-S2-D9 131.434 131.434       131.434 

5M-20J-V1-P2-S2-D10 121.626 121.626       121.626 

*H is the reputation time 
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H 100 

Cmax 

H 200 

Cmax 

H 400 

Cmax 

H 800 

Cmax 

H 1600 

Cmax 

H-Best 

Cmax 
G

R
O

U
P

 2
9
 

5M-20J-V2-P1-S1-D1 114.859 113.226 113.226     113.226 

5M-20J-V2-P1-S1-D2 109.78 109.78       109.780 

5M-20J-V2-P1-S1-D3 131.936 131.936       131.936 

5M-20J-V2-P1-S1-D4 102.601 101.51 101.51     101.510 

5M-20J-V2-P1-S1-D5 104.89 104.89       104.890 

5M-20J-V2-P1-S1-D6 104.804 104.804       104.804 

5M-20J-V2-P1-S1-D7 101.421 101.421       101.421 

5M-20J-V2-P1-S1-D8 101.858 101.858       101.858 

5M-20J-V2-P1-S1-D9 123.724 123.724       123.724 

5M-20J-V2-P1-S1-D10 108.637 108.637       108.637 

G
R

O
U

P
 3

0
 

5M-20J-V2-P1-S2-D1 117.779 117.719       117.719 

5M-20J-V2-P1-S2-D2 109.932 109.932       109.932 

5M-20J-V2-P1-S2-D3 135.985 133.95 133.433     133.433 

5M-20J-V2-P1-S2-D4 101.435 101.435       101.435 

5M-20J-V2-P1-S2-D5 106.122 106.122       106.122 

5M-20J-V2-P1-S2-D6 105.984 105.984       105.984 

5M-20J-V2-P1-S2-D7 99.24 99.24       99.240 

5M-20J-V2-P1-S2-D8 102.796 102.796       102.796 

5M-20J-V2-P1-S2-D9 124.207 124.207       124.207 

5M-20J-V2-P1-S2-D10 109.607 109.607       109.607 

G
R

O
U

P
 3

1
 

5M-20J-V2-P2-S1-D1 110.27 107.833 107.833     107.833 

5M-20J-V2-P2-S1-D2 108.423 107.381       107.381 

5M-20J-V2-P2-S1-D3 122.874 122.874       122.874 

5M-20J-V2-P2-S1-D4 107.75 107.689       107.689 

5M-20J-V2-P2-S1-D5 119.121 119.121       119.121 

5M-20J-V2-P2-S1-D6 105.828 102.968 102.968     102.968 

5M-20J-V2-P2-S1-D7 103.719 102.431 101.016 101.016   101.016 

5M-20J-V2-P2-S1-D8 120.088 120.088       120.088 

5M-20J-V2-P2-S1-D9 121.139 118.777 118.777     118.777 

5M-20J-V2-P2-S1-D10 117.481 117.481       117.481 

G
R

O
U

P
 3

2
 

5M-20J-V2-P2-S2-D1 114.301 113.212       113.212 

5M-20J-V2-P2-S2-D2 108.007 108.007       108.007 

5M-20J-V2-P2-S2-D3 122.477 122.477       122.477 

5M-20J-V2-P2-S2-D4 107.689 107.689       107.689 

5M-20J-V2-P2-S2-D5 117.793 117.793       117.793 

5M-20J-V2-P2-S2-D6 107.453 105.828 103.868 103.868   103.868 

5M-20J-V2-P2-S2-D7 103.719 103.719       103.719 

5M-20J-V2-P2-S2-D8 121.496 121.496       121.496 

5M-20J-V2-P2-S2-D9 119.383 117.212 117.212     117.212 

5M-20J-V2-P2-S2-D10 117.765 115.522 115.522     115.522 

*H is the reputation time 
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APPENDIX 3 – COMPARISON FOR INITIAL HEURISTIC AND 

IMPROVED HEURISTIC SOLUTIONS 

  

Initial 

Heuristic Cmax 

Improved 

Heuristic Cmax 
% Gap 

G
R

O
U

P
 1

 

3M-6J-V1-P1-S1-D1 104.591 46.611 124.39% 

3M-6J-V1-P1-S1-D2 108.263 52.265 107.14% 

3M-6J-V1-P1-S1-D3 64.764 64.764 0.00% 

3M-6J-V1-P1-S1-D4 67.331 67.331 0.00% 

3M-6J-V1-P1-S1-D5 72.091 72.091 0.00% 

3M-6J-V1-P1-S1-D6 40.941 40.941 0.00% 

3M-6J-V1-P1-S1-D7 44.33 44.330 0.00% 

3M-6J-V1-P1-S1-D8 92.278 44.693 106.47% 

3M-6J-V1-P1-S1-D9 122.424 57.809 111.77% 

3M-6J-V1-P1-S1-D10 188.359 56.346 234.29% 

G
R

O
U

P
 2

 

3M-6J-V1-P1-S2-D1 64.798 48.342 34.04% 

3M-6J-V1-P1-S2-D2 94.072 51.890 81.29% 

3M-6J-V1-P1-S2-D3 62.41 62.410 0.00% 

3M-6J-V1-P1-S2-D4 67.331 67.331 0.00% 

3M-6J-V1-P1-S2-D5 217.449 69.751 211.75% 

3M-6J-V1-P1-S2-D6 71.647 44.353 61.54% 

3M-6J-V1-P1-S2-D7 95.939 45.254 112.00% 

3M-6J-V1-P1-S2-D8 85.443 47.848 78.57% 

3M-6J-V1-P1-S2-D9 223.128 57.839 285.77% 

3M-6J-V1-P1-S2-D10 127.461 56.664 124.94% 

G
R

O
U

P
 3

 

3M-6J-V1-P2-S1-D1 73.027 49.370 47.92% 

3M-6J-V1-P2-S1-D2 158.661 65.991 140.43% 

3M-6J-V1-P2-S1-D3 123.976 55.438 123.63% 

3M-6J-V1-P2-S1-D4 93.387 72.422 28.95% 

3M-6J-V1-P2-S1-D5 75.238 52.066 44.51% 

3M-6J-V1-P2-S1-D6 46.47 46.470 0.00% 

3M-6J-V1-P2-S1-D7 66.495 50.795 30.91% 

3M-6J-V1-P2-S1-D8 48.695 48.695 0.00% 

3M-6J-V1-P2-S1-D9 83.421 56.346 48.05% 

3M-6J-V1-P2-S1-D10 99.729 49.493 101.50% 

G
R

O
U

P
 4

 

3M-6J-V1-P2-S2-D1 51.427 51.427 0.00% 

3M-6J-V1-P2-S2-D2 94.072 65.331 43.99% 

3M-6J-V1-P2-S2-D3 92.397 55.174 67.46% 

3M-6J-V1-P2-S2-D4 72.422 72.422 0.00% 

3M-6J-V1-P2-S2-D5 78.766 54.077 45.66% 

3M-6J-V1-P2-S2-D6 92.96 46.400 100.34% 

3M-6J-V1-P2-S2-D7 77.424 49.952 55.00% 

3M-6J-V1-P2-S2-D8 50.84 50.840 0.00% 

3M-6J-V1-P2-S2-D9 165.865 56.346 194.37% 

3M-6J-V1-P2-S2-D10 62.708 49.109 27.69% 
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Initial 

Heuristic Cmax 

Improvement 

Heuristic Cmax 
% Gap 

G
R

O
U

P
 5

 

3M-6J-V2-P1-S1-D1 77.647 46.686 66.32% 

3M-6J-V2-P1-S1-D2 40.664 40.664 0.00% 

3M-6J-V2-P1-S1-D3 108.371 67.851 59.72% 

3M-6J-V2-P1-S1-D4 94.638 53.590 76.60% 

3M-6J-V2-P1-S1-D5 96.246 62.388 54.27% 

3M-6J-V2-P1-S1-D6 80.901 42.995 88.16% 

3M-6J-V2-P1-S1-D7 84.26 44.407 89.74% 

3M-6J-V2-P1-S1-D8 78.984 41.749 89.19% 

3M-6J-V2-P1-S1-D9 104.507 57.952 80.33% 

3M-6J-V2-P1-S1-D10 113.939 64.717 76.06% 

G
R

O
U

P
 6

 

3M-6J-V2-P1-S2-D1 82.997 48.225 72.10% 

3M-6J-V2-P1-S2-D2 72.395 39.979 81.08% 

3M-6J-V2-P1-S2-D3 97.761 66.881 46.17% 

3M-6J-V2-P1-S2-D4 79.815 54.730 45.83% 

3M-6J-V2-P1-S2-D5 103.979 62.388 66.67% 

3M-6J-V2-P1-S2-D6 56.157 43.873 28.00% 

3M-6J-V2-P1-S2-D7 92.698 44.885 106.52% 

3M-6J-V2-P1-S2-D8 80.066 42.618 87.87% 

3M-6J-V2-P1-S2-D9 104.507 57.952 80.33% 

3M-6J-V2-P1-S2-D10 112.116 62.894 78.26% 

G
R

O
U

P
 7

 

3M-6J-V2-P2-S1-D1 70.482 50.079 40.74% 

3M-6J-V2-P2-S1-D2 48.624 48.624 0.00% 

3M-6J-V2-P2-S1-D3 119.111 58.579 103.33% 

3M-6J-V2-P2-S1-D4 91.127 54.910 65.96% 

3M-6J-V2-P2-S1-D5 85.432 56.336 51.65% 

3M-6J-V2-P2-S1-D6 46.505 46.505 0.00% 

3M-6J-V2-P2-S1-D7 85.737 51.077 67.86% 

3M-6J-V2-P2-S1-D8 82.234 46.967 75.09% 

3M-6J-V2-P2-S1-D9 78.934 54.954 43.64% 

3M-6J-V2-P2-S1-D10 55.759 55.759 0.00% 

G
R

O
U

P
 8

 

3M-6J-V2-P2-S2-D1 68.627 49.411 38.89% 

3M-6J-V2-P2-S2-D2 70.048 48.624 44.06% 

3M-6J-V2-P2-S2-D3 120.941 58.158 107.95% 

3M-6J-V2-P2-S2-D4 100.51 55.182 82.14% 

3M-6J-V2-P2-S2-D5 89.584 55.152 62.43% 

3M-6J-V2-P2-S2-D6 47.383 47.383 0.00% 

3M-6J-V2-P2-S2-D7 67.495 51.077 32.14% 

3M-6J-V2-P2-S2-D8 75.381 47.970 57.14% 

3M-6J-V2-P2-S2-D9 55.857 55.857 0.00% 

3M-6J-V2-P2-S2-D10 108.573 55.932 94.12% 
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Initial 

Heuristic Cmax 

Improvement 

Heuristic Cmax 
% Gap 

G
R

O
U

P
 9

 

3M-12J-V1-P1-S1-D1 317.973 116.857 172.10% 

3M-12J-V1-P1-S1-D2 114.188 76.418 49.43% 

3M-12J-V1-P1-S1-D3 139.285 115.152 20.96% 

3M-12J-V1-P1-S1-D4 117.771 84.496 39.38% 

3M-12J-V1-P1-S1-D5 250.841 110.132 127.76% 

3M-12J-V1-P1-S1-D6 143.652 91.070 57.74% 

3M-12J-V1-P1-S1-D7 145.666 145.666 0.00% 

3M-12J-V1-P1-S1-D8 109.474 87.579 25.00% 

3M-12J-V1-P1-S1-D9 199.035 96.074 107.17% 

3M-12J-V1-P1-S1-D10 175.169 125.334 39.76% 

G
R

O
U

P
 1

0
 

3M-12J-V1-P1-S2-D1 193.055 117.347 64.52% 

3M-12J-V1-P1-S2-D2 86.08 78.681 9.40% 

3M-12J-V1-P1-S2-D3 161.784 114.990 40.69% 

3M-12J-V1-P1-S2-D4 121.723 85.365 42.59% 

3M-12J-V1-P1-S2-D5 147.613 111.300 32.63% 

3M-12J-V1-P1-S2-D6 135.954 89.868 51.28% 

3M-12J-V1-P1-S2-D7 303.258 145.117 108.97% 

3M-12J-V1-P1-S2-D8 133.991 88.130 52.04% 

3M-12J-V1-P1-S2-D9 151.075 98.163 53.90% 

3M-12J-V1-P1-S2-D10 136.001 124.430 9.30% 

G
R

O
U

P
 1

1
 

3M-12J-V1-P2-S1-D1 114.834 100.480 14.29% 

3M-12J-V1-P2-S1-D2 106.283 81.270 30.78% 

3M-12J-V1-P2-S1-D3 170.238 105.238 61.76% 

3M-12J-V1-P2-S1-D4 157.91 92.807 70.15% 

3M-12J-V1-P2-S1-D5 157.113 105.229 49.31% 

3M-12J-V1-P2-S1-D6 203.184 95.135 113.57% 

3M-12J-V1-P2-S1-D7 261.116 145.516 79.44% 

3M-12J-V1-P2-S1-D8 147.008 96.524 52.30% 

3M-12J-V1-P2-S1-D9 107.91 94.682 13.97% 

3M-12J-V1-P2-S1-D10 333.282 161.433 106.45% 

G
R

O
U

P
 1

2
 

3M-12J-V1-P2-S2-D1 101.145 101.145 0.00% 

3M-12J-V1-P2-S2-D2 99.256 80.810 22.83% 

3M-12J-V1-P2-S2-D3 132.026 105.053 25.68% 

3M-12J-V1-P2-S2-D4 189.77 91.507 107.38% 

3M-12J-V1-P2-S2-D5 205.324 106.726 92.38% 

3M-12J-V1-P2-S2-D6 131.726 93.509 40.87% 

3M-12J-V1-P2-S2-D7 173.5 145.516 19.23% 

3M-12J-V1-P2-S2-D8 125.113 96.333 29.88% 

3M-12J-V1-P2-S2-D9 131.891 96.074 37.28% 

3M-12J-V1-P2-S2-D10 267.32 162.798 64.20% 
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Initial 

Heuristic Cmax 

Improvement 

Heuristic Cmax 
% Gap 

G
R

O
U

P
 1

3
 

3M-12J-V2-P1-S1-D1 158.077 111.744 41.46% 

3M-12J-V2-P1-S1-D2 178.581 92.181 93.73% 

3M-12J-V2-P1-S1-D3 241.227 124.146 94.31% 

3M-12J-V2-P1-S1-D4 137.468 90.554 51.81% 

3M-12J-V2-P1-S1-D5 161.788 105.784 52.94% 

3M-12J-V2-P1-S1-D6 96.586 96.586 0.00% 

3M-12J-V2-P1-S1-D7 189.26 110.194 71.75% 

3M-12J-V2-P1-S1-D8 128.53 89.255 44.00% 

3M-12J-V2-P1-S1-D9 130.867 106.993 22.31% 

3M-12J-V2-P1-S1-D10 160 111.310 43.74% 

G
R

O
U

P
 1

4
 

3M-12J-V2-P1-S2-D1 133.954 110.836 20.86% 

3M-12J-V2-P1-S2-D2 91.998 91.998 0.00% 

3M-12J-V2-P1-S2-D3 188.742 127.174 48.41% 

3M-12J-V2-P1-S2-D4 177.835 91.732 93.86% 

3M-12J-V2-P1-S2-D5 141.95 106.821 32.89% 

3M-12J-V2-P1-S2-D6 142.733 97.196 46.85% 

3M-12J-V2-P1-S2-D7 168.78 110.224 53.12% 

3M-12J-V2-P1-S2-D8 155.911 88.241 76.69% 

3M-12J-V2-P1-S2-D9 146.284 107.877 35.60% 

3M-12J-V2-P1-S2-D10 231.564 110.316 109.91% 

G
R

O
U

P
 1

5
 

3M-12J-V2-P2-S1-D1 194.709 106.521 82.79% 

3M-12J-V2-P2-S1-D2 139.141 96.529 44.14% 

3M-12J-V2-P2-S1-D3 163.899 114.016 43.75% 

3M-12J-V2-P2-S1-D4 170.442 97.100 75.53% 

3M-12J-V2-P2-S1-D5 179.92 109.200 64.76% 

3M-12J-V2-P2-S1-D6 191.777 101.969 88.07% 

3M-12J-V2-P2-S1-D7 206.672 115.325 79.21% 

3M-12J-V2-P2-S1-D8 117.44 98.795 18.87% 

3M-12J-V2-P2-S1-D9 161.816 106.109 52.50% 

3M-12J-V2-P2-S1-D10 126.027 126.027 0.00% 

G
R

O
U

P
 1

6
 

3M-12J-V2-P2-S2-D1 203.735 107.391 89.71% 

3M-12J-V2-P2-S2-D2 115.214 95.791 20.28% 

3M-12J-V2-P2-S2-D3 151.689 116.229 30.51% 

3M-12J-V2-P2-S2-D4 127.831 99.115 28.97% 

3M-12J-V2-P2-S2-D5 217.36 108.160 100.96% 

3M-12J-V2-P2-S2-D6 148.546 100.879 47.25% 

3M-12J-V2-P2-S2-D7 182.693 116.467 56.86% 

3M-12J-V2-P2-S2-D8 211.978 97.369 117.71% 

3M-12J-V2-P2-S2-D9 165.09 104.714 57.66% 

3M-12J-V2-P2-S2-D10 299.028 126.697 136.02% 
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Initial 

Heuristic Cmax 

Improvement 

Heuristic Cmax 
% Gap 

G
R

O
U

P
 1

7
 

5M-10J-V1-P1-S1-D1 174.128 58.964 195.31% 

5M-10J-V1-P1-S1-D2 108.263 45.714 136.83% 

5M-10J-V1-P1-S1-D3 124.323 68.520 81.44% 

5M-10J-V1-P1-S1-D4 180.729 43.072 319.60% 

5M-10J-V1-P1-S1-D5 98.779 57.905 70.59% 

5M-10J-V1-P1-S1-D6 178.199 59.801 197.99% 

5M-10J-V1-P1-S1-D7 212.677 55.545 282.89% 

5M-10J-V1-P1-S1-D8 67.769 46.415 46.01% 

5M-10J-V1-P1-S1-D9 100.543 62.859 59.95% 

5M-10J-V1-P1-S1-D10 168.123 67.651 148.52% 

G
R

O
U

P
 1

8
 

5M-10J-V1-P1-S2-D1 58.936 58.936 0.00% 

5M-10J-V1-P1-S2-D2 106.396 44.798 137.50% 

5M-10J-V1-P1-S2-D3 126.347 65.303 93.48% 

5M-10J-V1-P1-S2-D4 138.084 44.339 211.43% 

5M-10J-V1-P1-S2-D5 98.647 60.175 63.93% 

5M-10J-V1-P1-S2-D6 112.253 60.163 86.58% 

5M-10J-V1-P1-S2-D7 57.459 57.459 0.00% 

5M-10J-V1-P1-S2-D8 85.824 47.237 81.69% 

5M-10J-V1-P1-S2-D9 117.315 61.792 89.85% 

5M-10J-V1-P1-S2-D10 109.934 68.000 61.67% 

G
R

O
U

P
 1

9
 

5M-10J-V1-P2-S1-D1 99.568 62.137 60.24% 

5M-10J-V1-P2-S1-D2 169.86 44.021 285.86% 

5M-10J-V1-P2-S1-D3 127.533 60.601 110.45% 

5M-10J-V1-P2-S1-D4 116.311 49.664 134.20% 

5M-10J-V1-P2-S1-D5 63.979 63.979 0.00% 

5M-10J-V1-P2-S1-D6 329.571 63.232 421.21% 

5M-10J-V1-P2-S1-D7 100.681 82.472 22.08% 

5M-10J-V1-P2-S1-D8 76.191 55.173 38.09% 

5M-10J-V1-P2-S1-D9 123.964 57.860 114.25% 

5M-10J-V1-P2-S1-D10 154.632 69.334 123.02% 

G
R

O
U

P
 2

0
 

5M-10J-V1-P2-S2-D1 174.128 63.253 175.29% 

5M-10J-V1-P2-S2-D2 76.53 46.554 64.39% 

5M-10J-V1-P2-S2-D3 120.714 62.410 93.42% 

5M-10J-V1-P2-S2-D4 108.947 49.983 117.97% 

5M-10J-V1-P2-S2-D5 155.377 65.011 139.00% 

5M-10J-V1-P2-S2-D6 148.974 63.462 134.75% 

5M-10J-V1-P2-S2-D7 105.218 80.645 30.47% 

5M-10J-V1-P2-S2-D8 73.442 54.557 34.62% 

5M-10J-V1-P2-S2-D9 149.752 58.210 157.26% 

5M-10J-V1-P2-S2-D10 110.667 66.443 66.56% 
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Initial 

Heuristic Cmax 

Improvement 

Heuristic Cmax 
% Gap 

G
R

O
U

P
 2

1
 

5M-10J-V2-P1-S1-D1 76.019 56.132 35.43% 

5M-10J-V2-P1-S1-D2 49.491 49.491 0.00% 

5M-10J-V2-P1-S1-D3 150.24 70.920 111.84% 

5M-10J-V2-P1-S1-D4 78.465 45.335 73.08% 

5M-10J-V2-P1-S1-D5 112.457 52.984 112.25% 

5M-10J-V2-P1-S1-D6 123.703 56.036 120.76% 

5M-10J-V2-P1-S1-D7 94.315 52.283 80.39% 

5M-10J-V2-P1-S1-D8 63.898 46.011 38.88% 

5M-10J-V2-P1-S1-D9 96.258 60.624 58.78% 

5M-10J-V2-P1-S1-D10 105.783 65.963 60.37% 

G
R

O
U

P
 2

2
 

5M-10J-V2-P1-S2-D1 105.904 58.241 81.84% 

5M-10J-V2-P1-S2-D2 94.107 47.830 96.75% 

5M-10J-V2-P1-S2-D3 145.779 72.889 100.00% 

5M-10J-V2-P1-S2-D4 92.203 43.765 110.68% 

5M-10J-V2-P1-S2-D5 51.327 51.327 0.00% 

5M-10J-V2-P1-S2-D6 93.546 57.567 62.50% 

5M-10J-V2-P1-S2-D7 79.928 50.965 56.83% 

5M-10J-V2-P1-S2-D8 105.509 45.081 134.04% 

5M-10J-V2-P1-S2-D9 127.57 60.023 112.54% 

5M-10J-V2-P1-S2-D10 152.9 67.581 126.25% 

G
R

O
U

P
 2

3
 

5M-10J-V2-P2-S1-D1 133.233 61.492 116.67% 

5M-10J-V2-P2-S1-D2 119.139 48.370 146.31% 

5M-10J-V2-P2-S1-D3 146.974 60.571 142.65% 

5M-10J-V2-P2-S1-D4 73.654 48.284 52.54% 

5M-10J-V2-P2-S1-D5 184.714 60.562 205.00% 

5M-10J-V2-P2-S1-D6 135.424 56.038 141.66% 

5M-10J-V2-P2-S1-D7 90.808 59.949 51.48% 

5M-10J-V2-P2-S1-D8 71.881 49.608 44.90% 

5M-10J-V2-P2-S1-D9 162.362 57.987 180.00% 

5M-10J-V2-P2-S1-D10 126.217 58.636 115.26% 

G
R

O
U

P
 2

4
 

5M-10J-V2-P2-S2-D1 111.822 58.241 92.00% 

5M-10J-V2-P2-S2-D2 75.153 51.308 46.47% 

5M-10J-V2-P2-S2-D3 115.062 62.055 85.42% 

5M-10J-V2-P2-S2-D4 113.309 47.299 139.56% 

5M-10J-V2-P2-S2-D5 222.86 61.197 264.17% 

5M-10J-V2-P2-S2-D6 55.768 55.768 0.00% 

5M-10J-V2-P2-S2-D7 83.007 62.255 33.33% 

5M-10J-V2-P2-S2-D8 80.127 50.713 58.00% 

5M-10J-V2-P2-S2-D9 125.823 58.336 115.69% 

5M-10J-V2-P2-S2-D10 103.246 57.902 78.31% 
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Initial 

Heuristic Cmax 

Improvement 

Heuristic Cmax 
% Gap 

G
R

O
U

P
 2

5
 

5M-20J-V1-P1-S1-D1 187.637 127.859 46.75% 

5M-20J-V1-P1-S1-D2 124.723 98.378 26.78% 

5M-20J-V1-P1-S1-D3 267.439 127.571 109.64% 

5M-20J-V1-P1-S1-D4 131.5 106.076 23.97% 

5M-20J-V1-P1-S1-D5 211.12 103.507 103.97% 

5M-20J-V1-P1-S1-D6 105.875 93.581 13.14% 

5M-20J-V1-P1-S1-D7 147.483 104.200 41.54% 

5M-20J-V1-P1-S1-D8 129.874 93.243 39.29% 

5M-20J-V1-P1-S1-D9 228.256 130.184 75.33% 

5M-20J-V1-P1-S1-D10 192.696 104.355 84.65% 

G
R

O
U

P
 2

6
 

5M-20J-V1-P1-S2-D1 273.777 129.616 111.22% 

5M-20J-V1-P1-S2-D2 181.71 97.221 86.90% 

5M-20J-V1-P1-S2-D3 171.045 126.888 34.80% 

5M-20J-V1-P1-S2-D4 164.102 110.277 48.81% 

5M-20J-V1-P1-S2-D5 229.037 101.432 125.80% 

5M-20J-V1-P1-S2-D6 114.369 93.731 22.02% 

5M-20J-V1-P1-S2-D7 134.906 103.776 30.00% 

5M-20J-V1-P1-S2-D8 138.835 95.181 45.86% 

5M-20J-V1-P1-S2-D9 250.673 136.854 83.17% 

5M-20J-V1-P1-S2-D10 146.755 104.399 40.57% 

G
R

O
U

P
 2

7
 

5M-20J-V1-P2-S1-D1 280.819 107.246 161.85% 

5M-20J-V1-P2-S1-D2 113.839 91.810 23.99% 

5M-20J-V1-P2-S1-D3 155.085 115.433 34.35% 

5M-20J-V1-P2-S1-D4 207.366 113.120 83.32% 

5M-20J-V1-P2-S1-D5 239.713 124.442 92.63% 

5M-20J-V1-P2-S1-D6 140.889 94.036 49.82% 

5M-20J-V1-P2-S1-D7 248.609 101.803 144.21% 

5M-20J-V1-P2-S1-D8 231.55 143.016 61.90% 

5M-20J-V1-P2-S1-D9 234.413 132.388 77.07% 

5M-20J-V1-P2-S1-D10 191.222 119.514 60.00% 

G
R

O
U

P
 2

8
 

5M-20J-V1-P2-S2-D1 185.246 107.242 72.74% 

5M-20J-V1-P2-S2-D2 210.645 94.204 123.61% 

5M-20J-V1-P2-S2-D3 150.56 117.640 27.98% 

5M-20J-V1-P2-S2-D4 334.83 114.215 193.16% 

5M-20J-V1-P2-S2-D5 177.348 121.385 46.10% 

5M-20J-V1-P2-S2-D6 171.735 94.977 80.82% 

5M-20J-V1-P2-S2-D7 261.129 98.371 165.45% 

5M-20J-V1-P2-S2-D8 195.059 143.553 35.88% 

5M-20J-V1-P2-S2-D9 219.509 131.434 67.01% 

5M-20J-V1-P2-S2-D10 206.673 121.626 69.93% 
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Initial 

Heuristic Cmax 

Improvement 

Heuristic Cmax 
% Gap 

G
R

O
U

P
 2

9
 

5M-20J-V2-P1-S1-D1 224.284 113.226 98.09% 

5M-20J-V2-P1-S1-D2 189.455 109.780 72.58% 

5M-20J-V2-P1-S1-D3 301.136 131.936 128.24% 

5M-20J-V2-P1-S1-D4 192.872 101.510 90.00% 

5M-20J-V2-P1-S1-D5 198.587 104.890 89.33% 

5M-20J-V2-P1-S1-D6 132.876 104.804 26.79% 

5M-20J-V2-P1-S1-D7 140.624 101.421 38.65% 

5M-20J-V2-P1-S1-D8 176.79 101.858 73.57% 

5M-20J-V2-P1-S1-D9 228.692 123.724 84.84% 

5M-20J-V2-P1-S1-D10 192.23 108.637 76.95% 

G
R

O
U

P
 3

0
 

5M-20J-V2-P1-S2-D1 171.387 117.719 45.59% 

5M-20J-V2-P1-S2-D2 177.89 109.932 61.82% 

5M-20J-V2-P1-S2-D3 180.279 133.433 35.11% 

5M-20J-V2-P1-S2-D4 177.22 101.435 74.71% 

5M-20J-V2-P1-S2-D5 203.045 106.122 91.33% 

5M-20J-V2-P1-S2-D6 150.02 105.984 41.55% 

5M-20J-V2-P1-S2-D7 127.498 99.240 28.47% 

5M-20J-V2-P1-S2-D8 145.651 102.796 41.69% 

5M-20J-V2-P1-S2-D9 221.583 124.207 78.40% 

5M-20J-V2-P1-S2-D10 219.214 109.607 100.00% 

G
R

O
U

P
 3

1
 

5M-20J-V2-P2-S1-D1 148.98 107.833 38.16% 

5M-20J-V2-P2-S1-D2 216.866 107.381 101.96% 

5M-20J-V2-P2-S1-D3 206.465 122.874 68.03% 

5M-20J-V2-P2-S1-D4 198.166 107.689 84.02% 

5M-20J-V2-P2-S1-D5 155.272 119.121 30.35% 

5M-20J-V2-P2-S1-D6 242.388 102.968 135.40% 

5M-20J-V2-P2-S1-D7 152.526 101.016 50.99% 

5M-20J-V2-P2-S1-D8 188.395 120.088 56.88% 

5M-20J-V2-P2-S1-D9 195.063 118.777 64.23% 

5M-20J-V2-P2-S1-D10 159.774 117.481 36.00% 

G
R

O
U

P
 3

2
 

5M-20J-V2-P2-S2-D1 211.831 113.212 87.11% 

5M-20J-V2-P2-S2-D2 190.783 108.007 76.64% 

5M-20J-V2-P2-S2-D3 253.579 122.477 107.04% 

5M-20J-V2-P2-S2-D4 169.478 107.689 57.38% 

5M-20J-V2-P2-S2-D5 194.394 117.793 65.03% 

5M-20J-V2-P2-S2-D6 145.041 103.868 39.64% 

5M-20J-V2-P2-S2-D7 157.816 103.719 52.16% 

5M-20J-V2-P2-S2-D8 206.776 121.496 70.19% 

5M-20J-V2-P2-S2-D9 176.904 117.212 50.93% 

5M-20J-V2-P2-S2-D10 185.059 115.522 60.19% 

 


