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ABSTRACT 

A MACHINE LEARNING APPLICATION FOR TRANSACTION PICKING 

IN A TIER-TO-TIER SBS/RS 

Arslan, Bartu 

MSc, Industrial Engineering 

Advisor: Assoc. Prof. Banu Y. EKREN 

July 2021 

With the recent growth of e-commerce, the order profiles have shifted towards smaller 

quantities with faster delivery time requests of customers. This change has led to 

companies seek for fast transaction processing automation technologies in operations 

of warehouses. Shuttle-based storage and retrieval system (SBS/RS) is an automated 

warehousing technology mostly utilized in large distribution centers because of its 

capability of processing high transaction rate. While the advantage of this system is its 

capability of processing high transaction rate by the excess numbers of shuttles in the 

system, a disadvantage is that the average utilization of shuttles is very low, compared 

to the lifting mechanisms in the system. Since a dedicated shuttle is assigned at each 

tier of an aisle, this system is also referred as tier-captive SBS/RS in literature. In an 

effort to balance the utilization levels of shuttles and lifts, a novel design referred as 

tier-to-tier SBS/RS is introduced. In that design, there is decreased number of shuttles 

in the system so that they are allowed to travel between tiers by using a separate lifting 

mechanism specifically dedicated for travel of them. This novel design not only 

balances the service lifts and shuttles, but also decreases the initial investment cost for 

the system by the decreased number of shuttles. However, those advantages cause a 

disadvantage, that is increased average cycle time per transaction performance metric 

in the system. In this thesis, in an effort to contribute on decreasing average cycle time 

per transaction performance metric, we apply a machine learning methodology for 

smart transaction processing in the system. Specifically, we apply Reinforcement 

Learning and Deep Reinforcement Learning methods for transaction selection of 

shuttles. The proposed approaches are compared with well-known First-in-First-out 
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(FIFO) and Shortest Process Time (SPT) selection rules. The results show that the 

proposed approaches outperform both FIFO and SPT rules, significantly. 

Keywords: Tier-to-tier SBS/RS, Reinforcement Learning, Deep Q-learning, 

Simulation modelling, Automated Warehousing
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ÖZ 

KATTAN KATA YOLCULUK EDEN SBS/RS’TE İŞLEM SEÇİMİ İÇİN 

BİR MAKİNE ÖĞRENMESİ UYGULAMASI 

Arslan, Bartu 

Yüksek Lisans Tezi, Endüstri Mühendisliği 

Danışman: Doç. Dr. Banu Y. EKREN 

Temmuz 2021 

E-ticaretin son zamanlarda büyümesiyle, sipariş profilleri daha küçük miktarlarda ve 

daha hızlı teslimat süreleri olacak şekilde değişti. Bu değişiklik, şirketlerin depo 

operasyonlarında hızlı işlem işleme otomasyon teknolojileri aramasına sebep oldu. 

Mekik tabanlı depolama ve çekme sistemi (SBS/RS), yüksek işlem miktarlarını işleme 

yeteneği nedeniyle çoğunlukla büyük dağıtım merkezlerinde kullanılan otomatik bir 

depo teknolojisidir. Bu sistemin avantajı, sistemdeki fazla sayıda mekik ile yüksek 

işlem miktarlarını işleme kabiliyeti iken, dezavantajı mekiklerin ortalama 

kullanımının, sistemdeki asansör mekanizmalarına göre çok düşük olmasıdır. Bir 

koridorun her katına özel bir mekik atandığından, bu sistem aynı zamanda literatürde 

sabit katlı SBS/RS olarak da anılır. Mekiklerin ve asansörlerin kullanım seviyelerini 

dengelemek amacıyla, kattan kata yolculuk eden SBS/RS olarak adlandırılan yeni bir 

tasarım tanıtıldı. Bu tasarımda, sistemde mekiklerin sayısı azalmıştır. Özellikle 

taşınmaları için ayrılmış ayrı bir asansör mekanizması kullanılarak katlar arasında 

hareket etmelerine izin verilir. Bu yeni tasarım yalnızca asansörleri ve mekikleri 

dengelemekle kalmaz, aynı zamanda servis araçlarının sayısının azalmasıyla sistemin 

ilk yatırım maliyetini de düşürür. Bununla birlikte, bu avantajlar bir dezavantaja 

dönüşür. Sistemdeki performans ölçütü olan işlem başına ortalama döngü süresinin 

artmasına neden olur. Bu tezde, işlem başına ortalama döngü süresini azaltmaya 

katkıda bulunmak amacıyla, sistemde akıllı işlem işleme için bir makine öğrenimi 

metodolojisi uyguluyoruz. Spesifik olarak, servis araçlarının işlem seçimi için 

Pekiştirmeli Öğrenme ve Derin Pekiştirmeli Öğrenme yöntemlerini uyguluyoruz. 

Önerilen yaklaşım, iyi bilinen İlk-Giren-İlk-Çıkar (FIFO) ve En Kısa İşlem Süresi 

(SPT) seçim kuralları ile karşılaştırılır. Sonuçlar, önerilen metotların her iki kuralı da 

önemli ölçüde aştığını göstermektedir. 
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CHAPTER 1 

INTRODUCTION 

Industry 4.0 developments, outbreak of Covid-19 and following e-commerce increase 

have led to increased investment on automated technologies within the facilities. The 

advancement on technologies such as RFID tags to deploy the goods, IoT 

implementations such as sensors have facilitated implementation of robotic 

technologies in warehouses to increase efficiency, reduce accidents within the facilities 

and increase the traceability of the products. 

A report of Mordor Intelligence (2020) shows that in 2020, Global Automated Material 

Handling (AMH) Market was valued at $55.907,4 million and expected to reach 

$112.083 million by 2026. According to another report of Mordor Intelligence (2020b), 

the Automated Storage and Retrieval (AS/RS) market is valued at $16.576,2 million 

in 2020 and is projected to reach $29.244,73 million by 2026. These reports show that 

AS/RS market has a big share in AMH market and expected to grow even more in the 

near future.  

AS/RS is an automated warehouse technology and it is designed to buffer, store and 

retrieve products (Romaine, 2020). This design is mostly utilized in inventory 

management systems, warehouses, and distribution centers. One of the biggest benefits 

of this system is that it does not require a large floor space, which is an important issue 

in warehouse operations. In Figure 1.1, Allied Market Research (2020) shows the 

market shares by type for 2019 and 2027. It is observed that all types of AS/RS market 

tend to increase in the future. 
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Figure 1.1. AS/RS market share by type 

Shuttle-based storage and retrieval system (SBS/RS) is an AS/RS system that is 

composed of automated vehicles (i.e. shuttles), storage racks and lifts. This system is 

commonly utilized in mini-load warehouses. A materials-handling systems supplier 

company named Dematic Group describes this system as “providing fast, increased 

storage density, increased accuracy and high throughput rates, used in warehouses, 

factories and distribution centres” (Dematic, n.d.). In this thesis, we refer this system 

as tier-captive SBS/RS, since the system has a dedicated shuttle in each tier of an aisle. 

The physical configuration of the tier-captive SBS/RS is shown in Figure 1.2. In a 

traditional tier-captive SBS/RS, a lifting mechanism is installed at each cross-aisle for 

travel of loads (i.e. totes) from/to input/output (I/O) points that are located at the 

ground level of each aisle. We refer this lifting mechanism as Lift 1 as shown in Figure 

1.2. A single lifting table is installed at left and right side of this mechanism helping to 

double the working capacity. Shuttles provide horizontal movement for totes between 

buffer and destination bays of the totes. One of the handicaps of this design is due to 

the excess numbers of shuttles in the system, the average utilizations of them are very 

low compared to the lifting mechanisms which are mostly bottlenecks.  
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Figure 1.2. Tier-captive SBS/RS design 

In this thesis, we study a novel SBS/RS design where the number of shuttles is 

decreased in the system so that those shuttles are allowed to travel between tiers. We 

refer this new design as tier-to-tier SBS/RS whose figure is shown in Figure 1.3. Note 

that instead of having a dedicated shuttle in each tier, the number of shuttles is 

decreased in the system so that we allow shuttles travel between tiers. This lifting 

mechanism dedicated for travel of shuttles between tiers is referred as Lift 2 in Figure 

1.3. With this design change, our aim is to balance the resource utilizations, lift and 

shuttles. In addition, since there is less number of shuttles, initial investment cost might 

be decreased (Küçükyaşar et al., 2020). 

Lift 1 

Shuttle Side view of the system 

Top view of the system Buffer 
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Figure 1.3. Tier-to-tier SBS/RS design 

Although the proposed system design balances the utilizations of lifts and shuttles and 

tends to decrease the initial investment costs, since the shuttles are able to travel 

between tiers, the average travel time of shuttles may tend to increase. This might 

cause increase of average cycle time of a transaction in the system. Here, cycle time is 

the time between when a transaction request is created in the system until it is disposed. 

Hence, cycle time performance metric includes waiting time of transactions in the 

system. In this work, we consider not only average cycle time per transaction 

performance metric but also average flow time per transaction performance metric 

which considers time between when a transaction is selected by a shuttle until it is 

disposed. In an effort to reduce average cycle time per transaction performance metric 

in the system, we apply a smart transaction selection policy, RL, in the system.  

The popularity of machine learning algorithms has increased recently due to increase 

of computing power of processors and graphics cards. Since developing analytical 

models for most real-world problems is hard and when an assumption changes in the 

system, that model may become invalid, more adaptive and learning algorithms might 

be proper for today’s dynamic industry environments. In this case, we study a Q-

Lift 1 

Shuttle 

Side view of the system 

Top view of the system Buffer 

Lift 2 

I/O point 



5 

learning algorithm because it is easy to implement, and might provide good results 

even for complex system designs. Hence, in this thesis, we search two main research 

questions: 

• Q1: Can a machine learning algorithm applicable for a tier-to-tier SBS/RS? 

• Q2: If so, does it produce better results compared to the traditional algorithms? 

For Q1, we propose a RL solution approach by using Q-learning. We compare the 

results with traditional algorithms such as First-in-First-out (FIFO) and Shortest 

Process Time (SPT). For Q2, we also develop a Deep Reinforcement Learning (DRL) 

model using Deep Q-learning (DQL) and compare the results with FIFO and SPT.  

1.1. AVS/RS Studies 

One of the earliest studies is completed by Ekren et al. (2010). They apply design of 

experiment to identify factors that affects the performance of an autonomous vehicle 

storage and retrieval (AVS/RS). They consider the average cycle time, average vehicle 

utilization and average lift utilization. Ekren & Heragu (2011) present a simulation-

based performance analysis of an AVS/RS. They aim to find the optimal values for 

number of autonomous vehicles and lifts in the system. Marchet et al. (2011) study a 

tier-captive AVS/RS and estimate the performance of the system through analytical 

model based on open queueing network. The model is validated through simulation. 

In their later work, Marchet et al. (2013) study trade-offs between tier-captive and tier-

to-tier AVS/RS by using simulation and propose a design framework. Ekren et al. 

(2013) present an analytical model for an AVS/RS by using semi-open queueing 

network (SOQN) modelling. They use an approximate method to solve the SOQN to 

obtain the performance measures. Ekren et al. (2014) model the AVS/RS by using an 

SOQN approach. They solve the network by applying matrix-geometric method. 

D’Antonio et al. (2019) propose an analytical model for an AVS/RS to evaluate the 

energy consumption. They validate their models by their simulation results. Ekren 

(2020b) studies a hierarchical solution approach for an AVS/RS design. The model 

aims to minimize two performance measures, average cycle time and average energy 

consumption per transaction performance metrics. Pareto-optimal solutions are 

provided in that work. A recent work is completed by Lerher et al. (2021). In their 

study, they propose a novel AVS/RS design with multiple-tier shuttle vehicles. They 

present an analytical model to estimate the performance of the system. Another recent 
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study was made by Jerman et al. (2021). They propose a novel AVS/RS design 

including lifts that carry a shuttle that move along the aisle. They utilize simulation 

modelling approach to analyze the throughput rate performance of the system. 

1.2. Tier-captive SBS/RS Studies 

Tier-captive SBS/RS designs have been studied well in the current literature. A novel 

SBS/RS study is proposed by Carlo & Vis (2012). Their design includes two non-

passing lifts and they compare this design’s performance with a single lifting system 

design. That paper studies a look-ahead strategy heuristic and treats the system as a 

scheduling problem. Lerher (2015) presents an analytical model for analyzing the 

performance of a double-deep SBS/RS design. Lerher et al. (2015a) presents a 

performance evaluation method for an SBS/RS and compare the system performance 

with a crane-based AS/RS design through simulation. They analyze the mean cycle 

time and throughput capacity as performance metrics. Lerher et al. (2015b) present an 

analytical model to evaluate performance metrics of an SBS/RS. Ekren et al. (2015) 

apply a class-based storage policy methodology where they also optimize the rack 

design of SBS/RS. They use simulation for the modelling purpose. Wang et al. (2015) 

propose an analytical model to solve task scheduling problem for an SBS/RS. They 

also implement sorting genetic algorithm to solve multi-objective optimization 

function. Lerher et al. (2016) present a method to calculate the throughput performance 

of an SBS/RS. Tappia et al. (2016) present an analytical model by using a novel 

queueing model to estimate the performance of an SBS/RS. Zou et al. (2016) present 

a fork-join queueing network approach for estimating the performance metrics for an 

SBS/RS.  Ekren (2017) provides a graph-based solution for an SBS/RS to evaluate the 

performance of the system using simulation modelling. She analyzes the average 

utilization of lifts and average cycle times of transactions. Eder, (2019) presents an 

analytical model using continuous time open queueing network with limited capacity 

approach for an SBS/RS. He aims to evaluate the performance of the system. The 

model is validated through simulation. Ekren (2020a) performs an experimental design 

for an SBS/RS. She aims to identify the significant factors that affect the performance 

of the system by using simulation modelling. Ekren & Akpunar (2021) propose a tool 

that computes performance metrics for SBS/RS. They apply an open queueing network 

modelling approach.  
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1.3. Tier-to-Tier SBS/RS Studies  

Ha & Chae (2018a) study an SBS/RS design with a single lifting mechanism that can 

transfer both shuttles and loads. They compare the system performance with a 

traditional tier-captive design by using simulation modelling. The results show that the 

targeted throughput rate can be obtained by using less number of shuttles in the system. 

Later, Ha & Chae (2018b) develop a decision model based on the travel time model. 

They aim to determine the number of shuttles using this model. Zhao et al. (2019) 

develop an integer-programming model to decrease the idle time of lifts and shuttles. 

They aim to minimize the total task time. Küçükyaşar et al. (2020) compares the 

traditional tier-captive SBS/RS with tier-to-tier. They consider initial investment costs, 

throughput rates and average energy consumption per transaction performance metrics. 

They utilize simulation modelling.  

1.4. Machine Learning Studies for AGVs 

In the current literature, there are no existing studies that implement a machine learning 

approach on an AVS/RS. Hence, we review machine learning studies that are mostly 

implemented for autonomous guided vehicles (AGVs). Watanabe et al. (2001) study 

Q-learning approach for collision avoiding and navigation problems for AGVs. Dou 

et al. (2015) combine genetic algorithm and RL to solve task scheduling problem for 

mobile robots in a warehouse. Xue et al. (2018) propose RL method for multiple AGVs 

to solve flow-shop scheduling problem. They aim to minimize the average job delay. 

Their study shows that the RL method works better than multi-agent scheduling 

method. Malus et al. (2020) propose a multi-agent RL for order dispatching of 

autonomous mobile robots in a dynamic production environment.  

1.5. Deep Q-Learning Studies 

Mao et al. (2016) present an initial work of a deep reinforcement learning 

implementation for a resource management problem. Their results show that the 

method performs very similar to state-of-the-art heuristics and is adaptable for 

changing conditions. Gazori et al. (2020) propose a Double Deep Q-learning (DDQL) 

approach to minimize computation costs and long-term service delays. They use target 

network and experience replay techniques. Tong et al. (2020) implement Deep Q-

learning method for dynamic task scheduling in a cloud computing environment. They 
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utilize simulation modelling approach. Takahashi & Tomah (2020) implement Deep 

Q-learning for controlling of multiple AGVs. They utilize simulation modelling, and 

the results show that the proposed method provides near-optimal solutions.



9 

CHAPTER 2 

Q-LEARNING APPROACH  

In this chapter, we present a Q-learning approach for transaction selection in a tier-to-

tier SBS/RS. First, we explain the RL and Q-learning methods. Then, we give the 

simulation model details, and implementation of the algorithm. Finally, we discuss the 

results. 

2.1. Reinforcement Learning and Q-Learning Methods 

RL is a machine learning approach that utilizes agents to choose actions in an 

environment to maximize the cumulative rewards (Ou et al., 2019). In this method, an 

agent collects the information from the environment and selects the most appropriate 

actions, regarding to that information. In Figure 2.1, the interaction between 

environment and agent is shown. 

 

Figure 2.1. Interaction of agent and environment 

The agent observes the environment and hence, the state information. By considering 

the current state of the environment, agent performs an action. Upon completing the 

action, the action is either rewarded or penalized. Aim of the agent is to maximize the 

cumulative rewards. Since this interaction continues until the agent is trained well in 

an environment, this iterative learning method is called reinforcement learning. Sutton 

& Barto (2015) defines four key elements in a RL problem as policy, reward function, 

value function and the model of the environment.  

A RL model consists of: 

• Agent: An entity performing actions to gain rewards in an environment. 

• Environment: The world agent interacts with. 
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• State (s): Current situation of the environment. 

• Action (a): All possible actions an agent can make. 

• Reward (r): A feedback given from the environment to evaluate the action. 

• Value function: Expected reward within a state. 

In this study, we implement a model-free RL algorithm, Q-learning. In Q-learning, 

agent selects the actions based on Q-table. Q-table stores the Q-values of state-action 

pairs. In order to calculate Q-values of the pairs, we use Bellman’s Equation as the 

value function, shown in Eq. (1). 

𝑄𝑛𝑒𝑤(𝑠𝑡, 𝑎𝑡)  ← (1 − 𝛼) 𝑄(𝑠𝑡, 𝑎𝑡)  +  𝛼 [𝑟𝑡  +  𝛾 𝑚𝑎𝑥 𝑄(𝑠𝑡+1, 𝑎)] (1) 

In the equation, st represents the state at time t, at represents the taken action at time 

t, 𝑄(𝑠𝑡, 𝑎𝑡) represents the Q-value of the state-action pair, α is the learning rate, 𝑟𝑡 is 

the reward and 𝛾 is the discount rate. 𝑄𝑛𝑒𝑤(𝑠𝑡, 𝑎𝑡) is the updated Q-value. The old 

value is weighted by (1-α). [𝑟𝑡  +  𝛾 𝑚𝑎𝑥 𝑄(𝑠𝑡+1, 𝑎)]  is the target value, 

𝑚𝑎𝑥 𝑄(𝑠𝑡+1, 𝑎) being the maximum reward that can be obtained for the next state. 

Commonly, Q-table is initialized as a zero matrix, meaning that the agent is not 

informed about how to behave. Initially, epsilon-greedy approach is used for selecting 

actions. In this approach, an epsilon value ϵ is initialized as 1 to increase exploration 

of the system and decreased over time. A random number between 0 and 1 is generated 

and if the number is smaller than the epsilon value, a random action is taken. Otherwise, 

the action with highest Q-value is selected (Wei et al., 2017). 

This Q-table becomes stable after the learning period and epsilon value is decreased 

to a very small number, meaning that almost all the time the agent selects the action 

with the highest Q-value. 

The weakness of this method is that since no approximation is made and Q-table 

requires all state-action pairs to be realized in order to update the values, the learning 

period takes very long time for large number of states and actions.  
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2.2. Simulation Model 

Due to complexity of tier-to-tier SBS/RS, we utilize simulation modelling approach. 

The system is simulated by using the Arena Simulation 16.0 commercial software. The 

notations used for the model are summarized in Table 2.1. 

Table 2.2.1. Notations used for the model 

Notation Unit Description 

Cavg sec. Average cycle time per transaction 

Favg sec. Average flow time per transaction 

Wavg sec. Average waiting time per transaction 

t sec. Transaction mean inter-arrival time 

Vs m/s Maximum velocity of shuttles 

Vl m/s Maximum velocity of lift 1 

Vsl m/s Maximum velocity of lift 2 

As m/s2 Acceleration of shuttle 

Al m/s2 Acceleration of lift 1 

Asl m/s2 Acceleration of lift 2 

Ds m/s2 Deceleration of shuttle 

Dl m/s2 Deceleration of lift 1 

Dsl m/s2 Deceleration of lift 2 

USavg % Average utilization of shuttle 

ULavg % Average utilization of lift 1 

USLavg % Average utilization of lift 2 

W m Distance between two adjacent bays 

H m Distance between two adjacent tiers 

T  Number of tiers in the system 

B  Number of bays in a tier 

S  Total number of shuttles 

 

For a storage transaction, the process can be summarized as: 

1. Shuttle chooses a storage transaction. 

2. If the transaction’s destination tier is different than the shuttle’s tier, shuttle 

moves to Lift 2, and Lift 2 carries the shuttle to the destination tier. Meanwhile, 

Lift 1 moves to the I/O point and picks up the shuttle. 

3. Lift 1 moves to the destination tier and drops off the tote at the buffer location. 
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4. Shuttle moves to the buffer location and picks up the tote. 

5. Shuttle moves to the storage bay address of the transaction and drops off the tote. 

For a retrieval transaction, the process can be summarized as: 

1. Shuttle chooses a retrieval transaction. 

2. If the transaction’s destination tier is different than the shuttle’s tier, shuttle 

moves to Lift 2, and Lift 2 carries the shuttle to the destination tier. Meanwhile, 

Lift 1 moves to destination tier. 

3. Shuttle travels to the retrieval bay address and picks up the tote. 

4. Shuttle moves to the buffer location. 

5. Lift 1 picks up the tote from the buffer location. 

6. Lift 1 moves to the I/O point and drops off the tote. 

The flow chart of this simulation model is provided in Figure 2.2. 
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Figure 2.2. Tier-to-tier SBS/RS simulation flow chart 

The verification of the model is done by debugging the codes and animating the system. 

Also, creating controlled transactions and tracing those transactions helped us 

verifying the simulation model. The RL algorithm is integrated in the simulation model 

by using the Visual Basic (VBA) interface in the Arena 16.0 software. The assumptions 

for the studied simulation model are provided below: 

• Transactions arrive at I/O points and enter a single queue. 
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• Storage and retrieval transaction mean interarrival rates are equal and follow 

Poisson distribution. 

• When a shuttle becomes available, it selects a transaction from that common 

queue. 

• To avoid collisions of shuttles, the available shuttle agent does not select a 

transaction if another shuttle is located or heading towards that possible 

transaction’s destination tier. 

• After selecting a transaction, the entity is duplicated and sent to Lift 1 queue. If 

necessary, Lift 2 is called as well. 

• Lift 1 and Lift 2 operates with First-in-First-out (FIFO) rules. 

• If the transaction address is at the first tier, Lift 1 is not utilized. 

• Lift 2 is dedicated only for shuttle travels. 

• Lift 1 has two lifting tables that can travel two totes independently.  

• Lift 2 can only carry one shuttle at a time. 

• Shuttles and lifts stay at their last process points as dwell point policy. 

For system design inputs such as height of tiers and length of bays, we use parameters 

from Lerher et al. (2015), Lerher et al. (2015), Ekren et al. (2018), Ekren (2020a). The 

input parameters for the warehouse are given below. 

• W = 0.5 m., H = 0.35 m. 

• Vs = Vl = Vsl = 2 m/s. 

• As = Al = Asl = Ds = Dl = Dsl = 2 m/s2 

2.3. Implementation of Q-Learning 

For our problem, we define shuttles as agents. Each time a shuttle picks a transaction 

from a common queue, state information is obtained from the environment. We define 

the states as S(k) = (i, j): 

S(k) = (Current tier of Lift 1, Current tier of the agent shuttle k) 

Here, k represents the shuttle that is selecting a transaction from the queue, i represents 

the current tier of Lift 1 and j represents the current tier of shuttle k. From the Q-table, 
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agent checks the current positions of both Lift 1s and chooses the Lift 1 side with the 

higher Q-value. In this case, the state information takes integer values between 1 and 

T, the number of tiers in the system. 

The actions are defined as the attributes of the waiting transactions. 

A(k) = (Tier address of the transaction, transaction type) 

For agent shuttle k, tier addresses of transactions are integers between 1 and T, 

transaction type is either 0 (for storage) or 1 (for retrieval). 

In case two shuttles are available at the same time, the first released shuttle selects an 

action (i.e., transaction) first. However, since the experiments are designed in a way 

that average shuttle utilizations are very high, this case rarely occurs. Since the state 

space consists of tiers of the lift and shuttle, and the action space consists of tier 

addresses and transaction types, the Q-matrix size is equal to multiplication of states 

and actions, T2 × 2T. 

The immediate reward function is defined by (2): 

𝑅(𝑠, 𝑎)  =  
1

𝑓𝑙𝑜𝑤 𝑡𝑖𝑚𝑒(𝑎)
 

(2) 

The queue information is not included in states, therefore including waiting times in 

reward function would not correlate with states. Also, to reward the agent for having 

smaller flow time, inverse of the flow time is utilized as reward function. The details 

of the Q-learning algorithm are explained below. 

1. Initialize Q-values for all Q(s, a) where s ∈ S, a ∈ A 

2. Observe the state S(k) = (i, j) 

3. With probability ϵ, select and execute random action a, otherwise select a = max 

Q(s, a) 

4. Observe the reward and update Q(s, a) using Eq. (1) 

5. If terminal, end the simulation, otherwise update ϵ and go to step 2. 

In our problem, we initialized the parameters ϵ = 0.8, α = 0.1, γ = 0.2. Every 10 days, 

we decreased ϵ by 0.2 and α is decreased by 0.02. Q-values are not initialized as 0 to 

reduce the learning period of the model. The analytical calculations are made by 

considering the travel time of shuttles and lifts, without considering the waiting times. 
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Since the system is highly stochastic, we choose small number for learning rate. Also, 

since the next available actions cannot be known, discount rate is small.  

The Q-learning algorithm is coded by utilizing VBA interface in the Arena software. 

We complete some experiments to verify and validate the model. In Figure 2.3, the 

average cycle time per transaction output is shown during the learning period. It can 

be observed from the figure that the average cycle time is initially very high and 

decreases over time. Note that initializing Q-values decrease the learning period 

significantly.  

 

Figure 2.3. Average cycle time per transaction during the training period 

The training period for this model is assumed to be around 3,000,000 seconds. In 

Figure 2.4, it can be observed that after shuttle agents are trained well, average cycle 

time is stabilized. 
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Figure 2.4. Average cycle time per transaction after learning period 

2.4. Results 

Remember that as the number of tiers increase in the system, the Q-matrix size 

increases exponentially. Due to limitation of Q-learning, we conduct experiments 

having up to 15 number of tiers. The experiments are summarized in Table 2.2. In total, 

we conduct 4 different warehouse designs for FIFO, SPT and RL rules. In addition, 

two different arrival scenarios are examined. In single type, the transactions arrive the 

system one by one. In batch scenario, the transactions arrive in batches. 

Table 2.2. Conducted experiments 

 Warehouse Design #  T - Ns  Scheduling rule Arrival scenario 

 1  15 - 5 FIFO Single type 

 2  15 - 3 SPT Batch 

 3  12 - 4 RL  

 4  10 - 3   

 

In FIFO rule, the shuttles pick the earliest arriving transactions from the queue. In SPT 

rule, the shuttles pick the transaction whose tier address is the closest one to its current 

tier. For these rules, 10 independent replications are made. The transaction types and 
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addresses are assigned randomly, assuming equal probability. The results are given 

considering 95% confidence intervals.  

The arrival rates are adjusted so that the resources run at a high utilization, considering 

the FIFO rule since it produces the highest results for our performance metrics. We 

first conduct the experiment on the FIFO rule and fix the arrival rate for other rules. In 

Table 2.3, experiments considering single arrival scenario are summarized. 

Table 2.3. Experimental results for single transaction arrivals 

Rule WH Design # ULavg USLavg USavg Cavg Favg Wavg t 

FIFO 1 87% 93% 90% 55.49 ± 0.46 18.51 36.98 ± 0.45  3.8 

RL 1 83% 82% 81% 24.8 16.87 7.93 3.8 

SPT 1 83% 81% 81% 24.28 ± 0.21 16.8 7.48 ± 0.09 3.8 

FIFO 2 67% 79% 91% 61.59 ± 1.07 17.39 44.2 ± 1.06 6 

RL 2 64% 70% 85% 28.21 16.35 11.86 6 

SPT 2 64% 69% 85% 27.74 ± 0.06 16.31 11.43 ± 0.18 6 

FIFO 3 78% 88% 93% 101.85 ± 3.5 17.05 84.8 ± 3.5 4.3 

RL 3 74% 74% 84% 24.85 15.45 9.4 4.3 

SPT 3 74% 74% 83% 24.37 ± 0.03 15.38 9.01 ± 0.15 4.3 

FIFO 4 76% 87% 92% 102.86 ± 2.94 16.48 86.38 ± 2.93 4.2 

RL 4 71% 69% 81% 22.9 14.53 8.37 4.2 

SPT 4 71% 69% 81% 22.67 ± 0.02 14.5 8.17 ± 0.09 4.2 

Frim Table 2.3, it is observed that RL and SPT produces very close results and they 

both outperform FIFO rule. The reason of that might be due to the definition of the 

reward function. Since we consider flow times of transactions as reward function, it 

resembles to the SPT rule. Note that due to state definition, which only considers 

information about the tiers status, the agent does not sense enough information to 

produce better results than SPT.  

With the idea of having more transaction options in selecting a transaction from a 

queue may produce better results, we also conduct experiments by considering batch 

arrivals. In Table 2.4, the results for batch arrivals are given. In this table, t represents 

the number of transactions arrive at the system every 10 minutes. 

Table 2.4. Experimental results for batch transaction arrival 

Rule WH Design # ULavg USLavg USavg Cavg Favg Wavg WT t 

FIFO 1 87% 93% 91% 306.16 ± 5.12 18.66 287.5 76 158 

RL 1 58% 13% 57% 178.98 12.81 166.17 44 158 

SPT 1 58% 13% 58% 188.96 ± 2.56 12.95 176.01  47 158 

FIFO 2 67% 79% 91% 299.14 ± 4.78 17.44 281.7  47 100 

RL 2 45% 15% 56% 173.05 11.35 161.7  27 100 

SPT 2 45% 14% 56% 177.31 ± 2.69 11.41 165.9  28 100 
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FIFO 3 79% 90% 93% 384.83 ± 4.86 17.08 367.75  86 140 

RL 3 52% 10% 57% 179.06 11.02 168.04  39 140 

SPT 3 52% 10% 57% 183.93 ± 2.07 11.14 172.79  40 140 

FIFO 4 77% 88% 92% 399.74 ± 5.08 16.51 383.23  94 143 

RL 4 52% 8% 56% 175.98 10.44 165.54  40 143 

SPT 4 51% 8% 56% 180.18 ± 2.47 10.58 169.6  41 143 

In this experimental design, it is observed that RL produces better results compared to 

SPT rule as well. As explained before, this is caused by the fact that agent has more 

actions available and can select more intelligently.  

Although the average utilization for resources is high for FIFO rule, the other rules 

work with low utilizations. In this case, we ignore the FIFO rule and conduct the 

experiments for SPT and RL with higher utilizations. In Table 2.5, the results for the 

experiments are given. In this table, t represents the number of transactions arrive at 

the system each stated minutes in that table. 

Table 2.5. Experimental results for batch transaction arrival 

Rule 

WH 

Design 

# 

ULavg USLavg USavg Cavg Favg Wavg WT t 

RL 1 87% 21% 86% 175.75 12.99 162.76  64 150/6.4 min. 

SPT 1 86% 20% 87% 181.82 ± 1.56 13.12 168.7  66 150/6.4 min. 

RL 2 73% 17% 86% 249.87 11.05 238.82 63 150/9.5 min. 

SPT 2 69% 15% 85% 252.56 ± 2.36 11.06 241.5 64 150/9.5 min. 

RL 3 81% 19% 86% 160.81 11.23 149.58  52 120/5.8 min. 

SPT 3 78% 18% 86% 161.52 ± 0.94 11.22 150.3  52 120/5.8 min. 

RL 4 74% 12% 87% 126.62 10.55 116.07 41 100/4.7 min. 

SPT 4 77% 17% 85% 132.97 ± 1.12 10.97 122 43 100/4.7 min. 

The results show that even in higher utilization for resources, the RL rule produces 

slightly better results.
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CHAPTER 3 

DEEP Q-LEARNING APPROACH 

After noticing the handicaps of simple Q-learning application in Chapter 2, ignoring 

more detailed information from environment, in this chapter, we study a Deep Q-

learning approach for transaction selection in a tier-to-tier SBS/RS. First, we explain 

the Deep Q-learning method. Then, implementation of the algorithm for the simulation 

model are provided. Finally, the results are given. 

3.1. Deep Q-Learning Method 

Deep Q-learning (DQL) or Deep Q-network (DQN) is a combination of RL and deep 

neural network methods. In this method, deep neural networks are utilized to 

approximate the Q-values. The agent feeds the state information of environment to the 

neural network as an input and the network estimates the Q-values for each action 

available for that state. This process is shown in Figure 3.1 below. 

 

Figure 3.1. Deep Q-network process (source: Mao et al., 2016) 

The Deep Neural Network (DNN) takes the state information as input and the 

information is fed through the hidden layer, to the output layer. Each state information 

is a node of the input layer, meaning that the state size is equal to the input size. 

Compared to the other deep learning methods, the target value always changes. This 

causes the network to be unstable. In order to have more stable training, two neural 

networks that have the same architecture are utilized. One network represents the target, 
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and one network represents the prediction. After every C iteration, which is a hyper-

parameter, the prediction network parameters are cloned to the target network  

(Choudhary, 2019). This method is shown in Figure 3.2. 

 

Figure 3.2. Utilizing two networks method (source: Choudhary, 2019) 

We also use a method called experience replay for our study. Upon completion of an 

action, state, action, reward, next state information is stored in memory as tuples. As 

opposed to Q-learning, the network is not updated after each iteration. Instead, a pre-

defined number of tuples are sampled from the memory and fed into the network when 

the number of tuples reach a certain point. This increases the normality of the 

information, meaning that a better learning result is obtained. This method is studied 

by Mnih et al. (2015). The algorithm is explained in detail in Figure 3.3. The agent 

observes the state and executes an action according to epsilon-greedy method. Then, 

state, action, reward, next state tuple is stored. The stored tuples are sampled after 

reaching a certain point and fed into the network. Gradient descent on target network 

is applied and epsilon is decreased. Every C step, prediction network is copied into the 

target network. 
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Figure 3.3. Deep Q-Learning with experience replay algorithm 

3.2. Implementation of the Method 

For the DQN application, the simulation model is coded in Python programming, by 

using SimPy library. For the implementation of DQN, we utilize TensorFlow and 

Keras libraries. The flow of the simulation model is explained in Section 2.2. In this 

approach, we perform a non-episodic task. The model runs until the agent is trained. 

As in the Q-learning, we treat shuttles as agents. The main goal of these agents is to 

select transactions in such a way that they maximize the cumulative rewards in long 

run. The state space is the input that is fed into the network to obtain the approximate 

Q-values for the actions. In this part, we define the state space as: 

S(k) = (Current tier of shuttle k, current bay of shuttle k, current tier of first lifting table 

of Lift 1, availability of the first lifting table of Lift 1, current tier of the second lifting 

table of Lift 1, availability of the second lifting table of Lift 1, current tier of Lift 2)  

Here, k represents the shuttle that is ready to pick a transaction from the queue. The 

tier values are integers between 1 and number of tiers in the system T, the bay values 

are integers between 1 and number of bays in a tier B, the availability is either 0 or 1 

where 0 represents no availability at that moment and 1 represents that the resource is 
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available. The actions defined in the neural network is the transaction attributes and 

the selected Lift 1 table. The action space can be summarized as: 

A(k) = (the tier address of the transaction, the bay address of the transaction, transaction 

type, selected Lift 1 table) 

Here, the actions only represent available actions for shuttle k, excluding the 

transactions that can cause a collision, as explained in Section 2.2. Unlike Q-learning, 

here we implement the lifting table into our actions, to utilize Lift 1 more efficiently. 

As an example, if there is a retrieval transaction waiting in the queue assigned to the 

10th tier, 8th bay, then the action index for this transaction would be (10, 8, 1, 1) and 

(10, 8, 1, 2) where 1 is assigned for transaction and 0 is assigned for storage items as 

the third index, 1 represents the left side of the Lift 1 and 2 represents the right side of 

the Lift 1 as the last index.  

As the reward function, similar to the RL approach, we utilize flow time of the 

transaction. Using cycle time as our reward parameter may result in lower cycle times, 

however, it may require additional information to the state space to correlate with the 

reward. Otherwise, waiting times would change the reward and the waiting time 

information is not provided as an input. Nevertheless, minimizing flow time would 

result in decreased cycle times. Unlike RL, the reward function is normalized as 

explained in Eq. (2)-(4). 

MINFt = 
1

max (𝑓𝑙𝑜𝑤𝑡𝑖𝑚𝑒)
 (2) 

MAXFt = 
1

min (𝑓𝑙𝑜𝑤𝑡𝑖𝑚𝑒)
 (3) 

rt = 

1

𝑓𝑙𝑜𝑤𝑡𝑖𝑚𝑒(𝑎)
 − 𝑀𝐼𝑁𝐹𝑡

𝑀𝐴𝑋𝐹𝑡− 𝑀𝐼𝑁𝐹𝑡
∗ 100 

(4) 

Here, flowtime stores all the flow time values of all actions. In Eq. (2), the inverse of 

the maximum of these stored values is taken. In Eq. (3), the inverse of the minimum 

of these values is taken. We use generalized formulation of normalization, 𝑋𝑛𝑜𝑟𝑚  =

 
𝑋 − 𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛
 for our case and it is shown in Eq. (4). flowtime(a) represents the flow time 

of action a. This method is inspired by study of Gazori et al. (2020) and shows good 

results. The normalized value is very small, hence the value is multiplied by 100 to 

track the improvement of the algorithm. 

As mentioned earlier, TensorFlow and Keras libraries are utilized to apply the DQN to 

the simulation model. The DQN consists of three dense layers; an input layer, a hidden 
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layer and an output layer. For input and hidden layers, Rectified Linear Unit (ReLU) 

activation function is selected. The activation function is utilized to transfer the 

weighted sum of input values to the output node. ReLU is a proper activation function 

since we deal with positive input values. As optimizer, we utilize “Adam” optimizer 

with parameters α = 0.001, γ = 0.2, ϵ = 1, ϵdec = 0.9999, ϵmin = 0.01, n = 64. Mean 

Squared Error (MSE) is used as loss function. 

We conduct an experiment to decide the learning rate for our problem with parameters 

T = 5, B = 25, S = 2. In Figure 3.4, it can be seen that α = 0.001 is the most suitable for 

our problem since the parameter learns quicker than α = 0.0001 and provides a better 

result compared to α = 0.01.  

 

Figure 3.4. DQN results under three different learning rate scenarios 

Initially, due to epsilon-greedy approach, the system chooses random actions. This 

increases exploration to be made and prevents convergence to a local optimum. For 

this reason, the DQN causes a cost. The static FIFO and SPT rules are assumed to have 

no computational costs. The cost occurs during learning and may produce worse 

results compared to static rules. Figure 3.5. shows the computational cost of DQN with 

the parameters for the warehouse design T = 5, B = 25, S = 2 and DQN parameters of 

α = 0.001, γ = 0.2, ϵ = 1, ϵdec = 0.9999, ϵmin = 0.01. DQN is compared to SPT in this 

experiment.  
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Figure 3.5. Average cycle time comparison for DQN and SPT 

As observed in the figure, the DQN starts to outperform SPT in a single day, which is 

equal to 13,091 transactions on average. Since the applied method is non-episodic, we 

treat each day as an episode and reset the average cycle times every day, until the 

epsilon reaches the minimum value. Even though this experiment was made with a 

relatively low warehouse capacity, the increased number of shuttles also increase the 

number of agents, meaning that experiencing more states and actions may result in 

decreased training times. 

3.3. Results 

As we mentioned before, DQN algorithm is compared with FIFO and SPT rules. In 

FIFO rule, the shuttles pick the first transaction that entered the system. In SPT rule, 

the shuttles pick the transaction regarding to shortest travel time considering the 

address information of the transaction. 

We consider eight different warehouse designs, shown in Table 3.1. The tiers, bays and 

number of shuttles are changed for different experiments. The average cycle times, 

average flow times, average waiting times, average lift and shuttle utilizations are 

provided in Table 3.2. The inter-arrival times are adjusted so that one of the resource 

utilizations is higher than 90%. Within the same experiment, the inter-arrivals are fixed 

so that we can compare the performance of the rules. The results for FIFO and SPT 
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rules are given at 95% confidence intervals. The number of replications is calculated 

considering the half-width values. Minimum of three independent replications are 

made. “N/A” means that the algorithm cannot produce a result. This is because the 

transaction arrival rates are high so that the system cannot process the transactions. 

Table 3.1. Conducted experiments 

 Warehouse Design # T   B S 

 1 5 25 2 

 2 8 25 3 

 3 10 25 4 

 4 13 25 5 

 5 5 50 2 

 6 8 50 3 

 7 10 50 4 

 8 13 0 5 

 

Table 3.2. Results of the experiments 

WH  

Design # 
Rule t ULavg USLavg USavg Cavg Favg Wavg 

1 FIFO 6.6 N/A N/A N/A N/A N/A N/A 

1 SPT 6.6 47% 51% 94% 98.5 ± 6.59 12.94 ± 0.01 85.56 

1 DQN 6.6 37% 44% 85% 41.67 11.53 30.14 

2 FIFO 5.2 N/A N/A N/A N/A N/A N/A 

2 SPT 5.2 69% 74% 90% 61.54 ± 4.2 14.69 ± 0.02 46.86 

2 DQN 5.2 55% 66% 81% 36.52 12.96 23.56 

3 FIFO 4.2 N/A N/A N/A N/A N/A N/A 

3 SPT 4.2 86% 86% 90% 89.34 ± 7.32 15.51 ± 0.06 73.83 

3 DQN 4.2 67% 80% 80% 46.06 13.47 32.59 

4 FIFO 4.4 N/A N/A N/A N/A N/A N/A 

4 SPT 4.4 90% 92% 83% 57.93 ± 2.97 18.64 ± 0.05 39.29 

4 DQN 4.4 72% 90% 74% 44.13 16.07 28.07 

5 FIFO 12 42% 57% 97% 567.39 ± 187.65 23.72 ± 2.24 543.66 

5 SPT 12 41% 52% 94% 138.18 ± 11.73 22.97 ± 0.08 115.21 

5 DQN 12 34% 46% 86% 69.81 20.83 48.98 

6 FIFO 9.2 64% 79% 94% 257.14 ± 38.13 26.64 ± 0.05 230.5 

6 SPT 9.2 62% 74% 92% 114.32 ± 8.87 25.93 ± 0.06 88.39 

6 DQN 9.2 51% 69% 85% 66.12 23.7 42.42 

7 FIFO 7.6 N/A N/A N/A N/A N/A N/A 

7 SPT 7.6 77% 87% 91% 147.44 ± 11.51 28.11 ± 0.08 119.34 

7 DQN 7.6 63% 83% 84% 79.44 25.57 53.88 

8 FIFO 7.4 N/A N/A N/A N/A N/A N/A 
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8 SPT 7.4 86% 93% 88% 155 ± 8.96 32.73 ± 0.15 122.27 

8 DQN 7.4 72% 93% 83% 104.35 30.33 74.02 

 

As seen from the table, FIFO rule generally cannot produce a feasible result because 

that there is no steady-state condition. For experiment with 5 tiers and 50 bays, DQN 

outperforms FIFO rule by 88% and for experiment with 8 tiers and 50 bays, DQN 

produces 74% better results. 

Remember that in RL, the algorithm produced very similar results to SPT. Here, DQN 

outperforms SPT significantly. These two algorithms are compared in Figure 3.6. 

 

Figure 3.6. Comparison of SPT and DQN rules 

On average, DQN algorithm decreases average cycle time by 42.6% and decreases 

flow time by 10.5%.   
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CHAPTER 4 

CONCLUSIONS AND FUTURE RESEARCH 

This thesis studies simulation-based machine learning algorithms (i.e., Q-learning and 

Deep Q-learning) for intelligently scheduling of transactions in a tier-to-tier shuttle-

based storage and retrieval system. The aim of this study is to implement a machine-

learning algorithm for a complex SBS/RS design to decrease average cycle times, flow 

times and utilizations. 

First, we simulate the system using Arena 16 simulation software and apply Q-learning 

method by using the VBA interface. After, we compare the results of the algorithm 

with FIFO and SPT rule under different warehouse designs. The results show that RL 

outperforms FIFO rule, but generates very similar results to SPT rule. The study shows 

a promising result for the further study of implementing Deep Q-learning algorithm. 

In the Chapter 3, we implement a Deep Q-learning method for the same problem. We 

utilize Python SimPy for simulation modelling. TensorFlow and Keras libraries are 

used for implementation of the algorithm. The results are compared with well-known 

FIFO and SPT algorithms. The results show that Deep Q-learning outperforms the 

other algorithm significantly, which is promising for the future of smart industry 

applications.  

 In the future, this thesis can be extended by considering state space expand by 

including attributes of waiting transactions in queue as well as reward function of cycle 

time. In addition, more experiments can be conducted by including different velocity 

profiles of the shuttles and lifts in the system. Finally, multiple objectives can be 

integrated to the reward function such as energy consumptions of transactions as well.  
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APPENDIX 1 – Link to the models and application 

The models and applications made on Arena simulation software and Python for this 

work is submitted on the link below. 

 https://github.com/bartuarslan/thesiswork 

 


