
YAŞAR UNIVERSITY

GRADUATE SCHOOL

MASTER’S THESIS

JOINT FORECASTING-SCHEDULING

FOR THE INTERNET OF THINGS VIA

SUBSPACE-BASED APPLICATION-SPECIFIC

ERROR METRIC EMULATION

ALPEREN HELVA

THESIS ADVISOR: PROF. VOLKAN RODOPLU
CO-ADVISOR: PROF. CÜNEYT GÜZEL ̇IŞ

ELECTRICAL AND ELECTRONICS ENGINEERING

PRESENTATION DATE: 25.08.2021

BORNOVA / İZMİR
AUGUST 2021

ABSTRACT

JOINT FORECASTING-SCHEDULING FOR THE INTERNET OF
THINGS VIA SUBSPACE-BASED APPLICATION-SPECIFIC

ERROR METRIC EMULATION

HELVA, Alperen
MSc, Electrical and Electronics Engineering

Advisor: Prof. Volkan RODOPLU
Co-Advisor: Prof. Cüneyt GÜZELİŞ

August 2021

The massive access problem refers to the challenge posed in uplink wireless
communication from a massive number of Internet of Things (IoT) devices to an
IoT gateway, base station or access point. In this thesis, first, we present an
Application-Specific Error Function (ASEF), which measures the impact of the
forecasting error on network performance for Joint Forecasting-Scheduling (JFS).
Second, we propose a Neural Network (NN)-based emulation of ASEF on a subspace
of forecasting errors, which we call “Emulation of ASEF” (E-ASEF), and develop a
novel algorithm, “Motion On a Subspace under Adaptive Learning rate” (MOSAL),
which moves on this subspace of forecasting errors while minimizing the application-
specific error metric at the output of MAC-layer scheduling. Our results show that
MOSAL improves the performance of the JFS system while achieving a low
execution time. This work paves the way to achieving high network performance at
an IoT Gateway that has a massive number of IoT devices in its coverage area.

Keywords: Internet of Things (IoT), Forecasting, Scheduling, Massive Access
Problem, Artificial Neural Network (ANN), Machine-to-Machine (M2M) Com-
munication, Joint Forecasting-Scheduling, Subspace Learning

v

ÖZ

NESNELERİN İNTERNETİ İÇİN ALTUZAY TABANLI
UYGULAMAYA ÖZGÜ HATA METRİĞİ ÖYKÜNMESİ İLE

BÜTÜNLEŞİK TAHMİNLEME-ÇİZELGELEME

HELVA, Alperen
Yüksek Lisans, Elektrik ve Elektronik Mühendisliği

Danışman: Prof. Dr. Volkan RODOPLU
Yardımcı Danışman: Prof. Dr. Cüneyt GÜZELİŞ

Ağustos 2021

Devasa erişim problemi, çok sayıda Nesnelerin İnterneti (IoT) cihazından bir IoT ağ
geçidi, baz istasyonu veya erişim noktasına kadar olan kablosuz iletişimde ortaya çıkan
zorluğu ifade eder. Bu tezde ilk olarak, Ortak Tahmin-Çizelgeleme (JFS) için tah-
min hatasının ağ performansı üzerindeki etkisini ölçen bir Uygulamaya Özgü Hata
Fonksiyonu (ASEF) sunuyoruz. İkinci olarak, "ASEF Öykünmesi" (E-ASEF) olarak ad-
landırdığımız tahmin hatalarının bir alt uzayı üzerinde Sinir Ağı (NN) tabanlı bir ASEF
öykünmesi öneriyoruz ve geliştirdiğimiz “Uyarlanabilir Öğrenme Hızı Yöntemi ile Alt
Uzayda Hareket” (MOSAL) olarak adlandırdığımız, MAC katmanı çizelgelemesinin
çıktısında uygulamaya özel hata metriğini en aza indirirken tahmin hatalarının bu alt
alanı üzerinde hareket eden yeni bir algoritma sunuyoruz. Sonuçlarımız, MOSAL’in
düşük uygulama süresi elde ederken JFS sisteminin performansını iyileştirdiğini göster-
mektedir. Bu çalışma, kapsama alanında çok sayıda IoT cihazı bulunan bir IoT ağ
geçidinde yüksek ağ performansı elde etmenin yolunu açmaktadır.

Anahtar Kelimeler: Nesnelerin İnterneti (IoT), Tahminleme, Çizelgeleme, Devasa
Erişim Problemi, Yapay Sinir Ağı (ANN), Makinelerarası (M2M) İletişim, Bütün-
leşik Tahmin-Çizelgeleme (JFS), Altuzay Öğrenmesi

vii

ACKNOWLEDGEMENTS

Alperen HELVA
İzmir, 2021

During the progress of this work, I would like to extend my sincere and heartfelt
obligation towards all of the people who helped me in this endeavor. Firstly, I would
like to thank my advisor Prof. Volkan Rodoplu and my co-advisor Prof. Cüneyt Güzeliş
for providing guidance and feedback throughout this thesis.

I would like to thank my fiancee Şevval Aytaş for supporting me whenever I needed her.
I wish to show my appreciation to my teammates and colleagues Mert Nakıp, Kubilay
Karakayalı, Oytun Uzun and Onur Çopur for their helpfulness and support. I am also
thankful to the faculty members in the Department of Electrical and Electronics Engi-
neering at Yaşar University for all the considerate guidance. In addition, I would like to
thank Michelle Rajotte at the Department of Foreign Languages at Yaşar University for
her feedback on the writing in this thesis.

I would like to acknowledge the following institutions and programs that have provided
employment or financial support during my Master’s studies: Yaşar University, and the
TÜBİTAK 1001 Master’s Scholarship in Project # 118E277.

Finally, I cannot forget to thank my family for their unconditional support.

ix

TEXT OF OATH

I declare and honestly confirm that my study, titled “JOINT FORECASTING-
SCHEDU-LING FOR THE INTERNET OF THINGS VIA SUBSPACE-BASED
APPLICATION-SPECIFIC ERROR METRIC EMULATION” and presented as a
Master’s Thesis, has been written without applying to any assistance inconsistent
with scientific ethics and traditions. I declare, to the best of my knowledge and
belief, that all content and ideas drawn directly or indirectly from external sources are
indicated in the text and listed in the list of references.

ALPEREN HELVA

August 8, 2021

xi

1.2 Massive Access Problem...2
1.3 Review of Joint Forecasting-Scheduling (JFS)...3

1.3.1 Bank of Forecasters (BoF)...3
1.3.2 Scheduler...3

1.3.3 Measurement of Network Performance under JFS......................................4
1.3.4 Relationship between Forecasting Error and Network Performance.............4

1.4 Relationship to the State of the Art...5

1.5 Outline of this Thesis..7

2.1 Introduction...8

2.2 Assumptions..10
2.3 Application Specific Error Function (ASEF) for JFS...10
2.4 Emulation of ASEF (E-ASEF) via an ANN...12
2.5 Results...14

2.5.1 IoT Data...14

TABLE OF CONTENTS

ABSTRACT ... v

ÖZ ... vii

ACKNOWLEDGEMENTS... ix

TEXT OF OATH ... xi

TABLE OF CONTENTS .. xiii

LIST OF FIGURES ...xvii

LIST OF TABLES..xix

SYMBOLS AND ABBREVIATIONS ..xxi

CHAPTER 1 INTRODUCTION ..1

CHAPTER 2 Subspace-Based Emulation of the Relationship Between Forecasting

Error and Network Performance in Joint Forecasting-Scheduling for the
Internet of Things...8

xiii

1.1 IoT and M2M Communication..1

2.5.2 Performance Evaluation of E-ASEF..14
2.5.3 Execution Time of E-ASEF...19

2.6 Summary...19

3.1 Introduction...20
3.2 Review of Joint Forecasting-Scheduling (JFS)...21
3.3 Mathematical Framework..23

3.3.1 Application Specific Error Function (ASEF) and Its Emulation

(E-ASEF)..23
3.3.2 Training Architecture and the MOSAL Algorithm....................................25

3.4 Results..28
3.4.1 Methodology..28

3.4.2 Performance Evaluation...29
3.4.3 Computation Time..31

3.5 Summary...31

4 CONCLUSIONS..32

REFERENCES ..33

xv

CHAPTER 3 Subspace-Based Application-Specific Error Metric Emulation.......................20

LIST OF FIGURES

Figure 1.1 BoF of JFS . 3

Figure 1.2 Scheduler of JFS . 4

Figure 2.1 ASEF is defined as a “black box” by the set of components
that appear in the dashed box in this figure. Our goal will be to
emulate this ASEF via an ANN. 11

Figure 2.2 E-ASEF, which is the ANN-based emulator for ASEF 13

Figure 2.3 Learning performance of E-ASEF under each of the Linear
Perceptron, Nonlinear Perceptron, and MLP for the throughput
difference Φ under the network set-up that has 1/3 VBP, 1/3
FBA and 1/3 VBA as the fractions in each device class. . . . 16

Figure 2.4 The learning performance of E-ASEF under each of the Linear
Perceptron, Nonlinear Perceptron, and MLP for the throughput
difference Φ for a network that is constituted by only VBP
devices. 17

Figure 2.5 Learning performance of E-ASEF under each of the Linear Per-
ceptron, Nonlinear Perceptron, and the MLP for the throughput
difference Φ under the network set-up that has 100% of the
IoT devices in the FBA class. 18

Figure 2.6 Learning performance of E-ASEF under each of the Linear
Perceptron, Nonlinear Perceptron, and MLP for the throughput
difference Φ under the network set-up that has devices only in
the VBA class. 18

Figure 3.1 Joint Forecasting-Scheduling (JFS) system 22

Figure 3.2 Our proposed architecture in which we cascade Forecasteri

and the E-ASEF whose training has been completed. We train
the Forecasteri via back-propagation by minimizing Φ̂m

i at the
output of this architecture. 25

Figure 3.3 The MOSAL Algorithm . 27

Figure 3.4 Throughput performance of JFS under perfect forecasts, MLP-
MOSAL and MLP-GD . 30

Figure 3.5 Energy consumption of JFS under perfect forecasts, MLP-
MOSAL and MLP-GD . 30

xvii

LIST OF TABLES

Table 2.1 Execution Time of E-ASEF [µs] 19

Table 3.1 Training and Execution Times of MLP-MOSAL and MLP-GD 31

xix

SYMBOLS AND ABBREVIATIONS

Abbreviation
IoT
ANN
M2M
ASEF
E-ASEF
JFS
MAC
MOSAL
ML
QoS
MLP
LSTM
Adaline
BoF
PAL
MSE
MAE
MAPE
sMAPE
MSA

Meaning
Internet of Things
Artificial Neural Network
Machine-to-Machine
Application-Specific Error Function
Emulation of ASEF
Joint Prediction-Scheduling
Medium Access Control
Motion On a Subspace under Adaptive Learning rate
Machine Learning
Quality of Service
Multi Layer Perceptron
Long short-term memory
Adaptive Linear Neuron or later Adaptive Linear Element
Bank of Forecasters
Priority based on Average Load
Mean Square Error
Mean Absolute Error
Mean Absolute Percentage Error
symmetric Mean Absolute Percentage Error
Multi-Scale Algorithm

MC-LAPAL Multi-Channel Look Ahead Priority based on Average Load
HSDPA
PCA
EML
FBP
VBP
FBA
VBA

High Speed Downlink Packet Access
Principal Component Analysis
Error Metric Learner
Fixed Bit Periodic
Variable Bit Periodic
Fixed Bit Aperiodic
Variable Bit Aperiodic

xxi

ABBREVIATIONS:

List of Symbols used in Chapters 1, 2 and 3

Symbol
G

N

N

Tsch

Xpast

xi[m− s]

X̂
x̂i[m+ k]

X̃
xi[m+ k]

S(X̂)

Meaning
Coverage Area of Gateway
Set of N IoT devices
Number of IoT devices
Duration of Scheduling Window
Past Traffic Generation Pattern
Entry of Input Matrix of device i, range [0,m]

Forecast Traffic Generation Pattern
Entry of X̂ at the kth Step in the Traffic Generation Pattern of Device i

Accumulated Actual Past Traffic Generation Pattern
Entry of X̃ at the kth Step in the Traffic Generation Pattern of Device i

Forecast Schedule Matrix
,)η(S(X̂ X̃) X̃

S(X̃)

Forecast Network performance of Scheduler Based on S(X̂) and
Accumulated Schedule Matrix

,)η(S(X̃ X̃) Accumulated Network Performance of Scheduler Based on S(X̃) and
X̃

Φ

Φ̂

D
d̄

τMAC

a

A−

A+

Φ−

Φ+

s

xi[s]

j

r

d

∆

p

Throughput Difference
Estimated Throughput Difference
Next Layer’s Forecasting Error Difference Matrix
Average Vector of D
Duration of a MAC-layer Slot
Adding a Constant Number of Bits
Negative Vector of a

Positive Vector of a

Outputs of E-ASEF for the Corresponding A−

Outputs of E-ASEF for the Corresponding A+

Index of a Scheduling Window
Total Number of Bits Generated by Device i ∈N .
Burst
Generation Time
Deadline of r

Delay Constraint
Processing Time

Continued on the next page

xxiii

SYMBOLS:

Continuation of the List of Symbols used in Chapters 1, 2 and 3
Symbol
R

m

K

V

R̃

f R̃

Wt
i

bt
i

t
tEover

E t
under

E min
under

ζ

θ

ζ 0

L

W

κ

No

P

T

Meaning
Uplink Data Rate
Current Slot
Total Traffic Step
Subspace of D

Relation of α and Φ

Function of Relation
Connection Weights and Biases
Biases of the Output Neurons at Training Step t and Device i

Training Step
Average Overestimation Error of Forecasteri at t

Average Underestimation Error of Forecasteri at t

Absolute Value of the Minimum Underestimation Error on the Train-
ing Set
Learning Rate
Positive Threshold
Value to Which ζ is Reinitialized
Number of Channel Taps
Bandwidth
Multiply by the Coefficient of Normalized Variance of Each Real and
Imaginary One-touch Part in the Wireless Channel Model
Ratio of the One-sided Power Spectral Density of All Devices in N to
the Total Number of Bursts Successfully Transmitted Over the Entire
Slot Channel Grid
Total Transmit Power of IoT Device
Traffic Generation Period

xxv

CHAPTER 1

INTRODUCTION

The main purpose of this thesis is the design of subspace-based application-specific
error metric emulation for Joint Forecasting-Scheduling (JFS). In this chapter, first, we
introduce the concept of the Internet of Things (IoT), Machine-to-Machine (M2M) com-
munication. Second, we describe the Massive Access Problem. Third, we summarize
the JFS methodology, for which we have specially designed the error metric emulation
in this thesis. Fourth, we distinguish our work from the past articles in the literature.
Fifth, we give an outline of this thesis.

1.1 IoT and M2M Communication

IoT refers to that part of the Internet, which is made up of “things”, namely, devices that
act without human intervention. In this regard, traditional devices, such as laptops, cell
phones and tablets, all of which are human-operated, are not part of IoT, but devices
such as smart utility meters, tele-health devices, fleet management devices, smart lamp
posts, and smart garbage bins are part of IoT.

As a result of the proliferation of IoT devices in recent years, we expect that there
will be more machine-to-machine (M2M) communication, in which an IoT device
communicates with a server, which also functions without human intervention. The
number of IoT devices per base station is expected to increase from 5,000 to 35,000
devices (Vodafone, Apr. 2010). The overall number of IoT devices, which was 8.6
billion in 2018, is estimated to increase to 22.3 billion in 2024 (Cerwall et al., 2015).
The problem of giving access to a massive number of IoT devices in the coverage area
of an IoT gateway, base station or access point is called the Massive Access Problem.

1

1.2 Massive Access Problem

IoT device types, that are broadly referred to as “massive IoT” and for which the
Massive Access Problem is posed typically have data rates or data volumes of these
devices that are lower than the devices in other segments (such as broadband or critical IoT
devices). Although such massive IoT devices do not create a large traffic load for base
stations, access points or gateways in terms of rate and volume, the number of
connection attempts that massive IoT devices would make constitutes the essence of
the Massive Access Problem. JFS is a methodology that has been specifically designed so
that it will work on the MAC layer to obviate such a massive number of connection
requests.

Much of the previous work on the Massive Access Problem (Ghavimi & Chen, 2014)(Lien,
Liau, Kao, & Chen, 2011)(Lin, Lee, Cheng, & Chen, 2014)(Jin, Toor, Jung, & Seo, 2017)
(J. Liu, Song, et al., 2017) (Tello-Oquendo, Leyva-Mayorga, et al., 2018) (Tello-Oquendo,
Pacheco-Paramo, Pla, & Martinez-Bauset, 2018) (Aijaz & Aghvami, 2015)(Aijaz, Ping,
Akhavan, & Aghvami, 2014) (Ali, Saad, & Rajatheva, 2018) (Paul & Rho, 2016) (Pang,
Chao, Lin, & Wei, 2014) (Park, Kim, & Har, 2014) (Liang, Xu, Cao, & Jia, 2018) (Si,
Yang, Chen, & Xi, 2014) (Shirvanimoghaddam, Dohler, & Johnson, 2017) (Zanella et al.,
2013) (Y. Liu, Yuen, Cao, Hassan, & Chen, 2014) (Shahin, Ali, & Kim, 2018) (Alavikia &
Ghasemi, 2018) is based on reactive solutions, in which the network reacts to the current
traffic demand. Furthermore, all of these studies1 use the assumption of “random arrivals”
at the MAC layer. However, recent work (Nakip, Gül, Rodoplu, & Güzeliş, 2019) has
demonstrated that the traffic generated by IoT devices in M2M communication is
predictable. Based on this work, a novel technique, called Joint Forecasting-Scheduling
(JFS) was proposed in (Nakip, Rodoplu, Güzeliş, & Eliiyi, 2019) and further developed in
(Rodoplu, Nakıp, Eliiyi, & Güzelis, 2020) and (Rodoplu, Nakip, Qorbanian, & Eliiyi,
2020). In JFS, an IoT gateway predicts the future traffic that will be generated by each IoT
device in its coverage area and schedules the uplink transmissions from these IoT devices
in advance. Thus, JFS enables scheduling of future IoT traffic in order to eliminate
contention and collision at IoT gateways and base stations. In this thesis, we develop
novel algorithms for JFS, the details of which we shall describe in the upcoming chapters.

1In addition to these studies, the assumption of “random arrivals” is also seen in (Bockelmann et al.,
2016) (Mobasheri, Kim, & Kim, 2020).

2

1.3 Review of Joint Forecasting-Scheduling (JFS)

JFS was first presented in (Nakip, Rodoplu, et al., 2019) at the 2019 IEEE
Global Conference on the Internet of Things. The original JFS system has been
designed to be implemented at an IoT gateway in order to forecast and schedule
the future IoT traffic from IoT devices that fall in the coverage area of this IoT
gateway. JFS aims to maximize the total number of bits in successfully delivered
bursts without any collision and resulting data loss. In this work, in order to achieve
this aim, we model the throughput difference between that under forecasts and that
under perfect forecasting. Furthermore, we design an ANN to emulate this
throughput difference.

The JFS system consists of a Bank of Forecasters (BoF) and a Scheduler as the two
main modules. These main modules will be described below.

1.3.1 Bank of Forecasters (BoF)

Figure 1.1. BoF of JFS

The BoF is the module in which the forecasting is performed in parallel for all of
the devices in the coverage area of the IoT gateway. BoF has forecasters, each of
which forecasts the future traffic generation pattern of a distinct IoT device. In
this work, we use the Multi-Layer Perceptron (MLP) for each forecaster. As can be
seen in the Fig. 1.1, the past traffic generation pattern is the input to the BoF. In
addition, the output of the BoF is fed into the Scheduler module.

1.3.2 Scheduler

The Scheduler schedules the forecast traffic across the all of the forecasters in
the JFS system. In this work, the Scheduler uses the Priority based on Average
Load (PAL) heuristic scheduling method, whose output is a Schedule matrix. While

3

2We point out that this definition of throughput differs from the standard definition of throughput.

4

Figure 1.2. Scheduler of JFS

creating the matrix, the forecast traffic generation pattern produced in the BoF is
used as input as shown in Fig. 1.2. The schedule, which appears as the output,
indicates to which device each MAC layer is allocated (or left idle) over the duration
of a scheduling window.

1.3.3 Measurement of Network Performance under JFS

In this subsection, we shall describe the performance benchmark of JFS. The
performance metric, called “throughput”, is defined to be the ratio of the total
number of bits in successfully transmitted bursts to the total number of bits in the
traffic that all of the devices offer to the network over a scheduling window.2 The
method that we have developed in this thesis, which can improve network
performance, is a general framework that can be used for different performance
metrics, although it is specific to throughput in our particular treatment.

In this thesis, ASEF makes use of the scheduling results of wireless
communication sources at the MAC layer. It examines the relationship between
the scheduler that measures the network performance in the JFS system and the
forecaster that gives the forecasting error result. Learning the result of the
relationship between them, ASEF measures the effect of the results on the
forecasting algorithm in the JFS system.

1.3.4 Relationship between Forecasting Error and Network Performance
The proactive nature of the JFS system described above allows resources to be pre-
allocated based on IoT traffic forecasts to maximize network throughput. As a result of
studies (Nakip, Rodoplu, et al., 2019; Rodoplu, Nakıp, et al., 2020; Rodoplu, Nakip,
et al., 2020) evaluating JFS performance, JFS performed well in terms of network

throughput and energy consumption. However, the source of its performance is
the forecasting scheme that it uses. Therefore, the interaction between forecasting
error and network performance directly affects JFS performance. For this reason, the
main purpose of this thesis is to examine the use of this relationship to maximize the
efficiency of JFS.

Forecasting error metrics, which are used to observe and minimize forecasting errors
in the literature, such as Mean Square Error (MSE), Mean Absolute Error (MAE),
Mean Absolute Percentage Error (MAPE) or symmetric Mean Absolute
Percentage Error (sMAPE), provide analysis for general errors. However, these
metrics are not developed specifically for each application and do not take these
differences into account.3 To avoid such problems, in this thesis we propose an
Application-Specific Error Function (ASEF) that can use forecasting results.
However, in order to design the working structure of the ASEF function, we also
present the Emulation of Application-Specific Error Function (E-ASEF) in the thesis to
enable learning according to ASEF by imitating the application on which the function
will work.

1.4 Relationship to the State of the Art

In this section, we present the differences between our work and the works in
the current literature in four categories: (1) the works that use the JFS system for
resource allocation at the MAC layer; (2) the references that utilize traditional
forecasting error metrics for IoT traffic at layers above the MAC layer; (3) the
articles that perform subspace learning in machine learning models in contexts outside
of IoT.4 (4) the works that propose a custom training algorithm for forecasting
aggregate network traffic.

First, Reference (Nakip, Gül, et al., 2019) showed that the traffic generation patterns of
individual IoT devices have structure and can be predicted via machine learning models.
Reference (Nakip, Rodoplu, et al., 2019) proposed the Joint Forecasting-Scheduling
technique. Furthermore, the authors in (Rodoplu, Nakıp, et al., 2020) developed the
Multi-Scale Algorithm (MSA), which extends the accurate forecasting horizon of the
JFS system by aggregating the traffic patterns over multiple temporal scales. Reference

3In other forecasting systems, more than one traditional metric can be used to enable learning. In
addition to this, the forecaster may not have any information about the applications to be able to
forecast.

4To the best of the authors’ knowledge, there do not currently exist works in the literature that perform
subspace learning for the prediction of the traffic generation patterns of individual IoT devices.

5

(Rodoplu, Nakip, et al., 2020) developed multi-channel JFS, in which scheduling is
scales. Reference (Rodoplu, Nakip, et al., 2020) developed multi-channel JFS, in which
scheduling is performed over a slot-channel grid and proposed the Multi-Channel Look
Ahead Priority based on Average Load (MC-LAPAL) heuristic. Even though these
works represent significant advances, the forecasters therein have been trained in
order to minimize the traditional MSE metric. In contrast, in this work, we develop a
novel application-specific error metric, which we emulate via an ANN, that quantifies
the impact of forecasting on the scheduling performance. Furthermore, we develop a
novel algorithm that moves on the subspace of forecasting errors while
minimizing the application-specific error metric.

Second, we note that Reference (Nakip, Gül, et al., 2019) trains forecasters for
individual IoT devices by minimizing MSE and measures performance via the sMAPE.
Reference (Lopez-Martin, Carro, & Sanchez-Esguevillas, 2019) forecasts the total
traffic volume in an IoT network via a neural network model and measures the
performance of the neural network via traditional forecasting error metrics such as R2,
MSE, and MAE. Reference (Lopez-Martin, Carro, & Sanchez-Esguevillas, 2020)
uses gradient boosting neural networks to forecast the type of the IoT traffic and
measures the forecasting performance via traditional classification metrics such as
accuracy and the F1 score. While the works in this category use traditional
performance metrics during both training and testing of the forecasting models, we
use a novel application-specific error metric that measures the performance at the
output of the application that utilizes the forecasts.

Third, Reference (Pehlevan, Hu, & Chklovskii, 2015) performs subspace learning
by using a hebbian/anti-hebbian neural network for which the input data are
projected onto the principal subspace. Furthermore, subspace learning has been used
for pattern recognition in (Jiang, 2011), for spectral regression in (Cai, He, & Han,
2007) and for computer vision via robust Principal Component Analysis (PCA) in
(Li, 2004) and (De La Torre & Black, 2003). In (Gu, Li, & Han, 2011) and
(Wang, He, Wang, Wang, & Tan, 2015), the authors perform feature selection and
subspace learning jointly. Whereas all of these works project the inputs onto a
subspace in order to reduce the input dimension, we train our model by using
samples that reside on a given subspace such that the application-specific error
function becomes learnable.

Fourth, Reference (Zhang & Patras, 2018) introduced an Ouroboros Training
Scheme (OTS) that uses earlier forecasts when ground truth values are unavailable for
forecasting the total cellular traffic under the High Speed Downlink Packet Access

6

(HSDPA) protocol. Reference (Lawal, Abdulkarim, Hassan, & Sadiq, 2016) com-
bined the Firefly and Resilient propagation algorithms in order to train a neural
network model for forecasting total cellular traffic volume. Whereas the algorithms in
these works minimize well-known error metrics to train the forecaster, we propose a
novel algorithm, namely Motion On a Subspace under Adaptive Learning rate
(MOSAL), which enables the training of the forecaster by minimizing the
estimated loss in the IoT network performance.

1.5 Outline of this Thesis

We now give an outline of the rest of this thesis: In Chapter 2, we describe a
new methodology for investigating the relationship between forecasting error and
network performance in JFS via the Application-Specific Error Function (ASEF). In
Chapter 3, we describe a new approach, called “Emulation of ASEF (E-ASEF), in
which an Artifi-cial Neural Network (ANN) is trained on a subspace to learn the
difference in network performance. Furthermore, we develop our “Motion on a
Subspace under Adaptive Learning rate” (MOSAL) algorithm in this chapter. In
Chapter 4, we summarize the contributions of this thesis and describe new directions
for our future work.

7

CHAPTER 2

Subspace-Based Emulation of the Relationship Between
Forecasting Error and Network Performance in Joint

Forecasting-Scheduling for the Internet of Things

2.1 Introduction

As we have discussed in Chapter 1, IoT is a key technology for the smart cities of
the near future (Hasan, Hossain, & Niyato, 2013). The application areas of IoT
widen every day (Bello & Zeadally, 2019)(Fortino, Russo, Savaglio, Viroli, &
Zhou, 2017). These applications include fleet management, environmental
monitoring and control systems, traffic controlling as well as smart buildings
(Kuhlins, Rathonyi, Zaidi, & Hogan, Jan. 2020). Although IoT is one of the
technologies that make the daily life of humans easier, the challenges that must be
overcome in order to unleash IoT grow as the number of IoT devices increases. In
the near future, it is expected that there will be 30 billion IoT devices on the
Internet (Cisco, Mar. 2020). In addition, more than half of IoT devices are
expected to fall in the Massive IoT segment (Ericsson, Nov. 2019), in which a
base station or a gateway will cover a massive number of low-cost IoT devices. The
connection requests of the massive number of IoT devices to a single gateway will
result in a significant access problem in cellular networks (Ghavimi & Chen, 2014)
(Zanella et al., 2013). This problem is referred to as the “Massive Access Problem”
of IoT.

In order to solve the Massive Access Problem, Reference (Nakip, Rodoplu, et al.,
2019) proposed Joint Forecasting-Scheduling (JFS), which is a machine learning based
proactive resource allocation technique. JFS ensures that it allocates the resources in
advance based on forecasts of IoT traffic in order to maximize the network throughput.
The performance of JFS is evaluated in a number of works (Nakip, Rodoplu, et al.,
2019; Rodoplu, Nakıp, et al., 2020; Rodoplu, Nakip, et al., 2020). The results of these
works show that although JFS performs well in terms of network throughput and energy
consumption, its performance depends highly on the performance of the forecasting

8

scheme that it utilizes. Thus, knowledge of the relationship between the
forecasting error and network performance would provide crucial information in
improving the performance of JFS. One of the major foci of this work1 is the
examination of this relationship.

The focus of the past literature on forecasting has been to minimize the
forecasting error, which is captured by any of the forecasting error metrics such as
Mean Square Error (MSE), Mean Absolute Error (MAE), Mean Absolute Percentage
Error (MAPE) or symmetric Mean Absolute Percentage Error (sMAPE). These
traditional forecasting error metrics do not take into account the particular
application that will utilize the forecasting metric.2 In contrast, in this chapter,
we propose an error metric that is specific to the application that will utilize the
results of forecasting. In contrast with the traditional forecasting error metrics in
which forecasting is decoupled from the application that utilizes the forecasts, in this
chapter, we propose an Application-Specific Error Function (ASEF). In the particular
example of JFS, which we examine in this chapter, the application that utilizes the
forecasting results is MAC-layer scheduling of the wireless resources. In this regard,
our aim is to discover the relationship between the forecasting error (which is
measured at the output of the forecaster) and the network performance (which is
measured at the output of the scheduler) for the JFS system. In this context, ASEF
measures how the performance of the forecasting algorithm in JFS affects the
resulting network performance.

In addition to the above conceptual contribution, the major methodological
contribu-tion of this chapter to the literature is the emulation of the relationship
between the forecasting error and the network performance by an Artificial Neural
Network (ANN). In our investigations, we have found that it is extremely difficult
for an ANN to learn this relationship if the space of forecasting errors is taken to be
the original space of all possible forecasting errors produced by the forecaster. One
of our key contributions is the idea that if the forecasting errors are constrained to
lie on a subspace of the original space of forecasting errors, then it becomes
possible for the ANN to learn the relationship between the forecasting error and the
network performance. In this work, we design an ANN that learns this relationship
successfully on a subspace of the entire space of forecasting errors. Furthermore, we
evaluate the performance of this ANN, which we call “Emulator for ASEF”, or

1The technical content in this chapter has been published as a conference paper (Nakip, Helva,
ş, & , 2021b) at the IEEE Internet of Things World Forum (WF-IoT) 2021.

2In many instances, more than one application may utilize the metric. Furthermore, the forecaster
might have no knowledge of which application will utilize the forecasts.

9

E-ASEF, for short, via simulations that show that E-ASEF achieves high performance
with very fast execution time.

The rest of this chapter is organized as follows: In Section 2.2, we state our
assumptions. In Section 2.3, we present ASEF for the JFS system. In Section 2.4,
we describe the design of an ANN, called E-ASEF, that emulates ASEF on a
subspace. In Section 2.5, we evaluate the performance of E-ASEF. In Section 2.6, we
present our conclusions.

2.2 Assumptions

We assume3 that there is a set of N IoT devices, denoted by N , in the coverage area of
Gateway G. In addition, each device i in N has a direct wireless link to G.

We let m denote the index of a MAC-layer slot (in short, “slot”). Furthermore, we let
xi[m] denote the total number of bits generated by device i in slot m. We assume that

the generation of traffic by each IoT device occurs in bursts. Moreover, we assume that
every time that an IoT device i transmits to G, it compresses its traffic pattern since
its last transmission and sends this along with its actual data. For each IoT device,
Gateway G pieces together these traffic patterns and thus has access to the entire past
traffic pattern of that device. Gateway G then performs the k-step ahead forecast of
the future traffic generation pattern for all values of k ∈ {1, . . . ,K} for each IoT device.
Based on these forecasts, G schedules the uplink transmissions from all of these IoT
devices in advance.4

For a JFS system, the throughput is defined as the ratio of the total number of
bits in successfully transmitted bursts to the total number of bits in offered traffic

over a scheduling window of duration Tsch.5 While the framework that we develop
for ASEF is general and works for any network performance metric, throughput will
be the main metric by which we measure network performance in this chapter.

2.3 Application Specific Error Function (ASEF) for JFS

In this section, we describe the ASEF for the JFS system. After we have defined ASEF,
we shall emulate this function via an ANN in Section 2.4.

In Fig. 2.1, we present the block diagram through which we define ASEF for the JFS
3The assumptions of this work are identical to those in (Nakip, Rodoplu, et al., 2019), which describes

the JFS system.
4For simplicity, we do not model mobile devices that change coverage areas in this work.
5We note that this differs from the traditional definition of throughput. In this definition, the
throughput serves as a measure of efficiency of the JFS system; it measures the efficiency with which
the system is able to deliver bits successfully to the Gateway at the MAC layer.

10

Figure 2.1. ASEF is defined as a “black box” by the set of components that appear in
the dashed box in this figure. Our goal will be to emulate this ASEF via
an ANN.

developed in (Nakip, Rodoplu, et al., 2019). Although any scheduling algorithm can be used in our
methodology, in this article, the reason that we use PAL is that the previous studies (Nakip, Rodoplu,
et al., 2019; Rodoplu, Nakıp, et al., 2020) showed that PAL is a fast heuristic with relatively high
performance.

7Note that in an actual system, the performance under perfect forecasts can be measured only after the
traffic of each IoT device has been realized. The system diagram that appears in Fig. 2.1 is used
for network simulation during which the inputs to the system as well as the performance
difference at the output are collected as data that will be used later in order to train the ANN that
will emulate the ASEF block shown in this figure.

11

system. For the definition of ASEF, we use two JFS systems that run in parallel. The
upper branch of this figure is a JFS system that consists of a Bank of Forecasters (BoF)
and a Scheduler6. The lower branch of this figure is a JFS system under the actual traffic
generation patterns (a.k.a. “perfect forecasts”) of the devices. The ASEF is defined as
the function that computes the difference between the performance of the application
under forecasts versus the one under perfect forecasts.7

In this figure, at each discrete time m, Xpast denotes the input matrix of the BoF whose
entry (i,s) is xi[m− s], where s can take values in the range of integers in [0,m]. The
is the output matrix of the BoF whose entry (i,k) is the forecast of the number of bits
at the kth step in the traffic generation pattern of device i, denoted by x̂i[m+ k], where
k can take values in the range of integers [1,K]. In addition, the matrix X̃ denotes the

actual past traffic generation pattern that has been accumulated, whose entry (i,k) is
xi[m+ k].

Furthermore, the red dashed box in Fig. 2.1 shows the ASEF for the JFS system, where
the inputs of ASEF are X̃ and X̂. In this figure, ASEF is comprised of three parts that
appear in this red dashed box: the upper branch of the figure in the box; the lower
branch of the figure in the box; and the difference between the outputs of the Network
Performance Calculators that appear in this figure.

First, on the upper branch of ASEF in Fig. 2.1, based on the forecast future traffic gen-
eration matrix X̂, the Scheduler produces a schedule matrix, denoted by S(X̂), whose
entry (i,m) is the binary variable that equals 1 if MAC-slot m has been allocated to
device i, and equals 0 otherwise. Then, the Network Performance Calculator in this
figure calculates the network performance η(S(X̂), X̃) based on S(X̂) and X̃. Through-
out this chapter, the performance metric will be the network throughput (as defined in
Section 2.2).

Second, on the lower branch of ASEF in Fig. 2.1, we compute the network performance
of JFS under perfect forecasts, which is denoted by η(S(X̃), X̃). Note that perfect
forecasts are available only after the actual traffic has been realized in practice. In our
simulations, we use these perfect forecasts in order to measure the difference in the
network performance attained under forecasting versus the one under the actual traffic
realizations.

Third, after the operations in each of the upper and the lower branches are completed,
we calculate the throughput difference, denoted by Φ, which is the output of the ASEF.
Thus, the output of ASEF is

Φ = η(S(X̃), X̃)−η(S(X̂), X̃) (2.1)

2.4 Emulation of ASEF (E-ASEF) via an ANN

Recall that the main objective in computing the ASEF is to pave the way to algorithms
that will significantly improve the JFS system by taking the advantage of the knowledge
of Φ. However, since ASEF requires computing the schedule matrices as well as the
throughput metrics, the execution time of ASEF in its original form is too high for its
use in practical algorithms that can improve the performance of the JFS system. In
order to solve this problem, we now aim to emulate ASEF by an ANN. By using an
ANN in the place of ASEF, we will generate Φ such that none of the blocks that appear

12

under ASEF, such as the Scheduler or the Network Performance Calculator will be
needed. Thus, the ANN that replaces ASEF shall calculate the value of Φ based on the
inputs to the ASEF.

Figure 2.2. E-ASEF, which is the ANN-based emulator for ASEF

In Fig. 2.2, in the design of the emulator, the inputs are the matrices X̃ and X̂, and
the output is the value of Φ that will be estimated by the ANN. We shall denote this
estimate by Φ̂. In our design, the E-ASEF consists of three layers: the Differencing
Layer, the Averaging Layer and the Error Metric Learner (EML).

At the first layer, the emulator computes D = X̂− X̃ and passes the matrix D of the
forecasting error to the next layer.

At the second layer, we take the average over all of the elements of D, which generates
d̄. The reason that we use averaging is two-fold: (1) During our experimental work, we
observed that the value of Φ is highly learnable for a subspace of ASEF on which the
forecasting error is kept constant across all of the devices. That is, in this subspace, the
value of d̄ equals to the constant value of forecasting error; that is d̄ = D[i,k],∀i,k. (2)
Instead of using X̃ and X̂ to form the estimate Φ̂, using d̄ significantly decreases the
input dimension and hence the computational complexity of the model.

At the third layer, we use ANN as the EML in order to form the estimate Φ̂ based
on d̄. Since E-ASEF is a model that can be used in other algorithms to improve
performance of JFS, the computational complexity of E-ASEF is as important as its
learning performance. Thus, we aim to use a relatively simple ANN architecture in

13

the EML layer. To this end, we compare the Linear Perceptron (namely, Adaline),
the Nonlinear Perceptron, and the Multi-Layer Perceptron (MLP). For each of these
models, we select the architecture and the activation functions as follows: For the Linear
Perceptron, note that there is no activation function or any other hyper-parameter. The
Nonlinear Perceptron is comprised of a single neuron with an activation function that is
selected as the tangent hyperbolic tanh8. For the MLP, we use a single hidden layer and
an output layer, where the hidden layer contains 5 neurons. The activation function of
each neuron in the MLP is selected as tanh.

2.5 Results

2.5.1 IoT Data

We use the dataset in (IoT Traffic Generation Pattern Dataset, 2021), which is comprised
of the traffic generation patterns of 10000 bootstrapped IoT devices. According to the
classification of Reference (Nakip, Gül, et al., 2019), there are four distinct IoT classes:
Fixed Bit Periodic (FBP), Variable Bit Periodic (VBP), Fixed Bit Aperiodic (FBA)
and Variable Bit Aperiodic (VBA). In this classification, “Fixed Bit” states that the
IoT device generates a fixed number of bits in each burst while “Variable Bit” states
otherwise. In addition, “Periodic” states that the inter-arrival time between the bursts
of a device is constant while “Aperiodic” states otherwise. Since both number of bits
and the generation time of each burst of each device in the FBP class are known in
advance, forecasting is needed only for the VBP, FBA, and the VBA classes. Thus, in
our simulations, we include only these three classes in order to obtain a system in which
we evaluate the performance of E-ASEF.

2.5.2 Performance Evaluation of E-ASEF

We now evaluate the performance of E-ASEF under each of the Linear Perceptron,
Nonlinear Perceptron and the MLP forecasting models on the following four distinct
network set-ups: N is comprised of (1) equal percentages of VBP, FBA and VBA
classes; (2) only devices in the VBP class; (3) only devices in the FBA class; (4) only
devices in the VBA class.

8We selected the activation function as tanh because the value of Φ is in the range [−1,1] for our
application.

14

For each network set-up, we aim to evaluate the performance in a subspace in which the
forecasting error is constant across all of the forecasters. To this end, we replace each
forecaster in the BoF by adding a constant number of bits, which we denote by a, to the
actual traffic generation of each of the devices.9 Thus, whenever x̂i[m] = xi[m] + a, we
say that the forecaster overestimates the value of the traffic generation pattern for
device i if a > 0, and underestimates it if a < 0. (The estimate matches the actual
whenever a = 0.) In our experiments, we increment a in multiples of 10 from the
lowest to the highest value in the range [−100,100]. In addition, we set the number of
IoT devices in the coverage area of the Gateway G as N = 2000. We set the duration of

a MAC-layer slot, denoted by τMAC, to 0.1 s.

In our experiments, we observed that the behavior of ASEF is distinct for each of the
negative and positive values of a. For convenience, we separated the values of a into
two categories as follows: We hold the negative values of a in the vector A− and the
positive values in the vector A+. Then, we let Φ− denote the outputs of E-ASEF for the
corresponding A−, and let Φ+ denote those for A+. A single E-ASEF structure should
not be expected to learn both the Φ− and Φ+ functions due to the structural differences
that we observed between these functions in our experiments.10 In this chapter, E-
ASEF is trained separately for the Φ− and the Φ+ functions.

Training of E-ASEF

9The fact that this constant a does not have an i-index indicates that it is constant across all of
the devices.
10The structural differences between Φ− and Φ+ will be shown in Fig. 2.3-2.6.

15

Based on the above observations, we shall now explain how we train E-ASEF. First, for
each value of a, we simulate the JFS system for 1000 distinct scheduling windows, each
of whose duration equals 15 minutes. For each scheduling window, we randomly select
the IoT devices from each device class for the following four distinct experimental
set-ups: (1) We select an equal number of devices from each of the VBP, FBA and the
VBA classes. (2) All of the devices are in the VBP class. (3) All of the devices are
in the FBA class. (4) All of the devices are in the VBA class. Let s be the index of a
scheduling window. We shall append a superscript s to each of the variables that appear
in Fig. 2.2 in order to indicate to which scheduling window that variable belongs. Now,
for each experimental set-up, we extract the traffic generation patterns ̃ X(s) from the
dataset and calculate X̂ (s) for a. Based on ̃ X(s) and ̂ X(s), we compute the schedule via
the PAL scheduling algorithm and calculate the network performance difference Φ−(s)

ˆ ˜

if a < 0 and calculate Φ+(s) otherwise.

Then, for each s, the inputs of E-ASEF are X(s) and X(s). The Φ−(s) is the output in
the case of underestimation, and Φ+(s) is the output in the case of overestimation. The
connection weights and the biases of EML are updated via backpropagation using the
gradient descent algorithm in pattern mode.

Learning Performance of E-ASEF

Fig. 2.3 shows how each of the Linear Perceptron, the Nonlinear Perceptron and the
MLP fits to each function Φ− and Φ+. In this figure, we see that MLP fits both functions
almost perfectly. In addition, both the Linear Perceptron and the Nonlinear Perceptron
can fit only the average of each of the underestimation and overestimation segments of
the function. In this figure, the performance of E-ASEF under MLP shows that ASEF
for JFS is highly predictable.

Figure 2.3. Learning performance of E-ASEF under each of the Linear Perceptron,
Nonlinear Perceptron, and MLP for the throughput difference Φ under the
network set-up that has 1/3 VBP, 1/3 FBA and 1/3 VBA as the fractions in
each device class.

In Fig. 2.4, for the simulation that is comprised of IoT devices, each of which falls in
the VBP class, we see that the MLP is the best predictor for the majority of the values of
a. However, for E-ASEF under MLP, the difference between Φ̂ and Φ slowly increases

16

as the |a| increases. In addition, we see that since the Linear Perceptron fits well to the
flat segment of the function which corresponds to Φ−, it is not able capture the sharp
decrease at a =−10. On the other hand, the Nonlinear Perceptron is not able to capture
Φ−, but it successfully captures the sharp decrease at a =−10.

Figure 2.4. The learning performance of E-ASEF under each of the Linear Perceptron,
Nonlinear Perceptron, and MLP for the throughput difference Φ for a
network that is constituted by only VBP devices.

In Fig. 2.5, for the simulation that is comprised of the IoT devices, each of which
falls in the FBA class, we see that MLP predicts Φ almost perfectly and achieves the
most accurate result compared with those for the Linear Perceptron and the Nonlinear
Perceptron models for the majority of the values of a.

In Fig. 2.6, we present the performance of E-ASEF under each of the Linear Perceptron,
Nonlinear Perceptron, and the MLP for the simulation that is comprised of the IoT
devices each of which falls in VBA class. As seen in this figure, Φ̂ under MLP is almost
equal to Φ, where MLP is able to predict the sharp decrease between a = −10 and
a = 0. In addition, while the Linear Perceptron fits to the mean of each of Φ− and Φ+

and the Nonlinear Perceptron also fits close to the mean of each of those, the MLP is
the best-performing model as it is for all of the other simulation set-ups.

17

Figure 2.5. Learning performance of E-ASEF under each of the Linear Perceptron,
Nonlinear Perceptron, and the MLP for the throughput difference Φ under
the network set-up that has 100% of the IoT devices in the FBA class.

Figure 2.6. Learning performance of E-ASEF under each of the Linear Perceptron,
Nonlinear Perceptron, and MLP for the throughput difference Φ under the
network set-up that has devices only in the VBA class.

18

2.5.3 Execution Time of E-ASEF

In Table 2.1, we present the execution time of E-ASEF. We calculate the mean and the
standard deviation of the execution time over 100 simulation runs on the Google Colab
platform with no accelarator. In this table, we see that the execution time of E-ASEF
is under 20 µs for each of the Linear Perceptron, Nonlinear Perceptron and the MLP
models. This shows that E-ASEF is a practical emulation methodology in this setting.
In addition, we see that the execution time difference between E-ASEF under MLP and
that under the other models is less than 1 µs. Thus, MLP is the best selection among
the models that we have examined for the EML block in E-ASEF, since it achieves the
best performance at an execution time that is comparable to those of the other models.

Table 2.1. Execution Time of E-ASEF [µs]

EML Model in E-ASEF Mean Standard

Deviation

Linear Perceptron 18.68 0.63

Nonlinear Perceptron 19.16 0.85

MLP 19.42 0.22

2.6 Summary

In this chapter, we have developed a novel methodology in order to investigate
the relationship between the forecasting error and network performance in
Joint Forecasting-Scheduling (JFS). Our methodology has been to build an
Artificial Neural Network (ANN) whose input is the forecasting error and whose
output is the difference between the network performance obtained under
forecasting versus that obtained under the actual network traffic realization. The
key novel aspect of our work is the idea of a subspace-based emulation where
only a subspace of the entire space of forecasting errors is employed. We have
demonstrated that a Multi-Layer Perceptron (MLP) can successfully learn the
relationship between the forecasting error and the network performance difference
on this subspace.

19

CHAPTER 3

Subspace-Based Application-Specific Error Metric Emulation

3.1 Introduction

As we have discussed in Chapter 1, IoT is expected to continue to play a major role in
the evolution of cellular as well as dedicated industrial networks in the near future. A
key problem faced by all such networks is the tremendous number of IoT devices that
fall in the coverage area of a single IoT gateway (or base station or access point)
(Ghavimi & Chen, 2014). In urban areas, smart utility meters alone are expected to
reach a density of 5000 to 50,000 devices per base station (Vodafone, Apr. 2010).
Such Machine-to-Machine (M2M) communication, in which traffic is generated by
a machine to be communicated to a server without human intervention, is expec-
ted to pose a major challenge due to the number of connections that must be main-
tained by the network. This problem is referred to as the Massive Access Problem of
M2M communication.
Even though there have been a plethora of past articles1 to solve the Massive
Access Problem, the key assumption behind almost all of these articles has been that
the traffic of an IoT device at the Medium Access Control (MAC) layer is well-
modeled by “random arrivals”. This assumption has led to the development of MAC-
layer protocols that react to the current traffic demand. However, recent work
(Nakip, Gül, e t al., 2019) has shown that the traffic generation patterns for M2M
communication have structure and can be predicted. This has opened the way to the
development of Joint Forecasting-Scheduling (JFS) in (Nakip, Rodoplu, et al., 2019;
Rodoplu, Nakıp, et al., 2020; Rodoplu, Nakip, et al., 2020) in which the IoT gateway
forecasts the future traffic generation patterns of all of the IoT devices in its coverage
area and allocates the MAC-layer resources in advance based on these forecasts.
Although significant advances have been achieved in these works2, forecasters have
not been designed by quantifying precisely the impact of forecasting on the network

1See (Rodoplu, Nakıp, et al., 2020) and the categorization of the references therein.
2

20

 The technical content in this chapter has been submitted as a journal paper (Nakip, Helva, Gü-
zeliş, & Rodoplu, 2021a) to IEEE Access.

performance measured at the output of MAC-layer scheduling. In this work, first, we
develop a novel methodology by which we form an application-specific error metric
that quantifies this impact. Second, we show that this application-specific error metric
can be emulated by an Artificial Neural Network (ANN), if the metric is confined to lie
on a subspace of the forecasting errors. Third, we develop an algorithm, which we call
Motion On a Subspace under Adaptive Learning rate (MOSAL), which moves on this
subspace of forecasting errors while minimizing the application-specific error metric at
the output of MAC-layer scheduling. While our exposition in this chapter is specific
to JFS, the methodology that we develop can be applied to any problem in which an
application utilizes forecasts and a metric exists that quantifies the performance of the
application.3 In this sense, the techniques that we develop in this chapter are expected
to impact the design of forecasting-based systems beyond the immediate context of IoT.

The rest of this chapter is organized as follows: In Section 3.2, we review the basic JFS
system. In Section 3.3, we describe our mathematical framework. In Section 3.4, we
present our results. Finally, in Section 3.5, we present our conclusions.

3.2 Review of Joint Forecasting-Scheduling (JFS)

We assume4 that there is a set of N IoT devices, denoted by N , in the coverage area
of an IoT Gateway G. Each device has a direct uplink wireless link to G. We let τMAC

denote the duration of a MAC-layer slot (in short, “slot”). Throughout this chapter,
we assume that there is a single channel5 on which all of the devices have been slot-
synchronized. In slot s, we let xi[s] denote the total number of bits generated by device
i ∈ N .

We assume that the generation of traffic by each IoT device occurs in b ursts. Each burst
j is defined by its number of bits a j ; its generation time (namely the slot in which it is
generated) denoted by r j; and its deadline (namely the slot by the beginning of which it
must be delivered) denoted d j. Thus, for burst j that is generated by device i, the delay
constraint is ∆ j = d j − r j. The “processing time” p j of burst j is the number of slots
required to send that burst. Thus, p j = da j/(τMACRi)e, where Ri is uplink data rate of
device i. Furthermore, we assume that Gateway G has access to the past traffic pattern
of each IoT device i ∈ N by virtue of compressed, incremental past traffic patterns that

3In the specific example of JFS, the application is MAC-layer scheduling and the metric that quantifies
the performance of scheduling is network performance, such as throughput or energy consumption.

4The assumptions of this chapter are identical to those in (Nakip, Rodoplu, et al., 2019).
5We shall address the case of multiple channels in our future work.

21

are piggy-backed to each transmission from i to G.

Based on these assumptions, the recent works (Nakip, Rodoplu, et al., 2019; Rodoplu,
Nakıp, et al., 2020) proposed Joint Forecasting-Scheduling (JFS), which is summarized
in Fig. 3.1. The JFS system resides at the IoT Gateway G and is comprised of the
cascade of the Bank of Forecasters (BoF) and the Scheduler. We shall now describe
each of these modules.

22

Figure 3.1. Joint Forecasting-Scheduling (JFS) system

Bank of Forecasters (BoF)

The BoF contains N forecasters, each of which forecasts the future traffic generation
pattern of an individual IoT device. At the current MAC-layer slot m, the input to the
BoF is the matrix Xm

past of the past traffic generation patterns of IoT d evices. The (i, l)th
entry of this matrix is xi[m− l], where l takes integer values on [1,L] for some window
size L into the past. We let x̂i[s] denote the forecast number of bits that are generated by
device i in slot s. The output of BoF is the matrix ̂ Xm of the forecast traffic generation
patterns of the devices. The (i,k)th entry of this matrix is x̂i[m + k], where k takes
integer values on [0,K − 1] for some window size K into the future.

Scheduler

The Scheduler allocates the MAC-layer resources to all of the IoT devices in N based
on the forecast future traffic X̂ m over a scheduling window of duration Tsch. (We assume
that Tsch is a multiple of τMAC.) To this end, the Scheduler solves an optimization
program to generate a binary schedule, denoted by S(X̂ m), whose (i,s)th entry equals
1 if the uplink slot s in the scheduling window is allocated to device i, and equals 0
otherwise.

3.3 Mathematical Framework

In this section, we develop our mathematical framework. First, we define the Applica-
tion-Specific Error Function (ASEF) in the context of JFS and describe how we emu-
late the ASEF on a subspace of the forecasting errors via an ANN. Second, we des-
cribe how we train the JFS forecasters on this subspace and state our MOSAL algo-
rithm.

3.3.1 Application Specific Error Function (ASEF) and Its Emulation

(E-ASEF)
We define the “throughput” of the network as the total number of successfully delivered
bits divided by the total number of generated bits. Furthermore, we let Xm denote the N
×K matrix of the actual traffic patterns of IoT devices accumulated by the current slot m:
The (i,k)th entry of this matrix is xi[m+k], where k takes integer values on [0,K −1]. We
let η(S(X̂m),Xm) denote the throughput performance of the JFS system under the
realization Xm when the schedule S(X̂ m) produced by the forecasting scheme is used in
the BoF. Furthermore, we let η(S(Xm),Xm) denote the throughput performance of the
JFS system under perfect forecasts.

We define the Application-Specific Error Function (ASEF) for JFS as the difference Φm

23

In this chapter, for the particular implementation of the Scheduler, we use the Priority
based on Average Load (PAL) algorithm (Nakip, Rodoplu, et al., 2019), which is a
greedy heuristic. The PAL algorithm works as follows: At any slot s of the current
scheduling window, we let Jactive[s] denote the set of forecast bursts that have not yet
been scheduled, whose deadlines have not yet expired and whose entire set of bits can
be scheduled by the end of the scheduling window. We also let ∆̃ j[s] denote the number
of remaining slots starting with slot s until the beginning of slot d j. The PAL algorithm
starts at the first slot of the current scheduling window (s = 1) with a null schedule and
takes the following steps: 1) It computes Jactive[s]. If Jactive[s] is the null set, PAL
returns the resulting schedule. 2) For each burst j ∈ Jactive[s], PAL calculates ∆̃ j[s] as
well as the average load γ j[s] ≡ a j/(∆̃ j[s]). 3) It finds a burst j ∗ with the largest
average load; that is, j∗ = argmax j∈Jactive[s] γ j[s] . 4) PAL reserves the next p j∗ slots for
device i that generated burst j∗. 5) The value of s is updated as s ← s + p j∗ ; and 5) If s
≤ (Tsch/τMAC), the algorithm goes to step 1); otherwise, it returns the resulting
schedule.

(at the current slot m) between η(S(Xm),Xm) and η(S(X̂m),Xm). That is,

Φ
m ≡ η(S(Xm),Xm)−η(S(X̂m),Xm) (3.1)

Note that ASEF measures the impact of forecasting errors on the resulting network
performance (which is taken as throughput in this chapter).

One of our main ideas is that if this ASEF can be emulated by an ANN, then the BoF in
the JFS system can be trained by exploiting this a priori knowledge of the impact of
forecasting errors on the network performance. To this end, we shall let Dm ≡ X̂m−Xm

denote the “forecasting error matrix”. Note that Dm(i,k) is the (i,k)th entry of Dm,
namely the forecasting error for the kth step ahead forecast of device i.

In our investigations, we have found that it is extremely difficult to train an ANN to
learn the ASEF on the entire space of forecasting errors (which is the space spanned by
all possible Dm matrices). However, we have discovered that it is possible to emulate
the ASEF via an ANN on a subspace of these errors. We call the ANN that emulates
ASEF on such a subspace the Emulated ASEF (E-ASEF).

In this chapter, we take this subspace as that defined by the condition that the forecasting
error is identical over all devices and all time-step ahead forecasts; that is, we take
the subspace V ≡ {Dm | All of the entries of Dm are identical.}. Let Dα denote a
matrix all of whose entries have the same value α ∈ (−∞,+∞). Thus, Dα is a point of
the subspace V . Note that there is a one-to-one correspondence between Dα and its
parameter α . In our experiments, we have investigated the range of the values of Φ

that result from the empirically observed values of the matrices Xm and X̂m and found
that the Φ’s fall in a relatively restricted range. Let R̃ denote the relation that exists
between the parameter α and the range of the application-specific error Φ obtained at
the output of the Scheduler. In our design, at the end of training, E-ASEF will converge
to a function f that satisfies the relation R̃; that is, f will map each α to a value that
falls in the empirically observed range of Φ.

Now, assume that the training of E-ASEF has been completed. We let Dm
test denote the

forecasting error matrix during the testing of E-ASEF. Note that it is possible that Dm
test

lies outside V . We shall associate a D̃m that lies on V with Dm
test as follows: First, let

Xm
test and X̂m

test denote the Xm and the X̂m during the testing of E-ASEF, respectively.
Note that Dm

test = X̂m
test−Xm

test. Second, we define the average forecasting error during
testing as

24

d̄m
test =

∑i∈N ∑
K−1
k=0 Dm

test(i,k)
NK

(3.2)

 ˜ ˜ ˜We form the matrix Dm by setting Dm(i,k) = d̄m
test ∀(i,k). Since Dm lies on V , we may

now use the function f to which E-ASEF has converged (by the end of its training) in
order to estimate the ASEF (during testing) at current slot m as

Φ̂
m = f (d̄m

test) (3.3)

3.3.2 Training Architecture and the MOSAL Algorithm

Figure 3.2. Our proposed architecture in which we cascade Forecasteri and the E-
ASEF whose training has been completed. We train the Forecasteri via
back-propagation by minimizing Φ̂m

i at the output of this architecture.

In this section, we describe a novel architecture by which to train each forecaster in the
BoF of JFS in Fig. 3.1 by minimizing Φ̂m. Fig. 3.2 displays our architecture in which
we cascade the forecaster of device i and E-ASEF whose training has been completed.
(This architecture is replicated for the forecaster of each device i.)

At each slot m, the inputs to this architecture are {xi[m− l]}l∈{1,...L} and {xi[m +

k]}k∈{0,...K−1}, and the output is the throughput difference Φ̂m
i . This architecture is

an end-to-end trainable neural network, which enables the training of Forecasteri via
back-propagation starting with Φ̂m

i . Note that in this architecture, the parameters of the
E-ASEF module, whose training has been completed, are kept constant; that is, they are
untrainable during the training of Forecasteri.

25

Now, in order to train Forecasteri, we develop a novel algorithm, which we call “Mo-
tion On a Subspace under Adaptive Learning rate” (MOSAL). This algorithm trains
Forecasteri by keeping the forecasting error matrix on the subspace V while minimizing
Φ̂m

i .

To this end, we assume that the dataset has already been partitioned into training,
validation and test sets. (Only the training and validation sets are used in training
Forecasteri via the MOSAL algorithm.) Furthermore, we let Wt

i denote the collection
of parameters, namely the connection weights and the biases, of Forecasteri at training
step t. In this set of parameters, we single out the vector of biases of the output neurons
at training step t and denote this vector by bt

i.

We say that Forecasteri “overestimates” if Forecasteri produces a positive forecasting
error. We define the “average overestimation error” E t

over of Forecasteri at training
step t as the overestimation error averaged over the samples in the validation set for
which Forecasteri overestimates and over the values of k ∈ [0,K− 1]. We say that
the Forecasteri “underestimates” if Forecasteri produces a negative forecasting error.
Similarly, we define the “average underestimation error” E t

under of Forecasteri at training
step t as the underestimation error averaged over the samples in the validation set for
which Forecasteri underestimates and over the values of k ∈ [0,K−1].

Let E min
under denote the absolute value of the minimum underestimation error on the

training set.

The parameters of our algorithm are as follows: ζ denotes the learning rate; r ∈ (0,1)
denotes the update ratio for ζ ; θ denotes a positive threshold for the change in the
forecasting error; T denotes the maximum number of training iterations; and M denotes
the maximum number of steps taken in a given direction on the subspace V . We let ζ 0

denote the value to which ζ is reinitialized. Furthermore, we initialize ζ = ζ 0 at the
beginning of the algorithm.

We shall now describe the MOSAL algorithm: We fix the parameter α̃ as any positive
real number. At the initial step t = 0, for each device i, the algorithm initializes W0

i by
training Forecasteri via gradient descent on the training set such that Dm(i,k) = α̃ ∀k.
In addition, the algorithm computes E 0

over and E 0
under and calculates Φ̂0

i via a forward
pass on the architecture in Fig. 3.2. We shall let εΦ denote the desired output of the
architecture. Then, for the inputs {Xm

past(i, l)}l∈{1,...,L} and {Xm(i,k)}k∈{0,...,K−1} and
the desired output εΦ, the MOSAL algorithm, which runs on this architecture, appears
in Fig. 3.3.

Once the architecture in Fig. 3.2 has been trained via MOSAL for each device i ∈N ,

26

forecasterType MOSAL_Algorithm {
0 t = 0; t̃ = 0;
1 t = t +1;
2 if(t̃ == 2M || t == T)

Return Forecasteri as “untrained” model;
3 Compute Forecasteri→Wt

i via gradient descent for
3 epochs to minimize the mean squared error
between εΦ and Φ̂

t−1
i ;

4 Compute Φ̂t
i via a forward pass on the architecture;

5 if(|Φ̂t
i| ≤ εΦ) {

6 Stop training;
7 Go to Line 19; }
8 Compute E t

over and E t
under;

9 if(E t
over ≤ E t−1

over) {
10 if(t̃ > 0) t̃ = 0 and ζ = ζ 0;
11 if(E t−1

over −E t
over ≥ θ) ζ = (1− r)ζ ;

12 else ζ = (1+ r)ζ ;
13 } else {
14 t̃ = t̃ +1;
15 Forecasteri→Wt

i = Forecasteri→Wt−1
i ;

16 if(t̃ ≤M) ζ = 2t̃ζ 0;
17 else ζ = -2(t̃−M)ζ 0; }
18 Go to Line 1;
19 Compute E min

under;
20 Forecasteri→ bt

i = Forecasteri→ bt
i +E min

under1;
21 Return Forecasteri;
22 }

Figure 3.3. The MOSAL Algorithm

27

we take the following additional steps: For a given device class, let n be the index of
a device that MOSAL has trained successfully and which achieves the minimum Φ̂m

for that class. (We assume that such a device exists for each device class.) Let Wn
final

denote the parameters of Forecastern when the MOSAL algorithm returns for device n.
For each device i that belongs to the same class as n and whose Forecasteri is untrained
when MOSAL returns for device i, we set Wi

0 = Wn
final.

3.4 Results

3.4.1 Methodology

IoT Traffic Dataset

We use the dataset in (IoT Traffic Generation Pattern Dataset, 2021), which is
com-prised of the traffic generation patterns of 10000 bootstrapped IoT devices.
Reference (Nakip, Gül, et al., 2019) classifies the IoT t raffic in to four distinct
classes: Fixed Bit Aperiodic (FBA), Fixed Bit Periodic (FBP), Variable Bit
Aperiodic (VBA) and Variable Bit Periodic (VBP). According to this classification, if
an IoT device generates a fixed number of bits, its traffic generation is called “Fixed
Bit”; otherwise, the traffic generation is called “Variable Bit”. Moreover, if the
inter-arrival time between the bursts of a device is constant, its traffic generation is
called “Periodic”; otherwise, the traffic generation is called “ Aperiodic”. Since the
traffic generation pattern for FBP class is known in advance, in our simulations, we
focus on only the VBP, FBA and the VBA classes.

Wireless Channel Model

We use the Rayleigh fading model, which is described in (Rodoplu, Nakip, et al.,
2020) for a JFS system. Furthermore, we set the parameters as follows: the duration
of a MAC-layer slot τMAC = 0.1 s; the duration of the scheduling window Tsch = 900

s; the number of channel taps L = 10; the channel bandwidth W = 1 MHz; κ = 0.1
(for variance κ/2L); the value of the single-sided power spectral density of the white
noise at the receiver of Gateway No = 10−3 Watts/Hz; and the total transmit power
of each IoT device P = 1 mW.

28

Parameters of the Proposed Architecture and the MOSAL
Algorithm

For the particular implementation of Forecasteri in the architecture shown in Fig. 3.2, we
use a Multi-Layer Perceptron (MLP) model, which is comprised of three hidden layers
and an output layer. The number of neurons across the layers are (in vector notation)
[L,dL/2e,dL/4e,K], where L = 120 is the number of neurons in the first hidden layer,
and K = 5 is the number of neurons in the output layer. In addition, the activation
function of all neurons is set to the Rectified Linear Unit (ReLU).

Furthermore, for the MOSAL algorithm, we set ζ 0 = 0.05; r = 0.25; θ = 0.1; T =
10000; M = 30; εΦ = 0.05; and α̃ = 20. We shall say that a parameter is “critical” if
we expect the ultimate performance to show the highest sensitivity to perturbations
in the value of this parameter. In this list of parameters, the first critical parameter is
εΦ. If this parameter is too large, then learning will cease early, thus resulting in a
low throughput. In contrast, if this parameter is too small, then oscillations will result,
which will hamper the learning process. The second critical parameter is θ , which is
a threshold parameter. If this parameter is too large, then the algorithm cannot attain
this threshold. If this parameter is too small, then the learning rate will oscillate. Our
selection of the values of these parameters has been carried out carefully in accordance
with these considerations.

3.4.2 Performance Evaluation

We now evaluate the performance of the JFS system when the BoF, comprised of MLP
forecasters, has been trained via our architecture in Fig. 3.2.

We shall let MLP-MOSAL denote an MLP forecasting model that has been trained by
the MOSAL algorithm. Furthermore, we refer to an MLP forecasting model that is
trained via gradient descent as MLP-GD. In this section, we compare the performance
of MLP-MOSAL against that of MLP-GD. To this end, N contains an equal percentage
for each of the VBP, VBA and the FBA classes from the dataset (IoT Traffic Generation
Pattern Dataset, 2021).

In Fig. 3.4, we display the throughput of the JFS system (that uses the PAL scheduling
heuristic) under MLP-MOSAL as well as that under the MLP-GD forecaster. In this
figure, first, we see that the JFS system under MLP-MOSAL significantly outperforms
that under MLP-GD. That is, the minimization of ASEF rather than that of the traditional

29

Figure 3.4. Throughput performance of JFS under perfect forecasts, MLP-MOSAL
and MLP-GD

error metrics significantly improves the throughput performance. Second, we see that
using MLP-MOSAL in the place of MLP-GD closes a significant fraction of the gap to
the performance under perfect forecasts.

Figure 3.5. Energy consumption of JFS under perfect forecasts, MLP-MOSAL and
MLP-GD

In Fig. 3.5, we present the energy consumption of the JFS system. We see that the
energy consumption under MLP-MOSAL and MLP-GD are comparable across all N.

30

Furthermore, both of them are close to one under perfect forecasts for N > 150.

3.4.3 Computation Time

In Table 3.1, we present the mean and the standard deviation (STD) of the training
and execution times of MLP-MOSAL and MLP-GD. In this table, we see that the
training time of MLP-MOSAL is higher than that of MLP-GD, where the difference
is one order of magnitude. Furthermore, in Table 3.1, we see that the execution time
of MLP-MOSAL is comparable with that of MLP-GD.The execution time of both
forecasters are 0.18 ms which is acceptable for real-time IoT applications.

Table 3.1. Training and Execution Times of MLP-MOSAL and MLP-GD

Forecasting

Models

Training Time (s) Execution Time (ms)

Mean STD Mean STD

MLP-MOSAL 56.17 2.64 0.18 0.15

MLP-GD 5.40 2.66 0.18 0.23

3.5 Summary

We have developed a novel methodology for Joint Forecasting-Scheduling (JFS) in
which the forecasters are trained with respect to an application-specific error metric that
is learned via an Artificial Neural Network (ANN) model that emulates on a subspace
the difference in network performance between that under perfect forecasts and that
under Multi-Layer Perceptron (MLP) based forecasting. Based on this emulation, we
have designed an algorithm, called Motion On a Subspace under Adaptive Learning
rate (MOSAL) which achieves a throughput performance that surpasses those of the
past JFS forecaster training algorithms at reasonable computation time. In our future
work, we plan to apply this methodology to a broad range of forecasting-based systems
beyond the context of IoT.

31

CHAPTER 4

CONCLUSIONS

In this thesis, we have developed a subspace-based Application-Specific Error Function
(ASEF) for Joint Forecasting-Scheduling. In addition, we have proposed a method for
the emulation of ASEF, called E-ASEF. Furthermore, we proposed a novel algorithm,
MOSAL, that moves on the subpsace on which E-ASEF has been trained. We now
review each of these contributions.

In Chapter 2, we examined how our novel methodology can improve the JFS system
by using the relationship between forecasting error and network performance. One of
the findings of our study is that on a subspace, we can emulate the behavior of ASEF.
Furthermore, we have shown that a Multi-Layer Perceptron (MLP) can be successfully
used for this emulation.

In Chapter 3, we have presented a novel algorithm that we have developed, namely
MOSAL, which has improved the performance of JFS at low execution time. The main
idea behind MOSAL is that the forecasting error across all of the forecasters at the
IoT gateway can be kept on the subspace of forecasting errors that was identified via
E-ASEF while reducing the forecasting error towards zero during training. MOSAL
achieves this convergence by adapting the rate at which it moves at every step as the
forecasting error is being reduced.

Hence, we can summarize the contributions of this thesis as follows; (1) We have
developed an Application-specific Error Function (ASEF); (2) We have emulated this
function by an ANN on a subspace; (3) On this subspace, we have developed a novel
algorithm, called MOSAL. In the future, we intend to apply this system that we have
developed to forecasting-based systems that are outside of the context of IoT.

32

REFERENCES

Aijaz, A., & Aghvami, A. H. (2015). Cognitive machine-to-machine communications
for Internet-of-Things: A protocol stack perspective. IEEE Internet of Things

Journal, 2(2), 103–112.

Aijaz, A., Ping, S., Akhavan, M. R., & Aghvami, A.-H. (2014). CRB-MAC: A receiver-
based MAC protocol for cognitive radio equipped smart grid sensor networks.
IEEE Sensors Journal, 14(12), 4325–4333.

Alavikia, Z., & Ghasemi, A. (2018). Collision-aware resource access scheme for LTE-
based machine-to-machine communications. IEEE Transactions on Vehicular

Technology, 67(5), 4683–4688.

Ali, S., Saad, W., & Rajatheva, N. (2018). A directed information learning framework
for event-driven M2M traffic prediction. IEEE Communications Letters, 22(11),
2378–2381.

Bello, O., & Zeadally, S. (2019). Toward efficient smartification of the Internet of
Things (IoT) services. Future Generation Computer Systems, 92, 663–673.

Bockelmann, C., Pratas, N., Nikopour, H., Au, K., Svensson, T., Stefanovic, C., . . .
Dekorsy, A. (2016). Massive machine-type communications in 5G: Physical and
MAC-layer solutions. IEEE Communications Magazine, 54(9), 59–65.

Cai, D., He, X., & Han, J. (2007). Spectral regression for efficient regularized subspace
learning. In 2007 IEEE 11th International Conference on Computer Vision

(p. 1-8). doi: 10.1109/ICCV.2007.4408855

Cerwall, P., Jonsson, P., Möller, R., Bävertoft, S., Carson, S., Godor, I., . . . Lindberg, P.
(2015). Ericsson mobility report. On the Pulse of the Networked Society. Hg. v.

Ericsson.

Cisco. (Mar. 2020).

Cisco Annual Internet Report (2018–2023). Retrieved from
https://www.cisco.com/c/en/us/solutions/collateral/

executive-perspectives/annual-internet-report/

white-paper-c11-741490.html

33

https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html

De La Torre, F., & Black, M. J. (2003). A framework for robust subspace learning.
International Journal of Computer Vision, 54(1), 117–142.

Ericsson. (Nov. 2019).
Ericsson Mobility Report. Retrieved from https://www.ericsson.com/

en/mobility-report

Fortino, G., Russo, W., Savaglio, C., Viroli, M., & Zhou, M. (2017). Modeling
opportunistic IoT services in open IoT ecosystems. In WOA (pp. 90–95).

Ghavimi, F., & Chen, H.-H. (2014). M2M communications in 3GPP LTE/LTE-A
networks: Architectures, service requirements, challenges, and applications.
IEEE Communications Surveys & Tutorials, 17(2), 525–549.

Gu, Q., Li, Z., & Han, J. (2011). Joint feature selection and subspace learning. In IJCAI

Proceedings-International Joint Conference on Artificial Intelligence (Vol. 22,
p. 1294).

Hasan, M., Hossain, E., & Niyato, D. (2013). Random access for machine-to-machine
communication in LTE-advanced networks: Issues and approaches. IEEE

IoT Traffic Generation Pattern Dataset. (2021, Jan). Retrieved from
https://www.kaggle.com/tubitak1001118e277/iot-traffic

-generation-patterns

Jiang, X. (2011). Linear subspace learning-based dimensionality reduction. IEEE

Signal Processing Magazine, 28(2), 16–26.
Jin, H., Toor, W. T., Jung, B. C., & Seo, J.-B. (2017). Recursive pseudo-Bayesian access

class barring for M2M communications in LTE systems. IEEE Transactions on

Vehicular Technology, 66(9), 8595–8599.
Kuhlins, C., Rathonyi, B., Zaidi, A., & Hogan, M. (Jan. 2020). White pa-

per: Cellular networks for massive IoT. Retrieved from https://

www.ericsson.com/en/reports-and-papers/white-papers/

cellular-networks-for-massive-iot--enabling-low-power

-wide-area-applications

Lawal, I. A., Abdulkarim, S. A., Hassan, M. K., & Sadiq, J. M. (2016). Improving
HSDPA traffic forecasting using ensemble of neural networks. In 2016 15th IEEE

International Conference on Machine Learning and Applications (ICMLA) (pp.
308–313).

Li, Y. (2004). On incremental and robust subspace learning. Pattern Recognition, 37(7),
1509–1518.

Liang, L., Xu, L., Cao, B., & Jia, Y. (2018). A cluster-based congestion-mitigating
access scheme for massive M2M communications in Internet of Things. IEEE

34

Communications Magazine, 51(6), 86–93.

https://www.ericsson.com/en/mobility-report
https://www.ericsson.com/en/mobility-report
https://www.kaggle.com/tubitak1001118e277/iot-traffic-generation-patterns
https://www.kaggle.com/tubitak1001118e277/iot-traffic-generation-patterns
https://www.ericsson.com/en/reports-and-papers/white-papers/cellular-networks-for-massive-iot--enabling-low-power-wide-area-applications
https://www.ericsson.com/en/reports-and-papers/white-papers/cellular-networks-for-massive-iot--enabling-low-power-wide-area-applications
https://www.ericsson.com/en/reports-and-papers/white-papers/cellular-networks-for-massive-iot--enabling-low-power-wide-area-applications
https://www.ericsson.com/en/reports-and-papers/white-papers/cellular-networks-for-massive-iot--enabling-low-power-wide-area-applications

Internet of Things Journal, 5(3), 2200–2211.
Lien, S.-Y., Liau, T.-H., Kao, C.-Y., & Chen, K.-C. (2011). Cooperative access class

barring for machine-to-machine communications. IEEE Transactions on Wireless

Communications, 11(1), 27–32.
Lin, T.-M., Lee, C.-H., Cheng, J.-P., & Chen, W.-T. (2014). PRADA: Prioritized

random access with dynamic access barring for MTC in 3GPP LTE-A networks.
IEEE Transactions on Vehicular Technology, 63(5), 2467–2472.

Liu, J., Song, L., et al. (2017). A novel congestion reduction scheme for massive
machine-to-machine communication. IEEE Access, 5, 18765–18777.

Liu, Y., Yuen, C., Cao, X., Hassan, N. U., & Chen, J. (2014). Design of a scalable
hybrid MAC protocol for heterogeneous M2M networks. IEEE Internet of Things

Journal, 1(1), 99–111.
Lopez-Martin, M., Carro, B., & Sanchez-Esguevillas, A. (2019). Neural network archi-

tecture based on gradient boosting for IoT traffic prediction. Future Generation

Computer Systems, 100, 656–673.
Lopez-Martin, M., Carro, B., & Sanchez-Esguevillas, A. (2020). IoT type-of-traffic fore-

casting method based on gradient boosting neural networks. Future Generation

Computer Systems, 105, 331–345.
Mobasheri, M., Kim, Y., & Kim, W. (2020). Toward developing fog decision making

on the transmission rate of various IoT devices based on reinforcement learning.
IEEE Internet of Things Magazine, 3(1), 38–42.

Nakip, M., Gül, B. C., Rodoplu, V., & Güzeliş, C. (2019). Comparative study of
forecasting schemes for IoT device traffic in machine-to-machine communication.
In Proceedings of the 2019 4th International Conference on Cloud Computing

and Internet of Things (pp. 102–109).
Nakip, M., Helva, A., Güzeliş, C., & Rodoplu, V. (2021a). Subspace-based application-

specific error metric emulation in predictive networks to enable massive
- access for the Internet of Things. In 2021 IEEE Access, submitted.
Nakip, M., Helva, A., Güzeliş, C., & Rodoplu, V. (2021b). Subspace-based emulation of the

the relationship between forecasting error and network performance in joint
forecasting-scheduling for the Internet of Things. In 2021 IEEE World Forum on
the Internet of Things (WF-IoT 2021) (pp. 1–6).

Nakip, M., Rodoplu, V., Güzeliş, C., & Eliiyi, D. T. (2019). Joint forecasting-scheduling
for the Internet of Things. In 2019 IEEE Global Conference on Internet of Things

(GCIoT) (pp. 1–7).
Pang, Y.-C., Chao, S.-L., Lin, G.-Y., & Wei, H.-Y. (2014). Network access for

35

M2M/H2H hybrid systems: A game theoretic approach. IEEE Communications

Letters, 18(5), 845–848.
Park, I., Kim, D., & Har, D. (2014). MAC achieving low latency and energy efficiency

in hierarchical M2M networks with clustered nodes. IEEE Sensors Journal, 15(3),
1657–1661.

Paul, A., & Rho, S. (2016). Probabilistic model for M2M in IoT networking and
communication. Telecommunication Systems, 62(1), 59–66.

Pehlevan, C., Hu, T., & Chklovskii, D. B. (2015). A hebbian/anti-hebbian neural
network for linear subspace learning: A derivation from multidimensional scaling

- of streaming data. Neural Computation, 27(7), 1461–1495.
Rodoplu, V., Nakıp, M., Eliiyi, D. T., & Güzelis, C. (2020). A multi-scale algorithm for

joint forecasting-scheduling to solve the massive access problem of IoT. IEEE

Internet of Things Journal, 7(9), 8572-8589. doi: 10.1109/JIOT.2020.2992391
Rodoplu, V., Nakip, M., Qorbanian, R., & Eliiyi, D. T. (2020). Multi-channel joint

forecasting-scheduling for the Internet of Things. IEEE Access, 8, 217324–
217354.

Shahin, N., Ali, R., & Kim, Y.-T. (2018). Hybrid slotted-CSMA/CA-TDMA for
efficient massive registration of IoT devices. IEEE Access, 6, 18366–18382.

Shirvanimoghaddam, M., Dohler, M., & Johnson, S. J. (2017). Massive non-orthogonal
multiple access for cellular IoT: Potentials and limitations. IEEE Communications

Magazine, 55(9), 55–61.
Si, P., Yang, J., Chen, S., & Xi, H. (2014). Adaptive massive access management

for QoS guarantees in M2M communications. IEEE Transactions on Vehicular

Technology, 64(7), 3152–3166.
Tello-Oquendo, L., Leyva-Mayorga, I., Pla, V., Martinez-Bauset, J., Vidal, J.-R.,

Casares-Giner, V., & Guijarro, L. (2018). Performance analysis and optimal
access class barring parameter configuration in LTE-A networks with massive
M2M traffic. IEEE Transactions on Vehicular Technology, 67(4), 3505–3520.

Tello-Oquendo, L., Pacheco-Paramo, D., Pla, V., & Martinez-Bauset, J. (2018). Rein-
forcement learning-based ACB in LTE-A networks for handling massive M2M
and H2H communications. In 2018 IEEE International Conference on Communi-

cations (ICC) (pp. 1–7).
Vodafone. (Apr. 2010). RACH intensity of time controlled devices. 3GPP TSG

RAN WG2 #69bis, R2-102296. Retrieved from http://www.3gpp.org/

DynaReport/TDocExMtg--R2-69b--28031.htm

Wang, K., He, R., Wang, L., Wang, W., & Tan, T. (2015). Joint feature selection
and subspace learning for cross-modal retrieval. IEEE Transactions on Pattern

36

http://www.3gpp.org/DynaReport/TDocExMtg--R2-69b--28031.htm
http://www.3gpp.org/DynaReport/TDocExMtg--R2-69b--28031.htm

Analysis and Machine Intelligence, 38(10), 2010–2023.
Zanella, A., Zorzi, M., dos Santos, A. F., Popovski, P., Pratas, N., Stefanovic, C., . . .

Norp, T. A. (2013). M2M massive wireless access: Challenges, research issues,
and ways forward. In 2013 IEEE GLOBECOM Workshops (pp. 151–156). .

Zhang, C., & Patras, P. (2018). Long-term mobile traffic forecasting using deep spatio-
temporal neural networks. In Proceedings of the Eighteenth ACM International
Symposium on Mobile Ad Hoc Networking and Computing (pp. 231–240).

37

	ABSTRACT
	ÖZ
	ACKNOWLEDGEMENTS
	TEXT OF OATH
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	SYMBOLS AND ABBREVIATIONS
	1 INTRODUCTION
	1.1 IoT and M2M Communication
	1.2 Massive Access Problem
	1.3 Review of Joint Forecasting-Scheduling (JFS)
	1.3.1 Bank of Forecasters (BoF)
	1.3.2 Scheduler
	1.3.3 Measurement of Network Performance under JFS
	1.3.4 Relationship between Forecasting Error and Network Performance

	1.4 Relationship to the State of the Art
	1.5 Outline of this Thesis

	2 Subspace-Based Emulation of the Relationship Between Forecasting Error and Network Performance in Joint Forecasting-Scheduling for the Internet of Things
	2.1 Introduction
	2.2 Assumptions
	2.3 Application Specific Error Function (ASEF) for JFS
	2.4 Emulation of ASEF (E-ASEF) via an ANN
	2.5 Results
	2.5.1 IoT Data
	2.5.2 Performance Evaluation of E-ASEF
	2.5.3 Execution Time of E-ASEF

	2.6 Summary

	3 Subspace-Based Application-Specific Error Metric Emulation
	3.1 Introduction
	3.2 Review of Joint Forecasting-Scheduling (JFS)
	3.3 Mathematical Framework
	3.3.1 Application Specific Error Function (ASEF) and Its Emulation (E-ASEF)
	3.3.2 Training Architecture and the MOSAL Algorithm

	3.4 Results
	3.4.1 Methodology
	3.4.2 Performance Evaluation
	3.4.3 Computation Time

	3.5 Summary

	4 CONCLUSIONS
	REFERENCES
	

	Boş Sayfa
	Boş Sayfa
	Boş Sayfa
	Boş Sayfa
	Boş Sayfa
	Boş Sayfa
	Boş Sayfa
	Boş Sayfa
	Boş Sayfa
	Boş Sayfa

