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ABSTRACT 

CARDIAC ARRHYTHMIAS CLASSIFICATION BASED ON 

SPECTROGRAM AND CONVOLUTIONAL NEURAL NETWORKS 

Şen, Sena Yağmur 

MSc, Electrical Electronics Engineering 

Advisor: Assist. Prof. Dr. Nalan Özkurt 

February 2021 

 

In this thesis, the main objective is to classify heart rhythms which were acquired from 

MIT-BIH Arrhythmia Database using Convolutional Neural Networks (CNN) 

architecture. The classified heartbeats are normal sinus rhythm, premature ventricular 

contraction (PVC), left bundle branch block (LBBB), and right bundle branch block 

(RBBB). Two main studies are described as follows; CNN Classification of Time-

Series vs. Spectrogram Study and Spectrogram-CNN-Hyperparameter Tuning with 

Adam Optimization Algorithm Study. 

In CNN Classification of Time-Series vs. Spectrogram study, the classification of 

arrhythmias was carried out via using both raw signals and Short-Time Fourier 

Transform (STFT) in order to analyze the characteristic of the heartbeat signals. In 

time-domain classification, normal sinus rhythm, PVC and RBBB heart signals were 

used as a 1-D vector. The large number of electrocardiogram (ECG) time-series signals 

were classified with CNN by using their raw form. With the aid of STFT, Hamming 

window was applied in order to obtain the information from the signal. The normal 

sinus rhythm, PVC, and RBBB heart signals which are in the time domain were 

transformed into the time-frequency domain with the help of STFT. The STFT 

provided the acquisition of spectrograms from heart signals, and these spectrograms 

were classified with CNN through using as their RGB image form. The proposed CNN 

Classification of Time-Series vs. Spectrogram study demonstrated the high 

accomplishment rates in the deep learning approach, and according to accuracy, 

sensitivity and specificity terms, and also showed to better than traditional feature 

extraction methods.  
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In Spectrogram-CNN-Hyperparameter Tuning with Adam Optimization Algorithm 

study, heartbeat signals were examined by tuning CNN hyperparameters. The ECG 

heart signals which are normal sinus rhythm, LBBB, and RBBB were transformed into 

their corresponding spectrograms in order to acquire characteristics of the heart 

signals. These spectrograms were restricted with a particular time/frequency resolution 

rate, and the suitable time/frequency resolution rate was identified heuristically. Adam 

was selected as an optimization algorithm of the deep learning network in order to 

train the ECG spectrograms. The tuned hyperparameters were the learning rate, 

gradient decay factor and squared gradient decay factor of the Adam algorithm. The 

identification of hyperparameters was performed by using the grid search method in 

order to compare the results. The effect of the tuning process according to learning rate 

and the moment estimation coefficients were represented as their validation loss 

graphs. The proposed Spectrogram-CNN-Hyperparameter Tuning with Adam 

Optimization Algorithm study yielded great achievement rates with respect to 

accuracy, sensitivity and specificity terms. 

 

Key Words: ECG heartbeat classification, arrhythmia detection, electrocardiography, 

short-time fourier transform, deep learning, convolutional neural network, 

hyperparameter tuning, grid search, adam optimization, adaptive learning  
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ÖZ 

KALP ARİTMİLERİNİN EVRİŞİMSEL SİNİR AĞLARI VE 

SPEKTROGRAM TABANLI YÖNTEMLE SINIFLANDIRILMASI 

Şen, Sena Yağmur 

Yüksek Lisans Tezi, Elektrik Elekronik Mühendisliği 

Danışman: Yard. Doç. Dr. Nalan Özkurt 

Şubat 2021 

 

Bu tezde, Evrişimsel Sinir Ağları (ESA) mimarisi kullanılarak MIT-BIH Aritmi 

Veritabanından elde edilen kalp ritimlerinin sınıflandırılması temel amaçtır. 

Sınıflandırılmış kalp vuruları normal sinüs ritmi, erken ventriküler kasılma, sol dal 

bloğu ve sağ dal bloğudur. İki ana çalışma şu şekilde tanımlanmıştır; Zaman-Serisi-

ESA ile Spektrogram-ESA Karşılaştırılması ve Adam Optimizasyon Algoritması ile 

Spektrogram-ESA Hiperparametre Ayarlanması. 

Zaman-Serisi-ESA ile Spektrogram-ESA Karşılaştırılması çalışmasında, kalp 

sinyallerinin özelliklerini analiz etmek için, aritmilerin sınıflandırılması hem ham 

sinyaller hem de Kısa Süreli Fourier Dönüşümü (KSFD) kullanılarak 

gerçekleştirilmiştir. Zaman alanı sınıflandırmasında normal sinüs ritmi, erken 

ventriküler kasılma ve sap dal bloğu kalp sinyalleri bir boyutlu vektör olarak 

kullanılmıştır. Çok sayıda EKG zaman serisi sinyallerinin ham halleri kullanılarak 

ESA ile sınıflandırıldı. KSFD yardımıyla sinyalden bilgi almak için Hamming 

pencereleme yöntemi uygulandı. Zaman alanında bulunan normal sinüs ritmi, erken 

ventriküler kasılma ve sağ dal bloğu kalp sinyalleri KSFD yardımıyla zaman-frekans 

alanına dönüştürüldü. KSFD, kalp sinyallerinin spektrogramlarının alınmasını sağladı 

ve bu spektrogramlar, RGB görüntü formları kullanılarak ESA ile sınıflandırıldı. 

Önerilen Zaman-Serisi-ESA ile Spektrogram-ESA Karşılaştırılması çalışması, derin 

öğrenme yaklaşımında yüksek başarı oranlarını doğruluk, duyarlılık ve özgüllük 

terimlerine göre ve ayrıca geleneksel özellik çıkarma yöntemlerinden daha iyi 

olduğunu göstermiştir. 
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Adam Optimizasyon Algoritması ile Spektrogram-ESA Hiperparametre Ayarlanması 

çalışmasında, kalp sinyalleri ESA hiperparametreleri ayarlanarak incelenmiştir. 

Normal sinüs ritmi, sol dal bloğu ve sağ dal bloğu EKG kalp sinyalleri, bu sinyallerin 

karakteristiğini elde etmek için kendilerine karşılık gelen spektrogramlarına 

dönüştürüldü. Bu spektrogramlar belirli zaman/frekans çözünürlük oranına göre 

sınıflandırıldı ve uygun zaman/frekans çözünürlük oranı sezgisel oalrak tanımlandı. 

Adam, EKG spektrogramlarını eğitmek için derin öğrenme ağının optimizasyon 

algoritması olarak seçildi. Ayarlanmış hiperparametreler, Adam algoritmasının 

öğrenme hızı, gradyan azalma faktörü ve kare gradyan azalma faktörüdür. Sonuçların 

karşılaştırılması için hiperparametrelerin tanımlanması grid arama yöntemi 

kullanılarak yapılmıştır. Ayarlama işleminin, öğrenme hızına ve moment tahmin 

katsayılarına göre etkisi, doğrulama kayıp grafikleri olarak temsil edilmiştir. Önerilen 

Adam Optimizasyon Algoritması ile Spektrogram-ESA Hiperparametre Ayarlanması 

çalışması, doğruluk, duyarlılık ve özgüllük kavramlarına göre büyük başarı oranları 

göstermiştir. 

 

Anahtar Kelimeler: EKG kalp vuru sınıflandırması, aritmi tespiti, 

elektrokardiyografi, kısa süreli fourier dönüşümü, derin öğrenme, evrişimsel sinir ağı, 

hiperparametre ayarlaması, grid arama, adam optimizasyon, uyarlamalı öğrenme  
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CHAPTER 1 

INTRODUCTION 

1.1. The Motivation and Literature Review 

There are various systems in the human body are carried out pivotal operations for 

maintaining human body health. The circulatory system is responsible for blood 

streaming continuously into the human body. The heart is the main component with 

regard to the circulatory system that is located on the chest. The health condition of 

the heart can be analyzed by scrutinizing the characteristics of the heart signals. 

Provided that information on the heart signals, the correct diagnosis and treatment can 

be applied to patients according to their heart disorders. In recent years, many deaths 

are caused by cardiac diseases across the world. Cardiac diseases are inhibited from 

sustaining healthy life in each person. The problem of developing automated 

construction to the analysis of electrocardiogram (ECG) signals according to their 

changing morphologies for different patients. The difficulties occurred to the 

identification of ECG pattern recognition because the ECG signals can have 

background noises, artifacts that are caused by measurements from the electrodes of 

the ECG medical device. In the literature, different methods are developed for the 

identification of pattern recognition, but artificial neural networks have a great 

significance in ECG signal classification. Artificial neural network-based 

classification techniques are well-known means of solving non-linear problems and 

their robustness property. The importance of artificial neural networks is also coming 

from noise toleration, fast and efficient computing ability. The adaptation of neural 

networks when faced with new pattern recognition in order to solve complex problems. 

From this aspect, a large number of data can be used in the neural networks for non-

linear problems. The developed systems can assistance to medical experts to diagnose 

crucial heart rhythm disorders.  
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The electrical signals generated by the heart have to be scrutinized to figure out the 

cardiac health of the human body. All of the electrical signals measured from the 

human body are categorized under biomedical signals. Biomedical signals are utilized 

to understand the underlying physiological mechanisms of a particular biological 

system or event. One of the biomedical signal types is the electrocardiogram (ECG) 

signal which is known as a cardiac signal. The cardiac signals can be obtained from 

ECG medical device that provides us to identify patient heart disorders. In one cardiac 

cycle, the observable heart signals are characterized by the heart’s condition via using 

ECG medical device according to cardiac signal characteristics. The medical expert 

can identify a heart condition according to signal characteristics from measurements 

by monitoring the ECG medical device. Abnormalities of the cardiac signals are called 

arrhythmia. These arrhythmias are categorized as their signal characteristics such as 

P-QRS-T segments or duration and wave structure. The entire information is obtained 

from signals enables medical experts to label heartbeats as abnormal or not. There are 

many approaches for the detection and classification of ECG signals based on feature 

extraction methods, machine learning methods, and deep neural network-based 

methods. In a deep neural network approach, suitable optimization algorithms should 

select according to the engineering problem to obtain high accomplishment rates such 

as accuracy, specificity, sensitivity, positive predicted value, etc. In these 

circumstances, different methods are presented in the literature studies. 

 

In the investigation of characteristics of the cardiac signals, signal processing 

techniques are utilized widespread. According to the investigation of some 

researchers, ECG signals with high-frequency components have been evaluated as 

signal-beat analysis or signal averaging on 128 sequential beats based on Single-beat 

Spectral Variance (SBSV) by using 2-dimensional Fourier Transform (FT), and they 

have been divided patients into three groups as myocardial infarction that patients’ 

have ventricular tachycardia or not. Following their results, SBSV has been 

categorized 29 out of 35 patients as pathologic with an accuracy of 83% in group 1. In 

group 2, 5 out of 50 patients have been shown abnormality with an accuracy of 48%. 

In group 3, there has been detected no pathologic outcome (Spiegl et al., 1998).  
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Feature extraction from biomedical signals is a prevailingly used technique. This 

feature extraction method provides us to categorize signals according to their signal 

characteristics. Because ECG signals have great importance of detection properly, 

some feature extraction methods are used in many investigations. One way of the 

feature extraction from ECG signals is the morphological approach, which is analyzed 

according to time intervals or segment durations for pivotal heartbeat structures by 

using mathematical consideration. Ghongade and Ghatol (2008) indicated that four 

types of ECG signals classification are normal sinus rhythm, atrial premature beat, 

premature ventricular contraction beat, and left bundle branch block beat using 

morphological features of QRS complexes have been classified with artificial neural 

network approach: Support Vector Machine (SVM), Radial Basis Function (RBF) and 

Multi-Layer Perceptron (MLP). In this study, they have been obtained 99 % accuracy 

in both three classifiers with a limited set. On the other hand, Shufni and Mashor 

(2015) stated that in their study, time-domain ECG signals are used at the initial phase 

after applied Fast Fourier Transform (FFT) and Discrete Wavelet Transform (DWT) 

on these ECG signals for evaluating in frequency-domain by looking at statistical 

features as mean, variance and standard deviation. According to Shufni’s results, they 

have been accomplished with an accuracy of 95.45% and 96.21% in both the time 

domain and frequency domain respectively. Wavelet Transform is especially used for 

non-stationary signals, such as ECG signals, that provide both time and frequency 

components at a high-resolution rate. The WT is outperformed with an accuracy of 

99.24% compared to statistical features. It is stated in (Balachandran et al., 2014) that 

ECG signals are used in their study in order to improve the system constructed on a 

multi-resolution wavelet transform. In their system, ECG features are highly 

discriminative by using the Daubechies wavelet filter, and ECG signals have been 

taken from the MIT-BIH database. They have been asserted that Discrete Wavelet 

Transform (DWT) is a strongly recommended method for signal processing and its 

applications (Hsieh et al., 2005; Banerjee and Mitra, 2014). 

 

Heart Rate Variability (HRV) is controlled by the power spectrum of various 

frequency segments as sequential single beat analysis in terms of heart rate. Jacobson 

(2007) stated that in his investigation ECG signals are extracted its low frequency and 

high frequency according to power spectral density in 24 hours duration by using 

Short-Time Fourier Transform (STFT). Due to the nature of ECG signals are known 
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as non-stationary, in their recommended study multi-component biomedical signals 

are examined in the time-frequency domain through utilizing STFT, and they have 

been aimed to obtain good performance rates for analysis of four different type of 

cardiac arrhythmias (Benmalek and Elmhamdi, 2015). In order to scrutinize the non-

stationary signals, such as ECG signals, time-frequency analysis methods have been 

the great significance of reaching both spectral and time localized information from 

this kind of non-stationary signals (Abdeldayem and Bourlai, 2018; Krishna, 2017; 

Wu et al., 2019; Choudhary et al., 2018). Wu and his friends claimed that the ECG 

signals, which are consisting of multiple arrhythmias, applied time-frequency 

transformation such as STFT, Continuous Wavelet Transform (CWT), and pseudo-

Wigner-Ville distribution (PWVD). As a result, STFT is outperformed on other time-

frequency transformation approaches, and they have been reached a 96.65% accuracy 

rate in their study (Wu et al., 2019). 

 

Deep learning models can be seen as a particular type of artificial neural network and 

it is copycatted brain neurons. The considerable property of deep neural networks is 

allowed to classifying performance on large-scale data compared to traditional 

approaches (Liu et al., 2018; Pourbabaee et al., 2018; Fan et al., 2018). It is stated in 

(Chen et al., 2019) the six types of cardiac arrhythmias are categorized by combining 

the Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM) in 

order to obtain features on a larger scale ECG data. Their research has been indicated 

that CNN outperformed compared to other classification methods, and also they have 

been reached 81% classification accuracy. On the other hand, how DNA has special 

characteristics individually, ECG signals have also their characteristics. Therefore, the 

detection and classification of ECG signals have great importance for personal 

identification in biometrics (Xu et al., 2018). The study that is aimed to develop a 

generic and robust system for automated real-time patient-specific classification of 

ECG signals. One of the studies is related to the wavelet transform in order to extract 

features that are projected onto feature space as lower-dimensional via using principal 

component analysis (İnce et al., 2009). The other method is related to the adaptive 

implementation of one-dimensional CNN in order to categorize long ECG records are 

taken from the MIT-BIH database, and they have been asserted that their study is 

immensely generic, according to this reason, that system is feasible for any ECG 

dataset. They have been classified as ventricular ectopic beat (VEB) and 
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supraventricular ectopic beat (SVEB) arrhythmias with an accuracy of 99% (Kiranyaz 

et al., 2016). 

Huang and his friends (2019) stated that the classification of ECG signals approaches 

that depend on CNN as a classifier with five different arrhythmias such as normal 

rhythm (NOR), left bundle branch block beat (LBB), right bundle branch block beat 

(RBB), premature ventricular contraction beat (PVC), and atrial premature contraction 

beat (APC) transformed into spectrogram form by using Short Time Fourier Transform 

(STFT). Nowadays, the evolution of CNN architectures and their improvements have 

been distinguished according to novelties of the investigations and using state-of-the-

art techniques. In that manner, CNN hyperparameters have been adjusted according to 

different activation functions, changing the number of hidden units or neurons, filter 

size, and step size (Mehta et al., 2020; Bibaeva, 2018; Rajkumar, 2019; Sun et al., 

2019). In Mehta’s investigation, the effect of different activation functions of both 

artificial and deep neural networks has been examined on EEG signals, and they have 

been used threshold activation function, linear activation function, sigmoid activation 

function, and ReLU-based activation functions in their study. On the other hand, 

Bibaeve’s study has been demonstrated for a different architecture of the CNN model 

by adjusting pooling type, activation function, filter size, and step size via using 

evolutionary algorithms and genetic algorithms. 

 

The optimization algorithms are responsible for reducing the network’s loss function 

by adjusting weights or learning rates, and also ensure more accurate results depending 

on the selected optimizer. Non-convex optimization incorporates the function that has 

more than one optima instead of having just one global optimum. When the non-

convex optimization problems are considered according to loss surface, reaching the 

global optima is still being challenging. The neural network tries to find the global 

optimum by reducing the loss on the error surface simultaneously. When considered 

the neural networks, there is always a non-convex optimization problem (Yu and 

Ramamoorthi, 2019). In their study, a novel video stabilization method that leads to 

widespread non-convex optimization problems in order to solve the problem, they 

have been recommended using CNN solely as an optimizer rather than the extraction 

of information from the data.  
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Many of the researchers have been suggested lots of frameworks in order to find the 

best optimizer with respect to their model and data. There are various optimizers such 

as Adaptive Moment Estimation (ADAM), Stochastic Gradient Descent (SDG), 

Stochastic Gradient Descent with Momentum (SGDM), AdaDelta, AdaGrad, and 

RMSProp that are used in the neural network model in order to demonstrate that how 

optimizer effects on the loss function and provide the most accurate result compared 

to other neural network architectures (Poojary and Pai, 2019; Kamsing et al., 2019; 

Sun et al., 2019). According to Kamsing’s study, four types of optimizers have been 

used for object identification problems with implementing CNN in order to classify 

satellite images in the planesnet dataset.  

 

Through using all information that was synthesized after the literature review, the 

detection and classification of ECG signals by considering crucial optimization 

techniques are used, and the state-of-the-art approaches are emphasized in this thesis.  

There are developed various systems for ECG signal analysis but remain the 

drawbacks in the literature. Accomplishment rates are directly related to the selected 

features and feature extraction techniques, and the selected dataset has great 

importance in changing the success rate. These days, the dimension of data and size of 

the dataset rise enormously, also the selection of feature extraction methods is 

becoming challenging. Because of these reasons, deep learning approaches are 

indispensable, and the most optimized solutions are needed in deep learning 

approaches. 

1.2. Aim of the Study 

The main purpose of this thesis is to develop a system that provides us to the diagnosis 

of cardiac patients from records are in accordance with arrhythmia. The records were 

adjusted as thirty minutes samples long in the proposed approach that depends on ECG 

records taken from normal patients and patients that have cardiac arrhythmias. These 

ECG records are analyzed in the beat-to-beat form in order to classify them according 

to their labels by using CNN. In order to elaborate further, model optimization 

techniques were investigated the network, and also model hyperparameters were 

scrutinized. 
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Thus, the contribution of the thesis includes: 

• ECG signals were analyzed in the time domain and in the time-frequency 

domain, ECG time-series signals and ECG spectrogram images were used as 

input in the CNN model and compared to each other for the classification 

problem with high accomplishment rates. 

• ECG spectrogram images were used as an input in the CNN model, and the 

model hyperparameters were investigated. 

• The optimization algorithms of the model were scrutinized according to 

optimizers. 

1.3. Outline of the Thesis 

In Chapter 1, literature investigations are given in detail associated with this thesis. 

This thesis was given the form of the related literature studies, and also the purpose of 

the thesis was carried out in this chapter. 

 

In Chapter 2, heart anatomy was represented as a short form. This chapter explains the 

heart structure, working principle of the heart and its connected components, 

electrocardiography device that enables us to measure and recording of cardiac signals, 

and cardiac arrhythmias with the corresponding signal structure which are utilized in 

this thesis. 

 

In Chapter 3, time-frequency analysis related to signal processing techniques which 

are Fourier Transform (FT), Continuous Fourier Transform (CFT), and Short-Time 

Fourier Transform (STFT) were expressed in detail. The theory about Neural 

Networks (NNs) with its subtitles Multi-Layer Perceptron (MLP) and Convolutional 

Neural Networks (CNNs) was mentioned particularly. The optimization algorithms 

were also scrutinized related to this thesis in this chapter. 

 

In Chapter 4, the dataset was explained that was used in this study for arrhythmia 

detection, also the ECG signal classification test results were demonstrated in both the 

time domain and the time-frequency domain. 
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In Chapter 5, the detection and classification of ECG signals in the time-frequency 

domain according to tuning Adam algorithm hyperparameters, and the results were 

demonstrated. 

 

In Chapter 6, the contribution of the thesis was debated according to the given results, 

and future works were explained. 
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CHAPTER 2 

PHYSIOLOGICAL BACKGROUND 

The human body is composed of organisms from cells to systems. The cell is the 

smallest structural and functional unit of an organism. After that, the tissue is made up 

of specialized cells. More than one kind of tissue is organized to become an organ for 

performing unique functions in the human body. Various functions of organs are 

coming up together for being a system that is dependent on each other. The human 

body is actually a closed loop that has twelve different systems, and these are mainly 

circulatory, digestive, endocrine, immune, lymphatic, nervous, muscular, 

reproductive, skeletal, respiratory, urinary, and finally integumentary systems. All 

these systems are responsible for sustaining body health for a living. 

In order to perform blood streaming, the circulatory system manages that operation 

continually in the human body. Thanks to the circulatory system, nutrients, oxygen, 

and carbon dioxide are being transported. In this chapter, the anatomy of the heart 

which structure and working principle of the heart are explained briefly. Additionally, 

the electrocardiography device that helps to the measurement of cardiac signals, and 

arrhythmia types that are used in this thesis are explained as well. 

2.1. Heart Anatomy 

The heart is made up of special muscles to pump the blood through the body and has 

4 chambers, which are namely the atrium and ventricles. The unique name of the upper 

ones is an atrium, and the lower ones are ventricles. These 4 chambers and cardiac 

valves are interconnected to each other. The right atrium (RA) and right ventricle (RV) 

helps to collect blood enriched by carbon dioxide, out of the body, and pump it to the 

lungs. On the other hand, the left atrium (LA) and left ventricle (LV) helps to collect 

blood enriched by oxygen, out of the lungs and pump it to the body.  

In order to initiate blood streaming, the heart muscles have to be contracted. The 

electrical pulses are occurred by contraction of the heart in the human body. These 

electrical pulses are created by an enormous pacemaker in each heart particularly, is 
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also known as the Sino-Atrial (SA) node (Guyton and Hall, 2010). 

 

 

 

 

 

 

 

 

There are 3 leading elements of the heart in order to provide the cardiac cycle: 

• The SA node is located in the right atrium near the gap of the superior vena 

cava. 

• The atrioventricular (AV) node is located between the atria and the ventricles. 

• The His-Purkinje fibres are located in the inner ventricular walls of the heart. 

The blood flow of the heart is related to the contraction of the heart and the 

conformance of the cardiac valves. There are 4 different valves of the heart: 

• Tricuspid valve reaches among RA and RV. 

• Mitral valve reaches among LA and LV. 

• Pulmonary valve reaches among RV and pulmonary vein towards the lung. 

• Aortic valve reaches among LV and aorta. 

The cardiac cycle includes a duration of relaxation is named diastole, throughout that 

the heart receives the blood, followed by a duration of contraction, in order to pump 

out, is named as systole. 

The RA collects the blood which enriched by carbon dioxide from both vena cava as 

superior and inferior that are fundamental veins reaching the heart. Atrial 

depolarization leads to contraction of the atrial muscles. With atrial contraction, the 

blood is moved from the RA to the RV together with the tricuspid valve. Then in 

ventricular contraction, the blood, which is poor by carbon dioxide in the RV, in order 

Figure 2.1. Blood Flow Direction and Structure of the Heart (Webster, 1998) 
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to clean the blood, the RV is sent out the blood to the lungs via the pulmonary valve. 

In other words, contraction is pumping the blood out and known as diastole while 

relaxation following contraction is known as systole. 

In atrial contraction, the LA distributes the blood, which is enriched by oxygen from 

the lungs, towards LV via the mitral valve. The strongest diastole is actualized in LV 

with respect to the other chambers of the heart, and oxygenated blood spread the whole 

body via the aortic valve. 

The cardiac contraction depends on SA node stimulations in order to produce a normal 

heart rhythm. The path of the conduction system shows the impulses are moved from 

the SA node to the AV node. AV bundle is responsible for the conduction of impulses 

which are transmitted from atria to ventricles. The left and right bundle branches of 

Purkinje fibres transmit these impulses to each part of the ventricles. Heart rhythmicity 

and impulse conduction are controlled via cardiac nerves such as sympathetic and 

parasympathetic. Parasympathetic nerve stimulation causes the release of 

acetylcholine hormone. Acetylcholine has two main actions on the heart which are 

diminished SA node’s rhythm rate and low transmission of impulses to the ventricles. 

Sympathetic nerve stimulation causes the release of the norepinephrine hormone. 

Norepinephrine hormone has increased the power of heart contraction and the whole 

action of the heart. The conduction system of the heart can damage by any heart 

disease, but the normal heartbeat is 72 beats per minute (bpm) (Guyton and Hall, 

2010). 

 

The successive operations are accomplished in one heartbeat cycle: 

1. The SA node is stimulated by a neurotransmitter which is known as 

acetylcholine. 

2. The P-wave is occurred by electrical potentials produced during the 

depolarization of the atria at the beginning of the atrial contraction. The voltage 

of the P-wave is relatively between 0.1 and 0.3 mV for 60-80 ms. 

3. PR/PQ interval is a period which is the duration between the starting of the P-

wave and the starting of the QRS complex. PR interval is nearly 0.16 seconds. 

This period supports to fulfill the blood transmission from the atria into the 

ventricles. His-Purkinje fibres stimulate ventricles and outstretch to left and 

right bundle branches. 
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4. His-Purkinje fibres stimulate ventricles and outstretch to left and right bundle 

branches. 

 

 

 

 

 

 

 

 

 

5. The QRS complex is the period of the starting of excitation of the atria and the 

starting of excitation of the ventricles QRS complex voltage is about 1.0 to 1.5 

mV amplitude and 0.83 seconds from the top of R-wave to the base of S-wave. 

6. ST interval is a duration of which is the end of the QRS complex to the starting 

of the T-wave. This interval is explained as the duration between ventricular 

depolarization and repolarization, also known as the isoelectric period. The 

duration of the ST interval is nearly 0.08 seconds. 

7. T-wave is described as a repolarization wave, it occurs ventricles are relaxed. 

The T-wave shape has among 0.2-0.3 mV amplitude for approximately 120-

160 ms with respect to Figure 1. 

 

2.2. Electrocardiogram 

The human body is composed of different systems in itself in order to maintain the 

body’s function completely. Heart functions are measured and monitored by ECG. 

Heart signals can be obtained as real-time data by using Holter monitoring. The 

monitoring of heart signals is done together by engineers, cardiologists, and clinicians. 

Figure 2.2. Single P-QRS-T Structure of Normal Heartbeat 
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P-QRS-T wave structure represents voltage versus time of the cardiac cycle of the 

heart by looking at the ECG monitor. As mentioned, the preceding section about one 

cardiac cycle (heartbeat), the first step is SA node is stimulated by the 

neurotransmitter, and then electrical impulse spreads along with the heart as a regular 

wave shape. This operation can be seen on the ECG device via using electrodes which 

are placed on the patient’s limb and chest. The wave structure of the heart signals 

obtained from the ECG device is analyzed according to the P-QRS-T wave structure. 

In order to interpret ECG rhythm also known as Heart Rate (HR), atrial rate counts the 

number of P-wave and ventricular rate counts the number of QRS complexes in 60 

seconds. 

All types of heart signals contain both time and frequency components individually. 

For that reason, analyzing heart signals has crucial importance on human life. When 

considering the real-time data monitoring and processing together with the digital or 

statistical signal processing approaches, it is possible to make logical extractions from 

the real-time ECG signals with respect to time and frequency components and wave 

shapes. 

The diagnosis of cardiac disease in earlier stages is the most important level of 

treatment. There is a statement about detection and diagnosis on time, correct diagnosis 

on time provides to apply the correct treatment, the correct treatment provides to 

decrease the rate of death. Therefore, we need a suitable and efficient system in order 

to not only detect but also classify the heartbeats according to their labels such as 

normal and abnormal by using state-of-the-art methods.  

2.3. Cardiac Arrhythmias 

The electrical impulses of the heart not being conducted as it is supposed to be through 

the heart ventricles’ is called arrhythmia. Over the past decades, investigation of ECG 

heartbeat signals has been of great importance in order to develop the robust automated 

cardiac arrhythmia detection and classification system, and also the treatment of 

cardiac diseases (de Albuquerque et al., 2018). 

In order to detect and classify ECG heartbeat signals as normal or arrhythmia, some 

researchers have developed successful classifiers in the literature, and the investigation 

about developing such classifiers has not been finished yet. The developments and 

findings of classifiers are still proceeding with investigation today.  

 



 
 

 14 

Depending on the labeling of the Association for the Advancement of Medical 

Instrumentation (AAMI), there are 5 main heartbeat classes, and their 15 sub-clusters 

are indicated in Table 2.1. In Table 2.1 heartbeat classes in the MIT-BIH database are 

categorized with respect to AAMI standards. 

 

Table 2.1. Heartbeat Classes according to AAMI Standards 

AAMI Class  Type of beat 

Normal (N) Normal beat 

 Left bundle branch block beat  

 Right bundle branch block beat 

 Atrial escape beat 

 Nodal (junctional) escape beat 

Supraventricular ectopic beat (S) Atrial premature beat 

 Aberrated atrial premature beat 

 Nodal (junctional) premature beat 

 Supraventricular premature beat 

Ventricular ectopic beat (V) Premature ventricular contraction 

 Ventricular escape beat 

Fusion beat (F) Fusion of ventricular and normal beat 

Unknown beat (Q) Paced beat 

 Fusion of paced and normal beat 

 Unclassifiable beat 

 

In this investigation, 4 types of heartbeats are used such as Normal (N) beat, LBBB 

beat, RBBB beat, and PVC beat by implementing the STFT approach. 

2.3.1. Normal 

N beat term defines who has a healthy heart condition in itself. Additionally, the PR 

interval is 0.12-0.20 seconds, it is approximately 0.16 seconds. The QRS complex 

interval has a 0.06-0.12 seconds duration. The normal beat is also known as a normal 

sinus rhythm and has its unique P-QRS-T wave pattern. Figure 2.3 represents single 

beat of normal ECG signal for one-second duration which is taken from the MIT-BIH 

Arrhythmia Database and plotted in MATLAB.  
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2.3.2. Left Bundle Branch Block 

LBBB is the activation of the heart’s left LV being delayed and this status leading to 

delaying LV contraction more than the RV. LBBB is an important arrhythmia type 

since it indicates abnormal cardiac rhythms on the left side of the heart.  

Just as mentioned in the previous part, the normal heartbeat QRS pattern duration is 

0.06-0.12 seconds. On the other hand, the QRS pattern of the LBBB beat is greater 

than 0.12 seconds. Also, it is hard to interpret on an ECG monitor but analysis and 

diagnosis of this arrhythmia are also possible for doctors and clinicians by looking at 

the QRS pattern. Moreover, LBBB has a normal P-wave and is followed by a T-wave 

after the QRS structure. In order to notice LBBB arrhythmia, unforeseen downward or 

upright fluctuations must be seen in the QRS pattern which changes in ST-segment. 

Figure 2.4 represents single beat of the LBBB ECG signal for one-second duration 

which is taken from the MIT-BIH Arrhythmia Database and plotted in MATLAB.  

Figure 2.3. Normal Heartbeat of ECG Signal 
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2.3.3. Right Bundle Branch Block 

RBBB is a complete or incomplete heartbeat block of the electrical signal conduction 

system to the RV. RV is not stimulated directly via electrical impulses coming from 

the right bundle branch. The electrical signal excitation of the RV is delayed by RBBB 

arrhythmia.  Because of this, the QRS complex is seen wider than normal sinus rhythm, 

and the transmission takes a longer time than normal sinus rhythm conduction because 

of delay in contraction.  

By looking at the QRS pattern characteristic, if it is an incomplete block, then the QRS 

duration should be at least 0.1 seconds. On the other hand, if it is a complete block, 

then the QRS duration should be at least 0.12 seconds. Also, at the end of the QRS 

structure, S-wave is seen as a prolonged shape. RBBB is not as critical as LBBB 

arrhythmia since LBBB has considerable indications about cardiac disease, and also 

RBBB can be diagnosed in medical ways more easily as opposed to LBBB by doctors 

or clinicians Figure 2.5 represents single beat of normal ECG signal for one-second 

duration which is taken from MIT-BIH Arrhythmia Database and plotted in 

MATLAB.  

 

Figure 2.4. LBBB Heartbeat of ECG Signal 
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2.3.4. Premature Ventricular Contraction 

PVC is a common arrhythmia caused by starting from the wrong stimulation point of 

the heart such as the Purkinje fibres in the ventricles. Stimulation should fire at the SA 

node via helping neurotransmitters.  

Single PVC beat does not indicate a hazardous situation, but if 3 or more PVC 

heartbeats occur, it may be a symptom of ventricular tachycardia which is mostly fatal 

arrhythmia. What is more, electrocardiographic features of PVC beats are extended 

QRS structure duration greater than 0.12 seconds with the abnormal morphological 

structure according to the normal sinus rhythm, incompatible ST segment, and T-wave 

changes Figure 2.6 represents single beat of PVC ECG signal for one-second duration 

which is taken from MIT-BIH Arrhythmia Database and plotted in MATLAB.  

Figure 2.5. RBBB Heartbeat of ECG Signal 
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Figure 2.6. PVC Heartbeat of ECG Signal 
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CHAPTER 3 

SIGNAL PROCESSING AND MACHINE LEARNING 

In this chapter, the time-frequency analysis, the definition, notion and subtopics of 

Fourier Transform (FT), its important properties will be given in detail. Additionally, 

the machine learning techniques and their significant points for classification problems 

will also be given in this chapter. 

3.1. Time-Frequency Analysis 

The time-varying spectra are the representation of the time-frequency analysis. To 

exemplify, consider that any sound signal is a function of time. The energy density 

spectrum is how the intensity changing with time, and also it is the absolute square of 

FT. Additionally, the main concept of joint time-frequency representation can be 

shown as a time versus frequency plot. On the other hand, there is a difference between 

spectrum and time-frequency representation. The spectrum tells us which frequencies 

occurred, but joint time-frequency analysis explains which frequencies occur at a 

specific time. Clearly, by looking at the spectrum method, it can be said which 

frequencies available in the signal but cannot realize when these frequencies happen 

at a specific time.  

Why spectrum or plural version of spectra change with time? There are two reasons in 

order to explain this question. The first reason is that the generation of specific 

frequencies based on parameters might be a change in time. For illustration, there is a 

mechanical oscillation system at the mechanical vibration rate in the air. When the 

length or tension varies with time, several frequencies will be generated in time 

because the string is going to vibrate with various frequencies and hit the air. The other 

reason is that the propagation of waves in a medium is shown as its dependency on 

frequency phenomena such as glass is a quite fine filter of the X-rays (Cohen, 1995). 
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3.2. Fourier Series and Fourier Transform 

FT is one of the most major mathematical approaches to transform that a function of 

time for representation into its frequency domain. FT incorporates both periodic and 

non-periodic signals. In the real-world, square wave, sinusoidal wave, triangular wave, 

and saw tooth wave is known as periodic signals. Fourier Series (FS) indicates that 

whole signals are able to be expressed as periodic elements summation with varying 

amplitude and phase. For the purpose of analyzing signals or functions in a matter of 

frequency domain, FS expansion is used as a series of sines or cosines form which is 

continuous-time periodic signals. The FS is generalized into complex-valued functions 

or advance levels functions, in order to use FT both time and frequency domain. FT is 

used for the representation of non-periodic signals. In the digital signal processing 

world, this kind of linear transformations are mapped to a single frequency element as 

a localized frequency spectrum, and also linear transformations are invertible. Because 

signals have finite energy, signals can be considered as a certain frequency band called 

the spectrum. That is why forward FT and inverse FT can be used for translation 

between the time and frequency domain. Also, FT is appropriate for stationary signals 

for analyzing signal characteristics. In this thesis, the STFT method is used for 

converting time-domain signals into the time-frequency domain with a limited 

resolution property by using window operation (Auger, 1996). 

3.2.1. Continuous Fourier Transform 

One of FT’s most significant contribution is that the representation of non-periodic 

signals in continuous time. By looking at the idea of Continuous-Fourier Transform 

(CFT), non-periodic signals can be considered as the limited form of periodic signals 

when a period turns into a large amount. For that reason, the non-periodic signals can 

construct from periodic signals in an infinite duration. FT pair consists of both analysis 

and synthesis parts which are also known as forwarding FT and inverse FT. Both of 

them show that the signals can be written as a linear combination of complex 

exponentials. The complex exponentials amplitude and their connected harmonic 

frequencies exist as a discrete set for periodic signals. 

On the other hand, the complex exponentials also have amplitude, but their frequencies 

emerge in a continuous way with respect to the synthesis part of the FT for non-

periodic signals. FS coefficients of a periodic signal ensure us to characteristic 
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information of 𝑥(𝑡) qua linear combination of sinusoidal waves at various frequencies, 

and 𝑋(𝜔) is generally used term that spectrum of 𝑥(𝑡). FT provides us to compute the 

analysis of frequency spectral for non-periodic signals. It is characterized by, 

𝑋(𝜔) = ∫ 𝑥(𝑡)𝑒−𝑗𝜔𝑡𝑑𝑡,
∞

−∞
 (1) () 

 

 

And the inverse Fourier Transform is defined as, 

𝑥(𝑡) =
1

2𝜋
∫ 𝑋(𝜔)𝑒−𝑗𝜔𝑡𝑑𝜔,

∞

−∞
 (2) () 

where 𝑥(𝑡) indicates that a non-periodic signal and 𝑋(𝜔) represents the applied FT on 

the non-periodic signal 𝑥(𝑡). The spectrum term is referred to as 𝑋(𝜔) and it is a 

complex-valued function, can be defined as, 

𝑋(𝜔) = |𝑋(𝜔)|∠𝜙(𝑤), (3) () 

where the continuous spectrum amplitude is expressed as |𝑋(𝜔)|  and ∠𝜙(𝑤) 

indicates that the phase relation. 

 

3.2.2. Short-Time Fourier Transform 

STFT is the most common technique for analyzing non-stationary signals. Since FT is 

not sufficient for analyzing non-stationary signals, FT is proper for stationary signals 

such as white Gaussian noise. Also, FT will not give a suitable spectrum that exhibits 

what frequencies occurred at a particular time because FT cannot cope with the non-

stationary signals. Therefore, STFT should apply to non-stationary signals in order to 

analyze them individually. The main concept of STFT is the determination of dividing 

the signal into several segments for Fourier analysis in order to see how spectrum 

changes in these segments. The underlying consideration of STFT separates signals 

into small time intervals and applies FT on each segment in order to figure out the 

frequencies occurred in these intervals. STFT also provides to analyze the localized 

area for non-stationary signals. As a consequence, the spectra show how the spectrum 
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is changing in time. When the signal is divided into short-duration signals, the short 

duration signals will have a large bandwidth. For this reason, the spectra of short-

duration signals are very little related to the features of the original signal. There is a 

big distinction between STFT and FT, which is known as a window function in order 

to analyze signal as localized in time and apply FT on small intervals of the original 

signal. On the contrary, FT provides us information about whole frequencies along the 

whole time period in the digital signal. The window size should select according to 

Heisenberg’s uncertainty principle. Heisenberg’s uncertainty principle is stated that 

there is a constraint between resolution in time and frequency domains. According to 

this principle, low frequencies can be represented more detailed in time duration, and 

high frequencies can be demonstrated less detailed in time duration. This principle 

comes from that aspect; when window operation is localized as in the time domain, it 

is concluded with uncertainty in the frequency domain. If the window size is selected 

as wide enough, time uncertainty will raise according to Heisenberg’s uncertainty 

principle, and vice versa. Consequently, STFT is indicated that both time and 

frequency resolution in order to obtain good enough information from the digital 

signal, but it is compulsory to select that, high frequency with low time resolution or 

low-frequency resolution with high time resolution. 

 

In other words, STFT helps to overcome the limitation of FT-like analysis by using 

window function of a certain length that slides along the time axis to operate a “time-

localized” FT for the whole digital signal. The STFT utilizes the window function 

𝑔(𝑡), that is centered at time 𝜏 by using a sliding approach. The time-localized FT is 

applied to the digital signal 𝑥(𝑡) together with the window for each particular 𝜏 value. 

Afterwards, the window is slid by 𝜏 throughout the time axis, and one more FT is 

carried out. Thus, the window function can be seen as a successive operation in order 

to implement FT on the entire signal. There is an important point that the small-signal 

portion within the window function is assumed to be nearly stationary. The stationary 

term means that the statistical properties of the signal does not change with respect to 

time. On the other hand, the non-stationary signals are formed of frequency 

components that are haphazard and change with time. As a consequence, the STFT 

separates the time domain signals into 2-dimensional time-frequency representation. 

Figure 3.1 indicates that the alteration of the frequency situation of the signal together 

with the window function. 
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The STFT can be denoted as, 

𝑆𝑇𝐹𝑇(𝜏, 𝑓) =< 𝑥, 𝑔𝜏,𝑓 >= ∫ 𝑥(𝑡)𝑔(𝑡 − 𝜏)𝑒−𝑗2𝜋𝑓𝑡𝑑𝑡, (4) () 

According to Equation (4), it indicates that the measurement of the similarity between 

the original signal 𝑥(𝑡) and time-shifted and frequency-modulated window function 

𝑔(𝑡). In the last few decades, different kinds of window functions have been improved 

and all of the window functions are designed for specific applications with respect to 

signal characteristics. For instance, the Gaussian window is designed for transient 

signal analysis, Hamming and Hann's windows are designed for narrowband, random 

signals analysis, the Kaiser-Bessel window is designed for dividing two signals into 

components as its frequencies which are close to each other, and broadly various 

amplitudes. It should be considered that the selection of window function is directly 

related to the time and frequency resolutions. The STFT technique should not be 

selected arbitrarily according to Heisenberg’s uncertainty principle (Cohen,1995). 

 

Explicitly, the product of the time and frequency resolutions is lower bounded by, 

∆𝜏. ∆𝑓 ≥
1

4𝜋
, (5) () 

where ∆𝜏 represents the time resolution and ∆𝑓 denotes the frequency resolution. 

Mathematically, the time resolution ∆𝜏 is measured by the root-mean-square time 

width of the window function and described as, 

Figure 3.1. STFT by Sliding Time Window Function (Kumar, 2017) 
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∆τ2 =
∫ 𝜏2|𝑔(𝜏)|𝑑𝜏

∫|𝑔(𝜏)|2 𝑑𝜏
, (6) () 

 

Correspondingly, the frequency resolution ∆𝑓 is measured by the root-mean-square  

bandwidth of the window function and defined as, 

∆𝑓2 =
∫ 𝑓2|𝐺(𝑓)|𝑑𝑓

∫|𝐺(𝑓)|2 𝑑𝑓
, (7) () 

 

where 𝐺(𝑓) is the FT of the window function 𝑔(𝑡). In conclusion, the time-frequency 

resolution ensured by the window function when examining the signal 𝑥(𝑡) according 

to Equation (7). 

Since the time and frequency resolutions of a function are just dependent on 𝜏 value, 

when the window function is selected, the time and frequency resolutions are being 

adjusted on the whole time-frequency plane. 
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Figure 3.2 indicates that the window sizes 𝜏 and 𝜏
2
 are described by the product of ∆𝜏 

and ∆𝑓 are independent of selected real window size as equal. Despite checking both 

time and frequency information at the same time is an enormous foundation, adjusting 

the fixed window size is still being hard enough. 

Figure 3.2. Time-Frequency Resolutions according to the STFT approach 

a) window size 𝜏 and b) window size 𝜏
2
 (Gao,2011) 
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In this thesis, STFT is applied to ECG signals which are obtained with the help of 

MATLAB. 

3.3. Neural Networks 

Neural Networks (NNs) have arisen from the human nervous system. The human 

nervous system can be seen as a perfect mechanism that is explained in the three main 

parts: brain, receptors, and effectors. The brain is the center of the human nervous 

system that receives and perceives information continuously and applies the decisions 

in itself. For that reason, the brain of the human nervous system is represented by a 

neural net. The receptors provide the transmission of stimulus from the human body 

or external environmental factors by transforming electrical impulses into the neural 

net. The effectors transform electrical impulses created by the neural net for the 

reaction as system output. Figure 3.3 indicates that the forward and backward 

transmission of the nervous system as a block diagram. 

 

 

 

A neuron is a fundamental unit which maintains the process of a neural network as an 

information-processing relation. The array of synapses is viewed as connecting links 

between nerve cells, and also known as connecting links. The connection links are 

characterized by weight in themselves. In a neural network, neurons are responsible 

for receiving, processing, and transmitting information. The fundamental neuron 

model is composed of three main components such as connecting links, an adder, and 

an activation function. The adder performs as a summation of input signals according 

to their weights, also known as synaptic strengths of the neuron. The adder principle 

depends on the construction of the linear combination. The activation function operates 

in order to limit the amplitude range of the output signal to the finite value.  

 

Figure 3.3. Representation of Nervous System 
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The normalized amplitude range of the output of a neuron is closed interval as [0,1] or 

[-1,1]. Figure 3.4 represents a non-linear neuron model that consists of input signals, 

synaptic weights, bias, summing junction, activation function, and output.  

In Figure 3.4, externally applied bias is denoted by 𝑏𝑘  which affects the input of 

activation function as increasing or decreasing. The neurons are indicated by 𝑘 , 

successive input signals are 𝑥1, 𝑥2, … , 𝑥𝑚, and the synaptic weights are indicated by 

𝑤𝑘1, 𝑤𝑘2, … , 𝑤𝑘𝑚 that is the 𝑘𝑡ℎ neuron weights, 𝜑(. ) is an activation function of the 

model and 𝑦𝑘 is the 𝑘𝑡ℎ neuron’s output signal. 

 

 

 

 

 

 

 

 

 

 

 

 

 

The neural network structures are closely related to the learning algorithms that are 

used in the training process of the network. Thus, the learning algorithms are also used 

in the design of neural networks for classification problems.  

The different forms of learning operate on neural networks similar to human learning. 

There are different learning techniques and each of them is dissimilar. These learning 

techniques are able to categorize into three sections such as supervised learning, 

unsupervised learning, and reinforcement learning. All of them clarify that the 

instances can be categorized or not. 

Supervised learning is related to the information about instances are known. Thus, the 

neural network is going to be trained according to the supervised learning approach.  

Supervised learning problem can be written as Equation (8) and have desired output 

for input samples. 

Figure 3.4. Model of Non-Linear Neuron 
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𝜏 = {(𝒙𝑖, 𝒅𝑖)}𝑖=1
𝑁 , (8) () 

 

where 𝜏 represents the instances for training with the number of 𝑁, 𝒙𝑖  denotes the 

input signal vector and 𝒅𝑖  also denotes the desired output that an array of labeled 

instances. 

 

The difference between the desired output and actual output is known as the error of 

the neural network. The mean-squared error can be calculated from Equation (9) by 

taking average values of 𝑁 instances. 

 

𝐸𝑀𝑆𝐸 =
1
𝑁

 ∑(𝑑𝑖 − 𝒘𝑥𝑖)2
𝑁

𝑖=1

, (9) () 

 

where 𝒘 is the synaptic weights multiplication, 𝑥𝑖  denotes the actual output and 𝑑𝑖 

denotes the desired output. 

Supervised learning updates weights by using error minimizing for each instance. In 

each training process, the network error updates itself until the network reaching the 

optimum point which is an error approximately zero. On the other hand, if the network 

performance wanted to be tested, the new samples are never used in the training 

process. Then, the performance of the network can discuss according to the evaluation 

criteria. 

The neural networks have remarkable solutions for wide-ranging problems such as 

pattern recognition and classification. In the different layers of neurons, each layer 

receives input information from previous layers, and transfer the output layer. The 

input for the next layer is related to its weights and additional bias, which depends on 

the cost function and the optimizer. The neural network iterates for a pre-arranged 

number of iterations, called epochs until the cost function is minimized. The main 

concept of classification is that the features are extracted from the input signal in order 

to have information about the data, and the extracted features are given into the neural 

network for reduction data dimension or size in order to have steady and meaningful 

results.  



 
 

 29 

Figure 3.5 indicates that the summary of the classification process for neural networks 

as a block diagram.  

 

 

 

 

 

 

 

 

 

There are many kinds of neural networks according to their purpose of design. The 

first design of the neural network is perceptron. The perceptron rule is used for the 

classification of linearly separable data as a binary classification technique. On the 

other hand, if data is not linearly separable, then an alternative neural network design 

has to be utilized for the classification of non-linear problems. So as to classify non-

linear models, Multi-Layer Perceptron (MLP) is a well-known neural network 

architecture. 

 

3.3.1. Multi-Layer Perceptron 

MLP is a well-known neural network structure composed of one or more layers and 

shown in Figure 3.6. 

 

 

 

 

 

 

 

 

 

 

Figure 3.5. Neural Network Classification Block Diagram 

Figure 3.6. The Architecture of MLP with Two Hidden Layers 
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The fundamental features of MLP can be written as: 

• Each neuron of the model includes a non-linear activation function which is 

differentiable. 

• There are hidden layers on both input and output sides. 

• The network demonstrates high degree connectivity in order to synaptic weight 

identification. 

Signal flows in the forward direction which is left to right in the network on a layer-

by-layer basis. Hidden neurons are the most invaluable element in order to function of 

MLP. The hidden neurons act like feature detectors. Since the learning process 

operates across the MLP, the hidden neurons start to search for discriminative features 

that qualify the training data. Also, applying non-linear transformation on the input 

signal into a new space, called a feature space that provides easy division from each 

other according to the original input space.  

 

Each hidden neuron of an MLP is created to operate two computations: 

1) The function signal occurring at the output of each neuron, which is explained 

as a continual non-linear function of the input signal and its weights related to 

that neuron. 

2) The estimate of the gradient vector is the gradient of the error surface with 

respect to weights connected to the inputs of the neuron, which describes the 

backward transmission of the network. 

In supervised learning, there are two basic approaches such as batch learning and 

online learning. In the batch learning approach, the synaptic weights of MLP are 

implemented for all 𝑁 instances in the training set 𝜏 for one epoch of the training 

process. In addition to this, the cost function is defined by average error energy. 

Arrangements of weights depending on the epoch-by-epoch way. The instances of 

the training set are randomly shuffled for each epoch of the training process, and 

different initial conditions are set in a random way. Therefore, it is suitable for 

solving non-linear regression problems. In the online learning approach, training 

instances are demonstrated randomly in the neural network, and the multi-

dimensional investigation is carried out. The synaptic weights arrangement of 

MLP according to example-by-example way. The online learning approach is 
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simple to implement and ensure powerful solutions for wide-ranging problems and 

complex pattern-classification problems (Haykin, 2009). 

 

3.3.2. Convolutional Neural Network 

Convolutional Neural Networks (CNNs) are suitable for data which has a spatial 

relationship. It is a special class of MLP and well-suited for pattern classification. Also, 

both MLP and CNN can be used for image and video classification, however; MLP 

uses input as a vector form, CNN uses images according to spatial relation. 

Specifically, CNN is designed for image classification and video classification. Spatial 

information means that having a location-based connection with other information, 

and space represents the two-dimensional plane in an image. In other words, CNN is 

a deep MLP structure designed for the identification of two-dimensional shapes with 

a high degree of invariance to translation, skewing, scaling, and some kind of 

distortion. CNN rely on in order to learn tasks in a supervised manner via the neural 

network has the following constraints: 

 

• Feature extraction can be explained as each neuron takes its own synaptic 

inputs from a local receptive field in the previous layer in order to extract the 

local features. When features are extracted, their actual location becomes less 

significant, provided that its position relative to other features is nearly 

conserved. 

• Feature mapping, when analyzing the neural networks are consists of multiple 

feature maps in each layer for computation. Each feature map can be seen as a 

plane that sharing the same bunch of synaptic weights, but it is actually a 

constraint. This constraint has also useful effects such as shift-invariance and 

reduction of the free parameters. 

• Subsampling can be expressed as each convolutional layer is followed by a 

computational layer that operates local averaging and subsampling which 

provides to reduce the resolution of the feature map. Also, this provides to 

reduces the sensitivity of the feature map’s output considering distortion issues. 

Figure 3.7 indicates the feature extraction and classification parts of the CNNs 

structure. 
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Day by day, CNNs have been accomplished to adapting into image classification and 

segmentation, object detection, video processing, natural language processing, speech 

recognition. The main importance of CNN is to have powerful learning ability due to 

the use of multiple feature extraction stages that can automatically learn 

representations from the data. During the whole training process, whole weights in all 

layers of the CNN by updating itself defines the learning process. CNN requires the 

usage of a big amount of data. CNN architecture includes multiple layers similar to 

feed-forward neural networks. The outputs and inputs of the layers are considered as 

a set of image structures. Moreover, CNN can learn automatically its own features 

without the need for any feature extraction techniques. On the other hand, CNN 

architectures can be constructed as a combination of some layers and each layer makes 

the different level of abstraction. The CNN layer description is explained as follows 

according to the structure in itself: 

 

Input Layer: Images are given as inputs into the network. 

 

Convolution Layer: This layer is the main component of the CNNs. Feature extraction 

is done by convolution layers. The reason for using the convolution process is to 

decrease the complexity of the network instead of using matrix multiplication in 

traditional neural networks. Kernel filters are applied to image input in the same way 

and are also used in image processing. In convolution layers, features are extracted 

and then sequentially transferred to other convolution layers. Thus, the obtained 

features will be the input of the next convolution layer. 

 

Figure 3.7. A CNN Architecture with Corresponding Layers 
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Figure 3.8 represents the convolution operation applied kernel as 3-by-3 on 7-by-7 

image input. The resulting pixel value is demonstrated after filtering as 5-by-5. 

 
 

 

 

 

 

 

 

 

 

Pooling Layer: The pooling layer is used for the reduction of the feature dimensions. 

Therefore, the resolution of the feature map is reduced. More complicated features are 

extracted through each convolutional layer. After that, the input images are divided 

into non-overlapped rectangular sets. Each set is down-sampled with maximum 

pooling or average pooling. The pooling layer provides fast convergence and is 

preferable for generalization. This type of layer is generally located between the 

consecutive convolution layers. Figure 3.9 indicates that the average pooling returns 

the average of all values in the image covered by the kernel filter. Figure 3.10 indicates 

that the maximum pooling returns the maximum value in the image covered by the 

kernel filter. Stride means that sliding kernel filter according to stride value. 

 
  
  
  
  
   
 
  
  
   
 
 
 

Figure 3.8. Representation of Convolution Operation 

Figure 3.9. Representation of Average Pooling Process 
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However, maximum pooling better than average pooling because maximum pooling 

has a denoising effect in addition to dimensionality reduction. 

 

 

 

 

 

 

  

  

Rectified Linear Unit (ReLU): This layer is mainly used as an activation function. It 

can be described as in Equation (10), 

𝑓(𝑥) = {0, 𝑥 < 0
𝑥, 𝑥 ≥ 0  , (10) () 

 

where  𝑓(𝑥) denotes the activation function of the CNN, and which means that a ReLU 

layer performs a threshold operation to each element of the input, where any value less 

than zero is set to zero. According to this function, the gradient descent algorithm does 

not backpropagate if the input to the activation layer is negative. This means that in a 

positive region and non-negative gradient is obtained. This provides us to increase the 

accuracy rate of CNNs. 

 

Batch Normalization Layer: A batch normalization layer normalizes each input 

channel across a mini-batch. In order to speed up the training of CNNs and reduce the 

sensitivity to network initialization. The batch normalization layers between 

convolutional layers and nonlinearities, such as ReLU layers. Thus, normalized 

activations can be calculated as in Equation (11), 

𝑥𝑖
′ =

(𝑥𝑖 − 𝜇𝐵)

√𝜎𝐵
2 + 𝜀

,  (11) () 

Figure 3.10. Representation of Maximum Pooling Process 
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where the batch normalization normalizes its input 𝑥𝑖 by first calculating the mean 𝜇𝐵 

and variance 𝜎𝐵
2 on related a mini-batch and related each input channel. 𝜀 develops 

numerical stability when a mini-batch variance is too small. 

 

Fully Connected Layer: This layer is located at the end of the network. The fully 

connected layer is processed after applied are convolution layer, max-pooling layer, 

and ReLU layer consecutively. The neurons of the fully connected layer are linked to 

the previous layer activations. Hence, this is the final feature selection layer. After the 

final feature selection proceeds, the output is calculated as the average of 

multiplication of matrices and including additional bias. The property of this layer is 

the weights of the layers are forecasted with minimizing training error. 

 

Softmax Layer: A softmax layer applies a softmax function to the input. For 

classification problems, a softmax layer and then a classification layer must follow the 

final fully connected layer. In the softmax layer, class probabilities are determined. 

The softmax function is the output unit function after the last fully connected layer for 

multi-class classification problems can be expressed as in Equation (12), 

𝑃(𝑐𝑟|𝑥, 𝜃) =
𝑃(𝑥, 𝜃|𝑐𝑟)𝑃(𝑐𝑟)

∑ 𝑃(𝑥, 𝜃|𝑐𝑗)𝑃(𝑐𝑗)𝑘
𝑗=1

=
exp (𝑎𝑟(𝑥, 𝜃))

∑ exp (𝑎𝑗(𝑥, 𝜃))𝑘
𝑗=1

  , (12) () 

 

where 0 ≤ 𝑃(𝑐𝑟|𝑥, 𝜃) ≤ 1, and ∑ 𝑃(𝑐𝑗|𝑥, 𝜃) = 1𝑘
𝑗=1 . Furthermore, 

 𝑎𝑟 = ln (𝑃(𝑥, 𝜃|𝑐𝑟)𝑃(𝑐𝑟), 𝑃(𝑥, 𝜃|𝑐𝑟) is the conditional probability of the instance 

given class 𝑟, and 𝑃(𝑐𝑟) is the class prior to probability. 

 

Classification Layer: A classification layer computes the cross-entropy loss for multi-

class classification problems with mutually exclusive classes. The cross-entropy 

function can be written as in Equation (13), 

𝑙𝑜𝑠𝑠 = − ∑ ∑ 𝑡𝑖𝑗ln (𝑦𝑖𝑗)
𝐾

𝑗=1

𝑁

𝑖=1

, (13) () 
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where 𝑁 is the number of instances, 𝐾 denotes the number of classes, 𝑡𝑖𝑗 indicates that 

𝑖𝑡ℎ instance belongs to the 𝑗𝑡ℎ class, and 𝑦𝑖𝑗 is the output for instance which is 𝑖 for 

class 𝑗. 

 

Parameters are the coefficients of the model, and they are adjusted by the model. When 

considered the algorithm during the training process, the model coefficients are 

optimized so as to minimize the error. In other words, the model parameters can be 

estimated by the model individually, and weights and biases are known as the model 

parameters in the neural networks. The parameters of the model do not require set 

manually, it can be estimated by optimization algorithms such as Stochastic Gradient 

Descent, Adam, and AdaGrad so on. In last, when the training process is finished, the 

model can decide how operates on unseen data. 

 

Hyperparameters have to be adjusted manually. The model will not update the values 

of selected parameters. Therefore, hyperparameters should set before the model starts 

the training process. These parameters cannot be learned by the model. Moreover, the 

number of hidden layers, learning rate, momentum, mini-batch size, activation 

function, and epochs are the most common hyperparameters of the neural network. In 

order to clarify the idea, the learning rate represents the algorithm of how significant 

effect of the gradient on the weight. If an unsuitable learning rate is selected for the 

neural network, gradients may vanish or diverge. 

 

According to optimizers, the neural networks are adjusted by themselves such as 

weights and biases in order to minimize the losses.  

3.4. Optimization Algorithms 

Optimizers are commonly used algorithms in order to alter the behavior of the neural 

network. Due to the importance of reducing loss function, weights and learning rates 

of the neural network should be adjusted in order to optimize algorithms. The 

fundamental purpose of the optimizers tries to figure out optimization problems via 

minimizing the loss function. Furthermore, optimization algorithms are responsible for 

diminishing the cost function and ensuring as high accurate results as possible. In 

neural networks, the fundamental method is finding the best optimization algorithm 
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which ensures the optimal solution. There are four optimization algorithms are 

mentioned in this section such as Gradient Descent, Stochastic Gradient Descent, 

Stochastic Gradient Descent with Momentum, and Adaptive Moment Estimation. 

 

3.4.1. Gradient Descent Algorithm 

The gradient descent (GD) algorithm is the most fundamental algorithm that relies on 

the first-order derivative of an objective function. The characteristic of GD is to find 

how to alter the weights in order to reach a minimum in the objective function. The 

cost is transmitted from one layer to another layer via the back-propagation algorithm, 

and the weights which are also known as model parameters are adjusted according to 

the cost function. Therefore, the cost function can be minimized by using this aspect. 

The weights are updated until converge to the minimum point. GD algorithm has the 

useful property is very simple to implement the neural networks. On the other hand, 

there are some disadvantages to using the GD algorithm. The GD algorithm takes all 

samples in the dataset in order to compute derivatives of weights for updating them. 

This means that the neural networks require much more memory because of computing 

derivatives of gradients at one iteration. The GD algorithm can reach the minima after 

a long training time but may not reach also. The dangerous point of the algorithm is to 

stick the saddle point or local minima. That is why the algorithm must be reached a 

global minimum in order to explore the best solution for the neural network. In 

Equation (14), the basic principle of weight update is shown as, 

𝑤𝑛𝑒𝑤 = 𝑤𝑜𝑙𝑑 − 𝛼(∇𝑤𝐽)𝑤𝑜𝑙𝑑 , (14) () 

where 𝛼 represents the learning rate or step size, 𝐽 represents the loss function, ∇𝑤𝐽 

denotes the gradients of the loss function, and 𝑤𝑛𝑒𝑤  represent the computed new 

weight via using previous weight 𝑤𝑜𝑙𝑑. 

3.4.2. Stochastic Gradient Descent Algorithm 

Stochastic Gradient Descent (SGD) algorithm can be seen as a prolongation of GD to 

figure out the disadvantages of that algorithm. SGD algorithm is a stochastic 

approximation of GD optimization since it computes gradients randomly selected 

subset of the whole dataset than computing from the whole dataset. SGD algorithm 
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derivative is computed for one subset of the entire dataset at a time. Also, the SGD 

algorithm takes more steps in order to reach the minimum point comparing with the 

GD algorithm. That is why, SGD algorithm can be observed as a little bit noisier than 

the GD algorithm, and takes more time to converge towards the global minimum point. 

This algorithm is also responsible for the convergence towards the optimum point of 

the objective function in neural networks. So as to solve the optimization problem, the 

current parameters which are known as weights are computed using the objective 

function. After that, the gradient computation is done for updating each parameter in 

the neural network. Also, the parameters will be updated according to against direction 

of the gradient by multiplying with the learning rate value. These stages are maintained 

until converge to the optimum point or until a particular epoch number is applied. 

There are some drawbacks of SGD these are mainly,  

Since the SGD algorithm takes more steps according to changing loss, it causes a slow 

learning effect and long computation time. 

If the objective function has a saddle point or local minimum, the SGD algorithm will 

be stuck in local optimum or on saddle point because of the zero gradients in total for 

this particular region. 

The gradients can be noisy because of the computation on mini-batches. 

 

 

The equation of SGD in order to update parameters in the neural network using back-

propagation so as to calculate the gradient according to Equation (15), 

𝜃 = 𝜃 − 𝛼∇𝜃𝐽(𝜃; 𝑥, 𝑦), (15) () 

where 𝜃 denotes the parameters that are weights, biases, and activations,  𝛼 is the 

learning rate or step size, ∇𝜃𝐽(𝜃; 𝑥, 𝑦) represents the back-propagation computation, ∇ 

is the gradient, 𝐽 is the loss function, and 𝐽(𝜃; 𝑥, 𝑦) represents the parameter 𝜃 as input 

throughout the training instance 𝑥 and its corresponding label 𝑦. 

3.4.3. Stochastic Gradient Descent with Momentum Algorithm 

Momentum term that ensures us to develop faster computation in the neural network. 

This means that the algorithm with the momentum term provides to reaching the 

optimum point in a faster way. If the objective function is much more complex, the 
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algorithm may stick in the local minimum. The momentum term can be seen as an 

additional component into weights, biases, and activations in the neural network, also 

that is known as a component of time. The time component boosts the momentum. 

While optimizing the cost function with the SGD algorithm, oscillation can occur 

along the y-axis and slower progression along the x-axis. The SGD with momentum 

ensures that fewer oscillations along the y-axis and reach faster to the local minima. 

Figure 3.11 indicates that the comparison of how fast the algorithm with momentum 

and oscillation condition. 

 

 

 

The momentum term how actually works, it collects more speed in each epoch. 

Thinking the way of a steady 𝛾, and previous update 𝛾𝑣𝑡  to 𝜃. On the other hand, 

updating 𝜃 consist of the second last update to 𝜃 and goes on this aspect. It is clearly 

seen that the computations of the gradients are stored for utilizing the following 

updates to parameter 𝜃 in an updating way. This idea summarized in Equation (16) as, 

𝜃𝑡 = 𝜃𝑡 − 𝛼∇𝐽(𝜃𝑡) + 𝛾 ∑ 𝛾
𝑡

𝜏=1

∇𝐽(𝜃𝜏) , (16) () 

where 𝜃𝑡  denotes the parameters such as weights, biases or activations, ∇ is the 

gradient operation, 𝛼 is the learning rate or step size, 𝑡 denotes the current time step,  

𝐽 is the loss function that trying to minimize, 𝛾 is a steady momentum term, and the 

last update to 𝜃 is 𝑣𝑡. 

Additionally, the saddle point problem is reduced by using the past gradients via 

momentum term, even the gradients are zero or close to zero in that particular area. 

Figure 3.11. Comparison of SGD and SGDM 
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3.4.4. Adaptive Moment Estimation Algorithm 

Adaptive Moment Estimation (ADAM) is one of the most commonly used algorithms 

that operates the best on averages. Adam utilizes both momentum and adaptive 

learning rates in order to converge faster to the minimum point. Adaptive learning rates 

mean that the neural network begins taking big steps and end with the small steps. Due 

to the learning rate decays, the smaller steps are taken in order to converge faster. 

Therefore, the neural network does not exceed the local minimum with these big steps.  

 

The Adam algorithm aims to minimize the loss function differentiation with respect to 

parameter 𝜃, also the algorithm is interested in the expected value of the loss function 

with respect to parameter 𝜃. Adam optimizer stores both first-order and second-order 

moments of the gradient, mean and uncentered variance respectively. Exponential 

moving averages for the first-order moment and the second-order moment are given 

in Equation (17),  

𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1 − 𝛽1)𝑔𝑡 
 

𝑣𝑡 = 𝛽2𝑣𝑡−1 + (1 − 𝛽2)𝑔𝑡
2 

(17) () 

 

where 𝑚 and 𝑣  are moving averages, 𝑔 is a gradient on the current batch, 𝑡  is the 

number of iterations and 𝛽1 and 𝛽2 are hyperparameters of the algorithm. 

 

 

Due to the zero initialization of the moving averages at the beginning of the iteration, 

bias correction operation will be needed after computation exponential moving 

averages of the first order and second-order moments. The algorithm updates 

exponential moving averages of the gradient and squared gradient with the 

hyperparameters. The hyperparameters check the exponential decays of the moving 

averages these are also known as mean and variance. The bias correction operation for 

the first order and second-order moments are given in Equation (18), 

 

𝑚𝑡̂ =
𝑚𝑡

1 − 𝛽1
𝑡 

 
𝑣𝑡̂ =

𝑣𝑡

1 − 𝛽2
𝑡  

(18) () 



 
 

 41 

 

where 𝑚𝑡̂  and 𝑣𝑡̂  are bias-corrected estimators, 𝑚𝑡  and 𝑣𝑡  are the first order and 

second order moving averages of the gradient, 𝛽1 and 𝛽2 are the hyperparameters of 

the algorithm, and 𝑡 denotes the iteration number. 

The final step of the algorithm is the moving averages to scale the learning rate 

individually for each parameter according to the weight update function. The weight 

update function is given in Equation (19), 

𝑤𝑡 = 𝑤𝑡−1-𝛼 𝑚𝑡

√𝑣𝑡 ̂+𝜖
̂  , (19) () 

where 𝑤 is the weight of the model, 𝛼 is the learning rate or step size, 𝑡 is the iteration 

number, and 𝜀 is to prevent division by zero and the default value is 10−8 , and 

hyperparameters must satisfy this condition 0 ≤ 𝛽1, 𝛽2 < 1, and also 0 < 𝛼 < 1. 

 

In this thesis, two main optimization algorithms are investigated such as Stochastic 

Gradient Descent with Momentum and Adaptive Moment Estimation optimizers. 
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CHAPTER 4 

ARRHYTHMIA DETECTION 

4.1. Data Set 

The MIT-BIH Arrhythmia Database has been supported by Boston’s Beth Israel 

Hospital laboratory and MIT in order to analyze arrhythmia and connected topics in 

their investigations. The database has been published as test material in order to 

consider cardiac arrhythmias and has been used for investigations which are related to 

cardiac dynamics. 

The ECG signals analysis has great significance for the early diagnosis of cardiac 

arrhythmias. Many of the studies about cardiac dynamics are obtained from Boston’s 

Beth Israel Hospital laboratory and MIT-supported long-term ECG records in the 

literature (Moody and Mark, 2001). 

In this thesis, ECG records were acquired from Physionet public website that includes 

the MIT-BIH Arrhythmia Database in itself (MIT-BIH Arrhythmia Database 

Directory, 2018). The acquired ECG records were used in order to train, test, and 

validate the proposed system by using state-of-the-art techniques. The MIT-BIH 

Arrhythmia Database encompasses the forty-eight records are related to cardiac 

arrhythmias, and records are sampled at 360 Hz with a precision of 11 bits at 10 mV 

range. In addition to this information, all of the ECG records have clinical wave 

structure and complex characteristics. 

The ECG records were indicated in accordance with its labels with numbers from 100 

to 234 in the MIT-BIH Arrhythmia Database. Table 4.1 indicates that all ECG signals 

were used according to the record number, number of beats, and patients’ age and 

gender information in this study. 
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Table 4.1. Metadata of MIT-BIH Arrhythmia Database Records 

Record 

No 
Gender Age 

Beat 

Type 

Number of 

Beats 

100 Male 69 Normal 2237 

112 Male 54 Normal 2535 

115 Female 39 Normal 1952 

122 Male 51 Normal 2474 

123 Female 63 Normal 1514 

106 Female 24 PVC 520 

119 Female 51 PVC 444 

200 Male 64 PVC 826 

203 Male 43 PVC 444 

118 Male 69 RBBB 2165 

124 Male 77 RBBB 1530 

207 Female 89 RBBB 85 

212 Female 32 RBBB 1825 

109 Male 64 LBBB 2490 

 

4.2. Pan Tompkins Algorithm for QRS Complex Detection 

The biomedical signals which are measured from the human body, these signals have 

crucial importance in order to understand the meaning of biomedical signals in each 

type of individual. In addition to this, all of the biomedical signals enable medical 

experts to diagnose the diseases. In particular, ECG signals are widely used in order to 

detect cardiac abnormalities. That is why the structure of the ECG signals has to be 

scrutinized carefully by medical experts. On the other hand, the ECG signals must be 

segmented properly according to the signal structure by engineers. Algorithms have 

been developed in order to segment and investigate the ECG signals in the literature. 

In this thesis, the Pan Tompkins algorithm was used for the detection of single QRS 

complex from real-time ECG signals based on analysis of slope, amplitude, and width 

of the QRS complex (Pan and Tompkins, 1985). Pan Tompkins algorithm 

encompasses sequential steps that are low pass filtering, high pass filtering, 

differentiation operation, squaring function, and moving-window integration. 
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The Pan Tompkins algorithm comprises four main stages, and these stages are 

demonstrated in Figure 4.1. 

 

 

 

The outcoming signals are undergone sequential processes by using three linear filters 

applied with the aid of the software platform. The first filter is known as the bandpass 

filter which incorporates low-pass and high-pass filters respectively. The second filter 

enables us to derivative approach. Then, the squaring function is applied to the digital 

signal according to its amplitude. At the end of the squaring function, the next step is 

moving integration. Thus, adaptive thresholds are applied in order to obtain 

discriminative locations of the QRS complexes.  

The bandpass filter diminishes computation complexity and the effect of muscle noises 

occurred by produced interferences from power lines. ECG signals are highly sensitive 

because of measurements in mV ranges. This produced interference might be 

transmitted during measurements of cardiac signals by cables of ECG medical devices. 

The approach of working in the z-plane provides us to design of filter coefficients as 

integers. The transfer function of the Low-Pass Filter (LPF) was created as in Equation 

(20), 

𝐻𝑙𝑝 =
(1 − 𝑧−6)2

(1 − 𝑧−1)2 , (20) () 

The convolution operation was applied to the digital signal. The digital signal is 

convolved with the transfer function of LPF. The convolution property can be written 

according to Equation (21), 

𝑦(𝑛) = ∑ 𝑥(𝑘)ℎ(𝑛 − 𝑘 + 1) 
𝑘

, (21) () 

𝑦(𝑛)  denotes the output of the convolution operation and ℎ  denotes the filter 

coefficients as vector form that is used for sliding on 𝑥(𝑘) input signal, the overlapped 

area is obtained after convolution. In addition to this, LPF helps to eliminate 60 Hz 

components of the signal (Rangayyan, 2015). 

Figure 4.1. Block Diagram of Pan Tompkins Algorithm 
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High-Pass Filter (HPF) design is constructed on this approximation that subtraction 

the output signal of LPF from allpass filters. The transfer function of the HPF is 

denoted in Equation (22),  

𝐻ℎ𝑝 = 𝑧−16 −
(1 − 𝑧−32)
(1 − 𝑧−1)

 , (22) () 

The convolution process is described in Equation (21), performed also in the HPF step. 

The low cut-off frequency of the HPF is adjusted nearly 5 Hz, and also delay is 

assigned as 16 samples. 

The derivative operation is used for compression of the low-frequency elements of 

both P wave and T wave and enables major gain to the high-frequency elements that 

are risen from QRS complexes because of the high slopes. According to Equation (23), 

the derivative operation of the digital signal can be written as, 

𝑦(𝑛) =
1
8

[2𝑥(𝑛) + 𝑥(𝑛 − 1) − 2𝑥(𝑛 − 2) − 𝑥(𝑛 − 3)] , (23) () 

where 𝑦(𝑛) denotes the output of the digital signal that comprised of convolution 

operation onto 𝑥(𝑛) that represents the input signal with the impulse response. 

The main idea of the squaring function is the squared input signal point by point after 

the derivative operation. The squaring function takes all data points into the positive 

region and applies non-linear amplification in order to show dominant ECG 

frequencies. The high-frequency elements of the signal in accordance with QRS 

complexes are improved.  

The main purpose of moving-window integration is removing multiple peaks inside of 

single QRS complex which is caused by the derivative-based process. The moving-

window integration operator can be seen as a filter by a sliding window on the output 

vector obtained from the squaring function. This step of the Pan Tompkins algorithm 

performs in order to provide a smoother output signal. The moving-window operation 

can be written according to Equation (24),  

𝑦(𝑛) =
1
𝑁

{𝑥(𝑛 − (𝑁 − 1)) + 𝑥(𝑛 − (𝑁 − 2)) + ⋯ + 𝑥(𝑛)} , (24) () 

where 𝑁 denotes the width of the window. The selection of the width of the window 

has great importance in the evaluation of the output. If the window width is selected 

too wide, the integration waveform structure will be joined the QRS complexes and T 
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waves. On the other hand, if the window width is selected too tight, it is caused by the 

generation of several picks in the integration waveform. That is why it causes false 

peak detection because of subsequent picks. A window width of 30 samples has been 

selected proper width for 200 Hz sampling frequency (Pan and Tompkins, 1985; 

Rangayyan, 2015). 

The QRS complexes are consistent with the arising point of the integration waveform. 

The width of the QRS complex is denoted by the time duration of the arising point. 

The maximum slope or R wave peak is defined by the arising point of the desired QRS 

structure. 

The set of thresholds are applied to the integration waveform in the Pan Tompkins 

algorithm. The thresholds are adjusted automatically, and the higher of these 

thresholds is used in order to analyze the signal in the initial phase. The search-block 

technique is used if no QRS complex is detected in a related time interval, in order to 

find the QRS complex by applying a lower threshold. This means that the Pan 

Tompkins algorithm can detect a peak as R-peak in order to obtain QRS complex or 

noise as a peak which is irrelevant to the QRS complex (such as T-wave). If a new 

peak is detected, it has to be classified as a signal peak or a noise peak. If a peak 

exceeds a threshold, it is classified as a QRS peak.  

After that, the Pan Tompkins algorithm computes the average value of R-R intervals. 

R-R intervals range is adjusted such as both high limit of R-R interval and low limit 

of R-R interval by using the average of RR intervals. The maximum value between 

these low and high limits using the search-back process, the located point identified as 

R peak. The adaptive threshold method provides a dynamic system in order to detect 

R peaks. In addition, Heart Rate (HR) is derived according to Equation (25), 

𝐻𝑅 =
60

𝑅𝑅𝑎𝑣𝑒𝑟𝑎𝑔𝑒
, (25) () 

 

In this thesis, the Pan Tompkins algorithm is used in order to obtain QRS complexes 

from the raw ECG signal with the aid of the MATLAB 2018b implementation 

platform. The explanation of the Pan Tompkins algorithm is summarized in some 

stages as following, 
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1) The raw ECG signals are obtained from the MIT-BIH Arrhythmia Database. 

The obtained raw ECG signals are converted into a .mat file as their classes. 

The raw ECG signal as input is shown in Figure 4.2. (a). 

2) DC components of the raw ECG signal are eliminated by computing the mean 

value of the raw ECG signal and applied subtraction operation by using this 

mean value from raw ECG signal components. 

3) The normalization process is applied in order to examine signals in the same 

amplitude range by computing the absolute maximum value of the ECG signal. 

The result of stages 2 and 3 is shown in Figure 4.2. (b). 

4) The convolution operation is applied by using coefficients of LPF after stage 3 

in order to catch simplicity. The result of this stage is demonstrated in Figure 

4.2. (c). 

5) The convolution operation is applied by using coefficients of HPF, as same as 

stage 4. Also, the result of this stage is shown in Figure 4.3. (a). 

6) Again, the convolution process is applied by using these coefficients in order 

to apply the derivation process. Figure 4.3. (b) indicates that the result of stage 

6. 

7) The squaring function is applied to the ECG signal, impulse response, and 

squared ECG signal are convolved in this stage. In addition, the result of this 

stage is shown in Figure 4.4. (c). 

8) The convolution operation is applied with window filter coefficients in the 

moving-window integration process as same as stage 4. 

9) According to the adaptive threshold, peak values and locations are detected. 

The detected Q, R, and S points are indicated in 30 seconds intervals in Figure 

4.4. (a) and Figure 4.5. (a). Moreover, Q, R, and S points which are detected 

are shown in 3 seconds in order to see more clearly and in detail in Figure 4.4. 

(b). 

10) Each ECG signal is 260 samples long, and R-peaks are detected as the 

maximum value of the peaks by dividing the signal into the left and right sides. 

In the end, entire QRS complexes are extracted from each record in the MIT-

BIH Arrhythmia Database, and the extracted QRS complexes are shown as 

single beat form that is related to normal sinus rhythm in Figure 4.5. (b). 
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Figure 4.2. Implementation of Pan Tompkins Algorithm (a) Raw ECG Signal as an 

input, (b) Cancellation DC Components and Normalization in Figure 4.2. (a), (c)Result 

of LPF application in Figure 4.2. (b). 
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Figure 4.4. Q-R-S Point Detection (a) Located Q, R and S Points in 30 seconds 

duration, (b) Located Q, R and S Points in 3 seconds duration. 

 
 

Figure 4.3. Preparation of R-peak Detection (a) Result of HPF application in 
Figure 4.2. (c), (b) Result of Derivation process in Figure 4.3. (a), (c) Result of the 

squaring process in Figure 4.3. (b). 
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4.3. ECG Arrhythmia Classification with Time-Series and Time-

Frequency Approaches 

In this proposed study, a large number of data were classified according to arrhythmia 

types. The first approach was to categorize time-series ECG signals as raw form 

without applying any feature extraction technique. In order to elaborate further, the 

same number and the same type of time-series ECG signals are transformed into the 

time-frequency domain. The main concept of this transformation is to analyze and 

cope with both time and frequency information of the signals. This kind of biomedical 

signals (such as ECG signals) have to be analyzed by using suitable state-of-the-art 

techniques.  

In recent years, the major problem is to determine the selection of suitable signal 

processing techniques compatible with a big amount of data. Moreover, the 

comparison of both two approaches has great significance in order to reach reasonable 

conclusions. ECG signals are known as non-stationary with regard to different 

frequency intervals. According to the characteristics of non-stationary signals, 

Figure 4.5. Extraction of QRS Complexes (a) Located Q, R and S Points in 30 

seconds duration, (b) Bunch of single QRS complexes in one record. 
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frequency components of the signals have to be scrutinized in a good sense. The 

several frequency components can be analyzed in different time intervals by 

considering the properties of non-stationary signals. 

Furthermore, there is a requirement for transferring data according to the particular 

features of the data. Because of this reason, artificial neural networks, machine 

learning-based algorithms, and deep neural networks have been developed in order to 

indicate successful results with regard to data that is used in related studies as 

mentioned in Chapter 1. The most well-known property of deep neural networks is not 

required in any feature extraction method. It is stemmed from two main points, 

selection of the feature extraction method is still challenging according to data and 

these features can be obtained from special layers of CNN. 

4.3.1. ECG Time-Series Signal Classification with CNN 

The time-series ECG signal classification approach was used in this study. The 

examination of time-series ECG signals was done in terms of time-domain properties. 

The basic concept was to understand how CNNs are accomplished on time-domain 

signals in this part of the proposed study. Because the CNNs have great 

accomplishment rates on image classification. By looking at this aspect, in order to see 

the difference between time-domain signals and time-frequency domain signals via 

using CNN according to accomplishment rates was performed. 

 

Fundamentally, three types of ECG signals as the time-series were investigated in 

order to classify heartbeats by using CNN. Figure 4.6 represents the time-series normal 

sinus rhythm ECG signal, Figure 4.7 indicates the time-series PVC ECG signal, and 

Figure 4.8 denotes the time-series RBBB ECG signal in one-second duration. 
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Figure 4.3. Representation of Single Normal Sinus Rhythm in Time Domain 

Figure 4.4. Representation of Single PVC Arrhythmia in Time Domain 

Figure 4.5. Representation of Single RBBB Arrhythmia in Time Domain 
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In addition, the ECG time-series signals are given in Table 4.2 according to record 

numbers and the corresponding number of beats that are used in this study. 

 

Table 4.2. MIT-BIH Records and Beats for the Time-Series CNN Approach 

Record 

No 

Type of Beat Number of Beats 

112 Normal 2535 

115 Normal 1952 

122 Normal 2474 

123 Normal 1514 

106 PVC 520 

119 PVC 444 

200 PVC 826 

203 PVC 444 

118 RBBB 2165 

124 RBBB 1530 

207 RBBB 85 

212 RBBB 1825 

 

The three types of ECG signal shapes were obtained after applying the Pan Tompkins 

algorithm. The obtained single QRS complexes according to labels, record numbers 

and construction of beat matrix as time-series ECG signals in compact matrix form are 

given in Figure 4.9.  
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After that, the constructed beat matrix has a large volume of data transformed into a 

four-dimensional array. This process provides us to input data set can behave like an 

image. Because of the property of CNNs, the image inputs have been used in order to 

obtain high achievement rates. Figure 4.10 represents the summary of the proposed 

framework with the large volume of input data and the total number of beats which are 

used in this study. 

 

 

 

 

 

 

 

Figure 4.6. Representation of Constructed Beat Matrix with Related Records 
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The summary of the time-series ECG signal classification process can be explained in 

the following stages, and also shown in Figure 4.11. 

1) The unprocessed data were taken from the MIT-BIH Arrhythmia Database. 

Entire data were utilized as single QRS complex form after stage 2. Then, 

these obtained QRS complexes were recorded as a .mat file. 

2) The peak values and locations of the QRS complexes were detected with the 

aid of the Pan Tompkins algorithm for each type of heart rhythm such as 

Normal, PVC and RBBB. After the detection of R-peaks, QRS complexes 

were defined by taking R-peak as a base, 129 samples were taken from the left 

side of the R-peak and 130 samples were taken from the right side of the R-

peak. This means that QRS complexes were defined with 260 samples long. 

For that reason, the size of the input data was adjusted as a 1x260 vector form. 

 

Figure 4.7. Representation of Constructed Beat Matrix with Related Beats 
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3) The obtained QRS complexes were concatenated according to heartbeats 

which were used in this study. The number of beats was shown as a class-wise 

in Figure 4.10 until the construction of the beat matrix. 

4) The constructed beat matrix has a large volume of data as 16.314 beats. 

Moreover, 8475 beats were taken from the Normal class, 2234 beats were 

taken from the PVC class, and 5605 beats were taken from RBBB class. As a 

result of this stage, the output dimension of the constructed beat matrix was 

acquired as 16.314x260 matrix form. 

5) After the construction of the beat matrix, it was transformed into the four-

dimensional array. This stage mainly provides us to use the data in matrix form 

for CNN. Because the input dimension was 1x260 as a vector form and 

1x260x1 was represented with the third dimension as a channel, the 

1x260x1x16.314 was exhibited with the fourth dimension as the number of 

total QRS complexes in order to make it compatible with CNN. Normally, 

CNN reads the images from a particular folder, but it is not suitable for the 

Figure 4.8. The Summary of Proposed Study in Time Domain 
 



 
 

 58 

time-series signal classification. This transformation was carried out for this 

reason. 

6) In conclusion, the constructed four-dimensional array was given into CNN as 

input according to adjusted data split and model architecture. 

The constructed beat matrix was obtained after applying the first four stages. This 

constructed beat matrix was divided into training, testing and validation sets as 70%, 

15% and 15%, consecutively and randomly. The summary of the study is indicated as 

a block diagram in Figure 4.12. 

 

 

 

 

 

 

   

   

   

   

   

   

   

    

 

This block diagram summarizes the data split according to the most common division 

percentages. The next step was to determine the classifier model related to the deep 

neural networks approach after the data split process. Then, CNNs are highly capable 

of selecting discriminative features. The deep neural network layers and their 

corresponding functions were explained and the main concept of using CNN was 

clarified in Chapter 3. Thus, the model architecture was created according to Table 

4.3. 

Figure 4.9. The Block Diagram of the Time Domain Classification 
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Table 4.3. The Proposed CNN Architecture for Time-Series ECG Signal 
Classification 

Layers Layer Types Output of 

Layer 

Filter 

Size 

Stride 

1 Vector Input  1x260x1 - - 

2 Convolution 1x260x8 [3,3] [1,1] 

3 Batch Normalization 1x260x8 - - 

 4 ReLU 1x260x8 - - 

5 Max Pooling 1x87x8 [1,1] [3,3] 

6 Convolution 1x87x16 [3,3] [1,1] 

7 Batch Normalization 1x87x16 - - 

8 ReLU 1x87x16 - - 

9 Max Pooling 1x29x16 [1,1] [3,3] 

10 Convolution 1x29x32 [3,3] [1,1] 

11 Batch Normalization 1x29x32 - - 

12 ReLU 1x29x32 - - 

13 Fully Connected 1x1x3 - - 

14 Softmax 1x1x3 - - 

15 Classification Output 3 - - 

 

The proposed CNN model was constructed according to model layers and specific 

training option. The initial learning rate is set to 10−5 and the validation frequency is 

set to 50. This implies that the data will be validated in every 50 samples. This progress 

is completed in 28 seconds, it is the elapsed time of the network. The training process 

is completed in 10 epochs and 89 iterations per epoch. It defines the maximum iteration 

of the network. Epoch term can be seen as a complete pass across all data set. In 

addition, the iteration term can be defined as an estimation of the gradients and 

updating of the network parameters in each iteration. Data were shuffled in every 

epoch. This explains the shuffling of the train data before starting in each epoch and 

shuffling the validation data before starting in each epoch in order to apply the network 

validation process. An iteration is one step taken in the gradient descent algorithm 

towards minimizing the loss function. The solver for the training network is set as the 

SGDM optimizer, and the momentum term is set to 0.9. 
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In conclusion, when classification progress finished, it was time to evaluate the 

performance of the classifier according to evaluation criteria such as accuracy, 

sensitivity, and specificity which are used in this thesis. These evaluation criteria are 

used in order to compute the statistical achievements of training, testing, and validation 

parts of the system in classification problems. True Positive (TP), True Negative (TN), 

False Positive (FP), and False Negative (FN) terms have to be expressed in order to 

explain evaluation criteria. True Positive (TP) is the number of instances that were 

classified correctly for the given class, True Negative (TN) is the number of inputs 

which does not belong to the given class and classified correctly. Likewise, False 

Positive (FP) is the number of instances that are classified as belonging to the given 

class incorrectly and False Negative (FN) is the number of instances classified 

incorrectly as not a member of the given class. 

 

Accuracy term is a representation that the measurement of performance with regard to 

the classifier in order to predict correctly and known also the closeness of the 

measurements to the actual value. In particular, accuracy can be defined as the 

summation of true positive and true negative divided by the summation of entire 

instances in data set with multiplication hundred in order to obtain percentage rate, 

also represented in Equation (26), 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
∗ 100 (%), (26) () 

 

 

Sensitivity term is a representation of the true positive rate which defines the number 

of samples that are labeled correctly for the related cluster. In particular, sensitivity 

can be defined as a true positive rate divided by the summation of true positive and 

false negative rates with multiplication hundred in order to obtain a percentage rate. 

According to Equation (27), sensitivity term can be expressed as, 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
∗ 100 (%) , (27) () 
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Specificity term is a representation of true negative rate which defines the number of 

instances that do not belong to the related cluster and classified correctly. Especially, 

specificity can be expressed as true negative rate divided by the summation of true 

negative and false positive rates with multiplication hundred in order to obtain a 

percentage rate. According to Equation (28), sensitivity term can be expressed as, 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
∗ 100 (%), (28) () 

 

The confusion matrix is a visual representation of TP, TN, FP and FN according to 

predicted and actual output cluster. The confusion matrix describes the exact 

performance of the model. In other words, the confusion matrix is also known as the 

error matrix. In machine learning statistical classification problems, a confusion matrix 

is commonly used in order to analyze evaluation criteria that define the performance 

of the classifier. The misclassified instances can be seen more clearly from the 

confusion matrix.  

As a result of this part of the study, accuracy, sensitivity and specificity rates can reach 

from the confusion matrix that is shown in Figure 4.13. 
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The last right column of the confusion matrix represents the specificity rates according 

to heartbeat classes as Normal, PVC, and RBBB. Also, the last row of the confusion 

matrix represents the sensitivity rates for each class. Consequently, the intersection of 

the last right column and the last row represents the accuracy rate which denotes the 

performance of the classifier for the related classification problem. In conclusion, the 

accomplishment rate of the test result is with an accuracy of 96.30%, also sensitivity 

and specificity rates can be seen from the confusion matrix for each class. 

4.3.1.1. Results of ECG Time-Series Signal Classification with 

CNN 

In order to show consistency between the confusion matrix and hand-calculated 

accomplishment rates by using Equations (26), (27), and (28) are shown in Table 4.4. 

This table represents the number of instances which are correctly classified and 

incorrectly classified according to the labels as same as the concept of the confusion 

matrix.  

After computing accuracy, sensitivity, and specificity rates for each class, the average 

test results were computed for both three evaluation criteria. 

 

Figure 4.10. The Test Results of the Time-Series CNN Approach with Confusion 

Matrix 
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Table 4.4. The Test Results of Time-Series Signal Classification with CNN  
(From Şen and Özkurt, 2019) 

 

 ACTUAL 

PREDICTED Normal PVC RBBB Accuracy Specificity Sensitivity 

Normal 1266 16 23 96,56% 96,48% 99,60% 

PVC 0 250 0 96,44% 100% 74,40% 

RBBB 5 70 819 95,97% 96,52% 97,26% 

Average Results 96,30% 97,66% 90,43% 

 
At the end of the ECG Time-Series Signal Classification by using CNN study, the 
attained conclusions can be summarized as follows, 
 

• The constructed CNN was a good classifier in accordance with ECG Time-

Series Signal Classification. 

• The constructed CNN has quite enough discriminative property when one-

dimensional input vector is transformed into the four-dimensional array. 

• The obtained accuracy, sensitivity and specificity rates were indicated that 

the classifier can be considered as a good classifier. 

• Especially, in the PVC class, the specificity rate was quite high and the 

sensitivity rate was pretty low. It is desirable to have both sensitivity and 

specificity rates are high (Şen and Özkurt, 2019). 

4.3.2. ECG Spectrogram Images Classification with CNN 

The spectrogram images CNN approach was used in this study. The examination of 

spectrogram images of ECG signals was done in terms of time-frequency domain 

properties. As mentioned in the previous section, CNNs have great achievement rates 

on images in many classification problems in accordance with the biomedical subjects. 

In order to demonstrate the relation, spectrogram images were used in this part of the 

proposed study. The spectrogram images were obtained from ECG time-series signals 

by using the STFT technique with a particular window function. 
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Basically, three types of ECG spectrogram images were investigated in order to 

classify them by using CNN. Figure 4.14 represents the spectrogram image of normal 

sinus rhythm, Figure 4.15 indicates the spectrogram image of PVC arrhythmia, and 

Figure 4.16 denotes the spectrogram image of RBBB arrhythmia in the time-frequency 

domain. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.11. Representation of Single Normal Sinus Rhythm in Time-Frequency 
Domain 

Figure 4.12. Representation of Single PVC Arrhythmia in Time-Frequency Domain 
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Moreover, the spectrogram images were obtained from related to the MIT-BIH records 

and the number of spectrogram images with related classes are given in Table 4.5  

 

Table 4.5. MIT-BIH Records and Beats for the Spectrogram Images CNN Approach 

Record 

No 

Type of Beat Number of Images 

112 Normal 2535 

115 Normal 1952 

122 Normal 2474 

123 Normal 1514 

106 PVC 520 

119 PVC 444 

200 PVC 826 

203 PVC 444 

118 RBBB 2165 

124 RBBB 1530 

207 RBBB 85 

212 RBBB 1825 

 

 

 Figure 4.13. Representation of Single RBBB Arrhythmia in Time-Frequency 
Domain 
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The three types of ECG signal shapes were obtained after applying the Pan Tompkins 

algorithm. The obtained single QRS complexes were transformed into spectrogram 

images according to labels and records numbers. The construction of each folder 

concerning their classes and the details of the construction of spectrogram images were 

given in Figure 4.17. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The summary of the ECG spectrogram images classification process can be described 

in the following steps and shown in Figure 4.18. 

 

1) The unprocessed data were taken from the MIT-BIH Arrhythmia Database. 

Entire data were utilized as single QRS complex form after stage 2. Then, the 

obtained QRS complexes were recorded as a .mat file. 

2) The peak values and locations of the QRS complexes were detected with the 

aid of the Pan Tompkins algorithm for each type of heart rhythm such as 

Normal, PVC and RBBB. After the detection of R-peaks, QRS complexes were 

Figure 4.14. Representation of Spectrogram Images with Clusters and Numbers 
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defined by taking R-peak as a base, 129 samples were taken from the left side 

of the R-peak and 130 samples were taken from the right side of the R-peak. 

Hence, QRS complexes were defined with 260 samples long.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3) The obtained QRS complexes which are represented in the time domain also 

were transformed into the time-frequency domain by using the STFT method. 

In the STFT method, the window function was selected as Hamming with a 

window size 256. 

4) After signal processing techniques were done, the image processing technique 

was used for resizing to obtain 224x224x3 image input dimension, also jet map 

command was applied to acquire Red-Green-Blue (RGB) image. 

 

 

Figure 4.15. The Summary of Proposed Study in Time-Frequency Domain 
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5) The constructed overall data consist of a large volume of data as 16.314 

spectrogram images. These constructed overall spectrograms include normal 

sinus rhythm and cardiac arrhythmias as an image form. Besides, 8475 

spectrogram images were acquired from the Normal class, 2234 spectrogram 

images were acquired from the PVC class, and 5605 spectrogram images were 

acquired from RBBB class.  

6) Consequently, these spectrogram images were given into CNN as input 

according to adjusted data split and model architecture. 

 

When these stages are finished, overall spectrogram images were separated into 

training, testing and validation sets as 70%, 15% and 15%, consecutively and 

randomly. The summary of the study is indicated as a block diagram in Figure 

4.19. 
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This block diagram explains the data split ratios with common percentages in the 

literature. According to this block diagram, time-series ECG signals were transformed 

into spectrogram images to analyze the time-frequency properties of these biomedical 

signals with the help of STFT. Then, the obtained spectrogram images were divided 

into training, testing and validation sets for this classification problem. The most well-

known property of CNN is the discriminative features can be extracted from data 

without any traditional feature extraction methods. The distinguished properties were 

analyzed according to the time-frequency domain. The constructed deep neural 

network model is indicated in Table 4.6 according to layer types, kernel filter size, 

stride and layer outputs. 

 

 

 

 

Figure 4.16. The Block Diagram of Time-Frequency Domain Classification 
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Table 4.6. The Proposed CNN Architecture for ECG Spectrogram Images 
Classification 

Layers Layer Types Output of 

Layer 

Filter 

Size 

Stride 

1 Image Input 224x224x3 - - 

2 Convolution 224x224x8 [3,3] [1,1] 

3 Batch Normalization 224x224x8 - - 

 4 ReLU 224x224x8 - - 

5 Max Pooling 75x75x8 [1,1] [3,3] 

6 Convolution 75x75x16 [3,3] [1,1] 

7 Batch Normalization 75x75x16 - - 

8 ReLU 75x75x16 - - 

9 Max Pooling 25x25x16 [1,1] [3,3] 

10 Convolution 25x25x32 [3,3] [1,1] 

11 Batch Normalization 25x25x32 - - 

12 ReLU 25x25x32 - - 

13 Fully Connected 1x1x3 - - 

14 Softmax 1x1x3 - - 

15 Classification Output 3 - - 

 

The proposed CNN model was constructed according to model layers and specific 

training option. The initial learning rate is set to 10−5 and the validation frequency is 

set to 50. In other words, the data will be validated in every 50 samples. This progress 

is completed in approximately 12 minutes, it is the elapsed time of the network. The 

training process is completed in 10 epochs and 89 iterations per epoch. It defines the 

maximum iteration of the network. Epoch term can be seen as a complete pass across 

all data set. Furthermore, the iteration term can be defined as an estimation of the 

gradients and updating of the network parameters in each iteration. Data were shuffled 

in every epoch. This explains the shuffling of the train data before starting in each 

epoch and shuffling the validation data before starting in each epoch to apply the 

network validation process. An iteration is one step taken in the gradient descent 

algorithm towards minimizing the loss function. The solver for the training network is 

set as SGDM optimizer and the momentum term is set to 0.9. 
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As a result, the performance of the classifier was scrutinized according to evaluation 

criteria such as accuracy, sensitivity, and specificity as same as the ECG time-series 

signal classification approach. These evaluation criteria are used to figure out 

statistical achievements of training, testing, and validation parts of the system in 

classification problems. So as to see the accomplishment rates of the test results, the 

confusion matrix provides a beneficial visualization. The number of instances that are 

correctly classified or misclassified can be seen from the confusion matrix. 

As a result of this part of the study, accuracy, sensitivity and specificity rates can be 

seen from the confusion matrix that is indicated in Figure 4.20. 

 

 

 

 

 

 

 

 

 

 

 

The last right column of the confusion matrix represents the specificity rates according 

to heartbeat classes as Normal, PVC and RBBB. Also, the last row of the confusion 

matrix represents the sensitivity rates according to classes. Consequently, the 

intersection of the last right column and the last row represents the accuracy rate which 

specifies the performance of the classifier. In conclusion, the accomplishment rate of 

the test result is with an accuracy of 99.50%, also sensitivity and specificity rates can 

be seen from the confusion matrix for each class. 

Figure 4.17. The Test Results of the Spectrogram Images CNN Approach with 
Confusion Matrix 
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4.3.2.1. Results of ECG Spectrogram Images Classification with 

CNN 

The steadiness between achievement rates of the confusion matrix and hand-calculated 

accomplishment rates by using Equations (26), (27), and (28) can be seen in Table 4.7. 

The table includes the test result of the classification problem according to the number 

of instances which were correctly classified or misclassified for each class. 

After computing accuracy, sensitivity, and specificity rates according to each class, 

then average test results were shown for both three evaluation criteria. 

 

Table 4.7. The Test Results of ECG Spectrogram Images Classification with CNN 
(From Şen and Özkurt, 2019) 

 

 ACTUAL 

PREDICTED Normal PVC RBBB Accuracy Specificity Sensitivity 

Normal 1271 3 3 99,75% 99,48% 100% 

PVC 0 327 1 99,63% 99,95% 97,61% 

RBBB 0 5 837 99,63% 99,68% 99,63% 

Average Results 99,67% 99,70% 99,08% 

 
At the end of ECG Spectrogram Images Classification by using CNN, the reached 
conclusions can be summarized as follows, 
 

• The constructed CNN provided high accomplishment rates on ECG 

spectrogram image classification. 

• The number of instances that are correctly classified was increased with 

time-frequency domain analysis. 

• Especially, in the Normal class, the sensitivity rate was also quite high, 

which explains the TP rate increased. 

• The sensitivity rate for the PVC class increased by 23% via using the 

spectrogram method which depends on the STFT approach (Şen and 

Özkurt, 2019). 
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4.4. Discussion 

The classification of ECG signal types of Normal, PVC, and RBBB was actualized by 

using two different approaches. Two different approaches are used in this study; the 

first approach was to classify time-series ECG signals in time, and the second approach 

was to classify ECG spectrogram images which are obtained after applying STFT. The 

details of both two approaches were explained in previous sections. On the other hand, 

these two different types of data were trained with the same model architecture and the 

same model parameters via using CNN. It was observed that the classification of ECG 

signals with the spectrogram-based method had more success rates than the 

classification of ECG time-series signals. 

 

Consequently, the overall accomplishment rates are shown in Table 4.8. According to 

Table 4.8, accuracy and specificity rates are high, but the sensitivity rate of ECG time-

series signal classification is low compared to ECG spectrogram image classification. 

Generally, it can be said that the time-frequency based classification approach was 

outperformed the time domain-based classification approach. 

 
Table 4.8. The Average Results of Classification 

Method Accuracy Specificity Sensitivity 

ECG Time-Series 

Signal 

Classification 

 

96.30% 

 

97.66% 

 

90.43% 

ECG Spectrogram 

Images 

Classification 

 

99.67% 

 

99.70% 

 

99.08% 
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Table 4.9 shows the test results of all rhythms that were used in this study. Moreover, 

the accomplishment rates for each class can be seen clearly. The most remarkable 

change happened in the PVC class. The sensitivity rate of the PVC beat class increased 

by 23% with the aid of the spectrogram technique which is based on time-frequency 

domain analysis (Şen et al., 2019). 

 

Table 4.9. The Test Results of Both Approaches for Classification with CNN 

 

Evaluation Criteria 

ECG Time-Series Signal 

Classification 

ECG Spectrogram Images 

Classification 

N PVC RBBB N PVC RBBB 

Accuracy 96.56% 96.44% 95.97% 99.75% 99.63% 99.63% 

Sensitivity 99.60% 74.40% 97.30% 100% 97.61% 99.50% 

Specificity 97% 100% 91.60% 99.50% 99.70% 99.40% 
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CHAPTER 5 

HYPERPARAMETER TUNING WITH ADAM OPTIMIZER  

In deep learning problems, various optimization techniques have been used in the 

literature. The most well-known optimization algorithms were examined in Chapter 3. 

SGD-based algorithms protect single learning rate parameter in order to update 

weights, and the learning rate parameter does not vary in the training process. Adam 

algorithm can be seen as an extended interpretation of SG-based optimization 

algorithms by taking its advantages. By looking at this aspect, the various algorithms 

are derived from the SGD algorithm such as Adam and RMS Prop. These 

advantageous properties are the improvements with sparse gradients and can cope with 

the non-stationary signals by considering performance. ECG signal’s characteristics 

are known as non-stationary. Therefore, the most important point of the Adam 

algorithm is compatible with the non-stationary ECG signals.  

Basically, the Adam algorithm was selected as an optimizer of the network during the 

training progress in this proposed study. The details of the Adam algorithm were 

introduced in Chapter 3. In this chapter, the results of the adjusted hyperparameters of 

the Adam algorithm will be given in detail. 

 

5.1. Data Set 

In this proposed study, ECG signals were taken from the MIT-BIH Arrhythmia 

Database. The details of the MIT-BIH Arrhythmia Database and its corresponding 

records were explained in Chapter 4. 

In this chapter, the number of records and beats were selected differently from the 

proposed study mentioned in Chapter 4. Table 5.1 indicates that all ECG signals were 

used according to record numbers, the number of beats, and patients’ age and gender 

information in this proposed study. 
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Table 5.1. MIT-BIH Arrhythmia Database Record Details 

Record 

No 

Gender Age Beat 

Type 

Number of 

Beats 

100 Male 69 Normal 2237 

109 Male 64 LBBB 2490 

118 Male 69 RBBB 2165 

 

The Pan Tompkins algorithm as indicated in Chapter 4 and applied to these taken 

records according to the mentioned consecutive steps. After the same procedure was 

applied to ECG time-domain signals, single QRS complexes were obtained. These 

obtained QRS complexes are shown in Figure 5.1, Figure 5.2, and Figure 5.3 according 

to corresponding cardiac arrhythmias in one-second duration. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1. Single Normal Sinus Rhythm Time Domain Representation 

Figure 5.2. Single RBBB Arrhythmia Time Domain Representation 
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The spectrogram method was applied to these obtained QRS complexes in order to 

interpret in the time-frequency domain. According to the spectrogram approach, ECG 

signals can analyze both time and frequency components together. In this study, a 

particular time-frequency resolution rate was selected to enhance spectrograms. After 

heartbeats were transformed into a time-frequency domain, spectrograms were 

bounded by a specific time-frequency resolution rate. In order to search meaningful 

components of time-series ECG signals, single-sided amplitude spectrum analysis was 

applied. Figures 5.4, 5.5, and 5.6 represent a single-sided amplitude spectrum of 

normal sinus rhythm, RBBB arrhythmia, and LBBB arrhythmia, respectively. 

 

 

 

 

 

 

 

 

 

Figure 5.3. Single LBBB Arrhythmia Time Domain Representation 

Figure 5.4. Single-Sided Amplitude Spectrum Representation of Normal Beat 
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The meaningful frequency components of the signals were extracted by analyzing the 

single-sided amplitude spectrum. According to these representations, the common 

frequency value was selected as 40 Hz since all meaningful frequency components of 

the signals were observed under 40 Hz. It implies that the frequency resolution rate 

was bounded by 40 Hz. In addition, the time resolution rate was selected 200 ms in a 

heuristic way. The best suitable time resolution rate was 200 ms. These resolution rates 

were selected considering no distortion effect on the spectrograms. The bounded time-

frequency resolution rate of spectrograms is shown in Figures 5.7, 5.8, and 5.9 with 

respect to cardiac rhythms such as Normal, RBBB, and LBBB, successively. 

 Figure 5.5. Single-Sided Amplitude Spectrum Representation of RBBB Beat 

Figure 5.6. Single-Sided Amplitude Spectrum Representation of LBBB Beat 
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Figure 5.7. Spectrogram of Normal Beat 

Figure 5.8. Spectrogram of RBBB Beat 

Figure 5.9. Spectrogram of LBBB Beat 
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The obtained spectrograms were collected in one mutual folder in order to split data 

as training, validation, and test parts of the study. The total number of spectrograms 

for each cluster and data split ratios are indicated in Figure 5.10. 

 

 

 

 

 

 

 

 

 

 

 

After spectrograms were obtained, the entire data divided into training, testing, and 

validation parts as 70%, 15%, and 15% randomly and respectively. Then, the deep 

neural network was constructed as a classifier. The deep neural network layers and 

their functions were explained in Chapter 3. Table 5.2 indicates that the proposed CNN 

model according to layer information and filter/stride sizes. 

Table 5.2. The Proposed CNN Architecture for Spectrogram Classification 

 

 

 

 

 

 

 

 

Layers Layer Type Output of Layer Filter Size Stride 
1 Image Input 536x607x3 - - 
2 Convolution 534x605x8 [3,3] [1,1] 
3 ReLU 534x605x8 - - 
4 Max Pooling 267x302x8 [2,2] [2,2] 
5 Convolution 265x300x16 [3,3] [1,1] 
6 ReLU 265x300x16 - - 
7 Max Pooling 132x150x16 [2,2] [2,2] 
8 Convolution 130x148x32 [3,3] [1,1] 
9 ReLU 130x148x32 - - 
10 Fully Connected 1x1x3 - - 
11 Softmax 1x1x3 - - 
12 Classification Output 3 - - 

Figure 5.10. Representation of Overall Spectrograms with Split Ratios 
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The proposed CNN model was constructed according to given layers and filter/stride 

sizes. Before starting training progress, weights and biases were initialized in order to 

obtain better results and to make an easier comparison of the results individually. The 

training progress was completed approximately 9 hours for eighteen different results. 

The network was trained for 5 epochs. The hyperparameters were adjusted according 

to the grid search approach. Basically, the grid search approach tries to find optimal 

parameters of the model by scanning data; however, the grid search technique takes a 

long time in computing progress. Therefore, the grid search approach is known as 

computationally expensive. In the grid search, it iterates every combination of defined 

parameters and trying them to find the optimal for the model. In training and validation 

parts, data were shuffled per-epochs. In this proposed study, the adjusted 

hyperparameters were initial learning rate or step size, gradient decay factor of Adam 

algorithm which is also known as the first-order moment, and squared gradient decay 

factor of Adam algorithm which is also defined as the second-order moment. The 

epsilon value was selected as 10−8 in order to prevent division by zero, it was given 

in the optimization algorithms section as a subtitle of Chapter 3. 

 

The summary of the proposed study can be explained in the following stages, and also 

shown in Figure 5.11. 
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1) The unprocessed data were taken from the MIT-BIH Arrhythmia Database. 

2) These taken ECG signals were processed by using the Pan Tompkins algorithm. 

The peak values and locations of R-peaks were detected. Therefore, QRS 

complexes were extracted according to related cardiac rhythms that were used 

in the proposed study. 

3) The obtained QRS complexes were transformed into spectrogram by using 

STFT with a bounded time-frequency resolution rate. 

4) The spectrograms were collected for each class as Normal, RBBB, and LBBB. 

The total number of instances were indicated in Figure 5.10. The image input 

dimension was 536x607x3. 

5) The total number of instances were divided into training, testing, and validation 

parts of the study with particular split ratios represented in Figure 5.10. 

6) The weights and biases were initialized before starting the training progress of 

the system. 

Figure 5.11. Representation of the Summary of the Proposed Study 
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7) Then, the proposed CNN model was constructed according to specified layer 

types, filters, and stride sizes. 

8) The combination of hyperparameters which are the learning rate, the 

exponential decay rates for the first moment estimates, and second-moment 

estimates are represented in six different cases according to grid search.  The 

initial learning rate was evaluated for 10−4, 10−3, 10−2 values. The first 

moment estimates (𝛽1)  was evaluated for 0 𝑎𝑛𝑑 0.9, also second-moment 

estimates (𝛽2) was evaluated for 0.99, 0.999, 0.9999. 

9) In conclusion, the CNN was selected as a classifier according to the adjusted 

hyperparameters. The results of the study were examined with respect to 

validation losses for each combination. 

 

5.2. Results of CNN Hyperparameter Tuning with Adam Optimizer 

The main concept of the proposed study, observation of the effect of first and second-

moment estimations and learning rate in the constructed deep neural network. In order 

to see the effect of adjusted hyperparameters, the results were evaluated according to 

validation losses for different learning rates while changing first and second-moment 

estimations. According to the grid search approach, the initial learning rate is adjusted 

first, then the gradient decay factor and squared gradient decay factor were adjusted as 

a combination in itself. The obtained results were evaluated under six cases according 

to a combination of first-moment estimation and second-moment estimation. 

• Case 1:  

In this case, the learning rate parameter selected as 𝛼 = 0.0001, first-moment 

estimation selected as 𝛽1 = 0  and second-moment estimation selected as 𝛽2 =

0.99 for Option 1, 𝛽2 = 0.999 for Option 2, 𝛽2 = 0.9999 for Option 3. In Figure 

5.12, the results of adjusted hyperparameters are indicated according to validation 

loss graphs for every three options, consecutively. 
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By looking at these three validation loss graphs, the Adam algorithm tried to find the 

global minimum point but had difficulty because the selected learning rate was too 

small for the network. 

 

• Case 2:  

In this case, the learning rate parameter selected as 𝛼 = 0.0001, gradient decay 

factor selected as 𝛽1 = 0.9 and squared gradient decay factor selected as 𝛽2 =

0.99 for Option 4, 𝛽2 = 0.999 for Option 5, 𝛽2 = 0.9999 for Option 6. In Figure 

5.13, the results of adjusted hyperparameters are indicated according to validation 

loss graphs for every three options, respectively. 

 

 

 

 

Figure 5.12. Representation of Validation Losses for Case 1 
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The learning rate parameter was adjusted as a small rate, but it is obvious that the 

selection of squared gradient decay factor (𝛽2)  bigger was provided more stable 

convergence compared with the three validation loss graphs in Case 1. 

 

• Case 3:  

In this case, the learning rate parameter selected as 𝛼 = 0.001, gradient decay factor 

selected as 𝛽1 = 0 and squared gradient decay factor selected as 𝛽2 = 0.99  

for Option 7, 𝛽2 = 0.999 for Option 8, 𝛽2 = 0.9999 for Option 9. In Figure 5.14, the 

results of adjusted hyperparameters are indicated according to validation loss graphs 

for every three options, successively. 

 

 

Figure 5.13. Representation of Validation Losses for Case 2 
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It was obvious that the increase in squared gradient decay factor (𝛽2) provided a more 

stable convergence. It is apparent the increase of 𝛽2 provided more stable 

convergence. 

 

• Case 4:  

In this case, the learning rate parameter selected as 𝛼 = 0.001 , first-moment 

estimation selected as 𝛽1 = 0.9 and second-moment estimation selected as 𝛽2 = 0.99 

for Option 10, 𝛽2 = 0.999 for Option 11, 𝛽2 = 0.9999 for Option 12. In Figure 5.15, 

the results of adjusted hyperparameters are indicated according to validation loss 

graphs for every three options, consecutively. 

 

 

 

 

Figure 5.14. Representation of Validation Losses for Case 3 
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The initial learning rate, gradient decay factor, and squared gradient decay factor 

which are adjusted hyperparameters were not suitable for the network. All three 

options indicated that this network model can be seen as a random classifier because 

the adjusted hyperparameters were too poor. 

 

• Case 5:  

In this case, the learning rate parameter selected as 𝛼 = 0.01, gradient decay factor 

selected as 𝛽1 = 0 and squared gradient decay factor selected as 𝛽2 = 0.99 for 

Option 13, 𝛽2 = 0.999 for Option 14, 𝛽2 = 0.9999 for Option 15. In Figure 5.16, 

the results of adjusted hyperparameters are indicated according to validation loss 

graphs for every three options, respectively. 

 

 

Figure 5.15. Representation of Validation Losses for Case 4 
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By looking at these three options, each three hyperparameter combinations were not 

appropriate for the network. According to the results of validation losses, the networks 

were not distinguished from any random classifier. Moreover, these networks had lost 

their generalization ability with respect to the adjusted hyperparameters. 

 

• Case 6:  

In this case, the learning rate parameter selected as 𝛼 = 0.01, gradient decay factor 

selected as 𝛽1 = 0.9  and squared gradient decay factor selected as 𝛽2 = 0.99  for 

Option 16, 𝛽2 = 0.999 for Option 17, 𝛽2 = 0.9999 for Option 18. In Figure 5.17, the 

results of adjusted hyperparameters are indicated according to validation loss graphs 

for every three options, successively. 

Figure 5.16. Representation of Validation Losses for Case 5 
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It was obvious that the learning rate parameter was dominating other hyperparameters 

of the network. Similarly, it occurred because of the learning rate parameter 

domination in Case 5. According to these three options, it can be said that all three 

different networks had lost the generalization ability. Therefore, the networks could 

not reach the global optimum point according to selected hyperparameters (Şen and 

Özkurt, 2020). Moreover, the validation loss graphs were represented as taking their 

logarithms in order to see the changes detailly. 

Additionally, the performance of the study was evaluated according to the confusion 

matrix. The confusion matrix represents the accuracy, sensitivity, and specificity rates 

according to the best hyperparameter selection by considering the test results of the 

model.  

This visual representation makes it easier to understand and analyze the TP, TN, FP, 

and FN rates also provide us to see the correctly classified instances and misclassified 

instances according to their labels. Figure 5.18 indicated that the test results according 

to the best hyperparameter selection. 

Figure 5.17. Representation of Validation Losses for Case 6 
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The confusion matrix represents the test results of the hyperparameters which is the 

best validation accuracy/loss results. According to the confusion matrix, the success 

rate of the network is 99.70%. It is obvious that the test results are highly promising 

due to just three instances were misclassified. Consequently, the constructed deep 

neural network is shown a great classification success rate according to the tuned 

hyperparameters with the Adam optimization algorithm. 

 

5.3. Discussion 

When compared to obtained validation losses, the best-tuned hyperparameter selection 

was Option 9. According to the results of Option 9, training accuracy was 100% and 

validation accuracy was obtained as 99.80%. 

In Option 8, validation loss was a little bit lower than Option 9. But here, there is an 

important point that has to be evaluated to choose the best solution. In Option 8, there 

is a tiny difference between training accuracy and validation accuracy. It arises from 

Figure 5.18. The Confusion Matrix for The Test Results of the Best 
Hyperparameters 
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some well-known reasons. The first reason, the training loss was measured during each 

epoch whereas validation loss was measured after each epoch. The second reason, the 

validation set might be simpler than the training set. Therefore, Option 9 was selected 

as the best solution for the classification problem by considering these reasons. 

All options are underfitted except Options 4, 7 and 9. Therefore, these networks need 

more training time according to adjusted hyperparameters, and all results are indicated 

in Table 5.3. 

 

Table 5.3. The Overall Results for Each Hyperparameter Selection (From Şen, 2020) 

Option Base 
Learn 
Rate 

𝜷𝟏 𝜷𝟐 Training 
Accuracy 

Validation 
Accuracy 

Validation 
Loss 

 1 0.0001 0 0.99 96.87 99.12 0.0401 
2 0.0001 0 0.999 98.43 99.12 0.0294 
3 0.0001 0 0.9999 98.43 98.45 0.0390 
4 0.0001 0.9 0.99 100 99.32 0.0260 
5 0.0001 0.9 0.999 96.87 99.80 0.0227 
6 0.0001 0.9 0.9999 97.65 99.32 0.0323 
7 0.001 0 0.99 99.21 99.12 0.0393 
8 0.001 0 0.999 99.21 99.61 0.0149 
9 0.001 0 0.9999 100 99.80 0.0168 
10 0.001 0.9 0.99 35.15 36.20 1.0973 
11 0.001 0.9 0.999 34.37 36.20 1.0977 
12 0.001 0.9 0.9999 46.09 36.20 1.0978 
13 0.01 0 0.99 36.71 36.20 1.0967 
14 0.01 0 0.999 80.46 84.70 0.4163 
15 0.01 0 0.9999 37.50 36.20 1.0967 
16 0.01 0.9 0.99 33.59 36.20 1.0967 
17 0.01 0.9 0.999 47.65 36.20 1.0967 
18 0.01 0.9 0.9999 44.53 36.20 1.0967 

 

According to the adjusted hyperparameters of Option 9 such as gradient decay factor 

and squared gradient decay factor were not the same as the default values in the 

literature study. Generally, 𝛽1 is set to 0.9 and 𝛽2 is set to 0.999 in the literature. In 

conclusion, by looking at the experimental results of the proposed study, the default 

values of 𝛽1 and 𝛽2 were not suitable for the proposed deep neural network model and 

data. This showed the dependency of the performance on the data. 
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In Figure 5.9, the validation losses were represented in logarithmic scale for each 

option, and validation losses are calculated according to Equation (13). It can be seen 

from here; Option 9 was the best result with respect to the validation loss criteria 

which is corresponding Case 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The test results of the proposed study according to the best hyperparameter selection 

are indicated in Table 5.4. 

 

Table 5.4. The Test Results of the Best Hyperparameter Selection (Şen, 2020) 
 

 ACTUAL 

PREDICTED LBBB Normal RBBB Accuracy Specificity Sensitivity 

LBBB 374 0 2 99,70% 99,50% 100% 

Normal 0 335 1 99,80% 99,70% 100% 

RBBB 0 0 321 99,70% 100% 99,10% 

Average Results  99,73% 99,73% 99,70% 

Figure 5.19. The Representation of Validation Losses for Each Case 
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On the other hand, the test results showed high success rates for each cluster in the 

classification problem. The most notable point of the test results, sensitivity rate which 

represents the TP term was obtained as 100% for Normal and LBBB classes. On the 

other hand, the specificity rate which represents the TN term was obtained as 100% 

for RBBB class.  
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CHAPTER 6 

CONCLUSIONS AND FUTURE STUDIES 

The examination of ECG signals is still a compelling branch in signal processing 

approaches. Early detection and diagnosis have a great significance in preventing heart 

diseases. Because heart disorders are restrained people from maintaining a healthy life. 

One of the compelling points is that the detection and improvement of robust 

classification methods for cardiac arrhythmias. Many researchers have been figured 

out the different classification methods to hindering people from probable cardiac 

disorders. In the analysis of biomedical signals, different signal processing approaches 

have been used by many investigators such as FT, FFT, spectrogram, or a wavelet 

transform. Because of the good representation abilities and simplicity spectrogram 

method were used in this study. 

In this thesis, the detection and classification of heart arrhythmias were carried out by 

extraction of QRS complexes. All of these QRS complexes were extracted with the 

aid of the Pan Tompkins algorithm that ubiquitous QRS-detection algorithm in the 

literature studies. The ECG signals were obtained from MIT-BIH Arrhythmia 

Database via using the STFT approach. Four types of heartbeats are Normal, PVC, 

LBBB, and RBBB were used for the classification. Pan Tompkins algorithm was 

utilized to detect and extract of QRS complexes in the data preparation stage. 

Two main studies were performed according to the time-frequency-based 

classification approaches in this thesis. 

• Time-Series vs. Spectrogram-CNN: The first study was aimed to compare the 

performance of both time and time-frequency domains ECG signal 

characteristics to classify normal sinus rhythm and cardiac abnormalities.  

• Spectrogram-CNN-Hyperparameter Tuning with Adam Optimization 

Algorithm: The second study was related to the time-frequency approach for 

categorizing ECG signals according to their labels and was the aim to adjust 

hyperparameters of the selected optimization algorithm. 
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Many classification approaches are based on artificial neural network technique, but 

CNNs have gained significance with development in deep learning in recent years. For 

this reason, CNN was selected as a classifier for both of the studies with the help of 

MATLAB. 

In the Time-Series vs. Spectrogram-CNN study, two different methods were used for 

the categorization of heart rhythms such as Normal, PVC, and RBBB. The objective 

of the study was to compare the test results which are both time and time-frequency 

domains. The SGDM was selected as an optimizer for both two parts, also data were 

separated with a rate of 70% training data, 15% testing data, and 15% validation data. 

The first method was demonstrated as one dimensional ECG time-series signal 

classification via using CNN. The accuracy accomplishment rate was 96.30%, also 

other evaluation criteria gave promising results such as sensitivity was 90.43% and 

specificity was 97.66%. The sensitivity and specificity test results were quite high in 

both Normal and RBBB clusters, unlike the PVC class. The second method depends 

on image classification with the help of CNN. In the beginning, the extracted QRS 

complexes were transformed into the time-frequency domain via using STFT. After 

applied Hamming window operation, all of these QRS complexes were resized in RGB 

image form. The most well-known trait of CNN is successful for image classification. 

According to test results, the accuracy accomplishment rate was 99.67%. It exhibited 

highly robust and thriving classification performance with a selected optimization 

algorithm. The second method which was time-frequency based properties of the data 

outperformed the first method by comparing achievement rates. Additionally, the 

sensitivity rate was increased by 23% in the PVC cluster according to the second 

method. Consequently, the different evaluation results proved that the possession of 

both time and frequency features was the crucial point in CNN-based classification 

problems. 

In the Spectrogram-CNN-Hyperparameter Tuning with Adam Optimization 

Algorithm study, the main objective was to classify ECG heartbeats according to tuned 

hyperparameters with Adam optimizer. The ECG time-series heart signals were 

transformed into the time-frequency domain via using STFT. Then, the time-frequency 

resolution rate is bounded by 40 Hz in spectrograms. The first step was to analyze and 

determine the meaningful components of the ECG heart signals. After the analysis of 

ECG signals, the meaningful components were detected. These obtained spectrograms 

were used as input for the CNN. The data which are spectrograms were split with a 
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rate of 70% training data, 15% testing data and 15% validation data. After the first step 

was completed, Adam algorithm’s hyperparameters were tuned which are gradient 

decay factor and squared gradient decay factor. Moreover, the initial learning rate 

parameter was tested on the network to understand the effect of the learning rate. The 

weights and biases were initialized at the beginning of the training progress in order to 

see the variation as validation losses according to adjusted hyperparameters. The 18 

different combinations of tuned hyperparameters were obtained for comparison 

individually. In the end, the 9𝑡ℎ option gave the best results according to validation 

accuracy as 99.80%. In this option, the learning rate parameter was adjusted as 0.001, 

the gradient decay factor was set to 0, and the squared gradient decay factor was set to 

0.9999. The test part of the study was accomplished according to the adjusted 

hyperparameters which gave the best results. The test results were quite superior by 

considering average accuracy, sensitivity, and specificity rates as 99.70%, 99.70%, 

and 99.73%, consecutively. Lastly, this study was exhibited great accomplishment 

rates for each class, also the number of correctly classified instances was pretty 

remarkable in CNN-based classification. 

In future studies, the aim is to investigate different time-frequency domain approaches 

and different deep learning methods as well as the proposed studies. Additionally, real-

time ECG signal processing might be scrutinized by using time-frequency domain 

techniques in the literature aside from STFT. Then, another objective is to research the 

patient adaptive arrhythmia classification for smart healthcare. 
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