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a b s t r a c t

In recent years, sustainable development and green manufacturing have attracted widespread attention
to environmental problems becoming increasingly serious. Meanwhile, affected by the intensification
of market competition and economic globalization, distributed manufacturing systems have become
increasingly common. This paper addresses the energy-efficient scheduling of the distributed per-
mutation flowshop (EEDPFSP) with the criteria of minimizing both total flow time and total energy
consumption. Considering the distributed and multi-objective optimization complexity, an improved
NSGAII algorithm (INSGAII) is proposed. First, we analyze the problem-specific characteristics and
designed new operators based on the knowledge of the problem. Second, four constructive heuristic
algorithms are proposed to produce high-quality initial solutions. Third, inspired by the artificial bee
colony algorithm, we propose a new colony generation method using the operators designed. Fourth,
a local intensification is designed for exploiting better non-dominated solutions. The influence of
parameter settings is investigated by experiments to determine the optimal parameter configuration
of the INSGAII. Finally, a large number of computational tests and comparisons have been carried out
to verify the effectiveness of the proposed INSGAII in solving EEDPFSP.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

In recent years, green manufacturing to reduce environmen-
al pollution and energy waste has attracted more and more
ttention from the world [1]. Therefore, it is extremely impor-
ant to consider and measure energy conservation as an impor-
ant content while studying traditional economic criteria such as
akespan, total flow time, etc. Green scheduling has become a
ot research topic [2]. Generally, the machine can work in multi-
le different states, and it is a better choice in the energy-saving
tate. The early research of green scheduling mainly studied
hen and which state the machine should be switched to [3].
owever, the research on green scheduling is still very lim-
ted. Efficient methods, especially meta-heuristic methods for
arge-scale problems, are worth studying.

In this paper, an algorithm based on NSGAII, which is a very
seful algorithm in the field of multi-objective evolution, is pro-
osed to solve the energy-efficient distributed permutation flow-
hop scheduling problem (EEDPFSP) with the criteria to minimize

∗ Corresponding author.
E-mail address: Panquanke@shu.edu.cn (Q.-K. Pan).
ttps://doi.org/10.1016/j.asoc.2021.107526
568-4946/© 2021 Elsevier B.V. All rights reserved.
the total flow time and total energy consumption. We summarize
the main contributions as follows. (1) Four initialization algo-
rithms based on problem-specific characteristics are proposed to
produce good initial solutions. (2) Seven operators for solutions,
including SpeedUp, RandSpeedUp, SpeedDown, RandSpeedDown,
RightShift, Insert and Swap, are proposed and efficient search
algorithms are designed based on these operators. (3) The new
population generation method fused with problem characteristics
and solution representation is designed. (4) A local intensification
algorithm is designed to enhance the local search ability of the
algorithm. Finally, a large number of numerical tests prove the
effectiveness of the above design and the superiority of the algo-
rithm proposed in this paper over KCA (Knowledge-Based Coop-
erative Algorithm) [4], CMA (Competitive Memetic Algorithm) [5],
MOEA/D [6] and NSGAII [7] algorithms.

The remainder of this paper is organized as follows. Section 2
presents a literature review of related works. In Section 3, the
EEDPFSP with total flowtime criterion is formulated. Section 4
presents the proposed and improved NSGAII for solving EEDPFSP
in detail. We report the computational results and comparisons
in Section 5 following the parameter setting. Finally, Section 6

provides the concluding remarks and suggests some future work.

https://doi.org/10.1016/j.asoc.2021.107526
http://www.elsevier.com/locate/asoc
http://www.elsevier.com/locate/asoc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.asoc.2021.107526&domain=pdf
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. Literature review

The widespread application of distributed manufacturing has
ttracted research on the distributed permutation flowshop
cheduling problem (DPFSP) [8], which is a generalization of
raditional permutation flowshop scheduling problem (PFSP). The
PFSP is more difficult and tricky than PFSP because it not only
eals with the job sequence, but also determines the factory
ssignment [9]. Researchers have proposed various algorithms for
olving DPFSP with different optimization objectives. The paper
y Naderi and Ruiz [8] is the first paper on DPFSP research,
n which the optimization objective is to minimize makespan.
n effective hybrid immune algorithm (HIA) [10] was presented
o solve the DPFSP. The effectiveness of the HIA was demon-
trated by comparison with some existing heuristic algorithms
nd the variable neighborhood descent methods. A new tabu
lgorithm [11] was proposed for solving this DPFSP problem.
rom the intensive experiments, the proposed tabu algorithm
utperforms all the existing algorithms including heuristic al-
orithms (i.e. NEH1, NEH2, VND (a) and VND (b)) and a hybrid
enetic algorithm. Shih-Wei Lin et al. [12] presented a modified
terated greedy (MIG) algorithm for this problem to minimize
he maximum completion time among all the factories. The
omputational results show that the good performance of the
roposed MIG algorithm. Many scholars have proposed various
olutions to DPFSP using various meta-heuristic algorithms, in-
luding genetic algorithm (GA) [13], estimation of distribution
lgorithm [14], competitive memetic algorithm (CMA) [5], scat-
er search algorithm [15], chemical reaction optimization [16],
terated greedy [17–20] , discrete artificial bee colony [21,22],
nd so on. In addition, some scholars have conducted extensive
esearch on different variants of DPFSP. The other variants of
PFSP with extensive and realistic production conditions in-
ludes distributed no-wait flowshops [23,24], distributed no-
dle flowshops [25,26], distributed hybrid flowshop [27,28], dis-
ributed blocking flowshops [29,30], distributed flowshop group
cheduling problems [31] and so on.
However, the papers discussed in the previous paragraph are

ll to minimize a single objective. Multi-objective optimization
roblems are very common in real life and are in a very im-
ortant position. In practice, many problems are multi-objective
ptimization problems. Under normal circumstances, the sub-
bjectives of the multi-objective optimization problem are con-
radictory. The improvement of one sub-objective may cause
erformance degradation of another or several sub-objectives.
n other words, it is impossible to achieve the optimal value
f multiple sub-objectives simultaneously. However, only coor-
ination and compromise can be carried out among them, so
hat each sub-objective is as optimized as possible. Similarly,
any real-world flowshop scheduling problems are also multi-
bjective optimization problems, which should consider mul-
iple conflicting objectives, such as makespan, earliness time,
dle time, total flow time, and carbon emissions [32]. Based on
OEA/D, PH-MOEAD was proposed to solve the hybrid flow-
hop scheduling lot-streaming problems, in which four objectives
re minimized, namely the penalty caused by the average so-
ourn time, the energy consumption in the last stage, as well as
he earliness and the tardiness values [33]. Based on analyzing
ome structural properties, an extended NEH insertion proce-
ure with energy-saving capability was designed to optimize
he makespan and carbon emissions at the same time [34]. Li
nd Ma proposed a novel multi-objective discrete artificial bee
olony algorithm based on decomposition, to solve PFSP with the
equence-dependent setup times to minimize makespan and total
lowtime [35]. An evolutionary multi-objective robust scheduling
lgorithm was proposed with consideration of machine break-

own [36]. A multi-objective discrete invasive weed optimization
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(MODIWO) algorithm was proposed to solve a multi-objective
blocking flowshop scheduling problem (MOBFSP) that minimizes
the makespan and total tardiness simultaneously [37].

Some researchers have conducted on energy-efficient flow-
shop scheduling. Both mixed-integer linear programming and
constraint programming model formulations were proposed for
the energy-efficient bi-objective no-wait permutation flowshop
scheduling problems (NWPFSPs) with the total tardiness and
the total energy consumption minimization simultaneously [38].
The PFSP with two conflicting objectives, namely, total flowtime
and total energy consumption (TEC) are studied [39]. An im-
proved multi-objective evolutionary algorithm based on decom-
position was proposed, which solves the energy-efficient PFSP
with sequence-dependent setup time, in order to minimize the
makespan as an economic objective and the energy consump-
tion as a green objective [40]. An energy-aware multi-objective
optimization algorithm (EA-MOA) is presented to minimize the
makespan and the energy consumptions for solving the hybrid
flow shop (HFS) scheduling problem with the setup energy con-
sumptions [41]. In a recent paper, Zhang et al. studied an energy-
efficient hybrid flowshop scheduling problem, which considered
machines with different energy usage rates, sequence-dependent
setups, and machine-to-machine transportation operations [42].

However, there are still relatively few studies on multi-
objective scheduling in DPFSP, and even less on the energy-
efficient DPFSP (EEDPFSP). Deng and Wang propose a competitive
memetic algorithm (CMA) with two populations to solve the
DPFSP with the makespan and total tardiness criteria [43]. As
far as we know, the EEDPFSP is only addressed in [4,5]. Based
on some properties of the problem, a competitive memetic al-
gorithm (CMA) was proposed to solve the DPFSP to minimize the
makespan and carbon emissions [5]. A knowledge-based coopera-
tive algorithm (KCA) was presented to solve the EEDPFSP with the
criteria of minimizing both makespan and total energy consump-
tion [4]. Based on the previously acquired knowledge, several
excellent search mechanisms have been designed, including a co-
operative initialization scheme, a cooperative search strategy and
a knowledge-based local intensification, etc. More complicated
than the DPFSP [5], the EEDPFSP contains three sub-problems,
namely the factory allocation of each job, the job sequence in each
factory and the speed selection of each operation. Speed selection
expands the search space, thereby increasing the difficulty of the
solution.

Through the discussion in the previous paragraphs, it can be
seen that the DPFSP is a current research hotspot. A large number
of heuristic algorithms and meta-heuristic algorithms have been
proposed to solve the DPFSP and its variants. In addition, due to
the ubiquity of multi-objective optimization problems in real life,
some papers on multi-objective optimization of the DPFSP have
appeared. However, there are very few papers on the energy-
efficient DPFSP. In summary, the research on multi-objective op-
timization of energy-efficient distributed permutation flowshop
scheduling problem is very important and urgent.

3. Problem description

3.1. Multi-objective optimization problem

In this subsection, the basic knowledge of multi-objective
optimization problems (MOOP) is introduced. Without loss of
generality, there are m objective functions and n-dimensional
decision variables. A Multi-objective optimization problem can be
described as:

min f (x) = {f (x), f (x), . . . , f (x)}, x ∈ Ω (1)
1 2 m
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here x = (x1, x2, . . . , xn) is a decision variable in the decision
space Ω . f (x) is the objective function which is composed of
conflicting sub-objective functions such as f1, f2, f3, etc.

Let a and b be two feasible solutions. The solution a is said
to dominate solution b (denoted as a ≻ b) if and only if ∀l ∈

{1, 2, . . . ,m} , fl(a)≤ f l(b) and ∃l′ ∈ {1, 2, . . . ,m} , fl′ (a)< f l′ (b). A
easible solution a is called a non-dominant solution, if there is
o other feasible solution a′

∈ Ω which dominates a. All the
on-dominated solutions form the Pareto optimal solutions set.
he objective vectors corresponding to the solutions in the Pareto
ptimal set constitute the Pareto optimal front.
In many practical applications, the decision-makers can choose

he final solution in the Pareto optimal solution set according to
he nature of the specific problem. Therefore, the first step and
he key to solving the multi-objective optimization problem is
o find as many Pareto optimal solutions as possible. In addition,
he purpose of multi-objective optimization is to obtain a non-
ominated solution set with good diversity and proximity to the
rue Pareto optimal front.

.2. Formulation of EEDPFSP with total flowtime criterion

The EEDPFSP problem can be described as follows. There is
set of n jobs N = {1, 2, . . . , n} to be processed in a set of
factories F = {1, 2, . . ., f }. All the factories are identical and
ontain a flowshop with a set of m machines M = {1, 2, . . .,m}.
ach job should be processed in any one of the F factories. In
ddition, if a job is assigned to a certain factory, all its operations
hould be processed in this factory and cannot be transferred to
he other factories. In each factory, all the jobs must be processed
n the same route, that is, first on machine 1, then on machine
, and so on, until machine m. For each machine, there are s (v
1,. . . , s) different processing speeds. The speed of a machine

annot be changed when the processing of a job. The operation of
ob i ∈ N on the machine j ∈ M is denoted as Oij. Each operation
ij has a standard processing time ti,j > 0. The actual processing
ime of Oi,j is pi,j = ti,j/Vv , when the operation Oi,j is processed
t speed Vv . Once Oij is started, it must be performed without
nterruption. Regarding the processing speed, processing time,
nd energy consumption, there are the following assumptions.
he higher the processing speed is, the shorter the processing
ime is and the more power the machine consumes. The machine
annot be shut down until all the tasks assigned to the factory
ave been completed. If no job is processed on machine j (standby
ode), the energy consumption per unit time is SPj. All the jobs
nd machines are ready at time 0. At any time, no job can be
rocessed on multiple machines, and no machine can process
ore than one job. Finally, the problem is to determine the
ssignment of jobs to factories, the sequences of the jobs in each
actory, and the processing speed of each job on the machines, so
s to minimize the total flow time and energy consumption of all
he jobs.

The Indices, Parameters and Decision Variables used in this
aper are listed in Table 1.
The mathematical model of the EEDNFSP is formulated as

ollows.

Minimise {TFT , TEC} (2)

ubject to.
n∑

l=1

F∑
f=1

xi,l,f = 1, ∀i (3)

n∑ F∑
xi,l,f ≤ 1, ∀l (4)
i=1 f=1

3

s∑
v=1

zi,j,v = 1, ∀i, j (5)

pi,j = ti,j ·
s∑

v=1

zi,j,v
Vv

, ∀i, j (6)

Cl,j,f =

n∑
i=1

xi,l,f · pi,j, l = 1, j = 1, ∀f (7)

Cl,j,f ≥ Cl,j−1,f +

n∑
i=1

xi,l,f · pi,j, ∀l, j, f (8)

Cl,j,f ≥ Cl−1,j,f +

n∑
i=1

xi,l,f · pi,j, ∀l > 1, j, f (9)

PECf ,j =

n∑
i=1

n∑
l=1

(xi,l,f · pi,j ·
s∑

v=1

zi,j,v · PPf ,j,v), ∀f , j (10)

SECf ,j = (Cnf ,j,f −C1,j,f −

n∑
i=2

pi,j ·
n∑

l=1

xi,l,f ) · SPf ,j, ∀f , j (11)

TEC =

F∑
f=1

m∑
j=1

(PECf ,j + SECf ,j) (12)

TFT (f ) =

nf∑
i=1

Cm,i,f (13)

TFT =

F∑
f=1

TFT (f ) (14)

xi,l,f ∈ {0, 1}, ∀i, l, f (15)

zi,j,v ∈ {0, 1}, ∀i, j, v (16)

Cl,j,f ≥ 0, ∀l, j, f (17)

Constraint set (3) implies that each job must be assigned to
one and only one factory, and occupy only one position in the
assigned flowshop. Constraint (4) ensures that at most one job is
placed in each position. Constraint set (5) is the restriction that
each operation Oi,j can be processed at one speed. The actual
processing time of operation Oi,j can be obtained by (6). Please
note that Cl,0,f represents the completion time of the lth job
on the 0th machine on the f th factory, so Cl,0,f = 0. All the
jobs and machines are ready at time 0. The completion time of
the first job in factory f on the first machine can be calculated
by (7). Constraint (8) describes the relations of the completion
time of a job on adjacent machines. The processing of a job on
each machine can only start when the processing of the same
job on the previous machine is finished. Constraint (9) describes
the relations of the completion time of adjacent jobs on the
same machine. Each job can start only after the previous job
assigned to the same machine at the same factory is completed.
When machine j in factory f is operating in processing mode
and standby mode, the total energy consumption is defined as
(10) and (11), respectively. The total energy consumption of a
schedule is defined as (12). The total flow time of factory f is
defined as (13). The total flow time objective of the schedule is
defined as (14). Constraint sets (15)–(17) give the value ranges
of all the variables, where binary variable xi,l,f , represents the
factory assignment for each job and the job sequence in each

factory and zi,j,v gives the speed choice of each operation.
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Table 1
Indices, parameters and decision variables.
n The number of jobs to be processed.
m The number of machines in each factory.
F The number of factories.
s The number of processing speeds.
i Index for jobs, i ∈ {1, . . . , n}.
l Job positions in a sequence, l ∈ {1, . . . , n}.
j Index for machines, j ∈ {1, . . . , m}.
f Index for factories, f ∈ {1, . . . , F }.
v Index for speeds, v ∈ {1, . . . , s}.
Vv The vth processing speed and V1 < V2 < . . . < Vs .

Oi,j Operation of job i on machine j.

ti,j The standard processing time of Oi,j .

pi,j The actual processing time of Oi,j .

PPf ,j,v The energy consumption per unit time of machine j in factory f running at speed v.

SPf ,j The energy consumption of the machine j at stand-by mode per unit time in factory f.

PECf ,j Continuous variable for TEC when machine j runs at processing mode in factory f.

SECf ,j Continuous variable for TEC when machine j runs at stand-by mode in factory f.

TEC Continuous variable TEC
Cl,j,f Continuous variable for the completion time of position l on machine j in factory f.

TFT(f) Continuous variable for the total flowtime of factory f.

TFT The total flowtime of the schedule.
xi,l,f Binary variable that takes value 1 if job i occupies position l in factory f, and 0 otherwise.

zi,j,v Binary variable that takes value 1 if job i is processed on machine j at speed v, and 0 otherwise.
a

V

p
2
p

Table 2
Example for objectives calculation.

j = 1 j = 2 j = 3

PPj,v
v = 1 5 4 5
v = 2 20 16 20

SPj 1 2 1

ti,j

i = 1 4 2 2
i = 2 2 2 2
i = 3 4 4 6
i = 4 4 4 5
i = 5 4 2 6
i = 6 3 6 4

3.3. Encoding and objective calculation

It is an important issue to decide how to represent a solution
hen designing effective algorithms for solving EEDPFSP. As de-
cribed earlier in this article, the solution of the problem should
nclude three parts, i.e., the assignment of jobs to factories, the
ob processing sequence in each factory, and processing speed of
very job on each machine. The encoding scheme proposed by
ang and Wang [4] is used in this article. A set of F sequences,
hich is denoted as Π = (π1, π2, . . . ,πF ), is used to represent

the job processing sequence in each factory. Each one includes
a string of numbers that represents a permutation of the jobs
assigned to the factory. Let V = (vij)n×m denote the speed matrix,
where vi,j is the processing speed of Oi,j. In this case, a solution
can be represented as sol = (Π , V ) = (π1, π2,. . . , πF ;V ), where
f = (πf ,1, πf ,2,. . . , πf ,nf ), f = 1,2,. . . , F is a sequence related to
actory f, and nf is the total number of jobs assigned to factory f.

Consider an example with two factories and six jobs. The
wo factories are identical and each has three machines with
wo different speeds. The standard processing times, the power
onsumption of each machine run at each speed and at stand-by
ode are given in Table 2.
4

Consider a solution Π = {π1, π2; V } = {(5, 2, 1) , (4, 3, 6) ; V }

nd speed setting

=

[ 1 1 1
1 2 2
2 1 2

2 2 1
2 2 2
1 2 2

]T

The Jobs 5, 2 and 1 are processed in order in factory 1. The real
rocessing time of job 5 on machine 1 is p5,1 = t5,1/v5,1 = 4/2 =

. In the same way, we can get: p5,2 = 1, p5,3 = 3, p2,1 = 2,
2,2 = 1, p2,3 = 2, p1,1 = 4, p1,2 = 2, p1,3 = 1. The Gantt

chart for the given solution ? is shown in Fig. 1. C(5) = 6, C(2)
= 8, C(1) = 11. The total flow time of factory 1 is 25. PEC1,1 =

2×20+2×5+4× 5 = 70, PEC1,2 = 1×16+1×16+2×4 = 40,
PEC1,3 = 3×20+2×5+1×20 = 90, SEC1,1 = 0, SEC1,2 = 4×2 =

8, SEC1,3 = 2 × 1 = 2. The total energy consumption of factory 1
is 210. In factory 2, C(4) = 9, C(3) = 12,C(6) = 14. The total flow
time of factory 2 is 35. PEC2,1 = 2 × 20 + 4 × 5 + 3 × 5 = 75,
PEC2,2 = 2 × 16 + 2 × 16 + 3 × 16 = 112, PEC2,3 = 5 × 5 + 3 ×

20 + 2 × 20 = 120, SEC2,1 = 0, SEC2,2 = 3 × 2 = 6, SEC2,3 = 0.
It can be concluded that the total energy consumption of factory
2 is 313. Finally, the total flow time and the energy consumption
of the example instance is 60 and 523, respectively.

3.4. Operators

We designed the following operation operator.
(a) SpeedUp(f ): In factory f, if there is idle time before a critical

operation Oi,j, increase the speed of Oi,j−1 and then left-shift all
the operations processed after Oi,j−1 correspondingly. The critical
path in one factory of a certain schedule is shown in Fig. 1(a).
The jobs and operations in the critical path are called critical jobs
and critical operations, respectively. This operator can reduce the
total flow time, but it may lead to an increase in the energy
consumption. An example is shown in Fig. 2(a). The jobs with
speed changed are shaded. Because there is idle time before the
critical operation O1,2, the total flow time can be reduced by
speeding up the operation O1,1.

(b) RandSpeedUp(f ): In factory f, the processing speed of each
job is randomly increased. Like the previous operator, this op-
erator can reduce the total flow time, but it will increase the
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e

Fig. 1. A scheduling Gantt chart for the example instance.
Fig. 2. Operators (Speedup, RandSpeedup, SpeedDown, RandSpeedDown, RightShift).
a

E

nergy consumption. In Fig. 2(b), the speed of the operation O2,3
is increased, which leads to a reduction in total flow time and an
increase in energy consumption.

(c) SpeedDown(f ): For the noncritical path in factory f, de-
crease the speeds of all the noncritical operations (except the
operations on the last machine) as slow as possible without
increasing total flow time. This operator can reduce the en-
ergy consumption while keeping the total flow time constant. In
Fig. 2(c), the speed of O2,2 is reduced, thereby reducing energy
consumption.

(d) RandSpeepDown(f ): In factory f, the processing speed of
each job is randomly decreased. This operator can reduce the
energy consumption, but it will increase the total flow time. An
example is shown in Fig. 2(d) where the speed of O1,3 is reduced.

(e) RightShift(f ): In factory f , the jobs on the non-critical path
are shifted to the right. The operator postpones the turn-on time
of the machines, thereby reducing energy consumption, but will
increase the total flow time. In Fig. 2(e), the jobs 5 and 1 are
shifted to the right, thereby postponing the turn-on time of the
machines 2 and 3.

As shown in Fig. 3(a), Job1 and Job2 are processed on the
same machine. There is the idle time between Job1 and Job2
which is denoted as ∆T. The speed of Job1 is v1. There are two
improvements proposals to reduce energy consumption. The first
one is shown in Fig. 3(b), reducing the speed. The second is shown

in Fig. 3(c), where Job1 is shifted to the right while keeping the

5

speed unchanged. According to the setting in the literature [4],
PPj,v=4 × v2kW and SPj = 1 kW.

The standard processing time of Job1 is denoted as T0, then the
ctual processing time T0/v1 = T. In Fig. 3(b), the speed of Job1 is

set to v2 (v1 > v2). At the same time, it is assumed that processing
with v2 just fills up the idle time. That is, T0/v2 = T+∆T.

The energy consumption in Fig. 3(a)–(c) is calculated as fol-
lows.

Ea = PP j,v1 × T + SP j × ∆T = 4 × v2
1 × T + ∆T

= 4 × (
T0
T
)
2

× T + ∆T = 4 ×
T 2
0

T
+ ∆T .

b = PP j,v2 × (T + ∆T ) = 4 × v2
2 × (T + ∆T )

= 4 ×

(
T0

T + ∆T

)2

× (T + ∆T ) = 4 ×
T 2
0

T + ∆T
.

Ec = PP j,v1 × T = 4 × v2
1 × T = 4 ×

(
T0
T

)2

× T = 4 ×
T 2
0

T
.

Then, Eb < Ec < Ea.
Finally, it is concluded that decreasing speed has priority over

shifting right for reducing energy consumption.
All the above operators operate on the processing speed of ev-

ery job on each machine. The following two operation operators
are used to adjust the assignment of jobs to factories and the job
processing sequence in each factory.
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Fig. 3. Slow down and postpone.
Fig. 4. Operators (Insert, Swap).
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(f) Insert: This operator extracts a job from a factory, and then
nserts it into a certain position of a factory. Please note that the
actory for extracting job and the factory for inserting can be the
ame factory. Fig. 4(a) and (b) show the Gantt chart in factory
and 2 after the insertion which removes job 1 and insert it to

actory 2.
(g) Swap: This operator selects a job and exchanges it with

nother job. The two jobs exchanged can be selected from the
ame factory or from two different factories. Fig. 4(c) and (d)
how the Gantt chart in factory 1 and 2 after swapping jobs 2
nd 3.

. Improved NSGAII algorithm

.1. Basic NSGAII

NSGAII is one of the most superior multi-objective evolution-
ry optimization algorithms [7]. Fig. 5 shows the pseudo-code of
he basic NSGAII algorithm.

NSGAII was originally used to solve the optimization problem
f continuous functions. Fewer pieces of literature were using
SGAII to solve the DPFSP. Therefore, besides the coding method
nd operators, it is necessary to design corresponding improve-
ent strategies according to the characteristics of the DPFSP.
hese improvement strategies will be described in detail in the
ollowing sections.

.2. Flowchart of the proposed algorithm

The flowchart of our proposed algorithm is illustrated in Fig. 6.
e have made some improvements to the basic NSGAII. The im-
rovement for the EEDPFSP is represented in the form of shading,
hich includes initialization, makenewpop, local intensification.

.3. Initializing population

Our algorithm, INSGAII, starts from a population of PS initial
solutions. The quality of the initial solutions has a direct im-
pact on the performance of the whole algorithm. A good initial
6

Fig. 5. The basic NSGAII.

opulation will speed up the algorithm convergence. If there is
n initial solution that minimizes one of the objectives in the
opulation, the solution will tend to the optimal solution at a
aster rate during evolution. For PFSP, the NEH heuristic algo-
ithm [44] is the most effective algorithm, and has been widely
sed. The basic idea of NEH is that jobs with more total processing
ime (i.e., the sum of the processing time on all the machines)
hould be earlier processed. Firstly, a temporary job sequence
s generated by sorting the total processing time of all the jobs
n the descending order. Then, by continuously performing the
nsertion operation, a scheduling sequence that minimizes the
alue of a certain objective function is output. Based on the NEH
lgorithm, we propose 4 initial solution generation algorithms
uitable for the characteristics of the problem in this paper.
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Fig. 6. Flowchart of the proposed algorithm.

The first heuristic algorithm is named MaxSMinTFT, whose
seudo-code is shown in Fig. 7. The general idea is to minimize
he total flow time. First of all, all the jobs are processed at max-
mum speed to obtain the minimum processing time. Then, a job
ermutation is generated by sorting jobs according to the total
ctual processing time Ti =

∑
j pi,j in a descendant order. The jobs

n the permutation are taken out one by one and inserted into
he position of the factory that can lead to the minimum increase
f total flow time. Then SpeedDown(f ) operator is executed for
7

each factory f to reduce the energy consumption while keeping
the total flow time unchanged.

The second heuristic algorithm is named MinSMinTEC, which
has the same frameworks as MaxSMinTFT except for the follow-
ing different points. First, all the speeds are set to the minimum
value. Then, when inserting jobs in factories, the goal is to min-
imize energy consumption. Finally, the operator RightShift(f ) for
each factory f is used to further reduce energy consumption. The
pseudo-code for MinSMinTEC is shown in Fig. 8.

The third initialization method is named RandSMinTFT, where
all the speeds of jobs are randomly generated. The other steps
are the same as MaxSMinTFT. The fourth initialization method
is named RandSMinTEC, in which all the speeds of jobs are ran-
domly generated. The other steps are the same as MinSMinTEC.

The above heuristics generate 4 solutions. The remaining PS-4
olutions are randomly generated. The processing speed of each
ob on each machine is randomly generated. In addition, the
obs are randomly assigned to the factory for processing, and it
s guaranteed that a factory has at least one job. In this way,
e obtain an initial population with a high level of quality and
iversity.
In addition, a Pareto Archives (PA) is used to record the non-

ominant solutions for exploration and updated with the follow-
ng rules. If a new solution is dominated by any solution in PA,
t is not updated; otherwise, all the solutions dominated by the
ew solution in the PA are removed, and the new solution enters
he PA. The pseudo-code of the update process is shown in Fig. 9.
he newly generated PS solutions will be updated to PA.

.4. Generate the next generation-makenewpop

Because the representation of the solution to our problem is
ifferent from the NSGAII source paper, we cannot directly use
he method from NSGAII to generate the next generation. We
eed to design new generation methods for the next generation.
e generate the next generation inspired by the discrete artificial
ee colony algorithm [21]. We first design methods of generating
new individual, and then discuss how to generate the next
eneration.

.4.1. Methods of generating a new individual
We design three individual generation methods, namely

nsertion-based New-individual Generation Method (INGM),
wap-based New-individual Generation Method (SNGM) and
Fig. 7. The MaxSMinTFT Heuristic algorithm.
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Fig. 9. The UpdatetoArchive procedure.

ybrid-based New-individual Generation Method (HNGM), for
enerating new solutions in the neighborhood of an old solution.
(a) Insertion-based New-individual Generation Method

INGM)
The EEDPFSP in this article is a bi-objectives optimization

roblem. When a new individual is generated, an objective is
andomly selected for optimization.

If the objective of the optimization is the total flow time, then
elect the factory with the largest total flow time (marked as fTFT )
for operation. Repeat the following process until a new solution
dominates the current solution or half of the jobs in fTFT have been
tried. Randomly select a job in factory fTFT , and then insert this job
nto all the positions in all the factories. Then the speeds of jobs
n the two factories (fTFT and the factory which the job inserted
nto) are randomly reduced, and then the speed of the jobs on the
ritical path of the two factories is increased. At this time, a new
olution is obtained. If the new solution and the old solution do
ot dominate each other, update the newly obtained solution to
A.
If the total energy consumption is selected as the objective of

ptimization, then select the factory with the largest total energy
onsumption (marked as fTEC ) for operation. Repeat the following
rocess until a new solution dominates the current solution or
alf of the jobs in fTEC have been tried. Randomly select a job in
actory fTEC , and then insert this job into all the positions in all
he factories. Then, three operators RandSpeedDown, SpeedDown
nd RightShift are used in the two factories (fTEC and the factory
hich the job inserted into) to adjust the speeds of jobs to reduce
nergy consumption. And now, a new solution is obtained. If the
 i

8

new solution and the old solution do not dominate each other,
update the newly obtained solution to PA.

The pseudo-code of INGM is shown in Fig. 10. In the pseudo-
code, superscript 1 indicates the relevant parameters of sol 1. f 1TFT
enotes the factory with the largest total flow time in the solution
ol 1. f 1TEC is the factory with the largest total energy consumption
n the solution sol 1. p1f0 is the sequence of jobs in f0.

(b) Swap-based New-individual Generation Method (SNGM)
SNGM and INGM are very similar. The difference is that the

wap operation replaces the insert operation. The pseudo-code
f SNGM is shown in Fig. 11.
(c) The Hybrid-based New-individual Generation method

HNGM)
The HNGM chooses the INGM with 50% probability, and the

NGM with another 50% probability.

.4.2. The generation method of the next generation
Specifically, the method of employed bees and onlooker bees

n the discrete artificial bee colony algorithm proposed by Pan
21] to generate the next generation Q. An employed bee ran-
omly generates a neighboring solution for each solution in the
opulation using the three methods described above: INGM,
NGM, and HNGM. There are two strategies for the onlooker bees.
irstly, the onlooker bees select solutions from the population P
o further explore. Secondly, we choose a solution for an onlooker
rom the solutions generated by the employed bees using the
inary tournament selection. After the selection, the onlookers
tilize the INGM, SNGM, and HNGM to produce neighboring
olutions.
The pseudo of the generation method of the next generation

hich is named makenewpop is shown in Fig. 12. In this pseu-
ocode, the current population is P, and sol(i) is the ith individual
f P. The final population of individuals generated is defined as Q.
It should be noted that the number of individuals in Q is 2*PS.

n our new algorithm, R = Q instead of R = P + Q. Therefore, the
umber of individuals in R is 2*PS.

.5. Local intensification

As we all know, local intensification helps evolutionary al-
orithms to improve the performance of solving complex prob-
ems [4]. The local intensification is also used in our INSGAII
lgorithm. In our Local Intensification shown in Fig. 13, a job

1
s extracted from the current solution sol and reinserted to all
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he possible positions in any of the factories. Simultaneously,
he speed is adjusted to get a better total flow time or total
nergy consumption. If the best solution among the neighbor-
ng solutions generated is better than the current solution, the
urrent solution is replaced with the best neighboring solution.
he process is repeated until all the jobs are considered and
o improvement is found. In our INSGAII, we do not perform
he local intensification to every solution found since it is very
ime-consuming. After sorting according to non-domination on
he population R, the best non-dominated set F1 is obtained. In
ach iteration, we perform the local intensification to the solution
andomly selected from F1.

. Numerical results and comparisons

.1. Experimental setting

In the experiments and comparisons, 600 instances are used
o test the performance of our algorithm. Following [4,5], we set

= {2, 3, 4, 5}, n = {20, 40, 60, 80, 100}, and m = {4, 8, 16}.
or each combination of {F , n,m}, there are ten instances. So, the
umber of instances is 4 × 5 × 3 × 10 = 600. The standard

processing time ti,j is generated uniformly within range [5,50]
and the processing speed v can be set as {1, 1.3, 1.55, 1.75, 2.10}.
9

The Energy Consumption is set as PPj,v = 4 × v2kW and SPj =

1 kW.
The INSGAII is coded in C++ and all the instances are run on a

PC with an Intel (R) Core (TM) i7-4790 CPU@3.60 GHz with 8.00
GB RAM in the Microsoft Windows 10 Operation System. In the
following experiments, the termination criterion is set as 0.5×n
s CPU time [4,5].

The EEDPFSP discussed in this article is a multi-objective op-
timization problem. The following four metrics [1] are used to
evaluate the Pareto set obtained. To eradicate the dimension
influence of metric values, a normalization method is employed
in the following S-metric and D-metric.

(a) N-metric (Number of non-dominated solutions): It counts
the number of the non-dominated solutions in the obtained
Pareto archive E , denoted as |E| .

(b) C-metric (Set coverage): It measures the dominance rela-
ionship between solutions in two Pareto archives E1 and E2. C(E1,
2) is calculated as follows, which reflects the percentage of the
olutions in E2 that are dominated by or the same as the solutions
n E1:

(E1, E1) = |{b ∈ E2|∃a ∈ E1, a ≻ b or a = b}|/|E2| (18)

(c) S-metric (Spread): This metric is a distribution indicator,
hich can measure the diversity and distribution quality of the
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Fig. 11. The SNGM procedure.
Fig. 12. The makenewpop procedure.
solution set. It can be defined as:

S(A, PF∗) =

∑m
j=1 d

e
j +

∑
|A|

i=1 |di − d|∑m
j=1 d

e
j + |A| · d

(19)

In the (19), A is the Pareto Front obtain by an algorithm, PF* is
he true PF. di is the Euclidean distance between the ith solution
and its closest solution in A, d is the mean of all the di, |A| is the
number of members in A, and m is the number of objectives, dej
indicates the Euclidean distance between the extreme solution in
terms of the jth objective in A and the corresponding extreme
10
solution in PF*. For this metric, a lower value is expected. A
smaller value indicates a more uniform distribution along the PF.
Since the true PF is unknown, in the actual calculations, PF* is
the non-dominated subset of all non-dominated solutions found
by all algorithms.

(d). D-metric (Inverse Generational Distance): This indicator
is a comprehensive metric that can measure the diversity and
convergence of the solution set, which can be obtained by:

D(A, PF∗) =

∑d
v∈PF∗ (v, A)

(20)

|PF∗|
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Fig. 13. The local intensification procedure.
Fig. 14. Boxplot of C metric with or without four heuristics initialization.

In the (20), d(v, A) is the minimum Euclidean distance between
v and the points in A, and |PF*| is the number of points in PF*.

5.2. Parameter setting

The INSGAII contains three key parameters: (1) population
size (PS); (2) Methods of generating a new individual (Ξ ); and
11
Fig. 15. Boxplot of C metric with or without local intensification.

(3) the operator type for onlooker bees (ω). For these three
parameters, we first determine the general scope of them based
on existing literature. Then, we conduct a preliminary experiment
to determine the levels for each parameter. The levels for these
three parameters are: PS at three levels: 10, 20 and 30; Ξ at
three levels: INGM, SNGM and HNGM; ω at two levels: 0 and 1.
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Fig. 16. Boxplot of C metric for different pair (I denotes INSGAII, K denotes KCA,
C denotes CMA, M denotes MOEA/D, N denotes NSGAII).

Table 3
Parameter array and RV values.
PS Ξ ω RV (%)

30 INGM 0 16.80
30 SNGM 0 16.65
30 HNGM 0 16.28
20 INGM 0 16.20
30 INGM 1 16.18
20 INGM 1 16.06
20 HNGM 0 16.04
20 SNGM 0 16.02
10 INGM 0 16.00
30 HNGM 1 15.97
30 SNGM 1 15.95
10 HNGM 0 15.91
10 SNGM 0 15.89
20 HNGM 1 15.89
10 HNGM 1 15.89
10 INGM 1 15.86
20 SNGM 1 15.81
10 SNGM 1 15.73

The above factors result in a total of 3 × 3 ×2 = 18 different
onfigurations for the INSGAII algorithm.
A total of 60 instances with different scales (F, n, m) are used

or investigation. For every instance, the INSGAII with each (PS,
, ω) is run ten times independently to obtain Pareto archives

i (i = 1, 2, . . . , 18). The rigid non-dominated solutions among
1–E18 consist of the final set FE . Then, the contribution of Ei is
alculated as CON(i) = |E ′

i |/|FE|, where E ′

i = Ei ∩FE . After testing
ll the instances, it calculates the average CON of each parameter
ombination as the response variable value (RV). The parameter
rray and the RV values are listed in Table 3.
From Table 3, it can be seen that when PS = 30, Ξ =

NGM and ω = 0, the algorithm gets the best result. Therefore,
arameters are set as PS = 30, Ξ = INGM and ω = 0 for the
ollowing tests and comparisons.

.3. Effect of initialization

To demonstrate the effectiveness of the initialization with four
euristics, we compare the INSGAII to the INSGAII with random
nitialization (denoted as A1). For each scale (F, n, m), the average
metric of ten instances (each instance is run ten times) is

ummarized in Table 4 and the boxplots of all C metrics are

hown in Fig. 14. We use the nonparametric Kruskal–Wallis test t

12
Fig. 17. Pareto fronts by algorithms with different stopping criteria.

with 95% confidence to analyze whether the difference between
the INSGAII and A1 is significant or not. The p values are listed in
able 4.
From Table 4, it can be seen that C(INSGAII, A1) is much larger

han C(A1, INSGAII) on all the instances, which implies that the
ost non-dominated solutions obtained by A1 are dominated by

hose obtained by the INSGAII. In addition, almost all p values are
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able 4
omparisons between INSGAII and A1 (I denotes INSGAII).
(n,m) C(I,A1) C(A1, I) p C(I,A1) C(A1, I) p C(I,A1) C(A1, I) p C(I,A1) C(A1, I) p

F = 2 F = 3 F = 4 F = 5

(20,4) 0.536 0.412 0 0.507 0.430 0.01 0.529 0.424 0 0.482 0.456 0.337
(20,8) 0.557 0.384 0 0.536 0.405 0 0.526 0.412 0 0.538 0.399 0
(20,16) 0.608 0.349 0 0.570 0.380 0 0.563 0.383 0 0.496 0.436 0.034
(40,4) 0.719 0.243 0 0.682 0.276 0 0.684 0.273 0 0.711 0.248 0
(40,8) 0.887 0.093 0 0.823 0.150 0 0.843 0.122 0 0.782 0.179 0
(40,16) 0.940 0.042 0 0.928 0.052 0 0.921 0.059 0 0.895 0.083 0
(60,4) 0.802 0.175 0 0.855 0.113 0 0.841 0.127 0 0.880 0.088 0
(60,8) 0.915 0.054 0 0.939 0.043 0 0.941 0.037 0 0.931 0.052 0
(60,16) 0.965 0.021 0 0.962 0.021 0 0.949 0.030 0 0.961 0.020 0
(80,4) 0.919 0.062 0 0.907 0.071 0 0.861 0.103 0 0.931 0.046 0
(80,8) 0.957 0.025 0 0.965 0.020 0 0.954 0.023 0 0.953 0.028 0
(80,16) 0.988 0.005 0 0.975 0.010 0 0.980 0.006 0 0.980 0.006 0
(100,4) 0.923 0.057 0 0.901 0.071 0 0.926 0.047 0 0.912 0.057 0
(100,8) 0.985 0.005 0 0.975 0.010 0 0.961 0.013 0 0.963 0.012 0
(100,16) 0.997 0.002 0 0.989 0.005 0 0.982 0.004 0 0.980 0.005 0
Table 5
Comparisons between INSGAII and A2 (I denotes INSGAII).
(n,m) C(I,A2) C(A2, I) p C(I,A2) C(A2, I) p C(I,A2) C(A2, I) p C(I,A2) C(A2, I) p

F = 2 F = 3 F = 4 F = 5

(20,4) 0.553 0.398 0 0.524 0.425 0 0.520 0.442 0 0.524 0.434 0.002
(20,8) 0.556 0.399 0 0.531 0.428 0 0.561 0.402 0 0.600 0.358 0
(20,16) 0.516 0.446 0 0.505 0.463 0.043 0.522 0.440 0.001 0.506 0.459 0.069
(40,4) 0.559 0.401 0 0.511 0.461 0.108 0.534 0.424 0.001 0.566 0.397 0
(40,8) 0.532 0.431 0.001 0.494 0.475 0.801 0.546 0.424 0 0.508 0.462 0.113
(40,16) 0.514 0.463 0.035 0.512 0.469 0.133 0.528 0.451 0.007 0.499 0.472 0.234
(60,4) 0.537 0.427 0.002 0.556 0.409 0 0.486 0.477 0.914 0.507 0.450 0.119
(60,8) 0.507 0.472 0.238 0.503 0.472 0.181 0.518 0.456 0.036 0.507 0.469 0.225
(60,16) 0.491 0.472 0.355 0.496 0.493 0.949 0.489 0.503 0.424 0.537 0.448 0.001
(80,4) 0.622 0.339 0 0.572 0.394 0 0.553 0.407 0 0.561 0.396 0
(80,8) 0.522 0.451 0.005 0.524 0.446 0.005 0.504 0.469 0.149 0.529 0.439 0.002
(80,16) 0.507 0.443 0.016 0.516 0.461 0.016 0.541 0.450 0.001 0.515 0.469 0.103
(100,4) 0.626 0.328 0 0.554 0.404 0 0.551 0.403 0 0.540 0.424 0
(100,8) 0.575 0.375 0 0.536 0.425 0 0.558 0.410 0 0.535 0.427 0
(100,16) 0.589 0.355 0 0.536 0.438 0 0.526 0.447 0 0.531 0.451 0.001
Table 6
C-metric of the algorithms (F = 2, I denotes INSGAII, K denotes KCA, C denotes CMA, M denotes MOEA/D, N denotes NSGAII).
(n,m) C(I,K) C(K,I) p C(I,C) C(C,I) p C(I,M) C(M,I) p C(I,N) C(N,I) p

(20,4) 0.980 0.004 0 0.781 0.045 0 1.000 0.000 0 0.974 0.005 0
(20,8) 0.981 0.005 0 0.864 0.031 0 1.000 0.000 0 0.986 0.002 0
(20,16) 0.977 0.006 0 0.988 0.003 0 1.000 0.000 0 0.913 0.011 0
(40,4) 0.950 0.013 0 0.952 0.003 0 1.000 0.000 0 1.000 0.000 0
(40,8) 0.910 0.033 0 0.999 0.000 0 1.000 0.000 0 1.000 0.000 0
(40,16) 0.891 0.047 0 0.997 0.000 0 1.000 0.000 0 1.000 0.000 0
(60,4) 0.910 0.035 0 1.000 0.000 0 1.000 0.000 0 0.999 0.000 0
(60,8) 0.854 0.053 0 1.000 0.000 0 1.000 0.000 0 1.000 0.000 0
(60,16) 0.844 0.075 0 0.985 0.001 0 1.000 0.000 0 1.000 0.000 0
(80,4) 0.896 0.040 0 1.000 0.000 0 1.000 0.000 0 1.000 0.000 0
(80,8) 0.859 0.054 0 0.998 0.000 0 1.000 0.000 0 1.000 0.000 0
(80,16) 0.827 0.077 0 0.998 0.000 0 1.000 0.000 0 1.000 0.000 0
(100,4) 0.881 0.046 0 0.998 0.000 0 1.000 0.000 0 1.000 0.000 0
(100,8) 0.852 0.056 0 1.000 0.000 0 1.000 0.000 0 1.000 0.000 0
(100,16) 0.788 0.083 0 0.987 0.001 0 1.000 0.000 0 1.000 0.000 0
C
e

less than 0.05, which means that the INSGAII is significantly bet-
ter than A1. Therefore, the initialization with the four proposed
heuristics is effective for solving the problem.

5.4. Effect of local intensification

For further verification about C metric, we compare the INS-
AII to the INSGAII without local intensification (denoted as A2).
or each scale (F, n, m), the average C metric of ten instances
each instance is run ten times) is summarized in Table 5. The
onparametric Kruskal–Wallis test with 95% confidence level is
lso tested and all p values are given in Table 5.
13
From Table 5, it can be seen that C(INSGAII, A2) is larger than
(A2, INSGAII) in most instances. For most instances, the differ-
nce is significant since p < 0.05. Fig. 15 shows that the INSGAII

is better than A2 on average. Therefore, local intensification is
effective in solving the problem.

5.5. Comparisons to other algorithms

Next, we compare the INSGAII to the existing algorithms
for solving the EEDPFSP, including the KCA [4], the CMA [5],
MOEA/D [6] and NSGAII [7]. By modifying the optimization ob-
jective function, we re-implement the KCA and CMA to suit our
problem. In addition, we follow all the original details given
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able 7
-metric, S-metric, D-metric values of the algorithms (F = 2, I denotes INSGAII, K denotes KCA, C denotes CMA, M denotes MOEA/D, N denotes NSGAII).
(n,m) N-metric S-metric D-metric

I K C M N I K C M N I K C M N

(20,4) 193.73 46.8 60.01 40.56 50.14 0.246 0.498 0.521 0.561 0.549 0.000 0.012 0.014 0.041 0.016
(20,8) 216.39 52.99 65.88 41.36 44.52 0.248 0.555 0.539 0.605 0.601 0.001 0.019 0.036 0.063 0.042
(20,16) 239.4 53.89 60.81 40.01 42.77 0.236 0.595 0.571 0.605 0.621 0.001 0.029 0.086 0.114 0.092
(40,4) 273.04 57.59 63.38 47.39 46.46 0.305 0.465 0.518 0.656 0.588 0.001 0.035 0.038 0.102 0.043
(40,8) 275.52 61.52 62.64 47.41 40.15 0.267 0.541 0.575 0.654 0.619 0.002 0.056 0.082 0.149 0.099
(40,16) 287.06 66.39 40.1 43.64 37 0.319 0.577 0.625 0.637 0.634 0.003 0.064 0.185 0.255 0.212
(60,4) 326.86 69.29 62.18 47.45 44.4 0.339 0.464 0.533 0.655 0.596 0.002 0.061 0.063 0.169 0.076
(60,8) 321.54 70.21 46.86 43.98 38.39 0.265 0.512 0.599 0.640 0.623 0.004 0.105 0.135 0.226 0.165
(60,16) 314.49 74.36 29.27 33.93 33.81 0.396 0.557 0.642 0.633 0.644 0.007 0.117 0.319 0.398 0.346
(80,4) 390.08 78.9 52.8 45.77 44.85 0.372 0.460 0.558 0.604 0.605 0.003 0.086 0.094 0.210 0.108
(80,8) 377.68 80.34 37.87 41.27 36.83 0.312 0.515 0.622 0.632 0.628 0.005 0.151 0.209 0.318 0.235
(80,16) 342 84.68 25.57 32.23 32.9 0.420 0.562 0.657 0.633 0.646 0.012 0.163 0.454 0.543 0.476
(100,4) 418.17 91.02 47.32 43.56 43.27 0.392 0.474 0.596 0.586 0.617 0.004 0.118 0.139 0.271 0.154
(100,8) 393.38 89.13 31.11 33.83 37.04 0.344 0.499 0.638 0.611 0.631 0.008 0.203 0.287 0.406 0.305
(100,16) 326.14 95.72 21.12 32.5 31.02 0.424 0.564 0.662 0.635 0.649 0.020 0.233 0.602 0.692 0.610
Table 8
C-metric of the algorithms (F = 3, I denotes INSGAII, K denotes KCA, C denotes CMA, M denotes MOEA/D, N denotes NSGAII).
(n,m) C(I,K) C(K,I) p C(I,C) C(C,I) p C(I,M) C(M,I) p C(I,N) C(N,I) p

(20,4) 0.991 0.002 0 0.761 0.045 0 1.000 0.000 0 0.906 0.020 0
(20,8) 0.994 0.001 0 0.838 0.032 0 1.000 0.000 0 0.802 0.033 0
(20,16) 0.986 0.002 0 0.976 0.006 0 1.000 0.000 0 0.634 0.056 0
(40,4) 0.957 0.011 0 0.875 0.008 0 1.000 0.000 0 0.999 0.000 0
(40,8) 0.942 0.018 0 1.000 0.000 0 1.000 0.000 0 1.000 0.000 0
(40,16) 0.948 0.014 0 0.999 0.000 0 1.000 0.000 0 1.000 0.000 0
(60,4) 0.916 0.023 0 0.999 0.000 0 1.000 0.000 0 1.000 0.000 0
(60,8) 0.886 0.039 0 1.000 0.000 0 1.000 0.000 0 1.000 0.000 0
(60,16) 0.847 0.054 0 0.999 0.000 0 1.000 0.000 0 1.000 0.000 0
(80,4) 0.910 0.036 0 1.000 0.000 0 1.000 0.000 0 1.000 0.000 0
(80,8) 0.871 0.057 0 1.000 0.000 0 1.000 0.000 0 1.000 0.000 0
(80,16) 0.833 0.069 0 1.000 0.000 0 1.000 0.000 0 1.000 0.000 0
(100,4) 0.889 0.048 0 1.000 0.000 0 1.000 0.000 0 1.000 0.000 0
(100,8) 0.860 0.061 0 1.000 0.000 0 1.000 0.000 0 1.000 0.000 0
(100,16) 0.796 0.083 0 1.000 0.000 0 1.000 0.000 0 1.000 0.000 0
Table 9
N-metric, S-metric, D-metric values of the algorithms (F = 3, I denotes INSGAII, K denotes KCA, C denotes CMA, M denotes MOEA/D, N denotes NSGAII).
(n,m) N-metric S-metric D-metric

I K C M N I K C M N I K C M N

(20,4) 212.26 53.71 60.57 51.16 58.37 0.207 0.522 0.528 0.598 0.564 0.000 0.012 0.015 0.039 0.015
(20,8) 231.83 59.39 68.99 54.78 54.3 0.236 0.585 0.542 0.622 0.600 0.000 0.016 0.036 0.058 0.037
(20,16) 269.22 63.12 68.9 57.13 54.5 0.254 0.585 0.580 0.608 0.621 0.001 0.028 0.087 0.105 0.086
(40,4) 283.26 63.58 66.59 67.41 53.98 0.353 0.478 0.544 0.676 0.588 0.001 0.031 0.035 0.083 0.039
(40,8) 301.28 66.85 65.84 64.63 47.95 0.345 0.576 0.574 0.663 0.623 0.002 0.043 0.077 0.139 0.094
(40,16) 325.17 69.41 48.76 63.03 47 0.300 0.579 0.621 0.631 0.636 0.003 0.051 0.177 0.233 0.194
(60,4) 366.7 74.27 64.03 71.87 52.43 0.280 0.471 0.530 0.683 0.607 0.001 0.054 0.059 0.140 0.069
(60,8) 352.15 76.3 54.67 69.1 44.59 0.357 0.538 0.596 0.672 0.626 0.003 0.091 0.124 0.215 0.155
(60,16) 366.88 80.38 35.01 64.75 43.07 0.386 0.592 0.644 0.647 0.643 0.006 0.102 0.305 0.381 0.330
(80,4) 433.58 85.26 61.43 75.27 51.16 0.368 0.473 0.556 0.684 0.612 0.002 0.079 0.086 0.212 0.102
(80,8) 418.11 87.92 44.48 73.31 42.88 0.337 0.522 0.612 0.671 0.630 0.004 0.137 0.196 0.307 0.225
(80,16) 403.94 90.49 30.26 55.28 40.18 0.361 0.584 0.656 0.642 0.650 0.011 0.148 0.443 0.527 0.470
(100,4) 476.37 98 51.9 75.91 51.48 0.332 0.468 0.574 0.677 0.616 0.003 0.107 0.123 0.272 0.141
(100,8) 463.55 98.54 35.6 72.18 42.7 0.261 0.518 0.633 0.674 0.638 0.006 0.190 0.268 0.391 0.291
(100,16) 421.59 99.99 24.08 50.79 36.71 0.387 0.588 0.661 0.643 0.654 0.016 0.203 0.576 0.673 0.603
t
3
s

S
T
f
C
K
K
i

in each paper to achieve the performance it deserves. For the
MOEA/D and the NSGAII, the next generation individual gener-
ation method of the original paper is no longer applicable, and a
new next generation individual generation method is designed.
The MOEA/D algorithm randomly selects a job and inserts it at a
random location, and the speed is adjusted randomly. The NSGAII
selects a job in the factory fTEC or the factory fTFT , inserts the job
n all positions, and adjusts the speed randomly, and replaces
he current solution if the new solution dominates the current
olution. Furthermore, we also use the method in Section 5 to
djust the parameter values of the compared algorithm. Finally,
he parameters of all the comparison algorithms are set as fol-
ows: in the KCA, PS = 30, LS = 100, and PE = 60; in the CMA
 C

14
he PS is 30 and times of local search is 100; in the MOEA/D, PS =

0, T = 10; in the NSGAII, PS = 30. All the algorithms use 0.5×n
CPU time as the stopping criterion.
For an overall comparison, the average C metric, N-metric,

-metric and D-metric in solving all the instances are listed in
ables 6–13 grouped by a different number of F. The best value
or each (n, m) pair is marked in bold. The boxplots of all the
metric are shown in Fig. 16. In addition, the non-parametric
ruskal–Wallis test is performed between the INSGAII and the
CA (CMA, MOEA/D and NSGAII) to show whether the difference
s significant or not. The resulted p values are listed in the tables.

First of all, it can be seen that C(INSGAII, KCA) =/≈1 and

(KCA, INSGAII) =/≈ 0 almost on all (n, m) pairs, which means
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T
C

able 10
-metric of the algorithms (F = 4, I denotes INSGAII, K denotes KCA, C denotes CMA, M denotes MOEA/D, N denotes NSGAII).
(n,m) C(I,K) C(K,I) p C(I,C) C(C,I) p C(I,M) C(M,I) p C(I,N) C(N,I) p

(20,4) 0.986 0.002 0 0.763 0.042 0 1.000 0.000 0 0.775 0.053 0
(20,8) 0.990 0.002 0 0.837 0.029 0 1.000 0.000 0 0.567 0.086 0
(20,16) 0.989 0.002 0 0.981 0.004 0 1.000 0.000 0 0.407 0.098 0
(40,4) 0.943 0.010 0 0.807 0.010 0 1.000 0.000 0 0.997 0.000 0
(40,8) 0.931 0.013 0 0.983 0.001 0 1.000 0.000 0 0.996 0.000 0
(40,16) 0.931 0.017 0 0.999 0.000 0 1.000 0.000 0 0.987 0.002 0
(60,4) 0.917 0.023 0 0.976 0.000 0 1.000 0.000 0 1.000 0.000 0
(60,8) 0.902 0.030 0 1.000 0.000 0 1.000 0.000 0 1.000 0.000 0
(60,16) 0.871 0.035 0 1.000 0.000 0 1.000 0.000 0 1.000 0.000 0
(80,4) 0.897 0.039 0 1.000 0.000 0 1.000 0.000 0 1.000 0.000 0
(80,8) 0.866 0.059 0 1.000 0.000 0 1.000 0.000 0 1.000 0.000 0
(80,16) 0.818 0.060 0 1.000 0.000 0 1.000 0.000 0 1.000 0.000 0
(100,4) 0.893 0.042 0 1.000 0.000 0 1.000 0.000 0 1.000 0.000 0
(100,8) 0.842 0.063 0 1.000 0.000 0 1.000 0.000 0 1.000 0.000 0
(100,16) 0.779 0.079 0 1.000 0.000 0 1.000 0.000 0 1.000 0.000 0
Table 11
N-metric, S-metric, D-metric values of the algorithms (F = 4, I denotes INSGAII, K denotes KCA, C denotes CMA, M denotes MOEA/D, N denotes NSGAII).
(n,m) N-metric S-metric D-metric

I K C M N I K C M N I K C M N

(20,4) 225.37 61.75 65.11 60.99 62.86 0.292 0.553 0.538 0.604 0.559 0.000 0.012 0.015 0.036 0.013
(20,8) 255.12 65.33 73.16 64.77 61.05 0.251 0.605 0.550 0.613 0.599 0.001 0.018 0.038 0.058 0.037
(20,16) 292.05 67.62 70.82 68.97 61.3 0.249 0.611 0.581 0.599 0.620 0.001 0.029 0.092 0.097 0.080
(40,4) 309.63 67.56 68.6 75.59 60.21 0.310 0.494 0.553 0.677 0.596 0.001 0.032 0.037 0.081 0.040
(40,8) 324.14 69.68 70.24 85.82 54.47 0.311 0.583 0.572 0.667 0.620 0.002 0.044 0.075 0.136 0.090
(40,16) 356.61 71.78 52.6 81.89 55.07 0.349 0.601 0.620 0.628 0.638 0.003 0.059 0.182 0.230 0.193
(60,4) 382.46 79.77 74.2 90.9 58.5 0.295 0.479 0.546 0.690 0.605 0.001 0.049 0.056 0.132 0.067
(60,8) 382.71 83.27 60.18 92.35 51.12 0.335 0.547 0.595 0.676 0.631 0.003 0.087 0.127 0.210 0.152
(60,16) 403.68 81.34 39.1 87.03 49.5 0.370 0.600 0.645 0.643 0.644 0.006 0.099 0.301 0.368 0.316
(80,4) 453.09 90.22 62.99 95.61 58.47 0.337 0.480 0.558 0.687 0.606 0.002 0.073 0.081 0.182 0.097
(80,8) 448.38 92.61 47.18 94.12 50.48 0.305 0.546 0.617 0.677 0.635 0.005 0.128 0.186 0.294 0.220
(80,16) 448.34 90.37 32.48 86.54 47.22 0.365 0.592 0.652 0.647 0.650 0.010 0.139 0.422 0.508 0.443
(100,4) 520.41 103.35 58.77 97.57 57.66 0.315 0.465 0.569 0.696 0.615 0.003 0.101 0.118 0.258 0.134
(100,8) 497.16 105.56 41.53 95.15 47.94 0.367 0.542 0.625 0.673 0.636 0.006 0.170 0.251 0.370 0.279
(100,16) 464.18 105 26.54 74.26 44.65 0.438 0.602 0.661 0.647 0.655 0.014 0.189 0.565 0.636 0.574
Table 12
C-metric of the algorithms (F = 5, I denotes INSGAII, K denotes KCA, C denotes CMA, M denotes MOEA/D, N denotes NSGAII).
(n,m) C(I,K) C(K,I) p C(I,C) C(C,I) p C(I,M) C(M,I) p C(I,N) C(N,I) p

(20,4) 0.985 0.002 0 0.778 0.038 0 1.000 0.000 0 0.663 0.087 0
(20,8) 0.988 0.002 0 0.830 0.027 0 1.000 0.000 0 0.410 0.125 0
(20,16) 0.986 0.001 0 0.937 0.012 0 1.000 0.000 0 0.300 0.125 0
(40,4) 0.945 0.009 0 0.777 0.010 0 1.000 0.000 0 0.990 0.001 0
(40,8) 0.911 0.017 0 0.936 0.004 0 1.000 0.000 0 0.965 0.004 0
(40,16) 0.928 0.011 0 0.999 0.000 0 1.000 0.000 0 0.930 0.007 0
(60,4) 0.906 0.020 0 0.876 0.002 0 1.000 0.000 0 1.000 0.000 0
(60,8) 0.888 0.041 0 1.000 0.000 0 1.000 0.000 0 1.000 0.000 0
(60,16) 0.866 0.029 0 1.000 0.000 0 1.000 0.000 0 1.000 0.000 0
(80,4) 0.903 0.030 0 1.000 0.000 0 1.000 0.000 0 1.000 0.000 0
(80,8) 0.869 0.050 0 1.000 0.000 0 1.000 0.000 0 1.000 0.000 0
(80,16) 0.828 0.044 0 1.000 0.000 0 1.000 0.000 0 1.000 0.000 0
(100,4) 0.893 0.042 0 1.000 0.000 0 1.000 0.000 0 1.000 0.000 0
(100,8) 0.840 0.066 0 1.000 0.000 0 1.000 0.000 0 1.000 0.000 0
(100,16) 0.779 0.076 0 1.000 0.000 0 1.000 0.000 0 1.000 0.000 0
a
f
w
o
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e
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that almost all the non-dominated solutions obtained by the KCA
are dominated by those obtained by the INSGAII. The results of
the comparison between the INSGAII and CMA (MOEAD, NSGAII)
are similar. Comparing the INSGAII with the CMA (MOEA/D, NS-
GAII), it can be seen that C(INSGAII, CMA) is larger than C(CMA,
INSGAII) on all (n, m) pairs, which means that the non-dominated
solutions obtained by INSGAII are better. Since most p values are
equal to 0, it means that the INSGAII is significantly better than
the KCA, CMA, MOEA/D and NSGAII. Fig. 16 also demonstrates the
above conclusion about C metric comparisons. Secondly, it can be
seen from the results that the N-metric of the INSGAII is larger
than those of the KCA, CMA, MOEA/D and NSGAII on each pair
of (n, m), which means that the INSGAII can obtain more non-
dominated solutions than the KCA, CMA, MOEA/D and NSGAII.
15
Furthermore, it can be seen that the S-metric and D-metric of the
INSGAII are the smallest on each pair of (n, m), which means that
the diversity and convergence qualities of the solutions obtained
by the INSGAII are the best.

Furthermore, we use different CPU time (i.e., 0.25×n, 0.5×n,
nd 0.75×n s) to run the algorithms. Fig. 17 shows the Pareto
ronts obtained by five algorithms when solving one instance
ith F = 2, n = 20, and m = 8. Obviously, the Pareto fronts
btained by the INSGAII are always much better in all three cases.
herefore, it can be concluded that INSGAII is more effective than
xisting algorithms in solving the distributed flowshop schedul-
ng with the criteria to minimize the total flowtime and the total
nergy consumption.
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able 13
-metric, S-metric, D-metric values of the algorithms (F = 5, I denotes INSGAII, K denotes KCA, C denotes CMA, M denotes MOEA/D, N denotes NSGAII).
(n,m) N-metric S-metric D-metric

I K C M N I K C M N I K C M N

(20,4) 232.76 63.52 64.44 61.71 65.42 0.253 0.544 0.549 0.603 0.556 0.000 0.010 0.014 0.036 0.012
(20,8) 277.25 70.25 77.87 70.34 66.32 0.218 0.608 0.550 0.617 0.594 0.000 0.018 0.036 0.057 0.035
(20,16) 320.66 72.67 76.01 74.03 67.15 0.228 0.597 0.577 0.587 0.618 0.001 0.029 0.087 0.094 0.078
(40,4) 328.9 71.63 67.84 83.26 64.62 0.285 0.503 0.558 0.689 0.589 0.001 0.029 0.036 0.075 0.037
(40,8) 361.75 75.3 75.68 94.69 61.3 0.262 0.600 0.571 0.660 0.618 0.001 0.044 0.079 0.134 0.088
(40,16) 394.2 74.49 59.28 97.16 62.41 0.283 0.614 0.617 0.618 0.632 0.003 0.060 0.185 0.225 0.188
(60,4) 403.7 81.34 73.13 97.04 60.81 0.348 0.493 0.561 0.697 0.605 0.002 0.048 0.057 0.123 0.066
(60,8) 408.46 86.98 64.42 104.01 57.25 0.335 0.563 0.596 0.674 0.628 0.003 0.080 0.119 0.207 0.146
(60,16) 449.76 84.47 43.05 101.41 58.49 0.353 0.614 0.644 0.637 0.643 0.005 0.096 0.294 0.352 0.298
(80,4) 483.42 94.11 71.06 106.18 62.76 0.324 0.478 0.553 0.699 0.609 0.002 0.070 0.080 0.173 0.094
(80,8) 479.51 99.56 54.65 109.08 55.99 0.351 0.548 0.616 0.676 0.634 0.004 0.120 0.173 0.283 0.207
(80,16) 485.66 98.65 35.53 101.49 54.82 0.360 0.599 0.654 0.644 0.650 0.008 0.128 0.409 0.475 0.412
(100,4) 534.9 105.18 62.26 113.35 61.59 0.280 0.476 0.567 0.695 0.615 0.003 0.091 0.106 0.216 0.122
(100,8) 532.14 111.53 43.77 111.25 53.58 0.296 0.540 0.633 0.674 0.638 0.007 0.167 0.243 0.359 0.275
(100,16) 508.84 109.16 29.68 94.48 51.25 0.405 0.608 0.657 0.644 0.652 0.013 0.185 0.552 0.616 0.554
6. Conclusions

In this paper, an improved NSGAII is proposed to solve the
EDPFSP with the minimization of both the total flowtime and
he energy consumption criteria. A large number of numerical
xperiments are used to test the performance of the algorithm.
he experimental results show that the new algorithm has better
erformance than existing algorithms in terms of solution quality
nd diversity. In addition, the proposed algorithm can obtain
igh-quality feasible solutions under different stopping criteria.
Future research work can be to try other optimization objec-

ives, or more objectives. In addition, it is also possible to explore
olutions based on decomposition, which is another very good
ype of algorithm in the field of multi-objective optimization.
inally, the application of algorithms to real industrial problems
s also a very important research direction. Therefore, our future
esearch work also includes adding some restrictions that meet
he actual industrial conditions.
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