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Abstract

To reduce the problem of sedimentation in open channels, calculating flow velocity is critical.

Undesirable operating costs arise due to sedimentation problems. To overcome these prob-

lems, the development of machine learning based models may provide reliable results.

Recently, numerous studies have been conducted to model sediment transport in non-depo-

sition condition however, the main deficiency of the existing studies is utilization of a limited

range of data in model development. To tackle this drawback, six data sets with wide ranges

of pipe size, volumetric sediment concentration, channel bed slope, sediment size and flow

depth are used for the model development in this study. Moreover, two tree-based algo-

rithms, namely M5 rule tree (M5RT) and M5 regression tree (M5RGT) are implemented,

and results are compared to the traditional regression equations available in the literature.

The results show that machine learning approaches outperform traditional regression mod-

els. The tree-based algorithms, M5RT and M5RGT, provided satisfactory results in contrast

to their regression-based alternatives with RMSE = 1.184 and RMSE = 1.071, respectively.

In order to recommend a practical solution, the tree structure algorithms are supplied to

compute sediment transport in an open channel flow.

1. Introduction

For the hydraulic design of urban drainage systems, the sediment transport process must be

considered. Flow, fluid, sediment, and channel characteristics related to the sedimentation

issues should be considered in order to design wastewater and sewage pipes [1, 2]. Channels

are designed to minimize the deposition of sediment depending on different success criteria.

Self-cleansing is a concept used in channel construction to encompass non-deposition require-

ments [3]. Non-deposition involves three criteria: incipient deposition (ID), non-deposition

with a clean bed (NCB) and non-deposition with a deposited bed (NDB). The NCB criterion

can be implemented by adapting the flow shear stress or velocity to satisfy the clean bed condi-

tion [4, 5]. ID is the moment when suspended particles begin to settle. In addition, in NDB

criterion, an appropriate deposited bed depth is used to decrease the channel building costs

[6, 7].
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The non-deposition sediment transport equations were recommended to ensure the clean

bed criterion by adopting the required velocity or sediment concentration, as shown in

Table 1. The study conducted by [8] documented how the size of the granular material has a

substantial effect on the transportation volume of sediment. The non-deposition condition in

suspended sediment transport has already been examined by [9–11]. Comprehensive experi-

ments on bed load sediment transport showed that the design velocity is increased as the pipe

dimension is expanded [12]. The utility of previously recommended sewer design formulas

was evaluated by [13–15]. [16] examined the Camp approach to sewer design and showed that

the flow velocity was greatly overestimated. Experiments were carried out in a large pipe, and

new self-cleansing models were recommended by [17]. [2] utilized [18] experimental data con-

ducted in five different cross-section channels of rectangular, trapezoidal, V-bottom and U-

shape and developed a self-cleansing model considering channel cross-section shape.

Owing to the robustness of machine learning algorithms, their application on sediment

transport modeling has attracted great interest in the literature [3, 19–22]. Various machine

learning algorithms have recently been suggested for modeling open channel sediment trans-

port over conventional regression equations. However, utilizing a limited data range for model

development is the main limitation of previous studies. For example, different algorithms were

applied to model sediment transport in an open channel, such as classification-based [23–25],

tree-based [26], network-based [27–29] and evolutionary algorithms [30–33].

It is known that experimental data range, implemented machine learning algorithm and using

effective parameters for model development based on the physics of the problem, are quite essen-

tial factors to construct a robust machine learning model. As an extension of the existing studies

in the literature, in order to promote the modeling of sediment transport in non-deposition with

clean bed condition of sediment transport all aforesaid factors are considered in this study. The

improved M5 rule tree (M5RT) and M5 regression tree (M5RGT) have been used for solving

numerous engineering problems [35, 36]. M5RT and M5RGT are useful for generating a rules-

based and fingerprint models from a data set. Thus, in this study, tree-based algorithms of

improved M5RT and M5RGT are used to model sediment transport in open channels. While

majority of studies in the literature utilized limited amount of data for modeling, this study utilized

six data sets having wide ranges of channel size and shape, sediment median size and volumetric

concentration, channel bed slope and flow depth. Relying on the hydraulics of sediment transport,

models are developed through considering fluid, flow, channel, and sediment characteristics.

2. Methodology

2.1. Data preparation

Experimental studies reported for NCB condition taken from the literature are used in this

study. The large data set used in this study was compiled from [12, 16–18, 37, 38]. [37]

Table 1. Traditional regression equations in literature for the sediment transport self-cleansing condition.

Model Reference Eq. No

Vffiffiffiffiffiffiffiffiffiffi
gdðs� 1Þ
p ¼

3:08C0:21
v D� 0:09

gr ðR=dÞ0:53
l
� 0:21 [12] (1)

4:31C0:226
v ðd=RÞ� 0:616 [16] (2)

4:79C0:209
v ðd=RÞ� 0:593

l
0:058 [17] (3)

4:344C0:181
v Dgr� 0:088ðd=RÞ� 0:48

l
� 0:092 [34] (4)

4:83C0:09
v D� 0:14

gr ðd=RÞ� 0:32
ðP=BÞ0:2 [2] (5)

Dgr: dimensionless grain size (–); P: wetted perimeter (m); B: water surface width (m); d: sediment median size (m); λ: channel friction factor (-); R: hydraulic radius (m);

V: flow mean velocity (m s-1); Cv: sediment volumetric concentration (-); s: relative specific mass of sediment to fluid (–) and g: gravitational acceleration (m s−2).

https://doi.org/10.1371/journal.pone.0258125.t001
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performed experiments in two cross-sectional shapes, circular and rectangular. The tests were

conducted with six different sizes of granular materials in a range between 0.5 to 8.74 mm. In

the experiments [38] conducted tests in a circular pipe using granular material with a size of

0.73 mm. [12] conducted experiments with circular cross-sectional shapes, with granular

material sizes ranging from 0.46–8.3 mm utilized in the experiments. [16] performed experi-

ments in circular cross-sectional shape with two channels and three different granular materi-

als with sizes between 0.2–0.43 mm. For more detail on this experimental data, the interested

reader may refer to [29, 39].

As a novel contribution, the data of [17 and 18] are included in this study. The data used in

these two studies enhances the modeling reliability. Thus, the use of data from [18] makes this

study more reliable in obtaining experimental data with a variety of cross-sectional shapes,

with experiments performed in trapezoidal, circular, U-shape, rectangular and V-shape bot-

tom channels. Also [17], who used a large-diameter (595 mm) circular cross-sectional channel,

makes this study more reliable than the models in the literature. The ranges of data sources are

given in Table 2.

It is demonstrated by [1, 2] that four characteristics of fluid, flow, channel, and sediment

must be embedded to a sediment transport model. As already reported in the literature, self-

cleansing models can be influenced by the following parameters;

f ðV; g; r; u;R; d; l;Cv; rsÞ ¼ 0 ð6Þ

where V is flow velocity, g is gravity acceleration, ρ is fluid specific mass, υ is fluid kinematic

viscosity, R is hydraulic radius, d is median size of sediment, λ is channel friction factor, Cv is

sediment volumetric concentration, and ρs is sediment specific mass. These parameters can be

considered effective sediment transport variables for the modeling. The following equation is

written taking the above variables into consideration as a group of dimensionless parameters:

Frp ¼ f ðCv;Dgr; d=R; lÞ ð7Þ

where Dgr and Frp are the dimensionless grain size and particle Froude number parameter,

respectively defined as:

Dgr ¼
ðs � 1Þgd3

v2

� �1=3

ð8Þ

Frp ¼ ðV=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gdðs � 1

p
ÞÞ ð9Þ

where s is relative particle mass (s = ρs/ρ). Table 3 shows statistical characteristics of the utilized

data. In this study, the data set was divided into 70% training and 30% testing data. Based on

the findings published by [40], who performed uncertainty analysis, the split between training

Table 2. Range of data used in the present study.

Cv (ppm) Dgr d/R λ Frp
[37] 14.2–1568 12.6–221.8 0.006–0.41 0.014–0.03 1.3–10.8

[38] 2.3–22.1 18.46 0.005–0.0065 0.0142–0.0182 4.6–9.9

[12] 4–1450 11.49–205.62 0.005–0.259 0.0129–0.0475 1.29–13.53

[16] 4–90 5.05–10.88 0.007–0.0252 0.038–0.0531 2.86–8.99

[18] 112–9814 3.75–38.05 0.004–0.1416 0.0198–0.1651 1.56–12.81

[17] 1–19957 8.85–65.63 0.0033–0.225 0.0036–0.0742 2.88–16.07

https://doi.org/10.1371/journal.pone.0258125.t002
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and test data does not make a major difference to model performance; however, the best data

split rate was reported as 70% and 30% for training and testing periods.

2.2. M5P classifiers

2.2.1. M5 regression tree. The M5 Model Trees are a state-of-the-art algorithm that effec-

tively divides the sample area into subspaces and forms linear regression models in pieces for

each subspace [41]. Model trees are a more general form of regression tree, with constant val-

ues as their leaves [42]. M5’, also known as M5P, is an improved version of the Classification

and Regression Tree (CART). A task was done to reduce the number of trees in the original

M5P algorithm. It differs from other tree-based solutions due to the use of linear functions in

the leaves. The linear function used at the decision tree nodes divides the tree into leaves to

form the model tree. Tree-based models are constructed using a divide and conquer method.

The model tree is created in three stages. The first stage involves branching according to the

splitting criterion. The branching criterion depends on the value of the standard deviation of

the attribute value. The attribute that reduces the expected error is chosen as the root of the

tree. The formula for standard deviation reduction (SDR) is calculated as in Eqs (10–12).

SDR ¼ sdðTÞ �
X

i

jTij

T
sdðTiÞ ð10Þ

sdðTÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi

1

n � 1

r
Xn

i¼1

ðTi �
�TÞ2 ð11Þ

�T ¼
1

n

Xn

i¼1

Ti ð12Þ

where n is the number of training examples at the node, T is a set of attributes that reaches the

node, �T is the average value of the sets of T attribute and sd(T) is the standard deviation of T.

The second stage is tree pruning. Each leafless node of the model tree is examined, starting

from below, for the pruning stage, as in Eq (13). The M5 algorithm selects the final model for

this node of simplified linear model or model subtree, depending on the minimized estimated

error rate. The final stage is tree smoothing.

nþ v
n � v

ð13Þ

where n is the number of training examples at the node and v is the number of parameters rep-

resenting class value at the node.

The difference between real class value and predicted value is averaged in every training

example to reach the node for the pruning process in the M5 algorithm. This average value is

multiplied by this coefficient. The M5 Regression tree operates in the same way as M5P model

Table 3. Statistical characteristics of the data used for modeling.

Range Mean Std. Deviation Skewness Kurtosis

Cv (ppm) 2–0.0016 0.0285 0.000326 1.7864 5.6288

Dgr 5.05–215.59 65.1812 59.5500 1.2067 3.4910

d/R 0.0052–0.4162 0.0671 0.0751 1.9584 7.2243

λ 0.0107–0.0532 0.0215 0.0085 1.5197 5.0678

Frp 1.2984–13.5292 4.4056 2.2609 0.9741 3.8024

https://doi.org/10.1371/journal.pone.0258125.t003

PLOS ONE Sediment transport modeling in non-deposition with clean bed condition using different tree-based algorithms

PLOS ONE | https://doi.org/10.1371/journal.pone.0258125 October 8, 2021 4 / 12

https://doi.org/10.1371/journal.pone.0258125.t003
https://doi.org/10.1371/journal.pone.0258125


tree in all steps. The value of subspaces that act as dividers is not a linear equation in the RGT

model (Fig 1).

2.2.2. M5 rule tree. M5 rule generates the rules from the M5 tree, based on the CART

algorithm that was presented by [43]. The method for generating rules from model trees,

which we call M5’ Rules, works as follows: a tree learner (in this case model trees) is applied to

the whole training data and a pruned tree is developed. Next, the best leaf is made into a rule.

All samples covered by the rule are removed from the dataset. The process is applied recur-

sively to the remaining samples and terminates when all samples are covered by one or more

rules. In contrast to CART, which employs the same strategy for categorical prediction, M5’

Rules builds full trees, instead of partially explored trees. All modeling was done in a Matlab

2016B environment [44]. Table 4 shows model parameters for M5RGT and M5RT.

2.3. Performance criteria

The analysis of model performance is important for investigating the credibility of the models.

Thus, the coefficient of determination (R2), variance account for (VAF), root mean square

error (RMSE), Nash–Sutcliffe model efficiency coefficient (NASH), and a10-index are used in

this study to determine the degree of fit index. The model performs well with R2, NASH and

a10-index close to the unity, VAF close to 100 and RMSE close to zero. The R2, VAF, RMSE,

NASH and a10-index can be computed using the following equations, respectively:

R2 ¼

Xm

j¼1

ðpj � pj;tÞðp
_

j � p_j;tÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xm

j¼1

ðpj � pj;tÞ
2
Xm

j¼1

ðp_j � p_j;tÞ
2

s

0

B
B
B
B
@

1

C
C
C
C
A

2

ð14Þ

VAF ¼ 1 �
varianceðpj � p_jÞ

varianceðpjÞ

 !

100 ð15Þ

Table 4. Model parameters for M5RGT and M5RT.

M5RGT-M5RT

Minimum leaf size 2

Minimum parent size 4

Split threshold 5%

Maximum depth No limitation

https://doi.org/10.1371/journal.pone.0258125.t004

Fig 1. Schematic for the M5P method.

https://doi.org/10.1371/journal.pone.0258125.g001
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RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

m

Xm

j¼1

ðpj � p_jÞ
2

v
u
u
t ð16Þ

NASH ¼ 1 �

1

m
Pm

j¼1

ðpj � p_jÞ
2

1

m
Pm

j¼1

ðp_j � pj;tÞ
2

2

6
6
4

3

7
7
5 ð17Þ

a10 � index ¼
k10

K
ð18Þ

where, pj is the observed value, p_j is the predicted value, subscript of t indicates the mean value,

m is the data number, K is the total number in the dataset, and k10 is the number of samples in

the case with a ratio of measured values to predicted values between 10% error

(0.9< observed/predicted < 1.1). Each performance criterion examines specific feature of the

developed model as R2 shows the correlation, RMSE scattering rates, VAF variance variation,

NASH data skewness and a10-index gives information about model reliability.

3. Results

The performances of two tree-based algorithms, M5RT and M5RGT, are compared by means

of the different statistical error measurement criteria of R2, VAF, RMSE, NASH and a10-index
in Table 5. Performance of M5RT and M5RGT models recommended in this study are exam-

ined in comparison to four empirical equations of [2, 12, 16, 17, 34]. [12 and 16] equations are

selected due to their credibility as reported in [39]. Furthermore, recently reported equations

of [2, 17, 34] are used for model performance evaluation. The results showed that M5RGT is

slightly superior to M5RT, in terms of different statistical performance criteria. Both models

proposed in this study performed better than traditional equations. Among regression models,

[16] generates the poorest results, while [2] provide better results in contrast to other regres-

sion equations. A comparison of best machine leaning models of M5RGT with RMSE of 1.071

with the best regression equation of [2] with RMSE of 1.350 illustrates an almost 21% improve-

ment on the accuracy of the model in M5RGT algorithm.

Table 5. Model performances with different statistical indexes.

R2 VAF RMSE NASH a10-index
Train

M5RT 0.934 93.407 0.670 0.929 0.716

M5RGT 0.960 95.955 0.525 0.958 0.808

Test

[12] 0.801 76.876 2.003 0.495 0.3812

[16] 0.785 74.508 2.201 0.680 0.3481

[17] 0.779 76.219 1.842 0.551 0.3978

[34] 0.812 80.608 1.559 0.678 0.3978

[2] 0.782 62.093 1.350 0.752 0.3646

M5RT 0.814 80.456 1.184 0.804 0.4475

M5RGT 0.842 81.580 1.071 0.840 0.3923

https://doi.org/10.1371/journal.pone.0258125.t005
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Over-fitting and under-fitting are of great importance in determining the accuracy of the

model. Over-fitting means the model memorizes while training. Therefore, test perfor-

mance is significantly worse than training performance. On the other hand, in the case of

under-fitting, test results are better than training results. The best-case scenario is the

model performance in the training and testing phases being close to each other. Table 5

shows how the results of four different models in the training and testing phases have no

significant differences, so it can be said that the developed models in this study have no

such deficiencies.

Fig 2 shows the scatterplot of the observed and predicted values for different models during

the training phase. These are two major problems for the underestimation or overestimation

of sediment transport models. If the predicted value is greater than the observed value, an

overestimation problem occurs; otherwise, if predicted values are lower than the actual coun-

terparts, underestimation will occur. An overestimated model could not be an economical

design method as it causes open channels to be designed larger than required. An underesti-

mated model, on the other hand, causes the channel to be designed without sufficient planning

criteria. As shown in Fig 2, bisector lines for both models are passed through the middle of the

data clouds showing that developed models in this study have no significant over- or

underestimation.

The visually comparison of M5RT and M5RGT with conventional equations in the form of

scatter plots are shown in Fig 3. It can be seen from Fig 3 that M5RT and M5RGT outcomes

are close to the best fit line, showing their accuracy where, except a few data points, most of the

data falls within the ±10% lines. In the case of regression equations, a significant scatter has

been seen, showing their deficiency in accurate sediment transport prediction. The equations

of [12, 16, 17] generate considerable overestimation, while the equation of [2] shows a slight

underestimation.

Fig 2. Scatter plots of observed and predicted particle Froude numbers for the training stage.

https://doi.org/10.1371/journal.pone.0258125.g002

PLOS ONE Sediment transport modeling in non-deposition with clean bed condition using different tree-based algorithms

PLOS ONE | https://doi.org/10.1371/journal.pone.0258125 October 8, 2021 7 / 12

https://doi.org/10.1371/journal.pone.0258125.g002
https://doi.org/10.1371/journal.pone.0258125


Fig 3. Scatter plots for observed and predicted particle Froude numbers for the testing stage.

https://doi.org/10.1371/journal.pone.0258125.g003
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4. Discussions

As noted earlier, machine learning models for sediment transport are superior to traditional

regression equations. While traditional regression equations are more practical than machine

learning methods, they have not produced reliable models. For this reason, model trees meth-

ods with practical application areas were proposed as an alternative to classical regression

equations in this study (their codes are given as S1 Table).

The data range is quite important for the reliability of the model for sediment transport in

open channels. In this study, a more comprehensive data set than the data used in studies

found in the literature is used for the first time. The wide range of data makes it difficult to

establish an accurate and reliable model. The methods (M5RT and M5RGT) used in this study

performed better than the methods recommended in the literature, although the utilized data

has a considerable wide range. This study examines the performance of traditional equations

when using this large data set. According to the traditional regression equations’ perfor-

mances, the [2] equation was found to have the best performance in contrast to the other equa-

tions. Modeling such a large data set can reveal the problem of overestimation and

underestimation. In particular, it was observed that the traditional regression equations over-

estimated, except for the [2] equation, which has a slight underestimation. Additionally, it was

found that traditional equations are overestimated models for analyzing sediment transport in

self-cleansing design using limited data sets [29, 45].

In this study, a new index, a10-index, is also used. The a10-index shows the amount of data

between the 10th percentiles. Examining the a10-index performances of the models, together

with the RMSE, enabled more reliable models to be obtained. Examining such a large data set

is important in terms of observing the outlier effect. M5RT was superior to M5RGT in terms

of a10-index performance criterion. As can be understood from the results obtained in this

study, the outlier performance is found to be better in M5RGT model.

It must be noticed that over-fitting is an essential issue in application of machine learning

algorithms [29, 46]. Incorporating a few number of input variables and weights to construct a

well-organized model works out over-fitting issue [47]. An over-fitted model fits on train data

set perfectly and provides weak results on test data set [48]. The recommended models in this

study for sediment transport modeling are not expected to encounter with over-fitting issue as

developed models perform well on test data set. Most importantly, the developed models in

this study are constructed on large data sets and model parameters are elected relying on the

physics of the sediment transport in open channel flow.

The results obtained in this study illustrate that the recommended M5RT and M5RGT

models give better outcomes in comparison to the empirical equations of [2, 12, 16, 17]. Imple-

mentation of robust machine leaning algorithms for solving complex and difficult hydraulic

problems such as sediment transport is inevitable. However, considering effective variables

based on the physics of the problem, and experimental data range are of prominent impor-

tance to get reliable results. While most of the studies in the literature used a few data sets for

modeling sediment transport at non-deposition with clean bed condition, this study extends

the available studies in the literature through utilizing wider range of experimental data taken

from six sources which cover wide ranges of channel size and shape, sediment median size and

concentration and flow depth. As a result, it seems that this study favorably developed sedi-

ment transport models which can be used in practice for channel design purpose.

In this study, the laboratory data collected from the literature was used for sediment trans-

port modeling. The authors acknowledge that more reliable modeling could be done using the

field data obtained in practice. Although tree-based algorithms produce solutions that can be

used in practice, using alternative methods, such as symbolic regression or bagged tree, is
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recommended in future studies. In addition, a detailed examination of the outlier effect will

make important contributions to future studies.

5. Conclusions

In this study, modeling of the sediment transport in open channels is conducted using two dif-

ferent tree-based algorithms, M5 rule tree (M5RT) and M5 regression tree (M5RGT). The six

existing data sets with a wide range compiled from the literature are used for model develop-

ment. The proposed algorithms, M5RT and M5RGT, are compared to traditional regression

equations, in particle Froude number prediction. Our results indicated that the M5RGT out-

performs M5RT with RMSE = 1.071 and RMSE = 1.184, respectively. Modeling results show

that the proposed algorithms are superior to the traditional equations. According to traditional

regression equations’ performances, most of the models show significant overestimation, dem-

onstrating their deficiency in terms of economical design benchmarks, where channels need

steeper bed slope to satisfy the non-deposition sediment transport condition. In addition, a

new index, a10-index, is presented in this study to enhance the model performance examina-

tion. The tree structures are presented explicitly and are expected to provide practical solutions

for users. Future research directions can be considered based on the limitation of this study in

terms of utilized data for the modeling. Conducting filed studies to collect data from real sew-

ers and drainage systems through incorporating cohesive sediment particle characteristics

may improve the credibility of the developed models.
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