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New convolutional neural network models for efficient object
recognition with humanoid robots
Simge Nur Aslan a, Ayşegül Uçar a and Cüneyt Güzeliş b

aMechatronics Engineering Department, Firat University, Elazig, Turkey; bElectrical and Engineering
Department, Yasar University, Izmir, Turkey

ABSTRACT
Humanoid robots are expected to manipulate the objects they have
not previously seen in real-life environments. Hence, it is important
that the robots have the object recognition capability. However,
object recognition is still a challenging problem at different
locations and different object positions in real time. The current
paper presents four novel models with small structure, based on
Convolutional Neural Networks (CNNs) for object recognition with
humanoid robots. In the proposed models, a few combinations of
convolutions are used to recognize the class labels. The MNIST
and CIFAR-10 benchmark datasets are first tested on our models.
The performance of the proposed models is shown by
comparisons to that of the best state-of-the-art models. The
models are then applied on the Robotis-Op3 humanoid robot to
recognize the objects of different shapes. The results of the
models are compared to those of the models, such as VGG-16
and Residual Network-20 (ResNet-20), in terms of training and
validation accuracy and loss, parameter number and training
time. The experimental results show that the proposed model
exhibits high accurate recognition by the lower parameter
number and smaller training time than complex models.
Consequently, the proposed models can be considered promising
powerful models for object recognition with humanoid robots.
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1. Introduction

Nowadays, the humanoid robots are increasingly used in a lot of areas, such as the medi-
cine, the education, the healthcare, the logistics and the house and hotel services, to
improve the quality of human life (Andtfolk et al., 2021; Angelopoulos et al., 2021; Dan-
necker & Hertig, 2021; Garcia-Haro et al., 2021; Nenchev et al., 2018; Oliver et al., 2021).
The humanoid robots were used instead of humans or together with humans
(Ambrose et al., 2001; Chohra & Madani, 2018; Fitzpatrick & Metta, 2003; Levine et al.,
2016; Reforgiato Recupero, 2021; Sakagami et al., 2002). The humanoid robot used in (Fitz-
patrick & Metta, 2003) learns the objects around it by using its body so that it can define
and interpret its environment. In this case, it is considered the main indicator in the
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information it can provide vision. Computer vision technologies are generally used in
applications as done in this study. For example, computer vision has been used in
robotic applications for tasks such as obstacle avoidance and navigation (Chang, 2010;
Pandey & Gelin, 2017), human-robot interaction (Le et al., 2018; Yavşan & Uçar, 2016),
object detection for assisting robots, recognition (Martinez-Martin & Del Pobil, 2017),
and object recognition for capture (Aslan et al., 2020; 2021; Ku et al., 2017; Levine
et al., 2016).

Object recognition and detection is essential for humanoid robots, mobile robots,
robotic arms, and flying robots etc., to be able to interpret and understand their environ-
ment. Many machine learning algorithms have already been proposed and used in object
recognition and detection applications (Bhuvaneswari & Subban, 2018; Lee, 2015). Tra-
ditional machine learning methods, such as random forest, Support Vector Machines
(SVMs), Adaptive boosting, and Feed Forward Neural Networks (FNNs), have some limit-
ations in their ability to process raw data (Alpaydin, 2016; Haykin, 2009). The methods
require some attributes for inputs. Hence, they need to extract an attribute from
classifiers. They cannot demonstrate end-to-end solutions without using the feature
engineering step.

Deep learning methods for object recognition have become a popular field of study in
recent years (Lee, 2015; Xie et al., 2017). The deep learning model is a graph of layers
without a direct loop. The most common example is that it is a linear set of layers that
maps a single input to a single output (Chollet, 2017). Deep Neural Networks (DNNs)
can outperform traditional feature-based approaches at the computer vision tasks such
as perception, recognition, and segmentation (Girshick, 2015; Girshick et al., 2014;
Redmon & Farhadi, 2017; Ren et al., 2015). Convolutional Neural Networks (CNNs) are
also a type of DNNs (Srinivas et al., 2016). While the feature vectors are used as the
inputs in classical machine learning methods, the image can be used directly in CNNs.
Therefore, when CNNs are used for classification, they perform better than conventional
machine learning methods (Lee, 2015). But, the DNN models, such as AlexNet (Krizhevsky
et al., 2012), GoogleNet (Szegedy et al., 2015), Inception V3 (Szegedy et al., 2016), Residual
Network (ResNet) (He et al., 2016) and VGG-16 (Simonyan & Zisserman, 2014), are shown
as particularly deep strong structures. However, these models need a large memory to
store the weights and a lot of time for performance. DNNs usually suffer from excessive
parameterization and often encode highly correlated parameters, resulting in inefficient
computing and memory usage (Chen et al., 2015; Han et al., 2015). This paper proposes
new models to get rid of this disadvantage.

Recent works on effective deep learning have focused on model compression and
reducing the computational operations in DNNs (Chen et al., 2015; Denil et al., 2013;
2014; Han et al., 2015; Idelbayev & Carreira-Perpinán, 2021; Lee et al., 2021; Rastegari
et al., 2016). Chen et al. (2015) presented a new network architecture called HashedNets
that takes the advantage of inherent redundancy. Han et al. (2015) introduced a new deep
compression network with pruning, trained quantization and Huffman coding. Rastegari
et al. (2016) proposed simple and accurate binary approximations to apply faster convo-
lutional operations. Denil et al. (2013) presented a parameter prediction technique for
reducing the parameter number in DNNs. Jaderberg et al. (2014) used a cross-channel
or filter redundancy to generate low-rank filters for speeding up pre-trained CNNs with
minimal loss of accuracy. In Lee et al. (2021); Idelbayev and Carreira-Perpinán (2021), a
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tensor compose-decompose approximation and an approximation combining low-rank
decompositions, using different matrix shapes, were proposed to obtain the compressed
DNNs with high performance.

Several works have been carried out to decrease the parameter number of DNNs
(Ayinde & Zurada, 2018; Gong et al., 2014; Gowda & Yuan, 2018; Huang et al., 2017;
Iandola et al., 2016; Jha et al., 2020; Krizhevsky et al., 2012; Srinivas & Babu, 2015; Yang
et al., 2015). Gong et al. (2014); Yang et al. (2015); Srinivas and Babu (2015) rely on the
compression of fully connected layers bearing most of the weights. They did not
improve the speed of the network. In Iandola et al. (2016), a small DNN architecture is pro-
posed that is completely independent and has 50 times fewer parameters than AlexNet
(Krizhevsky et al., 2012), but it is slower. Jha et al. (2020) proposed the LightLayers
network to reduce the number of parameters in DNNs. It consists of the classical
Conv2D and Dense layers, based on matrix decomposition. In Ayinde and Zurada
(2018), a pruning technique was provided for removing redundant features in CNNs.
Huang et al. (2017) introduced the Dense Convolutional Network (DenseNet) using
direct connections between any two layers with the same feature-map size. In Gowda
and Yuan (2018), the images of seven different colour spaces were used together with
dense networks for increasing the performance.

This paper proposes four CNN models with small structure without using additional
pruning or decomposing steps different from the literature. The performances of the pro-
posed models with the popular models in the literature are comparatively presented on
the benchmark the MNIST and CIFAR-10 datasets (Krizhevsky & Hinton, 2009; LeCun et al.,
1998). The Robotis-Op3 humanoid robot is used for real object recognition application
(Robotis-Op3, 2020). The performances of all models and the VGG-16 and ResNet-20
models generated using transfer learning are evaluated in terms of the training and vali-
dation accuracy, the training and validation loss, the parameter number, and the training
time.

The rest of this paper is organized as follows: in Section 2 the basic layers of the CNNs
are shortly introduced and are presented the proposed CNN models; The comparative
results of the MNIST and CIFAR-10 datasets are presented in Section 3.1. In Section 3.2,
the object recognition with humanoid robots is carried out and the simulation results
are illustrated to demonstrate the performance of the proposed models. Section 4 con-
cludes this paper.

2. Convolution neural networks

CNNs are similar to conventional FNNs, optimizing their weight and bias by means of self-
learning (Girshick et al., 2014; Srinivas et al., 2016). Each input neuron receives an input
and employs a mathematical operation such as a product and linear or nonlinear acti-
vation function. The obtained layer outputs are sent to the next layer by the weights.
The final layer includes a loss activation function to reach to the ground truth values.
The main difference between CNNs and FNNs is that CNNs can use the images as
input. This property drastically reduces the parameter number with respect to ANN
importing a vector to its input.

CNNs are composed of the input layer including the images with usually three dimen-
sions (height, width, and depth), convolutional layers, nonlinear activation functions,

JOURNAL OF INFORMATION AND TELECOMMUNICATION 3



pooling layers, dropout layer, batch normalization layer, one or multiple fully connected
layers called dense layers, and loss activation layer. A simple CNN structure is illustrated in
Figure 1.

The main functionalities of the five layers are defined as follows:

(1) The input layer receives the image pixel values as the inputs.
(2) Convolution layer includes a set of learnable filters. The filter dimensions are smaller

than the input dimensions. The local receptive regions of the input are connected to
the neurons in the next layer via a dot product between the weights and the inputs in
the region at every spatial dimension. In other words, each filter is moved across the
width and height of the input and produces a feature map. Figure 2 depicts the recep-
tive fields and the feature maps. Different from FNNs, CNNs share the same weights
for all local regions. The weight sharing reduces the parameter number and provides
the learning and expression efficiency, good generalization, and invariant against
translation.

Given Ii= Input[:, :, i] and the kernel K in the form of square weight matrix, the convo-
lution is applied as

(I∗K) =
∑
m

∑
n

Ki−m,j−nIm,n (1)

where the asterisk shows the convolution. 0-th feature map, F0, is calculated as

F0 = g
∑
i=0

Ii∗Ki,0 + b01

( )
(2)

where g is the activation function and b is the bias value. After the convolution process by
using each filter, the image features, such as edge and corners, are extracted.

(1) Pooling layer applies down-sampling along the spatial dimension of the convolution
layers. Thanks to the pooling layer, the overfitting problem and vanishing gradient
problem are slighted. Min, max, or average pooling are some of the pooling methods.

Figure 1. An CNN structure and the layer representation.
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(2) Dropout layer is a regularization method. During the training stage, some nodes of
the layer are randomly and temporarily removed to prevent the overfitting. After
the dropout layer, the nodes are usually flat by being transformed to a vector.

(3) Batch normalization layer normalizes the outputs of the layer as follows:

c = 1
o

∑o
i=1

zi (3)

s2 = 1
o

∑o
i=1

(zi − c)2 (4)

z̃i = zi − c��������
s2+ [

√ (5)

where c, s, and o are the mean, standard deviation, and mini-batch size, respectively. z̃
is the normalized value and [ is a small number. The batch normalization makes the

Figure 2. The results of the convolution processes for one depth channel of the image.

Table 1. The structure of Model 1.
Type Output Feature maps

Input Nxn 1 or 3
Convolution 1 Nxn 32
Activation 1 Nxn 32
Max Pooling 1 (nxn)/2 32
Dropout 1 (nxn)/2 32
Convolution 2 (nxn)/2 64
Activation 2 (nxn)/2 64
Max Pooling 2 (nxn)/4 64
Dropout 2 (nxn)/4 64
Convolution 3 (nxn)/4 128
Activation 3 (nxn)/4 128
Max Pooling 3 ((nxn)/7)-1 128
Dropout 3 ((nxn)/7)-1 128
Convolution 4 ((nxn)/7)-1 256
Activation 4 ((nxn)/7)-1 256
Max Pooling 4 (nxn)/n 256
Dropout 4 (nxn)/n 256
Flatten 1 256 1
Dense 1 80 1
Activation 5 80 1
Dropout 4 80 1
Dense 2 C 1
Activation 6 C 1
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training faster and the performance of the network higher. The batch normalization is
usually used together with Rectified Linear Unit Activation Function (ReLU). The ReLU
function is defined as max(0, input). The ReLU and its derivative calculation are easy
and fast. The derivative of ReLU has 0 value for the negative input, otherwise it has 1
value. Hence, there is no vanishing gradient problem when applying ReLU (Girshick
et al., 2014; Srinivas et al., 2016).

(4) Fully connected layers perform the same duties in FNNs by connecting every neuron
in the current layer to every neuron in the next layer. Before the layer is used, the data
are transformed into a vector. The operation is called flatten. These layers include a
nonlinear activation function or a softmax activation to produce the class scores (Gir-
shick et al., 2014; Srinivas et al., 2016). The softmax function is used in the classification
applications. The function assigns with the probability each class by making the total

Table 2. The structure of Model 2.
Type Output Feature maps

Input nxn 1 or 3
Convolution 1 nxn 16
Activation 1 nxn 16
Batch Normalization 1 nxn 16
Convolution 2 nxn 16
Activation 2 nxn 16
Batch Normalization 2 nxn 16
Max Pooling 1 (nxn)/2 16
Dropout 1 (nxn)/2 16
Convolution 3 (nxn)/2 32
Activation 3 (nxn)/2 32
Batch Normalization 3 (nxn)/2 32
Convolution 4 (nxn)/2 32
Activation 4 (nxn)/2 32
Batch Normalization 4 (nxn)/2 32
Max Pooling 2 (nxn)/4 32
Dropout 2 (nxn)/4 32
Convolution 5 (nxn)/4 64
Activation 5 (nxn)/4 64
Batch Normalization 5 (nxn)/4 64
Convolution 6 (nxn)/4 64
Activation 6 (nxn)/4 64
Batch Normalization 6 (nxn)/4 64
Max Pooling 3 ((nxn)/7)-1 64
Dropout 3 ((nxn)/7)-1 64
Flatten 1 1152 1
Dense 1 C 1

Table 3. The structure of Model 3.
Type Output Feature maps

Input nxn 1 or 3
Convolution 1 nxn 16
Max Pooling 1 (nxn)/2 16
Convolution 2 (nxn)/2 32
Max Pooling 2 (nxn)/4 32
Flatten 1 1600 1
Dense 1 C 1
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probability 1. The function is defined as follows:

softmax(zj) = ezk∑C
i=1 e

zi
for j = 1, . . . , C (6)

where C is the class number.

2.1. Proposed convolutional neural network models

In this paper, we propose new four CNN models with small structure instead of large ones
using multiple convolutions for the object recognition with humanoid robots. Our models
are listed in Tables 1–4.

The structure of Model 1 consists of four sequential blocks: convolution, activation,
max pooling, and dropout. The layers of the model are followed with the flatten,
dense, activation, dropout, dense, and activation layers. In Model 1, the dimensions of
the feature maps are 16, 32, 64, 128, and 256, respectively. Model 2 is generated from

Table 4. The structure of Model 4.
Type Output Feature Maps

Input nxn 1 or 3
Convolution 1 nxn 32
Activation 1 nxn 32
Max Pooling 1 (nxn)/2 16
Dropout 1 (nxn)/2 32
Convolution 2 (nxn)/2 64
Activation 2 (nxn)/2 64
Max Pooling 2 (nxn)/4 64
Dropout 2 (nxn)/4 64
Convolution 3 (nxn)/4 128
Activation 3 (nxn)/4 128
Max Pooling 3 ((nxn)/7)-1 128
Dropout 3 ((nxn)/7)-1 128
Flatten 1 1152 1
Dense 1 80 1
Activation 4 80 1
Dropout 4 80 1
Dense 2 C 1
Activation 5 C 1

Figure 3. Some examples from the MNIST dataset (LeCun et al., 1998).
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three sequential blocks, including convolution, activation, batch normalization, convolu-
tion, activation, batch normalization, max pooling, and dropout. The layers of the model
are followed with the flatten and dense layers. In Model 2, the dimensions of the feature
maps are 16, 32, and 64, respectively. Model 3 includes Convolution, Max Pooling, Convo-
lution, Max Pooling, Flatten, and Dense layers. In Model 3, the dimensions of the feature
maps are 16 and 32, respectively. Model 4 is constructed by three sequential blocks,
including convolution, activation, max pooling, and dropout. The layers of the model
are followed with flatten, dense, activation, dropout, dense, and activation layers. In
Model 4, the dimensions of the feature maps are 32, 64, and 128, respectively. In all
models, we used a 3 × 3 filter, the ReLU activation function, and same convolution and
we adaptively generated our model structure with respect to the input image size, nxn,
and class number, C.

3. Experiments

To evaluate the performance of the proposed CNN models, we conducted two different
experiments. Firstly, we used the MNIST and CIFAR-10 datasets and evaluated the per-
formance of our models on the datasets (Krizhevsky & Hinton, 2009; LeCun et al., 1998)
to show the performance of our models over the models in the literature. Secondly, we
carried out the object recognition application with a real humanoid robot.

Figure 4. The results on the MNIST dataset (a) test accuracy and (b) parameter number.

Table 5. Test accuracy and parameter number on the MNIST dataset.
Models Test Accuracy (%) Parameter number

Model 1 99.37 409,210
Model 2 99.25 78,458
Model 3 98.99 12,810
Model 4 99.40 185,722
ResNet-20 98.70 279,206
Conv2D (Jha et al., 2020) 98.87 18,818
LightLayers (K = 3) (Jha et al., 2020) 97.75 6,135

8 S. N. ASLAN ET AL.



3.1. Experimental results on the MNIST dataset

We used firstly the benchmark MNIST dataset (LeCun et al., 1998). It consists of hand-
written digits ranging from 0 to 9. This dataset contains a total of 70,000 data with
60,000 for training and 10,000 for testing. All images in the dataset have a size of 28 ×
28. Figure 3 shows some examples of the MNIST digits.

In the experiments, we applied Adam optimization with a minimum batch size of 32
and the learning rates as 0.001, and cross entropy loss for 20 epochs. We trained all
models on the MNIST dataset. Moreover, we transferred the pre-trained ResNet-20
model and then trained it also.

The results of accuracy and parameter number, relating to the proposed CNN models,
are presented by means of the pink and green blocks in Figure 4 and the values in Table 5

Figure 5. Some examples from the CIFAR-10 dataset (Krizhevsky & Hinton, 2009).

Figure 6. The results on the CIFAR-10 dataset (a) test accuracy and (b) parameter number.
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list the test results relating to our four models and three CNNmodels: ResNet-20 (He et al.,
2016), Conv2D (Jha et al., 2020), and LightLayers-CNN (Jha et al., 2020) from the literature.
The accuracy values in percent of our models 1-4, ResNet-20, Conv2D, and LightLayers-
CNN are 99.37, 99.25, 98.99, 99.40, 98.70, 98.87, and 97.75, respectively. The highest
values of accuracy are 99.40 belonging to our model 4 and 99.25 belonging to our
model 2, as shown in Figure 4.

The parameter number values of our models 1–4, ResNet-20, Conv2D and LightLayers-
CNN are 409,210, 78,458, 12,810, 185,722, 279,206,1 8,818, and 6,135, respectively. The
lowest value of parameter number is 6,135 belonging to LightLayers-CNN and 12,810
belonging to our model 3. The accuracy of our model 3 is 98.99, while that of Light-
Layers-CNN is 97.75. We can see that our model 3 has an acceptable trade-off between
the accuracy and parameter number.

Table 6. Test accuracy and parameter number on the CIFAR-10 dataset.
Models Test accuracy (%) Parameter number

Model 1 72.34 471,226
Model 2 82.51 110,458
Model 3 67.55 16,618
Model 4 75.55 257,978
Conv2D (Jha et al., 2020) 68.82 76,794
LightLayers-CNN (K = 5) (Jha et al., 2020) 55.76 20,557
VGG-16-pruned-A (Ayinde & Zurada, 2018) 93.67 3,230,000
ResNet-56 pruned-A (Ayinde & Zurada, 2018) 93.12 650,000
ResNet-110 pruned-A (Ayinde & Zurada, 2018) 93.27 1,130,000
Colornet-40-12 (Gowda & Yuan, 2018) 95.02 1,750,000
Colornet-40-48 (Gowda & Yuan, 2018) 96.86 19,000,000
Densenet-BC-100-12 (Huang et al., 2017) 94.08 800,000

Figure 7. The Robotis-Op3 humanoid robot and its object manipulation photo.
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3.2. Experimental results on the CIFAR-10 datasets

We used firstly the benchmark the CIFAR-10 dataset (Krizhevsky & Hinton, 2009). It has 10
classes: aeroplane, automobile, bird, cat, deer, dog, frog, horse, ship, and truck. It includes
the colour images that are 50,000 in training and 10,000 in testing. The image size is 32 ×
32. Figure 5 depicts a random sample of images belonging to the dataset.

In the experiments, we applied Adam optimization with a minimum batch size of 32
and the learning rates as 0.001, and cross entropy loss for 20 epochs. We trained all
models on the CIFAR-10 dataset. The results of test accuracy, relating to the proposed
CNN models, are presented by means of the pink and green blocks in Figure 6 and the
values in Table 6. Table 5 lists the test results relating to our four models and eight
CNN models called LightLayers-CNN (K = 5) (Jha et al., 2020), VGG-16-pruned-A (Ayinde
& Zurada, 2018), ResNet-56 pruned-A (Ayinde & Zurada, 2018), ResNet-110 pruned-A
(Ayinde & Zurada, 2018), Colornet-40-12 (Gowda & Yuan, 2018), Colornet-40-48 (Gowda
& Yuan, 2018), and Densenet-BC-100-12 (Huang et al., 2017) from the literature. The accu-
racy values in percent of our models 1–4, LightLayers-CNN (K = 5), VGG-16-pruned-A,
ResNet-56 pruned-A, ResNet-110 pruned-A, Colornet-40-12, Colornet-40-48, and Dense-
net-BC-100-12 are 72.34, 82.51, 67.55, 75.55, 68.82, 55.76, 93.67, 93.12, 93.27, 95.02,
96.86 and 94.08, respectively. The highest value of accuracy is 95.02 belonging to Color-
net-40-12 (Gowda & Yuan, 2018). On the other hand, Model 2 has the highest accuracy
(82.51) within our models, as in Figure 6.

Figure 8. Some of the images used in the training dataset.
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The parameter number values of all models are shown in Table 6. The lowest value of
parameter number is 16,618 belonging to our model 3. However, its accuracy is low and
its value is 67.55. The parameter number is 110,458. We can see that model 2 has an
acceptable trade-off between the accuracy and parameter number.

3.3. Experimental results for object recognition with humanoid robots

In the object recognition application with the humanoid robots, we used the humanoid
robot, Robotis-Op3 humanoid robot in Figure 7 (Robotis-Op3, 2020). Robotis-Op3 consists
of 20 axes and includes Intel NUC i3 (Dual core, 2133 Mhz) operating system, 3 axis gyro, 3
axis magnetometer sensors, 3 axis accelerometer, Linux operating system, Logitech C920
HD-Pro camera, C, Robot Operating System (ROS), and Dynamixel SDK. The experiments
show results on workstation using Nvidia Titan XP.

In the experiments, we used the real objects with 7 different shapes: a small square, a
big square, a cylinder, a ball, a rhombus, a triangle in addition to a black sponge. Figure 8

Table 7. The results of accuracy, loss, parameter number, and training time on our dataset.
Models Train loss Train acc (%) Val. loss Val. Acc (%) Parameter number Training time (s)

Model 1 0.039 99.11 0.0331 100.0 5,631,862 25.2065
Model 1(28 × 28) 0.4368 81.38 0.3392 86.52 409,462 3.5011
Model 1(32 × 32) 0.2140 92.55 0.0606 100.0 470,902 3.4965
Model 2 1.6122 53.68 1.4546 50.35 466,198 82.7385
Model 2(28 × 28) 1.6442 43.59 1.3239 46.10 76,438 5.1617
Model 2 32 × 32) 1.7006 40.56 1.0583 52.48 79,126 5.3596
Model 3 0.0013 100.0 0.0017 100.0 743,142 12.5431
Model 3(28 × 28) 0.1562 97.34 0.1513 100.0 9,894 2.4821
Model 3(32 × 32) 0.0687 100.0 0.0776 100.0 12,006 2.4311
Model 4 0.0298 99.29 3.2e-04 100.0 10,579,574 23.9928
Model 4 (28 × 28) 0.2631 90.25 0.1464 97.87 185,974 3.1184
Model 4 (32 × 32) 0.2354 92.20 0.0954 100.0 257,654 3.1887
ResNet-20 0.7451 77.32 0.6114 82.98 298,374 120.0167
ResNet-20 (28 × 28) 0.6135 81.28 0.8342 73.05 292,614 17.1682
ResNet-20 (32 × 32) 0.5140 87.33 0.6437 79.43 298,374 14.3619
VGG-16 0.0281 99.08 0.0019 100.0 23,105,094 112.8447
VGG-16 (32 × 32) 0.5856 74.22 0.5816 75.89 14,847,558 15.86730

Figure 9. The training times of the models on our dataset.
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depicts some example objects. We set the head and neck angles of the humanoid robot to
0, -0.95 radian. We take the images with the resolution of 640 × 360 pixels from the
camera of the robot using the ROS environment in the robot. We localized the objects
at 20 different locations and views and collected 720 images. We removed the clutter
regions not within the grasping area of the robot. Training set and validation set were pre-
pared by using 576 images and 144 images, respectively. We re-sized the images to 256 ×
256. We trained our models 1–4 for 20 iterations by using the Adam method and cross
entropy loss function. Moreover, we reconstructed our models for 28 × 28 and 32 × 32
and trained the new models also similarly.

We evaluated our 12 models on the datasets we obtained by using the humanoid
robot. Moreover, we loaded the ResNet-20 model and the VGG-16 model by using
transfer learning and we later trained the models. Table 7 shows the training and

Figure 10. The training and validation accuracy and the loss values of Model 1 for the inputs of (a)
256 × 256, (b) 28 × 28, and (c) 32 × 32.
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validation accuracies, the training and validation losses, the parameter numbers, and
the training times of all models. On the other hand, Figures 10–13 show the accuracy
and loss values with respect to epochs. As can be seen from the figures, the accuracy
increases with respect to the epoch. The validation accuracy is usually smaller than
training accuracy as the epoch increases. The training loss is smaller than validation
loss as the epoch increases. There is no overfitting. Table 7 and Figures 10–13 show
that Model 3 is the best one and it has the lowest training loss, training accuracy, vali-
dation loss, and validation accuracy of 0.0013, 1.0000, 0.0017, and 1.0000, respectively.
Moreover, the parameter numbers in Table 7 present that the proposed models have
much less complexity than those of VGG-16 and ResNet-20. As can be seen from Table
7, small sizes of the input showed a lower parameter number and less training time
than using one of the original versions. For example, the parameter number of

Figure 11. The training and validation accuracy and the loss values of Model 2 for the inputs of (a)
256 × 256, (b) 28 × 28, and (c) 32 × 32.
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Model 3 was reduced from 743,142 to –9,894, which is about 75 times less than that of
the original one. Hence, the small input size is important for low training time and fast
calculation due to low computational load in the testing stage. Figure 9 shows in
blocks the training time of our models, VGG-16 model, and ResNet-20 model for the
inputs of 256 × 256 size. As can be seen from the figure, Model 3 takes the smallest
training time and the best one for real-time applications. Embedding our models
into the robot in the ROS environment, the robots recognize all objects and later go
ahead to the manipulation step. In addition, it should be given an attention to overfi-
tting as in Figures 10–13 and the training process should be stopped when the vali-
dation loss is smaller than the training loss. We did the experiment with different
numbers of epochs, such as 20, 40, and 60. We observed higher accuracy for MNIST
in all models as the epoch was increased, but for CIFAR-10 and our dataset, we

Figure 12. The training and validation accuracy and the loss values of Model 3 for the inputs of (a)
256 × 256, (b) 28 × 28, and (c) 32 × 32.
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observed lower accuracy in some models. Hence, we used 20 epochs for all datasets.
On the other hand, the performance of our models can be improved by using convo-
lutions with different sizes as in the Inception network (Szegedy et al., 2016). Moreover,
the performance can be increased with different optimization methods and learning
rates.

4. Conclusion

In this paper, four efficient and fast CNN models were developed for recognizing the
objects with humanoid robots. The main aim of the proposed models was to take on
the powerful classification capability of CNN models and to provide fast and correct
decisions in real time with humanoid robots.

Figure 13. The training and validation accuracy and the loss values of Model 4 for the inputs of (a)
256 × 256, (b) 28 × 28, and (c) 32 × 32.
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The MNIST and CIFAR-10 datasets are first used for object recognition on the pro-
posed four CNN models. The results on the MNIST dataset show that the proposed
models provide the best accuracy of 99.40% even for small iteration numbers. More-
over, the models have smaller structures over those of the literature. The results on
the CIFAR-10 dataset show that the proposed models provided high accuracy about
82.5% although they are the smallest parameter numbers and trained for only 20
epochs.

A comparative study was also conducted on the proposed four models and the deri-
vations of different sizes. The experimental results showed that our model 3 has signifi-
cantly surpassed the performance of the VGG-16 and Resnet20 models in terms of
shorter training time and smaller parameter number; all versions of the model 3 also pro-
vided both training and validation recognition accuracy of 100%. In addition, our models
can also be applied to real-time recognition applications. In future studies, the perform-
ance of proposed models will be improved using smaller and explainable structures at
object recognition.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

This work was supported by the Scientific and Technological Research Council of Turkey (Türkiye
Bilimsel ve Teknolojik Araştirma Kurumu, TUBITAK) [grant number 117E589]. In addition, GTX
Titan X Pascal GPU in this research was donated by the NVIDIA Corporation.

Notes on contributors

Simge Nur Aslan (Student Member, IEEE) received his BS degree from the
Mechatronics Engineering Department at the University of Firat of Turkey
in 2019. He is currently pursuing a master degree in the same department.
His research interests include humanoid robots and deep learning.

Ayşegül Uçar (Senior Member, IEEE) received her BS degree, MS degree, and
PhD degree from the Electrical and Electronics Engineering Department at
the University of Firat of Turkey in 1998, 2000, and 2006, respectively. In
2013, she was a visiting professor at Louisiana State University in the USA.
She has been a professor in the Department of Mechatronics Engineering
since 2020. She has more than 21 years of experience in autonomous tech-
nologies and artificial intelligence, its engineering applications, robotic
vision, teaching and research. Ucar is active in several professional

bodies; she is an associate editor of IEEE Access and Turkish Journal Electrical Engineering and Com-
puter Sciences and a member of European Artificial Intelligence Alliance Committee.

JOURNAL OF INFORMATION AND TELECOMMUNICATION 17



Cüneyt Güzeliş received the BSc, MSc, and PhD degrees in electrical engineer-
ing from Istanbul Technical University, Istanbul, Turkey, in 1981, 1984, and
1988, respectively. He was with Istanbul Technical University from 1982 to
2000 where he became a full professor. He worked between 1989 and
1991 in the Department of Electrical Engineering and Computer Sciences,
University of California, Berkeley, California, as a visiting researcher and lec-
turer. He was with the Department of Electrical and Electronics Engineering
from 2000 to 2011 at Dokuz Eylül University, Izmir, Turkey. He was with

Izmir University of Economics, Faculty of Engineering and Computer Sciences, Department of Elec-
trical and Electronics Engineering from 2011 to 2015. He is currently working in Yasar University,
Faculty of Engineering, Department of Electrical and Electronics Engineering. His research interests
include artificial neural networks, biomedical signal and image processing, nonlinear circuits-
systems, and control, and educational systems.

ORCID

Simge Nur Aslan http://orcid.org/0000-0002-2738-7722
Ayşegül Uçar http://orcid.org/0000-0002-5253-3779
Cüneyt Güzeliş http://orcid.org/0000-0001-5416-368X

References

Alpaydin, E. (2016). Machine learning: The new AI. MIT press.
Ambrose, R., Askew, S., Bluethmann, W., & Diftler, M. (2001). Humanoids designed to do work.

Proceedings of the IEEE 2001 International Conference on Humanoid Robots, Robotics and
Automation Society. Tokyo, Japan.

Andtfolk, M., Nyholm, L., Eide, H., & Fagerström, L. (2021). Humanoid robots in the care of older persons:
A scoping review. Assistive Technology, 1–9. https://doi.org/10.1080/10400435.2021.1880493

Angelopoulos, G., Baras, N., & Dasygenis, M. (2021). Secure autonomous cloud brained humanoid
robot assisting rescuers in hazardous environments. Electronics, 10(2), 124. https://doi.org/10.
3390/electronics10020124

Aslan, S. N., Özalp, R., Uçar, A., & Güzeliş, C. (2021). New CNN and hybrid CNN-LSTMmodels for learn-
ing object manipulation of humanoid robots from demonstration. Cluster Computing, 1–16.
https://doi.org/10.1007/s10586-021-03348-7

Aslan, S. N., Uçar, A., & Güzeliş, C. (2020). Fast object recognition for humanoid robots by using deep
learning models with small structure. In 2020 International Conference on INnovations in Intelligent
SysTems and Applications (INISTA) (pp. 1–7). IEEE. https://doi.org/10.1109/INISTA49547.2020.9194644

Ayinde, B. O., & Zurada, J. M. (2018). Building efficient convnets using redundant feature pruning.
ArXiv Preprint ArXiv:1802.07653.

Bhuvaneswari, R., & Subban, R. (2018). Novel object detection and recognition system based on
points of interest selection and SVM classification. Cognitive Systems Research, 52, 985–994.
https://doi.org/10.1016/j.cogsys.2018.09.022

Chang, O. (2010). Evolving cooperative neural agents for controlling vision guided mobile robots . In
2010 IEEE 9th International Conference on Cyberntic Intelligent Systems (pp. 1–6). IEEE.

Chen, W., Wilson, J., Tyree, S., Weinberger, K., & Chen, Y. (2015). Compressing neural networks with
the hashing trick. In International Conference on Machine Learning (pp. 2285–2294). PMLR.

Chohra, A., & Madani, K. (2018). Biological regulation and psychological mechanisms models of adap-
tive decision-making behaviors: Drives, emotions, and personality. In Transactions on computational
collective intelligence XXIX (pp. 69–83). Springer. https://doi.org/10.1007/978-3-319-90287-6_4

Chollet, F. (2017). Deep learning with python. Simon and Schuster.
Dannecker, A., & Hertig, D. (2021). Facial recognition and pathfinding on the humanoid robot

pepper as a starting point for social interaction. In New trends in business information systems
and technology (pp. 147–160). Springer. https://doi.org/10.1007/978-3-030-48332-6_10

18 S. N. ASLAN ET AL.

http://orcid.org/0000-0002-2738-7722
http://orcid.org/0000-0002-5253-3779
http://orcid.org/0000-0001-5416-368X
https://doi.org/10.1080/10400435.2021.1880493
https://doi.org/10.3390/electronics10020124
https://doi.org/10.3390/electronics10020124
https://doi.org/10.1007/s10586-021-03348-7
https://doi.org/https://doi.org/10.1109/INISTA49547.2020.9194644
https://doi.org/10.1016/j.cogsys.2018.09.022
https://doi.org/https://doi.org/10.1007/978-3-319-90287-6_4
https://doi.org/https://doi.org/10.1007/978-3-030-48332-6_10


Denil, M., Shakibi, B., Dinh, L., Ranzato, M., & De Freitas, N. (2013). Predicting parameters in deep
learning. ArXiv Preprint ArXiv:1306.0543.

Fitzpatrick, P., & Metta, G. (2003). Grounding vision through experimental manipulation.
Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and
Engineering Sciences, 361(1811), 2165–2185. https://doi.org/10.1098/rsta.2003.1251

Garcia-Haro, J. M., Oña, E. D., Hernandez-Vicen, J., Martinez, S., & Balaguer, C. (2021). Service robots in
catering applications: A review and future challenges. Electronics, 10(1), 47. https://doi.org/10.
3390/electronics10010047

Girshick, R. (2015). Fast r-cnn. In Proceedings of the IEEE International Conference on Computer Vision
(pp. 1440–1448). IEEE. https://doi.org/10.1109/ICCV.2015.169

Girshick, R., Donahue, J., Darrell, T., & Malik, J. (2014). Rich feature hierarchies for accurate object
detection and semantic segmentation. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (pp. 580–587). IEEE. https://doi.org/10.1109/CVPR.2014.81

Gong, Y., Liu, L., Yang, M., & Bourdev, L. (2014). Compressing deep convolutional networks using
vector quantization. ArXiv Preprint ArXiv:1412.6115.

Gowda, S. N., & Yuan, C. (2018). Colornet: Investigating the importance of color spaces for image
classification. In Asian Conference on Computer Vision (pp. 581–596). Springer. https://doi.org/
10.1007/978-3-030-20870-7_36

Han, S., Mao, H., & Dally, W. J. (2015). Deep compression: Compressing deep neural networks with
pruning, trained quantization and huffman coding. ArXiv Preprint ArXiv:1510.00149.

Haykin, S. S. (2009). Neural networks and learning machines. Prentice Hall.
He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 770–778).
IEEE. https://doi.org/10.1109/CVPR.2016.90

Huang, G., Liu, Z., Van Der Maaten, L., & Weinberger, K. Q. (2017). Densely connected convolutional
networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp.
4700–4708). IEEE. https://doi.org/10.1109/CVPR.2017.243

Iandola, F. N., Han, S., Moskewicz, M. W., Ashraf, K., Dally, W. J., & Keutzer, K. (2016). Squeezenet:
AlexNet-level accuracy with 50x fewer parameters and&lt; 0.5 MB model size. ArXiv Preprint
ArXiv:1602.07360.

Idelbayev, Y., & Carreira-Perpinán, M. A. (2021). Neural network compression via additive combi-
nation of reshaped, low-rank matrices. In 2021 Data Compression Conference (DCC’21) (pp. 243–
252). IEEE. https://doi.org/10.1109/DCC50243.2021.00032

Jaderberg, M., Vedaldi, A., & Zisserman, A. (2014). Speeding up convolutional neural networks with
low rank expansions. ArXiv Preprint ArXiv:1405.3866.

Jha, D., Yazidi, A., Riegler, M. A., Johansen, D., Johansen, H. D., & Halvorsen, P. (2020). Lightlayers:
Parameter efficient dense and convolutional layers for image classification. In International
Conference on Parallel and Distributed Computing: Applications and Technologies (pp. 285–
296). Springer.

Krizhevsky, A., & Hinton, G. (2009). Learning multiple layers of features from tiny images (Technical
Report). University of Toronto.

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional
neural networks. Advances in Neural Information Processing Systems, 25, 1097–1105. https://doi.
org/10.1145/3065386

Ku, L. Y., Learned-Miller, E., & Grupen, R. (2017). An aspect representation for object manipulation
based on convolutional neural networks. In 2017 IEEE International Conference on Robotics and
Automation (ICRA) (pp. 794–800). IEEE.

Le, T. D., Huynh, D. T., & Pham, H. V. (2018). Efficient human-robot interaction using deep learning
with mask R-CNN: Detection, recognition, tracking and segmentation. In 2018 15th International
Conference on Control, Automation, Robotics and Vision (ICARCV) (pp. 162–167). IEEE.

LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11), 2278–2324. https://doi.org/10.1109/5.726791

Lee, A. (2015). Comparing deep neural networks and traditional vision algorithms in mobile robotics.
Swarthmore University.

JOURNAL OF INFORMATION AND TELECOMMUNICATION 19

https://doi.org/10.1098/rsta.2003.1251
https://doi.org/10.3390/electronics10010047
https://doi.org/10.3390/electronics10010047
https://doi.org/https://doi.org/10.1109/ICCV.2015.169
https://doi.org/https://doi.org/10.1109/CVPR.2014.81
https://doi.org/https://doi.org/10.1007/978-3-030-20870-7_36
https://doi.org/https://doi.org/10.1007/978-3-030-20870-7_36
https://doi.org/https://doi.org/10.1109/CVPR.2016.90
https://doi.org/https://doi.org/10.1109/CVPR.2017.243
https://doi.org/10.1109/DCC50243.2021.00032
https://doi.org/10.1145/3065386
https://doi.org/10.1145/3065386
https://doi.org/10.1109/5.726791


Lee, S., Kim, H., Jeong, B., & Yoon, J. (2021). A training method for low rank convolutional neural net-
works based on alternating tensor compose-decompose method. Applied Sciences, 11(2), 643.
https://doi.org/10.3390/app11020643

Levine, S., Finn, C., Darrell, T., & Abbeel, P. (2016). End-to-end training of deep visuomotor policies. The
Journal of Machine Learning Research, 17(1), 1334–1373. arXiv preprint arXiv:1504.00702, 2015.

Martinez-Martin, E., & Del Pobil, A. P. (2017). Object detection and recognition for assistive robots:
Experimentation and implementation. IEEE Robotics & Automation Magazine, 24(3), 123–138.
https://doi.org/10.1109/MRA.2016.2615329

Nenchev, D. N., Konno, A., & Tsujita, T. (2018). Humanoid robots: Modeling and control. Butterworth-
Heinemann.

Oliver, G., Lanillos, P., & Cheng, G. (2021). An empirical study of active inference on a humanoid
robot. IEEE Transactions on Cognitive and Developmental Systems. IEEE. https://doi.org/10.1109/
TCDS.2021.3049907

Pandey, A. K., & Gelin, R. (2017). Humanoid robots in education: A short review. In A. Goswami & P.
Vadakkepat (Eds.). In Humanoid robotics: A reference (pp. 1–16). Springer. https://doi.org/10.1007/
978-94-007-7194-9_113-1

Rastegari, M., Ordonez, V., Redmon, J., & Farhadi, A. (2016). Xnor-net: Imagenet classification using
binary convolutional neural networks. In European Conference on Computer Vision (pp. 525–
542). Springer.

Redmon, J., & Farhadi, A. (2017). YOLO9000: Better, faster , stronger. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (pp. 7263–7271). IEEE. https://doi.org/
10.1109/CVPR.2017.690

Reforgiato Recupero, D. (2021). Technology enhanced learning using humanoid robots. Future
Internet, 13(2), 32. https://doi.org/10.3390/fi13020032

Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster r-cnn: Towards real-time object detection with
region proposal networks. Advances in Neural Information Processing Systems, 28, 91–99. IEEE.
https://doi.org/10.1109/TPAMI.2016.2577031

Robotis-Op3. (2020, May 5). http://emanual.robotis.com/docs/en/platform/op3/introduction/
Sakagami, Y., Watanabe, R., Aoyama, C., Matsunaga, S., Higaki, N., & Fujimura, K. (2002). The intelli-

gent ASIMO: System overview and integration. IEEE/RSJ International Conference on Intelligent
Robots and Systems, 3, 2478–2483. https://doi.org/10.1109/IRDS.2002.1041641

Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image rec-
ognition. ArXiv Preprint ArXiv:1409.1556.

Srinivas, S., & Babu, R. V. (2015). Data-free parameter pruning for deep neural networks. ArXiv
Preprint ArXiv:1507.06149.

Srinivas, S., Sarvadevabhatla, R. K., Mopuri, K. R., Prabhu, N., Kruthiventi, S. S., & Babu, R. V. (2016). A
taxonomy of deep convolutional neural nets for computer vision. Frontiers in Robotics and AI, 2,
36. https://doi.org/10.3389/frobt.2015.00036

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., & Rabinovich,
A. (2015). Going deeper with convolutions . In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (pp. 1–9). IEEE. https://doi.org/10.1109/CVPR.2015.7298594

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z. (2016). Rethinking the inception architec-
ture for computer vision. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (pp. 2818–2826). IEEE. https://doi.org/10.1109/CVPR.2016.308

Xie, L., Wang, S., Markham, A., & Trigoni, N. (2017). Towards monocular vision based obstacle avoid-
ance through deep reinforcement learning. ArXiv Preprint ArXiv:1706.09829.

Yang, Z., Moczulski, M., Denil, M., De Freitas, N., Smola, A., Song, L., & Wang, Z. (2015). Deep fried
convnets. In Proceedings of the IEEE International Conference on Computer Vision (pp. 1476–
1483). IEEE. https://doi.org/10.1109/ICCV.2015.173

Yavşan, E., & Uçar, A. (2016). Gesture imitation and recognition using kinect sensor and extreme
learning machines. Measurement, 94, 852–861. https://doi.org/10.1016/j.measurement.2016.09.
026

20 S. N. ASLAN ET AL.

https://doi.org/10.3390/app11020643
https://doi.org/10.1109/MRA.2016.2615329
https://doi.org/https://doi.org/10.1109/TCDS.2021.3049907
https://doi.org/https://doi.org/10.1109/TCDS.2021.3049907
https://doi.org/https://doi.org/10.1007/978-94-007-7194-9_113-1
https://doi.org/https://doi.org/10.1007/978-94-007-7194-9_113-1
https://doi.org/https://doi.org/10.1109/CVPR.2017.690
https://doi.org/https://doi.org/10.1109/CVPR.2017.690
https://doi.org/10.3390/fi13020032
https://doi.org/https://doi.org/10.1109/TPAMI.2016.2577031
http://emanual.robotis.com/docs/en/platform/op3/introduction/
https://doi.org/10.1109/IRDS.2002.1041641
https://doi.org/10.3389/frobt.2015.00036
https://doi.org/https://doi.org/10.1109/CVPR.2015.7298594
https://doi.org/https://doi.org/10.1109/CVPR.2016.308
https://doi.org/https://doi.org/10.1109/ICCV.2015.173
https://doi.org/10.1016/j.measurement.2016.09.026
https://doi.org/10.1016/j.measurement.2016.09.026

	Abstract
	1. Introduction
	2. Convolution neural networks
	2.1. Proposed convolutional neural network models

	3. Experiments
	3.1. Experimental results on the MNIST dataset
	3.2. Experimental results on the CIFAR-10 datasets
	3.3. Experimental results for object recognition with humanoid robots

	4. Conclusion
	Disclosure statement
	Notes on contributors
	ORCID
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile ()
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings false
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.90
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.90
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Average
  /MonoImageResolution 300
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [595.245 841.846]
>> setpagedevice


