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ABSTRACT
In this paper, we establish necessary conditions of optimality for partially observed optimal control prob-
lems of Mckean–Vlasov type. The system is described by a controlled stochastic differential equation
governed by Poisson random measure and an independent Brownian motion. The coefficients of the
McKean–Vlasov system depend on the state of the solution process as well as of its probability law and
the control variable. The proof of our result is based on Girsanov’s theorem, variational equations and
derivatives with respect to probability measure under convexity assumption. At the end of this paper, we
apply our stochastic maximum principle to study partially observed linear quadratic control problem of
McKean–Vlasov type with jumps and derive the explicit expression of the optimal control.
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1. Introduction

Partially observed control problems have received much atten-
tion and became a powerful tool in many fields, such as math-
ematical finance, optimal control, and so on. From the view-
point of reality, many situations, full information is not always
available to controllers, but the partial one with noise, see,
e.g. Djehiche and Tembine (2016), Fleming (1968), Lakhdari
et al. (2021), Tang and Meng (2017), Wang and Wu (2009)
and Wang et al. (2014) and the references therein. Neces-
sary and sufficient conditions of optimality for system driven
by Brownian motions and Poisson random measure where
states and observations are correlated have been established by
Xiao (2013). Partially observed optimal control problem for
forward–backward stochastic systems with jump has been dis-
cussed by Wang et al. (2019). Stochastic maximum principle
for partially observed forward–backward stochastic systemwith
jumps and regime switching has been established by Zhang
et al. (2018). Partially observed time-inconsistent stochastic
linear-quadratic control problem with random jumps has been
investigated by Wu and Zhuang (2018). The necessary con-
ditions of optimality for forward–backward stochastic control
systems with correlated state and observation noise have been
obtained by Wang et al. (2013). A class of linear-quadratic
optimal control problem of forward–backward stochastic dif-
ferential equations with partial information has been studied by
Wang et al. (2015). Recently, maximum principle for mean-field
optimal stochastic control with partial-information has been
discussed in Wang et al. (2014).
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McKean–Vlasov stochastic differential equations (SDEs) are
Itô’s stochastic differential equations, where the coefficients of
the state equation depend on the state of the solution process as
well as of its probability law. This kind of equations was stud-
ied by Kac (1959) as a stochastic model for the Vlasov–Kinetic
equation of plasma and the study of which was initiated by
McKean (1966) to provide a rigorous treatment of special
nonlinear partial differential equations. Optimal control prob-
lems for McKean–Vlasov SDEs has been investigated by many
authors, for example, Buckdahn et al. (2016) proved the nec-
essary conditions for general mean-field systems by using the
tool of the second-order derivatives with respect to measures.
Maximum principle for optimal control of McKean–Vlasov for-
ward–backward stochastic differential equations (FBSDEs) with
Lévy process via the differentiability with respect to probability
law has been proved by Meherrem Hafayed (2019). Necessary
and sufficient optimality conditions of optimal singular con-
trol problem for general Mckean–Vlasov differential equations
have been discussed by Hafayed et al. (2018). A general nec-
essary optimality conditions for stochastic continuous-singular
control of McKean–Vlasov type equations, where the control
domain is not assumed convex have been proved by Gue-
nane et al. (2020). Stochastic maximum principle for partially
observed optimal control problems of Mckean–Vlasov type has
been established by Lakhdari et al. (2021).

In this paper, we prove a new stochastic maximum princi-
ple for a class of partially observed optimal control problems of
Mckean–Vlasov type with jumps. The stochastic system under
consideration is governed by a stochastic differential equation
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driven by Poisson random measure and an independent Brow-
nian motion. The McKean–Vlasov SDEs with Poisson jump
process is a type of stochastic process that has discrete move-
ments, called jumps, with random arrival times, rather than
continuous movement, typically modelled as a simple or com-
pound Poisson process. The coefficients of ourMcKean–Vlasov
dynamic depend nonlinearly on both the state process as well
as of its probability law. The control domain is assumed to
be convex. The derivatives with respect to probability measure
and the associate It ô-formula are applied to prove our main
results. Noting that the our general McKean–Vlasov partially
observed control problem occur naturally in the probabilistic
analysis of financial optimisation problems. Our class of par-
tially observed control problem is strongly motivated by the
recent study of the McKean–Vlasov games and recently play
an important role in different fields of economics and finance
(see, e.g., conditional mean-variance portfolio selection problem
with discretemovement in incompletemarket). As an illustration,
by applying our maximum principle, McKean–Vlasov type lin-
ear quadratic control problem with jump is discussed, where
the partially observed optimal control is obtained explicitly in
feedback form.

The rest of the paper is organised as follows. Section 2 begins
with a formulation of the partially observed control problem of
general Mckean–Vlasov differential equations with jump pro-
cesses. We give the notations and definitions of the deriva-
tives with respect to probability measure and assumptions used
throughout the paper. In Section 3, we prove the necessary
conditions of optimality which are our main results. A linear
quadratic control problem of this kind of partially observed
control problem is also given in Section 4. At the end of this
paper, some discussions with concluding remarks and future
developments are presented in the last section.

2. Formulation of the problem and preliminaries

LetT is a fixed terminal time and (�,F ,Ft ,P) be a complete fil-
tered probability space on which are defined two independent
standard one-dimensional Brownian motions W(·) and Y(·).
Let Rn is an n-dimensional Euclidean space, Rn×d the collec-
tion of n × dmatrices. Let k(·) be a stationaryFt-Poisson point
process with the characteristic measure m(dθ). We denote by
N(dθ , dt) the counting measure or Poissonmeasure induced by
k(·), defined on�× R+, where� is a fixed nonempty subset of
R with its Borel σ -field B(�) and set Ñ(dθ , dt) = N(dθ , dt)−
m(dθ)dt satisfying

∫
�
(1 ∧ |θ |2)m(dθ) < ∞ andm(�) < +∞.

Let FW
t , FY

t and FN
t be the natural filtration generated by

W(·), Y(·) and N(·), respectively. We assume that

Ft := FW
t ∨ FY

t ∨ FN
t ∨ N ,

where N denotes the totality of P-null sets. We denote by
〈·, ·〉 (resp. | · |) the scalar product (resp., norm), E denotes the
expectation on (�,F ,Ft ,P). Moreover, we denote by

(1) L2(r, s;Rn) the space of Rn-valued deterministic function
β(·), such that

∫ s
r |β(t)|2 dt < +∞.

(2) L2(Ft ;Rn) the space of Rn-valued Ft-measurable random
variable φ, such that E|φ|2 < +∞.

(3) L2F (r, s;R
n) the space of Rn-valued Ft-adapted processes

ψ(·), such that E
∫ s
r |ψ(t)|2 dt < +∞.

(4) M2([0,T];R) the space of R-valued Ft-adapted measur-
able process g(·), such that

E

∫ T

0

∫
�

∣∣g(t, θ)∣∣2m (dθ) dt < +∞.

(5) L2(F ;Rd) is theHilbert space with inner product (x, y)2 =
E[x · y], x, y ∈ L2(F ;Rd) and the norm ‖x‖2 = √

(x, x)2.
(6) Q2(R

d) the space of all probability measures μ on
(Rd,B(Rd)) with finite second moment, i.e.

∫
Rd |x|2μ(dx)

< +∞, endowed with the following 2-Wasserstein metric;
for μ, ν ∈ Q2(R

d),

W2(μ, ν) = inf

{[∫
Rd

∣∣x − y
∣∣2 ρ (

dx, dy
)] 1

2
: ρ

∈ Q2

(
R
2d

)
, ρ

(
·,Rd

)
= μ, ρ

(
R
d, ·

)
= ν

}
.

Now, we recall briefly the main results of the differen-
tiability with respect to probability measures was studied by
Lions (2013) to derive our main result. The main idea is to
identify a distribution μ ∈ Q2(R

d) with a random variables
ϑ ∈ L2(F ;Rd) so that μ = Pϑ . To be more precise, we assume
that probability space (�,F ,Ft ,P) is rich enough in the sense
that for every μ ∈ Q2(R

d), there is a random variable ϑ ∈
L2(F ;Rd) such that μ = Pϑ . It is well known that the proba-
bility space ([0, 1],B[0, 1], dx), where dx is the Borel measure
has this property, see Buckdahn et al. (2016).

Definition 2.1 (Lift function): Let f be a given function
such that f : Q2(R

d) → R. We define the lift function f̃ :
L2(F ;Rd) → R such that

f̃ (Z) := f (PZ) , Z ∈ L
2
(
F ;Rd

)
.

Clearly, the lift function f̃ of f, depends only on the law of
Z ∈ L2(F ;Rd) and is independent of the choice of the repre-
sentative Z.

Definition 2.2: A function f : Q2(R
d) → R is said to be dif-

ferentiable at μ0 ∈ Q2(R
d) if there exists ϑ0 ∈ L2(F ;Rd) with

μ0 = Pϑ0 such that its lift function f̃ is Fréchet differentiable at
ϑ0. More precisely, there exists a continuous linear functional
D̃f (ϑ0) : L2(F ;Rd) → R such that

f̃ (ϑ0 + ξ)− f̃ (ϑ0)

= 〈
D̃f (ϑ0) , ξ

〉 + O (‖ξ‖2) = Dξ f (μ0)+ O (‖ξ‖2) , (1)

where 〈·, ·〉 is the dual product on L2(F ;Rd), and we will refer
to Dξ f (μ0) as the Fréchet derivative of f at μ0 in the direction
ξ . In this case, we have

Dξ f (μ0) = 〈
D̃f (ϑ0) , ξ

〉
= d

dt
f̃ (ϑ0 + tξ)

∣∣∣∣
t=0

, with μ0 = Pϑ0 .
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By applying the Riesz’ representation theorem, there is a unique
random variable z0 ∈ L2(F ;Rd) such that 〈D̃f (ϑ0), ξ〉 =
(z0, ξ)2 = E[(z0, ξ)2], where ξ ∈ L2(F ;Rd). It was shown, see
the works of Buckdahn et al. (2016) and Lions (2013) that
there exists a Boral function h[μ0] : Rd → Rd, depending only
on the law μ0 = Pϑ0 but not on the particular choice of the
representative ϑ0 such that z0 = h[μ0](ϑ0).

Thus, we can write (1) as

f (Pϑ)− f
(
Pϑ0

) = (h [μ0] (ϑ0) ,ϑ − ϑ0)2 + O (‖ϑ − ϑ0‖2) ,
× ∀ ϑ ∈ L

2(F ;Rd).

We denote

∂μf
(
Pϑ0 , x

) = h [μ0] (x) , x ∈ R
d.

Moreover, we have the following identities:

D̃f (ϑ0) = z0 = h [μ0] (ϑ0) = ∂μf
(
Pϑ0 ,ϑ0

)
and

Dξ f
(
Pϑ0

) = 〈
∂μf

(
Pϑ0 ,ϑ0

)
, ξ

〉
,

where ξ = ϑ − ϑ0.

Remark 2.3: We note that for each μ ∈ Q2(R
d), ∂μf (Pϑ , ·) =

h[Pϑ ](·) is only defined in a Pϑ(dx)-a.e sense, where μ = Pϑ .

Definition 2.4 (Space of differentiable functions in Q2(R
d)):

We say that the function f ∈ C
1,1
b (Q2(R

d)) if for all ϑ ∈
L2(F ;Rd), there exists a Pϑ -modification of ∂μf (Pϑ , ·) such
that ∂μf : Q2(R

d)× Rd → Rd is bounded and Lipchitz contin-
uous. That is for some C> 0, it holds that

(i) |∂μf (μ, x)| ≤ C,∀μ ∈ Q2(R
d), ∀ x ∈ Rd;

(ii) |∂μf (μ1, x1)−∂μf (μ2, x2)| ≤ C(W2(μ1,μ2)+ |x1 − x2|),
∀μ1,μ2 ∈ Q2(R

d),∀x1, x2 ∈ Rd.

We would like to point out that the version of ∂μf (Pϑ , ·),
ϑ ∈ L2(F ;Rd) indicated in the above definition is unique (see
Remark 2.2 in Buckdahn et al. (2016) for more information).

Let (�̂, F̂ , F̂t , P̂) be a copy of the probability space
(�,F ,Ft ,P). For any pair of random variable (ϑ , ξ) ∈
L2(F ;Rd)× L2(F ;Rd), we let (ϑ̂ , ξ̂ ) be an independent copy
of (ϑ , ξ) defined on (�̂, F̂ , F̂t , P̂). We consider the prod-
uct probability space (�× �̂,F ⊗ F̂ ,Ft ⊗ F̂t ,P⊗P̂) and set-
ting (ϑ̂ , ξ̂ )(w, ŵ) = (ϑ(ŵ), ξ(ŵ)) for any (w, ŵ) ∈ �× �̂. Let
(̂u(t), x̂(t)) be an independent copy of (u(t), x(t)) so that
Px(t)=P̂̂x(t). We denote by Ê the expectation under probabil-
ity measure P̂ and PX = P◦X−1 denotes the law of the random
variable X.

Let U be a nonempty convex subset of Rk. An admissible
control v is an FY

t -adapted process with values in U satisfies
supt∈[0,T] E|vt|n < ∞, n = 2, 3, . . . . We denote by Uad([0,T])
the set of the admissible control variables.

For given control process v(·) ∈ Uad([0,T]), the dynamics of
the controlled system take the following type:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dxv (t) = f
(
t, xv (t) ,Pxv(t), v (t)

)
dt

+ σ
(
t, xv (t) ,Pxv(t), v (t)

)
dW (t)

+ c
(
t, xv (t) ,Pxv(t), v (t)

)
dW̃ (t)

+
∫
�

g
(
t, xv (t−) ,Pxv(t−), v (t) , θ

)
Ñ (dθ , dt) ,

xv (0) = x0, t ∈ [0,T] ,
(2)

where PX = P◦X−1 denotes the law of the random variable X.
The coefficients

f : [0,T] × R
n × Q2(R

d)× U → R
n, σ : [0,T] × R

n

× Q2(R
d)× U → R

n×d, c : [0,T] × R
n

× Q2(R
d)× U → R

n×d, g : [0,T] × R
n × Q2(R

d)

× U ×� → R
n×d

are given deterministic functions.
Suppose that the state processes xv(·) cannot be observed

directly, but the controllers can observe a related noisy process
Y(·), which is governed by the following equation:{

dY(t) = h(t, xv (t) , v (t)) dt + dW̃ (t)
Y(0) = 0, (3)

where h : [0,T] × Rn × U → Rr , and W̃(·) is a stochastic pro-
cess depending on the control v(·).

Remark 2.5: Note that if the diffusion term c �= 0 inEquation (2),
then there exist the correlated noise W̃(·) between the state and
observation.

Consider the cost functional

J(v (·))=E
v
[∫ T

0
l(t, xv(t),Pxv(t), v(t)) dt + ψ(xv(T),Pxv(T))

]
.

(4)
Here, l : [0,T] × Rn × Q2(R)× U → R, ψ : Rn × Q2(R) →
R and Ev stands for the mathematical expectation on
(�,F ,Ft ,Pv).

In this paper, we shall make use of the following standing
assumption.
Assumption (H1): The maps f , σ , c, l : [0,T] × R × Q2(R)×
U → R and ψ : R × Q2(R) → R are measurable in all vari-
ables. Moreover, f (t, ·, ·, v), σ(t, ·, ·, v), c(t, ·, ·, v), l(t, ·, ·, v),
g(t, ·, ·, v, θ) ∈ C

1,1
b (R × Q2(R),R) and ψ(·, ·) ∈ C

1,1
b

(R × Q2(R),R) for all v ∈ U.
Assumption (H2):Denotingϕ(x,μ) = f (t, x,μ, v),σ(t, x,μ, v),
c(t, x,μ, v), l(t, x,μ, v), g(t, x,μ, v, θ), ψ(x,μ), the function
ϕ(·, ·) satisfies the following properties.

(i) For fixed x ∈ R and μ ∈ Q2(R), the function ϕ(·,μ) ∈
C1
b(R) and ϕ(x, ·) ∈ C

1,1
b (Q2(R

d),R).
(ii) All the derivatives ϕx and ∂μϕ, for ϕ = f , σ , c, l,ψ are

bounded and Lipschitz continuous, with Lipschitz con-
stants independent of v ∈ U. Moreover, there exists a
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constants C(T,m(�)) > 0 independent to v and� such
that

sup
θ∈�

∣∣∂xg (t, x,μ, u, θ)∣∣ + sup
θ∈�

∣∣∂μg (t, x,μ, u, θ)∣∣ ≤ C.

sup
θ∈�

∣∣gx (t, x,μ, u, θ)− gx
(
t, x′,μ′, u, θ

)∣∣
+ sup
θ∈�

∣∣∂μg (t, x,μ, u, θ)− ∂μg
(
t, x′,μ′, u, θ

)∣∣
≤ C

[∣∣x − x′∣∣ + W2(μ,μ′)
]

(iii) The functions f , σ , c, g and l are continuously differen-
tiable with respect to control variable v, and all their
derivatives are continuous and bounded.Moreover, there
exists a constants C = C(T,m(�)) > 0 such that

sup
θ∈�

∣∣gu (t, x,μ, u, θ)∣∣ ≤ C.

(iv) The function h is continuously differentiable in x and
continuous in v, its derivatives and h are all uniformly
bounded.

Clearly, under Assumptions (H1) and (H2), for any v(·) ∈
Uad([0,T]) theMcKean–Vlasov SDE-(2) admits a unique strong
solution xv(t) given by

xv (t) = x0 +
∫ t

0
f
(
s, xv (s) ,Pxv(s), v (s)

)
ds

+ σ
(
s, xv (s) ,Pxv(s), v (s)

)
dW (s)

+ c
(
s, xv (s) ,Pxv(s), v (s)

)
dW̃ (s)

+
∫ t

0

∫
�

g
(
s, xv (s−) ,Pxv(s−), v (s) , θ

)
Ñ (dθ , ds) .

We define dPv = ρv(t) dP with

ρv(t) = exp
{∫ t

0
h(s, xv(s), v(s)) dY(s)

−1
2

∫ t

0

∣∣h(s, xv(s), v(s))∣∣2 ds
}
,

where ρv(·) is the unique FY
t -adapted solution of the linear

stochastic differential equation{
dρv(t) = ρv(t)h (t, xv(t), v(t)) dY(t),
ρv(0) = 1. (5)

By virtue of Itô’s formula, we can prove that supt∈[0,T] E|ρvt |m <
∞, m = 2, 3, . . . . Hence, by Girsanov’s theorem and Assump-
tions (H1) and (H2), Pv is a new probability measure and
(W(·), W̃(·)) is two-dimensional standard Brownian motion
defined on the new probability space (�,F ,Ft ,Pv).

Our partially observed optimal control problem becomes the
following minimisation problem: to minimise the cost func-
tional in (4) over v(·) ∈ Uad([0,T]) subject to Equations (2)

– (3), such that

J(u(·)) = inf
v(·)∈Uad([0,T])

J (v (·)) . (6)

Obviously, we can rewritten the cost functional (4) as

J(v(·)) = E

[∫ T

0
ρv(t)l(t, xv(t),Pxv(t), v(t)) dt

+ρv(T)ψ(xv(T),Pxv(T))
]
. (7)

So the original optimisation problem is equivalent to minimis-
ing
(7) over v(·) ∈ Uad([0,T]), subject to (2)–(5).

The main purpose of this paper is to prove stochastic maxi-
mum principle, also called necessary optimality conditions for
the partially observed optimal control of Mckean–Vlasov SDE
with jumps.

3. Necessary conditions of optimality

In this section, we prove the necessary conditions of opti-
mality for our partially observed optimal control problem of
general Mckean–Vlasov stochastic differential equations with
jumps. The proof is based on Girsanov’s theorem, the deriva-
tives with respect to probabilitymeasure and on introducing the
variational equations with some estimates of their solutions.

Hamiltonian. We define the Hamiltonian

H : [0,T] × R × Q2 (R)× U × R × R × R × R × R → R,

associated with our control problem by

H(t, x,μ, v,�,Q,Q,K,R)

= l(t, x,μ, v)+ f (t, x,μ, v)�+ σ(t, x,μ, v)Q

+ c(t, x,μ, v)Q + h (t, x, v)K

+
∫
�

g (t, x,μ, v, θ)R (θ)m (dθ) . (8)

Let (u(·), x(·)) be the optimal solution of the control prob-
lem (2)–(6). Then for any 0 ≤ ε ≤ 1 and v(·) ∈ Uad([0,T]),
we define the variational control by vε(·) = u(·)+ εv(·) ∈
Uad([0,T]). We denote by xε(·), x(·), ρε(·), ρ(·) the state tra-
jectories of (2) and (5) corresponding respectively to vε(·) and
u(·).

For simplification, we introduce the short-hand notation

ϕ (t) = ϕ
(
t, x(t),Px(t), u(t)

)
,

ϕε (t) = ϕ(t, xε(t),Pxε(t), vε(t)),

and

g (t, θ) = g(t, x(t−), h (t) = h (t, x(t), u(t)) ,
Px(t−), u(t), θ),
gε (t, θ) = g(t, xε(t−), hε (t) = h (t, xε(t), vε(t)) ,
Pxε(t−), vε(t), θ),

where g, h and ϕ = f , σ , c, l as well as their partial derivatives
with respect to x and v.
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Also, we will denote for ϕ = f , σ , c, l and g:

∂μϕ (t) = ∂μϕ
(
t, x(t),Px(t), u(t); x̂(t)

)
,

∂μϕ̂ (t) = ∂μϕ
(
t, x̂ (t) ,Px(t), û (t) ; x(t)

)
,

and

∂μg (t, θ) = ∂μg
(
t, x(t−),Px(t−), u(t), θ ; x̂(t)

)
,

∂μ̂g (t, θ) = ∂μg
(
t, x̂ (t) ,Px(t), û (t) , θ ; x (t)

)
.

Now, we introduce the following variational equations:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dφ(t) = [
fx (t) φ(t)+ Ê

[
∂μf (t) φ̂ (t)

] + fv(t)v (t)
]
dt

+ [
σx(t)φ(t)+ Ê

[
∂μσ (t) φ̂ (t)

] + σv(t)v(t)
]
dW(t)

+ [
cx(t)φ(t)+ Ê

[
∂μc (t) φ̂ (t)

] + cv (t) v (t)
]
dW̃ (t)

+
∫
�

[
gx(t, θ)φ(t)+ Ê

[
∂μg (t, θ) φ̂ (t)

] + gv(t, θ)v(t)
]

Ñ (dθ , dt) ,

φ(0) = 0,
(9)

and{
dρ1(t) = [ρ1(t)h(t)+ρ(t)hx(t)φ(t)+ρ(t)hv(t)v(t)] dY(t),
ρ1(0) = 0.

(10)
Under Assumptions (H1) and (H2), Équations (9) and (10)
admit a unique adapted solutions φ(·) and ρ1(·), respectively.

Adjoint equation. We are now ready to introduce two new
adjoint equations that will be the building blocks of the stochas-
tic maximum principle.⎧⎪⎪⎪⎨⎪⎪⎪⎩

−dy(t) = l(t) dt − z (t) dW(t)− K (t) dW̃ (t)

−
∫
�

R (t, θ) Ñ (dθ , dt) ,

y(T) = ψ(x(T),Px(T)),

(11)

and⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−d�(t) = [
fx (t)� (t)+ Ê

[
∂μ̂f (t) �̂ (t)

]
+σx (t)Q (t)+ Ê

[
∂μσ̂ (t) Q̂ (t)

]
+ cx (t)Q (t)+ Ê

[
∂μ̂c (t) Q̂ (t)

]
+ lx (t)+ Ê

[
∂μ̂l (t)

]
+

∫
�

[
gx (t, θ)R (t, θ)+ Ê

[
∂μ̂g (t, θ) R̂ (t, θ)

]]
× m (dθ)+ hx (t)K(t)] dt

− Q(t) dW(t)− Q(t) dW̃(t)

−
∫
�

R (t, θ) Ñ (dθ , dt) ,

�(T) = ψx(x (T) ,Px(T))+ Ê
[
∂μψ(̂x (T) ,Px(T); x(T))

]
.

(12)

Clearly, underAssumption (H1) and (H2), it is easy to prove that
BSDEs (11) and (12) admits a unique strong solution, given by

y(t) = ψ(x(T),Px(T))−
∫ T

t
l(s) ds +

∫ T

t
z (s) dW(s)

+
∫ T

t
K (s) dW̃ (s)+

∫ T

t

∫
�

R (s, θ) Ñ (dθ , ds) ,

and

�(t) = ψx(x (T) ,Px(T))+ Ê
[
∂μψ(̂x (T) ,Px(T); x(T))

]
.

−
∫ T

t

[
fx (s)� (s)+ Ê

[
∂μ̂f (s) �̂ (s)

] + σx (s)Q (s)

+Ê
[
∂μσ̂ (s) Q̂ (s)

]
+ cx (s)Q (s)+ Ê

[
∂μ̂c (s) Q̂ (s)

]
+ lx (s)+ Ê

[
∂μ̂l (s)

]
+

∫
�

[
gx (s, θ)R (s, θ)+ Ê

[
∂μ̂g (s, θ) R̂ (s, θ)

]]
m (dθ)

+hx (s)K(s)] ds

+
∫ T

t
Q(s) dW(s)+

∫ T

t
Q(s) dW̃(s)

+
∫ T

t

∫
�

R (s, θ) Ñ (dθ , ds) ,

The main result of this paper is stated in the following theorem.

Theorem 3.1: Let Assumptions (H1) and (H2) hold. Let
(u(·), x(·)) be the optimal solution of the control problem (2)–(6).
Then there exists (�(·), Q(·),Q(·),K(·),R(·, θ)) solution of (12),
such that for any v ∈ U, we have

E
u [

Hv(t, x(t),Px(t), u (t) ,�(t) ,Q (t) ,Q (t) ,K (t) ,

R (t, θ)) (v (t)− u (t)) | FY
t

] ≥ 0, a.s., a.e.,

where the Hamiltonian function H is defined by (8).

In order to prove our main result in Theorem 3.1, we present
some auxiliary results.

Lemma 3.2: Suppose that Assumptions (H1) and (H2) hold.
Then, we have

lim
ε→0

E

[
sup

0≤t≤T

∣∣xε(t)− x(t)
∣∣2] = 0.

Proof: Applying standard estimates, the Burkholder–Davis–
Gundy inequality, and Proposition A.1 (Appendix) we have

E

[
sup

0≤t≤T

∣∣xε(t)− x(t)
∣∣2]

≤ E

∫ t

0

∣∣f ε (s)− f (s)
∣∣2 ds + E

∫ t

0

∣∣σε (s)− σ (s)
∣∣2 ds

+ E

∫ t

0

∣∣cε (s)− c (s)
∣∣2 ds

+ E

∫ t

0

∫
�

∣∣gε (s, θ)− g (s, θ)
∣∣2m (dθ) ds.

According to the Lipschitz conditions on the coefficients f , σ , c
and g with respect to x,μ and u, (Assumption (H2)-(ii)), we get

E

[
sup

0≤t≤T

∣∣xε(t)− x(t)
∣∣2]
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≤ CTE

∫ t

0

[∣∣xε(s)− x(s)
∣∣2 + ∣∣W2

(
Pxε(s),Px(s)

)∣∣2] ds
+ CTε

2
E

∫ t

0
|v(s)|2 ds. (13)

From the definition of Wasserstein metric W2(·, ·), we have
W2

(
Pxε(s),Px(s)

)
= inf

{[
E

∣∣̃xε(s)− x̃(s)
∣∣2] 1

2 ,

for all x̃ε(·), x̃(·) ∈ L
2
(
F ;Rd

)
,

with Pxε(s) = P̃xε(s) and Px(s) = P̃x(s)

}
≤

[
E

∣∣xε(s)− x(s)
∣∣2] 1

2 . (14)

By Definition 2.2 and from (13) and (14), we get

E

[
sup

0≤t≤T

∣∣xε(t)− x(t)
∣∣2]

≤ CTE

∫ t

0
sup
r∈[0,s]

∣∣xε(r)− x(r)
∣∣2 ds + MTε

2.

By applying Gronwall’s inequality, the desired result follows
immediately by letting ε go to zero. �

Lemma 3.3: Suppose that Assumptions (H1) and (H2) hold.
Then, we have

lim
ε→0

sup
0≤t≤T

E

∣∣∣∣xε(t)− x(t)
ε

− φ(t)
∣∣∣∣2 = 0. (15)

Proof: We put

ηε(t) = xε (t)− x (t)
ε

− φ(t), t ∈ [0,T] .

To simplify, we will use the following notations, for ϕ = f , σ , c, l
and g:

ϕλ,εx (t) = ϕx
(
t, xλ,ε (t) ,Pxε(t), vε(t)

)
,

gλ,εx (t, θ) = gx
(
t, xλ,ε (t) ,Pxε(t), vε(t), θ

)
,

∂λ,εμ ϕ (t) = ∂μϕ(s, xε(t), P̂xλ,ε(t), vε(t); x̂(t)),
∂λ,εμ g (t, θ) = ∂μg(t, xε(t), P̂xλ,ε(t), vε(t), θ ; x̂(t)),

and
xλ,ε (s) = x (s)+ λε (ηε (s)+ φ (s)) ,
x̂λ,ε (s) = x(s)+ λε(̂ηε(s)+ φ̂ (s)),
vλ,ε (s) = u (s)+ λεv (s) .

Since Dξ f (μ0) = 〈D̃f (ϑ0), ξ〉 = d
dt f̃ (ϑ0 + tξ)|t=0, we have the

following form of the Taylor expansion:

f
(
Pϑ0+ξ

) − f
(
Pϑ0

) = Dξ f
(
Pϑ0

) + R (ξ) ,

where R(ξ) is of order O(‖ξ‖2) with O(‖ξ‖2) → 0 for ξ ∈
L2(F ;Rd).

ηε(t) = 1
ε

∫ t

0

[
f ε(s)− f (s)

]
ds + 1

ε

∫ t

0

[
σε(s)− σ(s)

]
dW (s)

+ 1
ε

∫ t

0

[
cε(s)− c(s)

]
dW̃ (s)

+ 1
ε

∫ t

0

∫
�

[
gε(s, θ)− g(s, θ)

]
Ñ (dθ , ds)

−
∫ t

0

[
fx(s)φ (s)+ Ê

[
∂μf (s)φ̂(s)

] + fv(s)v(s)
]
ds

−
∫ t

0

[
σx(s)φ(s)+ Ê

[
∂μσ(s)φ̂(s)

] + σv(s)v(s)
]
dW (s)

−
∫ t

0

[
cx(s)φ(s)+ Ê

[
∂μc(s)φ̂(s)

] + cv(s)v(s)
]
dW̃ (s)

−
∫ t

0

∫
�

[
gx(s, θ)φ(s)+ Ê

[
∂μg (s, θ) φ̂ (s)

]
+gv(s, θ)v(s)

]
Ñ (dθ , ds) .

We decompose 1
ε

∫ t
0 [f

ε(s)− f (s)] ds into the following three
parts:

1
ε

∫ t

0

[
f ε(s)− f (s)

]
ds

= 1
ε

∫ t

0

[
f ε(s)− f (s, x(s),Pxε(s), vε(s))

]
ds

+ 1
ε

∫ t

0

[
f (s, x(s),Pxε(s), vε(s))− f (s, x(s),Px(s), vε(s))

]
ds

+ 1
ε

∫ t

0

[
f (s, x(s),Px(s), vε(s))− f (s)

]
ds.

We notice that

1
ε

∫ t

0

[
f ε(s)− f (s, x(s),Pxε(s), vε(s))

]
ds

=
∫ t

0

∫ 1

0

[
f λ,εx (s)

(
ηε(s)+ φ(s)

)]
dλ ds,

1
ε

∫ t

0

[
f ε(s)− f (s, xε (s) ,Px(s), vε(s)

]
ds

=
∫ t

0

∫ 1

0
Ê

[
∂λ,εμ f (s)

(̂
ηε(s)+ φ̂ (s)

)]
dλ ds,

and

1
ε

∫ t

0

[
f
(
s, x(s),Px(s), vε(s)

) − f (s)
]
ds

=
∫ t

0

∫ 1

0

[
fv

(
s, x(s),Px(s), vλ,ε (s)

)
v(s)

]
dλ ds.

The analogue relations hold for σ , c and g. Therefore, we get

E

[
sup
s∈[0,t]

∣∣ηε(s)∣∣2]

= C (t)E
[∫ t

0

∫ 1

0

∣∣f λ,εx (s) ηε (s)
∣∣2 dλ ds

+
∫ t

0

∫ 1

0
Ê

∣∣∂λ,εμ f (s) η̂ε (s)
∣∣2 dλ ds
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+
∫ t

0

∫ 1

0

∣∣σλ,εx (s) ηε (s)
∣∣2 dλ ds

+
∫ t

0

∫ 1

0
Ê

∣∣∂λ,εμ σ (s)̂ηε (s)
∣∣2 dλ ds

+
∫ t

0

∫ 1

0

∣∣cλ,εx (s) ηε (s)
∣∣2 dλ ds

+
∫ t

0

∫ 1

0
Ê

∣∣∂λ,εμ c(s)̂ηε (s))
∣∣2 dλ ds

+
∫ t

0

∫
�

∫ 1

0

∣∣gλ,εx (s, θ) ηε (s)
∣∣2 dλm (dθ) ds

+
∫ t

0

∫
�

∫ 1

0
Ê

∣∣∂λ,εμ g (s, θ) η̂ε (s))
∣∣2 dλm (dθ) ds

]

+ C (t)E

[
sup
s∈[0,t]

∣∣γ ε(s)∣∣2] ,

where

γ ε(t) =
∫ t

0

∫ 1

0

[
f λ,εx (s)− fx (s)

]
φ(s) dλ ds

+
∫ t

0

∫ 1

0
Ê

[(
∂λ,εμ f (s)− ∂μf (s)

)
φ̂(s)

]
dλ ds

+
∫ t

0

∫ 1

0

[
fv

(
s, x(s),Px(s), vλ,ε (s)

) − fv (s)
]
v(s) dλ ds

+
∫ t

0

∫ 1

0

[
σλ,εx (s)− σx (s)

]
φ(s) dλ dW(s)

+
∫ t

0

∫ 1

0
Ê

[(
∂λ,εμ σ (s)− ∂μσ(s)

)
φ̂(s)

]
dλ dW(s)

+
∫ t

0

∫ 1

0

[
σv

(
s, x(s),Px(s), vλ,ε (s)

) − σv (s)
]

× v(s) dλ dW(s)

+
∫ t

0

∫ 1

0

[
cλ,εx (s)− cx (s)

]
φ(s) dλ dW̃(s)

+
∫ t

0

∫ 1

0
Ê

[(
∂λ,εμ c(s)− ∂μc (s)

)
φ̂(s)

]
dλ dW̃(s)

+
∫ t

0

∫ 1

0

[
cv

(
s, x (s) ,Px(s), vλ,ε (s)

) − cv (s)
]
v(s) dλ dW̃(s)

+
∫ t

0

∫
�

∫ 1

0

[
gλ,εx (s, θ)− gx (s, θ)

]
φ(s−) dλÑ (dθ , ds)

+
∫ t

0

∫
�

∫ 1

0
Ê

[(
∂λ,εμ g (s, θ)−∂μg (s, θ)

)
φ̂(s−)

]
dλÑ (dθ , ds)

+
∫ t

0

∫
�

∫ 1

0

[
gv

(
s, x(s),Px(s), vλ,ε (s) , θ

) − gv (s, θ)
]

× v(s) dλÑ (dθ , ds) .

Now, the derivatives of f , σ , c and g with respect to
(x,μ, v) are Lipschitz continuous in (x,μ, v),

we get

lim
ε→0

E

[
sup

s∈[0,T]

∣∣γ ε(s)∣∣2] = 0.

Since the derivatives of f , σ , c and γ are bounded with respect
to (x,μ, v), we have

E

[
sup
s∈[0,t]

∣∣ηε(s)∣∣2]

≤ C (t)

{
E

∫ t

0

∣∣ηε(s)∣∣2 ds + E

[
sup
s∈[0,t]

∣∣γ ε(s)∣∣2]}
.

From Gronwall’s lemma, we obtain ∀t ∈ [0,T]

E

[
sup
s∈[0,t]

∣∣ηε(s)∣∣2]

≤ C (t)

{
E

[
sup
s∈[0,t]

∣∣γ ε(s)∣∣2] exp
{∫ t

0
C (s) ds

}}
.

Finally, putting t = T and letting ε go to zero, the proof of
Lemma 3.3 is complete. �

Now, we introduce the following lemma which play an
important role in computing the variational inequality for the
cost functional (7) subject to (2) and (5).

Lemma 3.4: Let Assumption (H1) hold. Then, we have

lim
ε→0

sup
0≤t≤T

E

∣∣∣∣ρε(t)− ρ(t)
ε

− ρ1(t)
∣∣∣∣2 = 0. (16)

Proof: From the definition of ρ(·) and ρ1(·), we obtain

ρ(t)+ ερ1(t) = 1 +
∫ t

0
ρ(s)h(s) dY(s)

+ ε

∫ t

0
[ρ1 (s) h (s)+ ρ(s)hx (s) φ (s)

+ρ(s)hv (s) v (s)] dY (s)

= 1 + ε

∫ t

0
ρ1(s)h(s) dY (s)+

∫ t

0
ρ (s) h(s, x (s)

+ εφ (s) , u (s)+ εv (s))dY (s)

− ε

∫ t

0
ρ(s)

[
Aε(s)

]
dY(s),

where

Aε(s) =
∫ 1

0
[hx(s, x(s)+ λεφ(s), u(s)

+λεv(s))− hx(s)] dλφ(s)

+
∫ 1

0
[hv(s, x(s)+ λεφ(s), u(s)

+λεv(s))− hv(s)] dλv(s).
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Then, we have

ρε(t)− ρ(t)− ερ1(t)

=
∫ t

0
ρε (s) hε (t) dY(s)− ε

∫ t

0
ρ1(s)h(s) dY(s)

−
∫ t

0
ρ(s)h (s, x (s)+ εφ (s) , u (s)+ εv (s)) dY(s)

+ ε

∫ t

0
ρ(s)

[
Aε (s)

]
dY(s)

=
∫ t

0

(
ρε (s)− ρ (s)− ερ1 (s)

)
hε (s) dY (s)

+
∫ t

0
(ρ (s)+ ερ1 (s)) [hε(s)− h (s, x(s)

+εφ (s) , u (s)+ εv (s))] dY (s)

+ ε

∫ t

0
ρ1 (s) h(s, x (s)+ εφ (s) , u (s)+ εv (s)) dY (s)

− ε

∫ t

0
ρ1 (s) h(s) dY (s)+ ε

∫ t

0
ρ(s)

[
Aε (s)

]
dY (s)

=
∫ t

0

(
ρε (s)− ρ (s)− ερ1 (s)

)
hε (s) dY(s)

+
∫ t

0
(ρ(s)+ ερ1(s))

[
Bε1(s)

]
dY(s)

+ ε

∫ t

0
ρ1(s)

[
Bε2(s)

]
dY(s)

+ ε

∫ t

0
ρ(s)

[
Aε(s)

]
dY(s),

where

Bε1(s) = hε (s)− h (s, x (s)+ εφ (s) , u (s)+ εv (s)) ,

Bε2(s) = h(s, x (s)+ εφ (s) , u (s)+ εv (s))− h(s).

Note that

Bε1(s) =
∫ 1

0

[
hx(s, x (s)+ εφ (s)+ λ(xε (s)− x (s)

−εφ (s)), vε (s))] dλ(xε (s)− x (s)− εφ (s)).

By Lemma 3.3, we know that

E

∫ t

0

∣∣(ρ(s)+ ερ1(s))Bε1(s)
∣∣2 ds ≤ Cεε2, (17)

here Cε denotes some nonnegative constant such that Cε → 0
as ε → 0.

Moreover, it is easy to see that

sup
0≤t≤T

E

[
ε

∫ t

0
ρ(s)Aε(s) dY(s)

]2
≤ Cεε2, (18)

and

sup
0≤t≤T

E

[
ε

∫ t

0
ρ1(s)Bε2(s) dY(s)

]2
≤ Cεε2. (19)

From (17), (18) and (19), we get

E
∣∣(ρε(t)− ρ(t))− ερ1(t)

∣∣2

≤ C
[∫ t

0
E

∣∣(ρε (s)− ρ (s))− ερ1(s)
∣∣2

+E

∫ t

0

∣∣(ρ (s)+ ερ1 (s))Bε1(s)
∣∣2 ds

+ sup
0≤s≤t

E

(
ε

∫ t

0
ρ(s)Aε(s) dY(s)

)2

+ sup
0≤s≤t

E

(
ε

∫ t

0
ρ1(s)Bε2(s) dY(s)

)2]

≤ C
∫ t

0
E

∣∣ρε(s)− ρ(s)− ερ1(s)
∣∣2 ds + Cεε2.

Finally, by using Gronwall’s inequality, the proof of Lemma 3.4
is complete. �

Lemma 3.5: Let Assumption (H1) hold. Then, we have

0 ≤ E

∫ T

0
[ρ1 (t) l(t)+ ρ (t) lx(t)φ (t)

+ρ(t)Ê [
∂μl(t)

]
φ(t)+ ρ(t)lv(t)v(t)

]
dt

+ E
[
ρ1 (T) ψ(x (T) ,Px(T))

]
+ E

[
ρ (T) ψx(x (T) ,Px(T))φ (T)

]
+ E

[
ρ (T) Ê

[
∂μψ(x (T) ,Px(T); x̂ (T))

]
φ (T)

]
. (20)

Proof: Using the Taylor expansion, Lemmas 3.3 and 3.4, we get

lim
ε→0

ε−1
E

[
ρε (T) ψ(xε (T) ,Pxε(T))− ρ (T) ψ(x (T) ,Px(T))

]
= E

[
ρ1(T)ψ(x(T),Px(T))+ ρ(T)ψx(x(T),Px(T))φ (T)

]
+ E

[
ρ (T) Ê

[
∂μψ(x(T),Px(T); x̂(T))

]
φ (T)

]
,

and

lim
ε→0

ε−1
E

∫ T

0

[
ρε(t)lε(t)− ρ(t)l(t)

]
dt

= E

∫ T

0

[
ρ1(t)l(t)+ ρ(t)lx(t)φ(t)+ ρ(t)Ê

[
∂μl (t)

]
φ̂(t)

+ρ(t)lv(t)v(t)] dt.

Then, by the fact that ε−1[J(vε(t))− J(u(t))] ≥ 0, we draw the
desired conclusion.

Note that{
dρ̃(t) = {hx(t)φ(t)+ hv(t)v(t)} dW̃(t),
ρ̃(0) = 0,

(21)

where ρ̃(t) = ρ−1(t)ρ1(t).
By applying Itô’s formula to �(t)φ(t), y(t)ρ̃(t) and tak-

ing expectation respectively, where φ(0) = 0 and ρ̃(0) = 0, we
obtain

E
u [�(T) φ (T)]

= E
u
∫ T

0
�(t) dφ (t)+ E

u
∫ T

0
φ (t) d�(t)
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+ E
u
∫ T

0
Q(t)

[
σx(t)φ(t)+Ê

[
∂μσ(t)φ̂(t)

]+σv(t)v(t] dt
+ E

u
∫ T

0
Q(t)

[
cx(t)φ(t)+Ê

[
∂μc(t)φ̂(t)

]+cv(t)v(t)
]
dt

+ E
u
∫ T

0

∫
�

R (t, θ)
[
gx(t, θ)φ(t)+Ê

[
∂μg (t, θ) φ̂ (t)

]
+gv(t, θ)v(t)

]
m (dθ) dt

= I1+I2+I3+I4. (22)

First, note that

I1 = E
u
∫ T

0
�(t) dφ (t)

= E
u
∫ T

0
�(t)

[
fx(t)φ(t)+ Ê

[
∂μf (t)φ̂(t)

] + fv(t)v(t)
]
dt

= E
u
∫ T

0
�(t) fx(t)φ(t) dt

+ E
u
∫ T

0
�(t) Ê

[
∂μf (t)φ̂(t)

]
dt

+ E
u
∫ T

0
�(t) fv(t)v(t) dt.

We proceed to estimate I2, From Equation (12), we have

I2 = E
u
∫ T

0
φ (t) d�(t)

= −E
u
∫ T

0
φ (t)

[
fx (t)� (t)

+Ê
[
∂μ̂f (t) �̂ (t)

] + σx (t)Q(t)

+ Ê
[
∂μσ̂ (t) Q̂(t)

] + cx (t)Q(t)+ Ê

[
∂μ̂c (t) Q̂(t)

]
+ lx (t)+ Ê

[
∂μ̂l (t)

]
+

∫
�

[
gx (t, θ)R (t, θ)+ Ê

[
∂μ̂g (t, θ) R̂ (t, θ)

]]
m (dθ)+ hx (t)K(t)] dt.

By simple computation, we have

I2 = −E
u
∫ T

0
φ (t) fx (t)� (t) dt

− E
u
∫ T

0
φ (t) Ê

[
∂μ̂f (t) �̂(t)

]
dt

− E
u
∫ T

0
φ (t) σx (t)Q(t) dt

− E
u
∫ T

0
φ (t) Ê

[
∂μσ̂ (t) Q̂(t)

]
dt

− E
u
∫ T

0
φ (t) cx (t)Q(t) dt

− E
u
∫ T

0
φ (t) Ê

[
∂μ̂c (t) Q̂(t)

]
dt

− E
u
∫ T

0
φ (t) lx (t) dt − E

u
∫ T

0
φ (t) Ê

[
∂μ̂l (t)

]
dt

− E
u
∫ T

0

∫
�

φ (t) gx (t, θ)R (t, θ)m (dθ) dt

− E
u
∫ T

0

∫
�

φ (t) Ê
[
∂μ̂g (t, θ) R̂ (t, θ)

]
m (dθ) dt

− E
u
∫ T

0
φ (t) hx (t)K(t) dt.

Similarly, we can obtain

I3 = E
u
∫ T

0
Q(t)

[
σx(t)φ(t)+ Ê

[
∂μσ(t)φ̂(t)

] + σv(t)v(t)
]
dt

+ E
u
∫ T

0
Q(t)

[
cx(t)φ(t)+Ê

[
∂μc(t)φ̂(t)

]+cv(t)v(t)
]
dt,

and

I4 = E
u
∫ T

0

∫
�

R (t, θ)
[
gx(t, θ)φ(t)+ Ê

[
∂μg (t, θ) φ̂ (t)

]
+gv(t, θ)v(t)

]
m (dθ) dt.

Then, applying Itô’s formula to y(t)ρ̃(t) and taking expectation,
we get

E
u [

y (T) ρ̃ (T)
] = E

u
∫ T

0
y (t) dρ̃ (t)+ E

u
∫ T

0
ρ̃ (t) dy (t)

+ E
u
∫ T

0
K (t) {hx(t)φ (t)+ hv(t)v(t)} dt

= J1+J2+J3, (23)

where J1 = Eu ∫ T
0 y(t) dρ̃(t) is a martingale with zero expecta-

tion. Moreover, by a simple computations, we get

J2 = E
u
∫ T

0
ρ̃ (t) dy (t) = −E

u
∫ T

0
ρ̃ (t) l(t) dt,

and

J3 = E
u
∫ T

0
K (t) [hx(t)φ(t)+ hv(t)v(t)] dt.

Now, by applying Fubini’s theorem, we obtain

E
u
∫ T

0
�(t) Ê

[
∂μ̂f (t) φ̂ (t)

]
dt

= E
u
∫ T

0
φ (t) Ê

[
∂μf (t)�̂(t)

]
dt, (24)

E
u
∫ T

0
Q (t) Ê

[
∂μσ̂ (t) φ̂ (t)

]
dt

= E
u
∫ T

0
φ (t) Ê

[
∂μσ(t)Q̂(t)

]
dt, (25)

E
u
∫ T

0
Q (t) Ê

[
∂μ̂c (t) φ̂ (t)

]
dt
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= E
u
∫ T

0
φ (t) Ê

[
∂μc(t)Q̂(t)

]
dt, (26)

and

E
u
∫ T

0

∫
�

R (t, θ) Ê
[
∂μ̂g (t, θ) φ̂ (t)

]
m (dθ) dt

= E
u
∫ T

0

∫
�

φ (t) Ê
[
∂μg(t, θ )̂R (t, θ)

]
m (dθ) dt. (27)

Finally, substituting (22), (23), (24), (25), (26) and (27) into (20),
this completes the proof of Theorem 3.1. �

4. Partially observedMcKean–Vlasov linear quadratic
control problemwith jumps

In this section, as an application, we study partially observed
optimal control problem for Mckean–Vlasov linear quadratic
control problem with jump diffusion, where the stochastic sys-
tem is described by a set of linear McKean–Vlasov stochastic
differential equations and the cost is described by a quadratic
function.

By applying our stochastic maximum principle established
in Section 3 and classical filtering theory, we obtain an explicit
expression of the optimal control represented in feedback form
involving both controlled state process x(t) as well as its law
represented by E[x(t)] via the solutions of ordinary differential
equations (ODEs).

Consider the following partially observed control system:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dxv (t) = f
(
t, xv (t) ,Pxv(t), v (t)

)
dt

+ σ
(
t, xv (t) ,Pxv(t), v (t)

)
dW (t)

+ c
(
t, xv (t) ,Pxv(t), v (t)

)
dW̃ (t)

+
∫
�

g
(
t, xv (t−) ,Pxv(t−), v (t) , θ

)
Ñ (dθ , dt)

xv (0) = x0,
(28)

where
f
(
t, xv (t) ,Pxv(t), v (t)

) = A (t) x (t)

+ B (t)E [x (t)] + C (t) v (t) ,

σ
(
t, xv (t) ,Pxv(t), v (t)

) = D (t) ,

c
(
t, xv (t) ,Pxv(t), v (t)

) = 0,

g
(
t, xv (t−) ,Pxv(t−), v (t) , θ

) = F (t) ,

h(t, xv (t) , v (t)) = G (t) ,

with an observation{
dY(t) = G (t) dt + dW̃ (t) ,
Y(0) = 0, (29)

and the quadratic cost functional

J (v (·)) = E
u
[∫ T

0
L (t) v2 (t) dt + MTx2 (T)

]
. (30)

Here, the coefficients A(·), B(·),C(·), D(·), F(·), G(·) and L(·)
are bounded continuous functions and MT ≥ 0. For any v ∈

Uad([0,T]), Equations (28) and (29) have a unique solutions
respectively.

Our goal is to find an explicitly optimal control to min-
imise the cost functional J(v(·)) over v(·) ∈ Uad([0,T]), subject
to (28) and (29).

Now, we begin to seek the explicit expression of the optimal
control by two steps.

First step. Find optimal control.
We start by write down the Hamiltonian function H:

H(t, x, v,�,Q,Q,R (·)) = [A (t) x (t)+ B (t)E [x (t)]

+C (t) v (t)]�(t)+ D (t)Q (t)

+ G (t)K (t)+ L (t) v2 (t)

+
∫
�

F (t)R (t, θ)m (dθ) , (31)

where x(·) is the optimal trajectory, solution of Equation (28)
corresponding to the optimal control u(·).

By Theorem 3.1 and (31), the optimal control u(·) satisfies
the following expression:

u (t) = −1
2
L−1 (t)C (t)E

[
�(t) |FY

t
]
, (32)

where (�(·),Q(·),Q(·),R(·, ·)) is the solution of the following
BSDE: ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

−d�(t) = [A (t)� (t)+ B (t)E [�(t)]] dt

− Q (t) dW (t)− Q(t) dW̃(t)

−
∫
�

R (t, θ) dÑ (dθ , dt) ,

�(T) = 2MTx (T) .

(33)

Second step. Give the explicit expression of the optimal control
in (32).

From Liptser and Shiryayev (1977) and Xiong (2008), we can
deduce the following group of filtering equations:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
d̂x (t) = [

A (t) x̂ (t)+ B (t)E [̂x (t)] − 1
2L

−1 (t)C2 (t) �̂ (t)
]
dt

−d�̂ (t) = [
A (t) �̂ (t)+ B (t)E

[
�̂ (t)

]]
dt − Q̂ (t) dW̃ (t) ,

x̂ (0) = x0, �̂ (T) = 2MTx̂ (T) , Q̂ (t) = 0,
(34)

where ξ̂ (t) = Eu[ξ(t) | FY
t ] is the filtering estimate of the state

ξ(t) depending on the observable filtration FY
t , ξ = x,�,Q.

Now, to solve the above Equation (34), we conjecture a
process �̂(·) of the form

�̂ (t) = ϕ (t) x̂ (t)+ ψ (t)E [̂x (t)] , (35)

where ϕ(·),ψ(·) are deterministic differential functions.
We derive (35) and comparing it with (34), we get

− {A (t) (ϕ (t) x̂ (t)+ ψ (t)E [̂x (t)])

+B (t)E [ϕ (t) x̂ (t)+ ψ (t)E [̂x (t)]]}
= ϕ̇ (t) x̂ (t)+ ψ̇ (t)E [̂x (t)]
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+ ϕ (t)
{
A (t) x̂ (t)+ B (t)E [̂x (t)]

−1
2
L−1 (t)C2 (t) (ϕ (t) x̂ (t)+ ψ (t)E [̂x (t)])

}
+ ψ (t)

{
(A (t)+ B (t))E [̂x (t)] − 1

2
L−1 (t)C2 (t)

× E [ϕ (t) x̂ (t)+ ψ (t)E [̂x (t)]]} . (36)

By comparing the coefficients of x̂(t) andE[̂x(t)] in (36), we get
the following ODEs:⎧⎨⎩ϕ̇ (t)+ 2A (t) ϕ (t)− 1

2
L−1 (t)C2 (t) ϕ2 (t) = 0,

ϕ (T) = 2MT ,
(37)

and⎧⎪⎪⎨⎪⎪⎩
ψ̇ (t)+ 2 (A (t)+ B (t)) ψ (t)+ 2B (t) ϕ (t)

−L−1 (t)C2 (t) ϕ (t) ψ (t)− 1
2
L−1 (t)C2 (t) ψ2 (t) = 0,

ψ (T) = 0.
(38)

Note that Equations (37) and (38) are Bernoulli differen-
tial equation and Riccati differential equation respectively. To
solve (37) and (38), we can use the similar method in Lakhdari
et al. (2021). Then, the optimal control u(·) ∈ Uad([0,T]) for the
problem (30) is given in the feedback form

u (t, x̂(t)) = −1
2
L−1 (t)C (t) [ϕ (t) x̂ (t)+ ψ (t)E [̂x (t)]],

where ϕ(·),ψ(·) determined by (37) and (38) respectively.

5. Conclusion

In this paper, we have developed the necessary conditions for
partially observed stochastic optimal control problem, where
the controlled state process is governed by general McK-
ean–Vlasov differential equations with jumps. By transforming
the partial observation problem to a related problem with full
information, a stochastic maximum principle for optimal con-
trol has been established via the derivative with respect to prob-
ability measure. A partially observed linear-quadratic control
problem with jumps has been solved explicitly to illustrate our
theoretical results. The main feature of these results is to explic-
itly solve some mathematical finance problems such as condi-
tionalmean–variance portfolio selection problem in incomplete
market. Apparently, there are many problems left unsolved, and
one possible problem is to establish some optimality conditions
for partially observed stochastic optimal control for systems
described by forward–backward stochastic differential equa-
tions of general McKean–Vlasov type with jumps with some
applications.
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Appendix
Proposition A.1: Let G be the predictable σ -field on �× [0,T], and f be a
G × B(�)-measurable function such that

E

∫ T

0

∫
�

∣∣f (r, θ)∣∣2 m(dθ) dr < ∞,

then for all p ≥ 2 there exists a positive constant C = C(T, p,m(�)) such
that

E

[
sup

0≤t≤T

∣∣∣∣∫ t

0

∫
�

f (r, θ)N(dθ , dr)
∣∣∣∣p

]
<CE

[∫ T

0

∫
�

∣∣f (r, θ)∣∣p m(dθ) dr] .

Proof: See Bouchard and Elie (2008, Appendix). �
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