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A B S T R A C T   

Sediment transport modeling has been known as an essential issue and challenging task in water resources and 
environmental engineering. In order to minimize the adverse impacts of the continues sediment deposition that is 
known as a main source of pollution in the urban area, the self-cleansing method is widely utilized for designing 
the sewer pipes to create a condition to keep the bottom of channel clean from sedimentation. In the present 
study, an extensive data range is utilized for modeling the sediment transport in non-deposition with clean bed 
condition. Regarding the effective parameters involved, four different scenarios are considered for the modeling. 
To this end, four standalone methods including the M5P, reduced error pruning tree (REPT), random forest (RF) 
and random tree (RT) and two hybrid models based on rotation forest (ROF) and weighted instances handler 
wrapper (WIHW) techniques are developed and result compared with three empirical equations. Based on the 
results, the hybrid WIHW-RT and WIHW-RF models provide better performance in particle Froude number 
estimation in comparison to other standalone and hybrid models. Performances of the most of the models are 
found accurate except RT and REPT standalone models. The outcomes revealed that the empirical models have 
considerable overestimation. Generally, hybrid data mining methods yield more precise estimations of sediment 
transport in contrast to the regression equations and standalone models. Particularly, both WIHW-RT and WIHW- 
RF models provide almost the same performances however, as WIHW-RT can better capture the extreme particle 
Froude number values, it slightly outperforms WIHW-RF. Promising findings of the current study may encourage 
the implementation of the recommended approaches in alternative hydrological problems.   

1. Introduction 

Sewers and urban drainage systems should be designed to overcome 
several problems related to the sediment deposition (Butler et al., 2003; 
Safari et al., 2018). Designing rigid boundary channels based on sedi-
ment transport principles is an important problem in hydraulics, hy-
drology, and environmental engineering. Sediment deposition has 
detrimental environmental effects such as sediment contamination with 
poisonous materials, decreasing the channel hydraulic capacity which in 
turn can cause changes in the shear stress and velocity distributions, 
roughness, and the channel cross-section shape (Ashley et al., 1992; 
Ackers et al., 1996; Ota and Nalluri, 2003). Therefore, the self-cleansing 
concept is used in designing the channels and sewer systems to solve the 
above-mentioned problems. Self-cleaning is known as a condition in 

which sediments continue to transport without deposition (May et al., 
1996). This method is classified into three categories of incipient motion 
(Wan Mohtar et al., 2021), incipient deposition (Safari, 2020) and non- 
deposition with clean bed and with deposited bed (Ab Ghani, 1993; 
Kargar et al., 2019; Montes et al., 2020; Nalluri and Ghani, 1996; Safari 
and Aksoy, 2021; May, 1993). In the incipient motion, the sediment 
particles initiate to transport in the channel bed. The incipient deposi-
tion is explained as a state in which sediments (suspended in the flow) 
tend to deposit at the channel bed or convey as bed load (Loveless, 1992; 
Safari, 2020). At the non-deposition with clean bed state, the bottom of 
the channel remains clean from sediment deposition. This method is a 
conservative approach in designing of the small sewers (Ab Ghani, 1993; 
Montes et al., 2020). The non-deposition with deposited bed condition is 
applied for large pipes design. Although the small thickness of sediment 
is present at the bottom of the channel to decrease design slope, applying 
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this approach has no an adverse effect on the channel performance (Ota 
and Nalluri, 2003; Safari and Shirzad, 2019). Large channels should be 
designed with higher self-cleansing velocity and accordingly applying 
non-deposition with clean bed criterion is not an economical design 
method (Ab Ghani, 1993; May, 1993; Safari and Shirzad, 2019). Owing 
to the reason that the bed load transport is near the constant deposition 
situation, most of the studies investigated the bed load transport (Nalluri 
and Ghani, 1996; Ota and Nalluri, 2003; Safari and Aksoy, 2021). Due to 
the simple structure and using limited datasets, regression approaches 
were mostly implemented for the modeling. The main deficiencies of the 
existing empirical equations are that, they are over-fitted on the entire 
data, applying conventional best-fit regression approaches (Ebtehaj 
et al., 2020; Montes et al., 2021). This is the main reason that, afore-
mentioned studies recommended empirical equations that have 
acceptable performances only on the datasets used for the model 
development as described by Safari et al. (2018). To this end, utilizing 
wide range of experimental data and applying robust machine learning 
(ML) algorithms can overcome deficiencies of the empirical equations. 

The data mining and ML models have drawn considerable attention 
in solving complex problems related to the water and environmental 
engineering (Zhao et al., 2020; Zounemat-Kermani et al., 2020; Kao 
et al., 2020; Huang et al., 2021). Recently, these models have exten-
sively been used to overcome difficulties that occur in numerical models 
and also limitations and high costs of laboratory models. Such algo-
rithms establish a functional relationship between the parameters 
involved. As examples in application of ML techniques in sediment 
transport molding, Kargar et al. (2019) used two methods of gene 
expression programming (GEP) and neuro-fuzzy (NF) and demonstrated 
that the NF method has acceptable precision in sediment transport 
prediction. The GEP method was utilized by Roushangar and Gha-
sempour (2017) for bed load sediment modeling in sewer pipes to show 
that GEP models have superior performance when compared to the 
empirical equations. For the same purpose, generalized regression 

neural network (GR), decision tree (DT), and multivariate adaptive 
regression splines (MARS) methods were used by Safari (2019). Ac-
cording to the obtained results, MARS and GR models gave better results 
in contrast to the DT in particle Froude number estimation. Applying a 
new pareto-optimal method, which was established through multigene 
genetic programming (MGGP) technique, Safari and Danandeh Mehr 
(2018) recommended design tools for large sewers. A hybrid algorithm 
of feed-forward neural network-extreme learning machine (FFNN-ELM) 
was implemented by Ebtehaj et al. (2016) to show its superiority to the 
empirical models. It should be noticed that selecting of an algorithm 
which works well in all conditions is a challenging task in hydrological 
modeling. Generally a neuron–based algorithms like artificial neural 
network (ANN), support vector machine (SVM) and adaptive neuro- 
fuzzy inference system (ANFIS) have some drawbacks such as needing 
to a large dataset for learning, over-fitting problem, exact determination 
of weights in membership function, and hyper-parameters. Recently, 
novel ML algorithms have been explored to address some of the weak-
nesses of traditional ML methods. For instance, Hussain and Khan 
(2020) declared random forest (RF) has a higher performance than ANN 
and SVM for hydrological modeling. Novel types of ML approaches like 
tree, lazy, and rule based-algorithms can solve aforementioned issues 
and may outperform those traditional ML models. 

In the present study, sediment transport is modeled using four 
standalone models of M5P, reduced error pruning tree (REPT), random 
forest (RF) and random tree (RT) and, two techniques of rotation forest 
(ROF) and weighted instances handler wrapper (WIHW) are utilized for 
hybridization of standalone models. Conducted studies on this topic 
have indicated that innovative tactics with a probabilistic basis and 
considering non-linear relationships in the estimation of the sediment 
transport could increase the accuracy of the prediction. These ap-
proaches have not been evaluated so far; therefore, this study recom-
mends novel approaches for sediment transport modeling. 

Organization of the manuscript is as follows: In Section 2, existing 

Nomenclature 

b bootstrap sample in RF 
B water surface width (m) 
Cv sediment volumetric concentration (-) 
d sediment median size (m) 
D circular pipe diameter (m) 
DT decision tree 
Dgr dimensionless grain size (-) 
ELM extreme learning machine 
FFNN-ELM feed-forward neural network-extreme learning machine 
f function symbol 
Frp particle Froude number (-) 
FCM-ANFIS fuzzy c-means based adaptive neuro-fuzzy inference 

system 
g gravitational acceleration (m s− 2) 
GEP gene expression programming 
GS-GMDH generalized structure group method of data handling 
GR generalized regression neural network 
MAE mean absolute error (-) 
MAPE mean absolute percentage error (-) 
MARS multivariate adaptive regression splines 
MGGP multigene genetic programming 
ML machine learning 
n number of data 
NF neuro-fuzzy 
NSE Nash–Sutcliffe efficiency (-) 
P wetted perimeter (m) 
PCC Pearson correlation coefficient (-) 

PBIAS percentage of bias (-) 
qc class prediction 
R hydraulic radius (m) 
REPT reduced error pruning tree 
RF random forest 
RMSE root mean square error (-) 
ROF rotation forest 
RT random tree 
s relative density of sediment to fluid (-) 
sd standard deviation 
SDR standard deviation reduction 
Sc stopping criterion 
Si attributes values set 
Tb RF tree 
Uc leaf-within variance 
V flow mean velocity (m s− 1) 
W rectangular channel bed width (m) 
WIHW weighted instances handler wrapper 
x input parameter 
xo

i observed value 
xo

i average of observed values 
xp

i predicted value 
Y flow depth (m) 
λ channel friction factor (-) 
ν kinematic viscosity (m2 s− 1) 
ρ water density (kg m− 3) 
ρs sediment density (kg m− 3)  
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empirical models for self-cleansing channel design are briefly reviewed 
followed by description of the experimental procedure and data prepa-
ration. Explanation of the utilized ML algorithms and model perfor-
mance criteria are also given in Section 2. In Section 3, different input 
combinations are assessed and then the best models are compared to 
their alternatives. Section 4 presents the discussion of the results high-
lighting the research question, analyzing the results, generalization of 
the main findings, comparing the obtained results with similar studies in 
the literature, possible practical application of the developed models, 
limitation of the current study and future research directions. Finally in 
Section 5 concluding remarks are explained. 

2. Material and methods 

For the sake of understanding the effective parameters involved in 
sediment transport for channel design consideration, firstly existing 
empirical models are briefly reviewed to explain the structure of the 
developed models. Secondly, utilized experimental data are described 
and data preparation procedure are given. Thirdly, basic information of 
the applied algorithms are explained and fourthly, model performance 
criteria are described for models performance evaluation. 

2.1. Non-deposition with clean bed 

Among variety of criteria for self-cleansing channel design, non- 
deposition with clean bed has been widely used (Montes et al., 2020; 
Safari and Aksoy, 2021; Vongvisessomjai et al., 2010). Applying this 
criterion, the required flow velocity or shear stress of the bed load 
should be considered to retain the sediment particles in motion within 
the flow in the non-deposition self-cleansing condition. As documented 
in Safari and Danandeh Mehr (2020), in the past (before 1990s in the UK 
and until present in some countries) as a conventional design method, a 
certain quantity of shear stress or velocity was considered (based solely 
on experience). Minimum velocity was mostly utilized from the range of 
0.3 m/s to 1 m/s as a design criterion in USA, UK, Germany, and France. 
Furthermore, it changes for each country considering the sewer type 
(Mayerle, 1988). In this approach, some essential factors such as size of 
sewer and sediment properties are not considered. Moreover, shear 
stress approach is implemented in some European countries including 
Norway, Germany, Sweden and USA within the range of 1–12.6 N/m2 

(Vongvisessomjai et al., 2010). This method has some defects just like 
the minimum velocity method. In order to overcome these deficiencies, 
more hydraulic parameters are used in the modeling (Safari et al., 2018). 
Different models are recommended for bed and suspended loads. In this 
study, the bed load under the non-deposition condition is investigated. 

Since 1990s, conventional design approaches mentioned above has 
been modified to consider more hydraulic parameters (Safari et al., 
2018). Regarding the empirical equations reported in the literature (as 
described below), various effective parameters related to the properties 
of sediment, fluid, channel and flow play crucial roles in the modeling. 
For this reason, to develop a model, hydraulic radius (R), flow velocity 
(V), fluid kinematic viscosity (ν), acceleration due to gravity (g), water 
density (ρ), sediment density (ρS), sediment median size (d), volumetric 
concentration of sediment (Cv), and friction factor of channel (λ) are 
considered. Based on the models in the literature, the above-mentioned 
parameters can be given as (Mayerle et al., 1991) 

V
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
gd(s − 1)

√ = f (Cv,Dgr,
d
R
, λ) (1)  

where s is relative sediment density, f is function symbol and Dgr is 
dimensionless grain size which is expressed as follows (Ab Ghani, 1993) 

Dgr =

(
(s − 1)gd3

ν2

)1
3

(2) 

The parameters given in right side of the Eq. (1) are selected as 

independent parameters and the left hand side is considered as a 
dependent parameter which is the particle Froude number (Frp). As 
examples from the relevant literature, Loveless (1992) performed ex-
periments in the incipient deposition and non-deposition of bed load to 
examine the models suggested by Ackers and White (1973) and, May 
(1982). May (1982) reported that pipe diameter, sediment concentra-
tion, and size of sediment play an important role in non-deposition flow 
velocity. May (1993) developed models for bed load in the circular pipe 
channels and improve the previously reported models. Mayerle et al. 
(1991) organized tests in circular channels and recommended the 
following formula 

V
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
gd(s − 1)

√ = 14.43C0.18
v D− 0.14

gr

(
d
R

)− 0.56

λ0.18. (3) 

Vongvisessomjai et al. (2010) performed experiments in circular 
channels to analyze the non-deposition condition and recommended 
following relationship 

V
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
gd(s − 1)

√ = 4.31C0.226
v

(
d
R

)− 0.616

(4) 

Ab Ghani (1993) conducted tests to examine the effect of roughness 
and pipe size. For this purpose, Ab Ghani (1993) used experimental data 
of Loveless (1992), May et al. (1989) and Mayerle (1988) together with 
his own data to suggest a bed load self-cleansing model as follows 

V
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
gd(s − 1)

√ = 3.08C0.21
v D− 0.09

gr

(
d
R

)− 0.53

λ− 0.21 (5) 

Ab Ghani (1993) pointed out that if the channel size, sediment 
concentration, and roughness increase, the self-cleansing velocity rises. 
Montes et al. (2020) performed experiments in a larger pipe and rec-
ommended the following formula 

V
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
gd(s − 1)

√ = 4.79λ0.058C0.209
v

(
d
R

)− 0.593

(6) 

Safari (2016) conducted experiments in different cross-section 
channels of trapezoidal, U-shape, circular, V-bottom and rectangular. 
Safari and Aksoy (2021) introduced the shape factor of P/B and 
recommended 

V
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
gd(s − 1)

√ = 4.38C0.09
v D− 0.14

gr

(
d
R

)− 0.32(P
B

)0.20

(7)  

where P is wetted perimeter and B water surface width. The self- 
cleansing models are established by means of regression approach 
establieshed on experimental data. The accuracy of models can be linked 
to the data range and implemented techniques for the modeling. Hence, 
several data sets with an extensive range of sediment and pipe properties 
are used to develop novel self-cleansing models applying robust ML al-
gorithms in the current study. 

2.2. Experimental data 

For the purpose of modeling sediment transport under the condition 
of non-deposition with clean bed, four sets of data including Vongvi-
sessomjai et al. (2010), Ab Ghani (1993), May (1993), and Mayerle 
(1988) are utilized which are available in Safari et al. (2018). The ranges 
of the 375 data taken from the aforementioned studies are shown in 
Table 1. Vongvisessomjai et al. (2010) organized tests using sediment 
sizes ranging of 0.2–0.43 mm in pipes having diameters of 100 mm and 
150 mm. Ab Ghani (1993) performed experiments in 154 mm, 305 mm, 
and 450 mm-diameter circular channels utilizing seven various sedi-
ment sizes between 0.46 and 8.3 mm. In the tests of May (1993), sedi-
ment size of 0.73 mm and the circular channel with the diameter of 450 
mm were utilized. Mayerle (1988) carried out tests in both rectangular 
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and circular cross-section channels. In the tests of rectangular channels 
with the 462 mm and 311.5 mm widths, five different sediment sizes of 
0.5–5.22 mm and, in 152 mm-diameter circular channel, sediment sizes 
of 0.5–8.74 mm were used. 

2.3. Data preparation and model scenarios 

At the first step of the data preparation, utilizing four data sets used 
in this study, parameters given in Eq. (1) are computed. The left hand 
side of Eq. (1) as particle Froude number (Frp) is considered as a model 
output and parameters given in the right hand side (Cv, Dgr, d/R, λ) are 
incorporated into the model as inputs. Through the modeling, train and 
test stages are required. For this purpose, entire data are split in two 
sections. From entire 375 data, 80% of the data are utilized for training 
and the rest of data (20%) are considered for testing the model, 
randomly. Feasible models with respect to the inputs and output pa-
rameters are discovered in the training step and then, the accuracy of the 
established models is assessed on the rest of the dataset in the testing 
part. Table 2 shows a data range in the train and test parts. If an 
extensive data range is considered for the train part and a narrow range 
for the test part, the model cannot be an accurate and reliable tool. As 
can be seen in Table 2 ranges of data for each part (train and test) are 
selected almost equally for acquiring more reliable results. 

After determination of the input variables based on the literature 
review, the next step is to identify the best input scenario as irrelevant or 
less effective input variables may led to lower prediction accuracy of the 
models. To meet this goal, first Pearson correlation coefficient (PCC) 
between input and output variables is applied. Next, several input sce-
narios are constructed based on PCC. A variable having the highest 
correlation with Frp is considered as the first input scenario. Thereafter, 
variables with the second highest PCC are added to the first input and 
scenario No. 2 is built. This approach is continued until all input vari-
ables involve in building the input scenarios. It is found that Dgr with a 
higher correlation coefficient of − 0.678 is the most effective parameter 
among others for Frp prediction followed by d/R, Cv and λ having cor-
relation coefficient of − 0.649, − 0.245 and − 0.026, respectively. As 
there are four input variables, thus, according to this approach, four 
input scenario are constructed as shown in Table 3. 

2.4. Models theory background 

Machine learning algorithms are implemented in this study using 
Waikato Environment for Knowledge Analysis (WEKA 3.9) software 
(Hall et al., 2009). 

2.4.1. M5Prime (M5P) 
The M5P algorithm is a linear tree-based model that was first 

introduced by Quinlan (1992). This technique can be used in various 
fields of engineering (Heddam and Kisi, 2018; Khosravi et al., 2018). 
The M5P model is an adaptable method in which the decision tree that 
constructs the M5P can possess multivariate linear models. This tech-
nique has some advantages, for example, it can handle missing data 
without vagueness and, handling a large amount of data with large 
numbers of properties and dimensions (Zhan et al., 2011). Through 
several steps of building and smoothing the tree, the M5P tree model is 
developed. Constructing the tree is performed by dividing the input data 
into various subcategories. In the M5P method, in the growing proced-
ure of the tree, the standard deviation reduction (SDR) is utilized to 
minimize the errors and reaching the best result. The SDR factor is 
defined as follows (Heddam and Kisi, 2018) 

SDR = sd(S) −
∑

i

|Si|

|S|
sd(Si) (8) 

in which S is a set of examples, Si is the subsets of examples, number 
of the examples is i to n, and sd(S) is the standard deviation. The second 
step (tree pruning) is initiated to remove unnecessary sub-trees. The aim 
of this step is refraining data from the over-fitting matter that happen in 
the first step of building a tree. Moreover, in order to decrease the error, 
the attributes are reduced, separately. Compensating the discontinuities 
among adjoining linear models at the leaves of the pruned tree is 
accomplished in the third step of smoothing (Wang and Witten, 1997). 
Furthermore, the final model can be generated through combining leaf 
to root. The estimated leaf quantity throughout the smoothing step is 
filtered back to the root as its path. 

2.4.2. Random forest (RF) 
The random forest suggested by Breiman (2001) is a method for 

analyzing the regression and classifying problems. This technique is 
established on the composition of several decision trees and it is able to 
solve various problems in the field of water resources (Shiri, 2018; Yu 
et al., 2017; Zhao et al., 2018; Sadler et al., 2018). The weak perfor-
mance of the traditional regression tree is due to the over-fitting on the 
train datasets. However, this deficiency is solved using the RF model 
which uses a random feature. Random features utilized a range of 

Table 1 
Utilized data range.   

D or W (mm) d (mm) Y (mm) λ (-) Cv (ppm) V (m/s) No. 

Mayerle (1988) D = 152 0.50–8.74 28–122 0.016–0.034 20–1275 0.37–1.10 106 
W = 311.5–462 0.50–5.22 31–111 0.011–0.025 14–1568 0.41–1.04 105 

Ab Ghani (1993) D = 154–450 0.46–8.30 24–342 0.013–0.048 4–1450 0.24–1.21 110 
May (1993) D = 450 0.73 222–338 0.014–0.018 2–38 0.50–1.22 27 
Vongvisessomjai et al. (2010) D = 100–150 0.20–0.43 30–60 0.034–0.053 4–90 0.24–0.63 27 

D: circular channel diameter; W: rectangular channel bed width; d: sediment median size; λ: channel friction factor; Y: flow depth; V: flow mean velocity; Cv: sediment 
volumetric concentration and No. number of data. 

Table 2 
Range of data in each part of training and testing.  

Phase  Cv Dgr d/R λ Frp 

Training Max  0.002  215.591  0.380  0.053  13.529 
Min  0.000  5.059  0.005  0.011  1.311 
Mean  0.000  67.533  0.068  0.021  4.402 
St.D  0.000  59.961  0.073  0.008  2.321 
Skewnes  1.697  1.167  1.745  1.691  1.041 
Kurtosis  2.177  0.384  3.100  3.473  0.948 

Testing Max  0.001  215.591  0.416  0.047  10.483 
Min  0.000  5.059  0.006  0.011  1.298 
Mean  0.000  56.325  0.063  0.024  4.408 
St.D  0.000  57.638  0.084  0.011  2.035 
Skewnes  1.868  1.437  2.603  0.895  0.602 
Kurtosis  3.399  1.301  7.530  − 0.510  − 0.215  

Table 3 
Input and output parameters.  

No. Inputs Output 

1 Dgr Frp 

2 Dgr, d/R, 
3 Dgr, d/R, Cv 

4 Dgr, d/R, Cv, λ  
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variables in the structure of the tree in the process of growing. Then, for 
creating a powerful prediction according to the determined data set, 
produced trees are intermingled. The average value of estimated single 
outputs is considered as an output result. The difference of random 
forest with conventional regression tree is that, in the process of creating 
trees, the RF uses bootstrap samples as a substituted of whole training 
datasets. Dividing data in the decision tree method is done with the best 
splitter variable but, in the RF method, this process is accomplished by 
selecting the predictors randomly. Using the data without rescaling 
them is one of the features of the RF method. Moreover, several trees are 
used in the structure of the RF method and it indicates the accurate 
prediction of this technique. The RF model is formed over a random 
vector that produces the trees. Numerical values are the outcomes of tree 
predictors (Breiman, 2001). 

By considering the training data as S with variables of P and N as 
records, it is planned to get the computation f for input x. Using two 
methods of bagging averages or bootstrap aggregation, the variance is 
decreased in prediction. The model is established for every bootstrap 
sample of b = 1, 2, 3, …, B. In the first step, through selection of m 
variables from the set of P variables in random, the RF model is pro-
duced. Then, the best variables are selected from m variables, and in the 
last step, by splitting the node, two daughter nodes are created (Hastie 
et al., 2009). 

Repeating this procedure is continued to minimize the node size nmin 
at every final node in order to develop a random forest tree (Tb). The 
estimation at the point of x is demonstrated as follows (Hastie et al., 
2009) 

f B
rf (x) =

1
B
∑B

b=1
Tb(x) (9)  

2.4.3. Random tree (RT) 
RT method is similar to the classification and regression tree (CART); 

however, it has some differences in its operation where for choosing the 
subsets, it utilizes a ratio parameter. For creating the classification 
model, RT method predicts the quantities of the label based on the input 
attributes. The RT method’s fast and flexible nature allows it to be used 
in various fields to solve a wide range of issues. The performance of the 
RT model is influenced by different parameters including randomly 
selected attribute number known as K value, defining the best instances 
process number known as size of batch, minimizing leaf total weight of 
the instance and minimum variance probability to demonstrate the 
minimum rate of variance on the entire data set. 

2.4.4. Reduced error pruning tree (REPT) 
The REPT method is considered as a kind of decision tree technique 

with more speed that decreases the error in the process of prediction by 
creating a decision tree (Mohamed et al., 2012). Initially, regression tree 
logic is used for building numerous trees in different iterations. There-
after, the best tree giving the lesser error is chosen among numerous 
trees. After these two steps, in order to inhibit the over-fitting problems, 
the reduced error pruning (REP) method is utilized. Furthermore, this 
method is able to preserve its accuracy by minimizing the tree size. The 
REPT method utilizes a stopping criterion as the sum of squared errors, 
to construct a tree model having highest information. The stopping 
criterion is defined as (Quinlan, 1987): 

Sc =
∑

c∈leaves(RT)

qcUc (10) 

in which c is an element of leaves, Uc is the leaf-within variance and 
qc is expressed as the class prediction. 

2.4.5. Rotation forest (ROF) 
ROF as an ensemble algorithm is utilized to construct sets of classi-

fiers by the usage of independently built decision trees. This method has 
aimed to construct precise and various classifiers based on the concept of 

the random forest technique (Rodriguez et al., 2006). In this method, a 
training dataset for each classifier is selected from bootstrap samples 
(Lombardo et al., 2015). By taking out various sets of tree features, 
decision trees are trained autonomously (Chen et al., 2017). Further-
more, in order to provide the train sets for learning the base classifiers, 
the principal component analysis is implemented to every subset (Wold 
et al., 1987; Nguyen et al., 2017). Main advantages of this model are 
applying the random feature selection and data transmission techniques 
to improve the diversity of the decision tree and subsequently enhancing 
the achieved result. More information about this model are well- 
documented in Nguyen et al. (2017), Hong et al. (2018), and Pham 
et al. (2020). 

2.4.6. Weighted instances handler wrapper (WIHW) 
The main advantage of the WIHW model is that, wrapper approach is 

used for weighting training instances (Karagiannopoulos et al., 2007). If 
the base classifier is not implementing the weka.core, WIHW algorithm 
uses resampling with weights technique. By default, it can control 
instance weights and the train dataset is crossed across to the base 
classifier. Meta-learning algorithms or base algorithms applied for the 
modeling use WIHW as a classifier and turn them into more robust 
learners. A certain parameter must be specified in the base classifier and 
determined the number of iterations for iterative schemes. WIHW is 
implemented as a classifier on the data to adjust a parameter. The 
unique parameters are based on the training data, which is a suitable 
method to be implemented on the test data. The WIHW is a generic 
wrapper around any classifier to enable weighted instances support 
(Joshuva and Sugumaran, 2019). Once the base classifier is not applying 
the interface and there are instance weights, WIHW implements 
resampling with weights. As a default option, the base classifier uses 
training data if could operate weights, although it may also apply 
resampling approaches together with weights. 

2.5. Performance evaluation 

In order to evaluate the models accuracy, the Nash–Sutcliffe effi-
ciency (NSE), percentage of bias (PBIAS), root mean square error 
(RMSE), mean absolute error (MAE) and mean absolute percentage error 
(MAPE) are considered as given below (Nash and Sutcliffe, 1970; Yapo 
et al., 1996; Heddam and Kisi, 2018) 

NSE = 1 −
∑n

i=1

(
xp

i − xo
i

)2

∑n
i=1

(
xo

i − xo
i

)2 (11)  

PBIAS =

∑n
i=1(xo

i − xp
i )∑n

i=1xp
i

× 100 (12)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(xo

i − xp
i )

2

n

√
√
√
√
√

(13)  

MAE =
1
n
∑n

i=1
|xo

i − xp
i | (14)  

MAPE =
1
n

∑n

i=1

⃒
⃒
⃒
⃒
xo

i − xp
i

xo
i

⃒
⃒
⃒
⃒× 100 (15) 

in which xo
i and xp

i are the observed and predicted values, respec-
tively, and n is the data number. The lesser RMSE, MAE and MAPE, and 
higher NSE values present the better results. The best result of PBIAS is 
the value closer to zero. 
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3. Results 

3.1. Examination of studied scenarios 

Among all variables for estimating the particle Froude number (Frp), 
the importance of parameters is investigated using the PCC. In this 
study, four scenarios are considered in order to estimate the output 
parameter (Frp). Owing to the results given above, the Dgr and λ are the 
most and less important independent parameters among others. In 
Fig. 1, the RMSE index is used to find the best model among all of the 
studied scenarios. As can be seen in Fig. 1, M5P (4), RF (4), RT (3), and 
REPT (3) with RMSE of 0.92, 0.74, 0.96, and 1.11 provide better results 
for different scenarios, respectively. Generally input scenario of 3 (Dgr, 
d/R, Cv,) and 4 (Dgr, d/R, Cv, λ) are found more effective than other input 
scenarios. This difference can be resulting from differences among 
model structure. 

3.2. Compression of models 

Efficiency of four standalone and eight hybrid ML models are 
examined in contrast to three empirical equations of Vongvisessomjai 
et al. (2010), Ab Ghani (1993) and Montes et al. (2020) based on 
different statistical error measurement indices. Comparison of the 
models is performed using box and whiskers plots as shown in Fig. 2, 
where whiskers are considered as stretched lines below and above the 
boxes. The lower part of the box consists of 25th percentile of data and 
the upper section of the box contains 75th percentile of the data. From 
Fig. 2, it is obvious that the box shapes and whiskers of both WIHW-RT 
and WIHW-RF models are analogous to each other and match with 
measured Frp. The obtained Frp values from those two methods are not 
perceptibly different except in predicting the maximum values of Frp 

where WIHW-RT model gives better results than the WIHW-RF model. It 
is shown in Fig. 2, almost all of the empirical models overestimate the 
Frp, and they provide similar performances. The maximum and mini-
mum Frp values are diverse due to computing with different models. For 
example, the MIHW-M5P model calculates the maximum value of Frp 
higher than other models. When the measured middle line is considered, 
both WIHW-RT and WIHW-RF model’s median lines are close to the 
measured one. Yet, in all models excluding three of them (M5P, ROF-RT, 
and WIHW-M5P), the calculated values are higher than the median 
measured line which reveals that these models have an overestimation. 
On the other hand, M5P, ROF-RT, and WIHW-M5P models indicate an 
underestimation. The alignment of the midline in the WIHW-RT model 
with the measured midline level indicates the accuracy of the WIHW-RT 
model. 

Fig. 3 depicts the comparison between the measured and estimated 
Frp. In scatter plots of both WIHW-RT and WIHW-RF models, data are 
near to the bisector line that represents the precision of two models in 
estimating Frp. Furthermore, empirical equations of Vongvisessomjai 
et al. (2010), Ab Ghani (1993) and Montes et al. (2020) generate sig-
nificant overestimation where most of the data are remained above the 
best fit line. Fig. 3 demonstrates that the hybrid algorithms provide 
better results in comparison to their standalone counterparts. For 
instance, the RT model does not provide acceptable results. But, when it 
combined with the WIHW and ROF algorithms, the estimation power of 
the RT model is improved, significantly. Moreover, the WIHW improves 
the performance of RT slightly more than the ROF technique. In order to 
identify the best method in estimating of Frp, demonstrating the quan-
titative information (Table 4) are essential. As shown in Table 4, 
although most of the models give acceptable results, the hybrid WIHW- 
RF and WIHW-RT models are able to create better outcomes and predict 
the Frp with high accuracy. Among recommended models, the RT 

Fig. 1. Selection of the most effective input scenario.  
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standalone model had lowest precision with RMSE of 1.16, MAE of 0.54, 
MAPE of 19.52 and NSE of 0.67. Likewise, all empirical equations have 
low estimation power. The PBIAS metric shown in Table 4 indicates that 
the most of the models excluding WIHW-RT and WIHW-RF have 
noticeable overestimation. It is evident that the empirical equations give 
results with low precision and significant overestimation. 

4. Discussion 

Sediment transport modeling is a complex and important water 
resource engineering problem. In the traditional self-cleansing methods, 
the minimum velocity and shear stress, which have some imperfections, 
were used. In the traditional methods, essential factors including sedi-
ment size, flow depth, pipe size, slope of the channel and sediment 
volumetric concentration are missed. However, in order to produce a 
precise model, the combination of the best input parameters with 
various range of data should be determined. In this study, considering 
the effective parameters, the best input combination is selected. 

To create the best model with high accuracy, most of the parameters 
with a wide range of data are considered and models are established 
using robust ML models including M5P, reduced error pruning tree 
(REPT), random forest (RF) and random tree (RT). Furthermore, two 
techniques of rotation forest (ROF) and weighted instances handler 
wrapper (WIHW) are implemented as optimizers to construct robust 
models. Several scenarios are utilized in order to estimate the Frp. 
Standalone models (M5P, RF, RT, and REPT) provide different outcomes 
due to their structure, intricacy, flexibility, ability in calculation, and 
preventing over-fitting problem. The hybrid models which are built 
using ROF and WIHW have high accuracy in Frp estimation because of 
their flexible and non-linear structure. Likewise, the accuracy of hybrid 
methods is completely related to the base model implemented. 

Among four standalone models, RF is the best performing model and 
has some advantages like flexibility, simplicity, low bias, deal with un-
balanced data and easy application. Overall, utilizing WIHW boosts the 
accuracy of the models. Based on the results, the hybrid WIHW-RF and 
WIHW-RT models yield the best performances. For further comparison 
of the models, Kargar et al. (2019) used two techniques of NF and GEP 
with the RMSE of 1.04 and 1.25, respectively. Ab Ghani and Azama-
thulla (2011) utilized the GEP method which is resulted in RMSE of 1.73. 
Although in both studies mentioned above, models had acceptable 

outcomes, the results of the methods used in this study are more accu-
rate than the models reported in the literature. Moreover, Safari et al. 
(2019) implemented different methods for estimating the particle 
Froude number such as gene expression programming (GEP), extreme 
learning machine (ELM), generalized structure group method of data 
handling (GS-GMDH) and fuzzy c-means based adaptive neuro-fuzzy 
inference system (FCM-ANFIS) with the mean absolute percentage 
error (MAPE) values of 16.77, 16.40, 14.88, and 16.03, respectively. In 
this study two models of WIHW-RF and WIHW-RT provide lower MAPE 
values (12.69 and 12.25) demonstrating almost 20% improvement in 
their performances in contrast to the Safari et al. (2019) results. 

Credibility of a channel design sediment transport model is signifi-
cantly attributed to the range of data used and applied technique for the 
model development. Most of the available models in the relevant liter-
ature applied typical approaches for developing a design model. Most 
importantly, narrow data range and low number of data were utilized 
for the modeling. These are the main reasons that they fail to provide 
accurate results for different data sources. It seems that this study 
appropriately addressed aforementioned deficiencies of existing models 
utilizing wide data range and implementing robust ML modeling 
techniques. 

As powerful tools for approximation of complex non-linear prob-
lems, ML techniques can be used without needing for deep under-
standing the physics of the problem, due to ML learns data behavior for 
construction of an intelligence model. These models are established 
based on the data to find possible relationship between dependent and 
independent parameters. However, once model parameters are selected 
based on the physics of the problems, the developed models give more 
reliable and accurate results. In this study, model parameters are chosen 
based to effective variables in sediment transport process to incorporate 
sediment, channel, fluid and flow parameters. It has to be mentioned 
that models having one-two input parameters failed to generate accurate 
results. It is found that sediment volumetric concentration and channel 
friction factor have poor linear correlation with particle Froude number, 
however incorporating these parameters into the models improved the 
model performance, significantly. It can be linked to the non-linear 
behavior of the sediment transport problem. 

The importance of accurate computation of a design sediment 
transport model comes from a fact that, less accurate model may over- or 
underestimate design velocity. Most of the empirical equations 

Fig. 2. Box plots of applied algorithms at testing stage.  
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Fig. 3. Comparison of observed and estimated Frp.  
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overestimate Frp and accordingly design flow velocity. Design of a 
channel through an overestimated model gives higher design velocity 
and accordingly steeper bed slope. Therefore, it cannot be an economic 
design criterion. On the other hand, if an underestimated model is 

applied for the same purpose, design velocity will be lower and then, 
sediment deposition and early overflow will take place. This study works 
out this problem through developing accurate sediment transport 
models. Consequently results are satisfactorily to recommend models as 

Fig. 3. (continued). 
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practical and reliable tools for channel design. 
This study accomplished utilizing the laboratory experimental data 

and using non-cohesive sediment in smooth channels, to this end, 
extension of the present study could be the usage of field data, in rough 

channels and incorporating cohesive sediment characteristics into the 
models. Additionally, in future studies, alternative ML algorithms with 
various optimization techniques can be implemented for the sediment 
transport modeling. 

Fig. 3. (continued). 
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5. Conclusions 

Applying variety of ML algorithms both standalone and hybrid 
models are applied for particle Froude number computation for the case 
of non-deposition with clean bed criterion. Determining the best com-
bination of input variables and optimal values of the operator are the 
most important stages in preparing a precise model. Through consid-
ering effective variables involved as inputs, four scenarios were 
composed. According to the results, models having four input parame-
ters give better performance which is reasonable based on the hydro-
logical consideration of the problem where flow, channel, fluid and 
sediment properties are embedded into the models. Hybrid models 
provided better results when compared with the standalone counter-
parts (M5P, RF, RT, and REPT). Obtained results demonstrated the 
precise performances of WIHW-RT and WIHW-RF in contrast to their 
alternatives. However, the WIHW-RT model slightly outperforms 
WIHW-RF. Furthermore, ML models give better results that than 
empirical regression equations reported in the relevant literature. 
Regression models overestimate the particle Froude number which can 
be linked to the fact that, they were over-fitted on the limited data 
ranges. As a result, for the purpose of developing a powerful model for 
the estimation of sediment transport, novel and robust techniques 
accompanied by an extensive data range are required. Accordingly, the 
models developed in this study can be used as applicable and reliable 
tools in practice. 
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