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Abstract
As the environments that human live are complex and uncontrolled, the objectmanipulationwith humanoid robots is regarded as

one of themost challenging tasks. Learning amanipulation skill fromhumanDemonstration (LfD) is one of the popularmethods

in the artificial intelligence and robotics community. This paper introduces a deep learning based teleoperation system for

humanoid robots that imitate the human operator’s object manipulation behavior. One of the fundamental problems in LfD is to

approximate the robot trajectories obtained by means of human demonstrations with high accuracy. The work introduces novel

models based on Convolutional Neural Networks (CNNs), CNNs-Long Short-Term Memory (LSTM) models combining the

CNN LSTMmodels, and their scaled variants for object manipulation with humanoid robots by using LfD. In the proposed LfD

system, sixmodels are employed to estimate the shoulder roll position of the humanoid robot. The data are first collected in terms

of teleoperation of a real Robotis-Op3 humanoid robot and themodels are trained. The trajectory estimation is then carried out by

the trained CNNs and CNN-LSTM models on the humanoid robot in an autonomous way. All trajectories relating the joint

positions are finally generated by themodel outputs. The results relating to the sixmodels are compared to each other and the real

ones in terms of the training and validation loss, the parameter number, and the training and testing time. Extensive experimental

results show that the proposed CNNmodels are well learned the joint positions and especially the hybrid CNN-LSTMmodels in

the proposed teleoperation system exhibit a more accuracy and stable results.

Keywords Humanoid robots � Learning from demonstration � Convolution neural networks � Long short-term memory

network � Object manipulation

1 Introduction

Learning from Demonstration (LfD) is a popular research

method in which the robots automatically learn the tra-

jectories to be followed from human demonstrations [1–3].

The method is suitable for complex manipulation tasks. It

facilitates to encode and transfer the knowledge from the

human experts to the robot even in uncontrolled environ-

ments such as houses and hotels, and hospitals that are

outside of factories [1–3]. LfD should not require the

kinematics model of the robot and previous programming

of the joint motors [4].

There are two basic kinds of LfD as the kinesthetic

guidance and teleoperation [5]. The kinesthetic guidance is

separated into two groups [6, 7]. In the first one, the human

operator manually moves the robot joints to realize the

desired task and the obtained joint positions are saved and

modelled by artificial intelligence learning methods for

being imitated by the robot in the feature [8–14]. A

drawback of the method is to move all joints by a high

precision at the same time. In the second kinesthetic

method, the human operator wears the external motion

sensors or moves his arms and legs or does the same
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movements in front of the visual sensors such as the Kinect

camera [15]. The disadvantages of the method are that an

additional skeleton following sensor should be used and the

transformation to the robot from the sensor coordinate

system is not always possible. For example, the Pepper and

Nao humanoid robots have different leg and hand joint

structures from humans, respectively.

In teleoperation, the robot is controlled by a human from

a remote distance by using the peripherals such as joy-

sticks, keyboard, and cellphone [16]. In [17], the teleop-

eration and kinematics guidance on Pepper robot are

comparatively presented by constructing virtual reality. A

solution using a brain-computer interface system is

Table 1 The structure of the Model 1

Type (CNN) Output Filter-Stride Feature map

Input 360,640 – 3

Conv_1 178,178 5 9 5,2 12

Conv_2 87,157 5 9 5,2 24

MaxPooling_1 43,78 2 9 2,1 24

Conv_3 20,37 5 9 5,2 36

Conv_4 8,17 5 9 5,2 48

MaxPooling_2 4,8 2 9 2,1 48

Dropout 4,8 – 48

Flatten_1 1 – 1536

Dense_1 1 – 100

Dense_2 1 – 50

Dense_3 1 – 30

Dense_4 1 – 1

Table 2 The structure of the Model 2

Type (CNN) (3 9 1)(1 9 3) Output Filter-Stride Feature map

Input 360,640 – 3

Conv_1 179,320 5 9 5,2 12

Conv_2 90,159 3 9 3,2 24

MaxPooling_1 45,79 2 9 2,1 24

Conv_3 22,40 5 9 5,2 36

Conv_4 11,19 3 9 3,2 48

MaxPooling_2 5,9 2 9 2,1 48

Dropout 5,9 – 48

Flatten_1 1 – 2160

Dense_1 1 – 100

Dense_2 1 – 50

Dense_3 1 – 30

Dense_4 1 – 1

Fig. 1 Schematic flow diagram of convolutional neural networks
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proposed for a biofeedback and a humanoid robot for

guidance effectively throughout remote control in [18].

The teleoperation system should not require an external

sensor and a big experimental setup. Hence, this paper uses

the teleoperation method of LfD for object manipulation

with the humanoid robots. Most important challenge in

LfD is to approximate the trajectories obtained from human

demonstrations with high accuracy and fast in real time

[19–21]. In [22], a coactive learning framework using

iterative steps was proposed. [23] Introduced a framework

based on the targeted feature queries. [19, 24] Introduced

human-grounded concepts by fusing predicates associated

with segments of a trajectory.

This paper proposes a solution based on deep learning.

Deep learning models approximate better data and so

provide higher estimation performance than the conven-

tional machine learning methods in the testing stage [25].

Recently, a few researchers have applied the deep learning

algorithms to LfD [10, 26]. Convolutional Neural Net-

works (CNNs) that are a kind of deep learning models were

proposed for image recognition in 1989 [25]. Since CNNs

have sparse interactions, parameter sharing, and equivari-

ant representations, they have reduced the model com-

plexity and the computational load. In recent years, CNNs

and its different variants applied to a lot of applications in

several problem types such as segmentation and prediction

outside of classification for both the signal inputs and the

image inputs [25]. Recurrent Neural Networks (RNNs) are

a kind of artificial neural networks [27]. Since they can

perfectly correlate contextual information, they were suc-

cessfully used in the natural language processing and the

modelling and prediction of time series [27]. However,

RNNs have the problem of vanishing gradients and

exploding gradient obstructing the learning of long data

sequences. Long Short Term Memory (LSTM) models

were proposed to overcome the problem introducing ‘‘gate

mechanism’’ to RNNs to control the flow of informa-

tion [28]. LSTM has a complex structure and high training

and testing time [29]. [26] Worked to generate the

manipulation trajectories of a 6-axis Lynxmotion AL5D

robot with a two-finger gripper by using individually

LSTM and CNN in a variational autoencoder structure. In

many research areas, the combinations the CNN and LSTM

models exhibited showed better performance than CNN

and LSTM [30–34]. CNNs extract powerful image features

while LSTM models exhibit good results at predicting time

series data.

In the current study, the Robotis-Op3 humanoid robot is

controlled using a keyboard by a remote human operator

and the position information relating to the joints and the

images relating to the environment in which the robot looks

at are saved [35]. In the proposed LfD system, a new CNN

model is firstly introduced as an efficient regressor to

imitate the behavior of the human operator. Secondly, the

spatial factorization method into asymmetric convolutions

in [36] is applied to the proposed CNN model aiming at

enhancing the efficiency and effectiveness of the approxi-

mation accuracy and reducing the parameter number and

obtained new CNN models. Finally, the CNN-LSTM ver-

sions of the proposed CNN models are employed to

achieve the best estimation accuracy and fast training and

testing. Comparative extensive results, the training and

validation loss, the parameter number, and the training time

and some error measures are illustrated to show the

effectiveness of the proposed models.

Table 3 The structure of the Model 3

Type (CNN) (5 9 5)(3 9 3) Output Filter-Stride Feature map

Input 360,640 – 3

Conv_1 178,318 3 9 1,2 12

Conv_2 88,158 1 9 3,2 24

MaxPooling_1 44,79 2 9 2,1 24

Conv_3 20,38 3 9 1,2 36

Conv_4 9,18 1 9 3,2 48

MaxPooling_2 4,9 2 9 2,1 48

Dropout 4,9 – 48

Flatten_1 1 – 1728

Dense_1 1 – 100

Dense_2 1 – 50

Dense_3 1 – 30

Dense_4 1 – 1

Table 4 The structure of the Model 4

Type (CNN ? LSTM) Output Filter-Stride Feature map

Input 360,640 – 3

Conv_1 178,178 3 9 1,2 12

Conv_2 87,157 1 9 3,2 24

MaxPooling_1 43,78 2 9 2,1 24

Conv_3 20,37 3 9 1,2 36

Conv_4 8,17 1 9 3,2 48

MaxPooling_2 4,8 2 9 2,1 48

Dropout 4,8 – 48

TimeDistributed_Flatten_1 4 – 384

LSTM 1 – 36

Dense_1 1 – 100

Dense_2 1 – 50

Dense_3 1 – 30

Dense_4 1 – 1
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The rest of this paper is organized as follows: in Sects. 2

and 3 the theoretical background of the CNN and LSTM

models are shortly given and introduced proposed CNN

and CNN-LSTM models. The comparative experimental

results are illustrated to demonstrate the performance of the

proposed models in Sect. 4. Section 5 concludes this paper.

2 Theoretical background

This section briefly reviews the fundamental concepts of

CNN and LSTM networks.

2.1 Convolutional neural networks

CNNs are a kind of conventional multilayer FNNs

[25, 37–39]. CNNs accept the color or gray image data in

the form of multidimensional arrays as inputs different

from FNNs. Hence, CNNs are mostly used for a lot of

applications such as image analysis, video processing, face

recognition, object recognition, and natural language pro-

cessing by using smaller parameter numbers. Thanks to

Graphical Processing Units (GPUs), CNNs are applied to

big data sets also [25].

CNNs are made of the layers such as the input layer,

convolutional layers, nonlinear activation layer, pooling

layers, dropout layer, batch normalization layer, one or

Table 5 The structure of the

Model 5
Type (CNN ? LSTM) (3 9 1)(1 9 3) Output Filter-Stride Feature map

Input 360,640 – 3

Conv_1 179,320 5 9 5,2 12

Conv_2 90,159 5 9 5,2 24

MaxPooling_1 45,79 2 9 2,1 24

Conv_3 22,40 5 9 5,2 36

Conv_4 11,19 5 9 5,2 48

MaxPooling_2 5,9 2 9 2,1 48

Dropout 5,9 – 48

TimeDistributed_Flatten_1 5 – 432

LSTM 1 – 36

Dense_1 1 – 100

Dense_2 1 – 50

Dense_3 1 – 30

Dense_4 1 – 1

Table 6 The structure of the

Model 6
Type (CNN ? LSTM)(5 9 5)(3 9 3) Output Filter-Stride Feature map

Input 360,640 – 3

Conv_1 178,318 5 9 5,2 12

Conv_2 88,158 3 9 3,2 24

MaxPooling_1 44,79 2 9 2,1 24

Conv_3 20,38 5 9 5,2 36

Conv_4 9,18 3 9 3,2 48

MaxPooling_2 4,9 2 9 2,1 48

Dropout 4,9 – 48

TimeDistributed_Flatten_1 4 – 432

LSTM 1 – 36

Dense_1 1 – 100

Dense_2 1 – 50

Dense_3 1 – 30

Dense_4 1 – 1
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multiple fully connected layers, and loss activation layer. A

basic structure is depicted in Fig. 1.

CNN performs the operations in the sequential layers

defined as below:

• The Input layer: The images consisting of the pixels

generate the inputs of CNN.

• Convolution Layer: CNN performs the convolution

operation using a set of kernel filters in this layer. The

kernel filters extract the features from the given input

images by sliding them throughout the images. In the

sliding step, the stride parameter is important. Stride

shows the number of pixels shifts over the input matrix.

When the stride is n constant, the filter is moved n

pixels at a time.

• Pooling Layer: CNN performs down-sampling opera-

tion along the spatial dimension of the convolution

layers in the pooling layer. Thanks to the pooling layer,

the feature dimension is reduced without losing any

valuable information and so trainable parameter num-

ber is reduced. Pooling operation is considered as a

solution to the overfitting problem, and vanishing

gradient problem. Max pooling operation provides the

largest value in the selected region.

• Dropout Layer: CNN performs a regularization opera-

tion in the dropout layer. Some nodes of the layer

outputs are randomly ignored and temporarily dropped

out at the training stage in order to get rid of the

overfitting. A flatten layer transforms the features into a

vector and it is localized after the dropout layer.

• Batch Normalization Layer: CNN performs the nor-

malization operation of the outputs of the layer outputs.

The operation speeds up the training stage and achieves

a higher network performance. The output of batch

normalization is usually gone through an activation

functions such as Rectified Linear Unit (ReLU) defined

as max(0, input) to introduce nonlinearity to the data

and not to get caught vanishing gradient problem [37].

• Fully Connected Layer: CNN uses the weights to

connect every node in the present layer to every node in

the next layer similar to FNNs in this layer. The layers

perform to the learned features the different activation

functions such as softmax and linear with respect to the

classification or regression application [25, 37]. The

layer is called the dense layer.

2.2 Long short-term memory networks

LSTM network is a different class of deep neural networks

including the internal memory loops and the sequences of

input data as different from CNNs. Like FNNs, LSTMs are

made of an input layer, hidden layer, and output layer [40].

The hidden layer of LSTM consists of a recurrent range of

modules including the forget gate, the input gate, and the

output gate.

Figure 2 clearly shows a conventional recurrent struc-

ture in a recurrent neural network. The demonstration of a

LSTM memory cell is shown in Fig. 3. Forget gate, ft,

shaded in blue calculates its output by summing the current

input, the outputs of the memory cells at the previous time-

step and bias value and then the values importing into r
logistic sigmoid activation function [40]. Hence it deter-

mines which information is taken off the cell state, ct. Input

gate, it, shaded in yellow, decides which information to be

passed through. Output gate, ot, shaded in green determines

which information from the cell state is going to the output.

The values �
ct

in Fig. 2 are the possible nominate values

Teleoperation by 
Keyboard of

Humanoid Robot

Data Collection and 
Augmentation

Generating
CNN/CNN+LSTM 

Models

Training of the 
Models

Object Manipulation 
by Embedding the 

Model into Real Robot 

Fig. 4 The framework of learning object manipulation of humanoid

robots from the demonstration
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that are to be added to the cell state. The tanh activation

function is used to obtain the values of the nominate cell

state �
ct

in the range of - 1 and 1.

Given the sequence of input vector,

x ¼ x1; x2; . . .; xt; . . .f g, where xt 2 Rn is n-dimensional

vector for n variables at time-instance t, the output of

LSTM memory cell is calculated as below [41]:

it ¼ rðwixxt þ wihht�1 þ biÞ ð1Þ
f t ¼ rðwfxxt þ whf ht�1 þ bf Þ ð2Þ

ot ¼ rðwoxxt þ wohht�1 þ boÞ ð3Þ

ect ¼ tanh w
ecx
xt þ w

ech
ht�1 þ b

ec

� �

ð4Þ

ct ¼ f1 � ct�1 þ it � ect ð5Þ
ht ¼ ot � tanh ctð Þ ð6Þ

where wix;wih;wfx;whf ;wox;woh;w�
c x; and w

ech
are weight

matrices, bi; bf , bo, and b�
c

are bias vectors. � means the

Hadamard product of the vectors. ht is the output vector of

the LSTM memory cell in Fig. 3. In LSTM, yt is the output

probability vector of the LSTM as

Fig. 5 a The Robotis-Op3 humanoid robot and b its object manipulation

Fig. 6 Some image samples taken from the humanoid robot controlled by keyboard

Cluster Computing

123



yt ¼ wyhht�1 þ by ð7Þ

2.3 Proposed CNN and CNN-LSTM models

The trajectory characteristics of the humanoid robot arm

are nonlinear. Hence, the relation between the joint

positions and the object to be manipulated should be

modelled by a model having a high estimation accuracy.

LSTM is suitable to model time-series data but it requires

high computational load time and training time. CNN is

especially the best at problem types such as object recog-

nition and segmentation that the input is an image.

Therefore, this paper proposes a sequential model that

Fig. 8 Training and validation MSE loss values of a Model 2 and b Model 5 for shoulder roll position of the humanoid robot

Fig. 9 Training and validation MSE loss values of a Model 3 and b Model 6 for shoulder roll position of the humanoid robot

Fig. 7 Training and validation MSE loss values of a Model 1 and b Model 4 for shoulder roll position of the humanoid robot
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fuses the advantages CNN and LSTM. The sequential

model means a structure of ordered and stacked layers. In

this structure, CNN layers extract the important features

relating to the image and then LSTM and fully connected

layers approximate the sequential data.

In this paper, the CNN model in Table 1 is firstly pro-

posed to model the manipulation trajectories inspired by

[42]. The table clearly shows the input size, output size,

filter size, stride, and the feature map dimension of the

model. The proposed model is called as Model 1. Secondly,

the scaled versions of Model 1 are proposed to provide less

parameter number and better estimation accuracy than

Model 1. A scaled procedure is realized as in [36]. Spatial

factorization into asymmetric convolutions is applied to

Fig. 10 Training and validation MSE loss values of a Model 1 and b Model 4 for shoulder pitch position of the humanoid robot

Fig. 11 Training and validation MSE loss values of a Model 2 and b Model 5 for shoulder pitch position of the humanoid robot

Fig. 12 Training and validation MSE loss values of a Model 3 and b Model 6 for shoulder pitch position of the humanoid robot
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obtain smaller convolutions but high accuracy. In Model 2,

(3 9 1) and (1 9 3) scaled convolutions instead of 5 9 5

ones are used. 5 9 5 and 3 9 3 instead of 5 9 5 convo-

lutions are applied in Model 3. The structures of Models 2

and 3 are shown in Tables 2 and 3. Finally, the CNN-

LSTM model in Tables 4 and its scaled versions in

Tables 5 and 6 are proposed. The models are proposed as

Models 5–6, respectively. In the models, the time dis-

tributed layers are used to generate a layer for one-time

step at a time in LSTM. The CNN-LSTM counterpart of

Models 1, 2, 3 in the form of CNN are Models 4 and 6. All

models apply the Mean Square Error (MSE) loss function:

MSELoss ¼ 1

n

Xn

i¼1
xi � yið Þ2 ð8Þ

where x is the estimated value, y is the real value, and n is

the data number.

3 The proposed algorithm for learning
object manipulation of humanoid robots
from the demonstration

The framework for learning object manipulation of

humanoid robots from demonstration is given in Fig. 4.

The steps of the algorithm are as follows:

Step 1: Move the arms of the humanoid robot using a

keyboard, which is the teleoperation method, and

catch the instances relating to the manipulation

environment from the robot camera.

Step 2: Augment the data set to produce the results with

high accuracy.

Step 3: Construct the vision-based CNN and CNN-

LSTM models to approximate the pitch and roll

positions relating to the shoulder of the Robotis-

Op3 humanoid robot.

Step 4: Train the models by using the ADAM opti-

mization method [43].

Step 5: Carry out the object manipulation embedding the

models into the real robot.

Fig. 13 The parameter numbers of all models

Table 7 The results relating to

training/validation loss,

parameter number, and training/

testing time of the used models

for learning the shoulder roll

position of the humanoid robot

Models Training

loss

Validation

loss

Parameter

number

Training time (s) Testing time (s)

Model 1 0.0025 0.0017 233,331 551.7941 3.3505

Model 2 0.0033 0.0027 231,579 550.3746 3.0464

Model 3 0.0026 0.0028 220,275 549.3001 3.0322

Model 4 0.0011 0.0011 144,099 552.8487 3.1312

Model 5 0.0014 0.0014 86,859 530.4032 2.9666

Model 6 0.0011 0.0012 118,755 550.7694 3.0154

The bold values show the best values

Table 8 The results relating to

training/validation loss,

parameter number, and training/

testing time of the used models

for learning the shoulder pitch

position of the humanoid robot

Models Training

loss

Validation

loss

Parameter

number

Training time (s) Testing time (s)

Model 1 0.0067 0.0048 233,331 408.0813 3.1689

Model 2 0.0093 0.0064 231,579 407.3395 3.0765

Model 3 0.0054 0.0050 220,275 404.1772 3.1035

Model 4 0.0021 0.0021 144,099 413.1547 3.0936

Model 5 0.0052 0.0052 86,859 405.6232 2.9695

Model 6 0.0023 0.0024 118,755 408.7509 3.0060

The bold values show the best values
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In the proposed framework, the accuracy of the vision-

based LfD system depends on the performance of the

CNN/CNN-LSTM models. A large estimation error relat-

ing to the model induces larger repeated errors in the object

manipulation with the humanoid robots. The reason for

why CNN/CNN-LSTM models with different structures

are searched in this paper is to catch the manipulation

trajectory with high correction in real time in terms of the

high approximation performances of CNN and hybrid

CNN-LSTM models. The proposed vision method is

unsophisticated and easy to apply on the real robots.

4 Experiments

In this paper, six CNN and hybrid CNN-LSTM models are

used to learn the object manipulation by applying teleop-

eration method of LfD on the humanoid robot named as

Robotis-Op3 humanoid robot in Fig. 5a [35]. Robotis-Op3

has 20 axes, Intel NUC i3 Dual core 2133 MHz mainboard,

3 axis gyro, 3 axis magnetometer sensors, 3 axis

accelerometer, Linux operating system, Logitech C920

HD-Pro camera, C, Robot Operating System (ROS), and

Dynamixel SDK. In the experiments, Nvidia Titan XP was

used for training the models. The obtained models were

embedded into the robot at the ROS environment of the

robot and the object manipulation was carried out using

Python.

In the experiments, the manipulation of 5 different

objects consisting of a storage box, cleaning sponge, glass,

Fig. 14 a MSE loss values at the training/validation stage, b the training times, and c the testing times of the used models for learning the

shoulder roll position of the humanoid robot
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ball, and box was carried out as in Fig. 5b. The head and

neck angles of the humanoid robot were set to 0, -

0.95 rad for the object manipulation scenario in this paper.

More complex tasks and scenarios might be approximated

Fig. 15 a MSE loss values at the training/validation stage, b the training times, and c the testing times of the used models for learning the

shoulder pitch position of the humanoid robot

Fig. 16 The predicted and real results of a Model 1 and b Model 4 for shoulder roll position
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the angles in the future works. The humanoid robot was

controlled by a keyboard for perfect manipulation by

means of different locations of the objects and multiple

demonstrations. While the robot was controlled by the

keyboard for object manipulation, the 5102 images with the

resolution of 640 9 360 pixels taken from the robot cam-

era and the corresponding joint positions were saved. The

first location of the object is on the table. The final location

of the object is up and within the hands of the robot. Some

sample training images are shown in Fig. 6. Some aug-

mentation methods such as varying the image brightness,

rotating the image, and increasing the data having less

number with respect to the histogram of joint position

distribution were applied to increase the data number

Fig. 17 The predicted and real results of a Model 2 and b Model 5 for shoulder roll position

Fig. 18 The predicted and real results of a Model 3 and b Model 6 for shoulder roll position

Fig. 19 The predicted and real results of a Model 1 and b Model 4 for shoulder pitch position
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relating to image and position. 80% and %20 of the aug-

mented data set were used for training and validation,

respectively. To get rid of overfitting, it was added random

distributed noise with approximately 0.001 magnitude to

joint positions. All of the models were trained for 20

epochs by using Adam method, MSE loss function, batch

size of 8, and steps per epoch of data number/batch size.

After training, the models are embedded into the real robot

to carry out the object manipulation and the framework is

started.

Figures 7, 8, 9, 10, 11 and 12 show the results of the

training stage across the epochs for all models. The test

stage is realized for the manipulation of an orange ball with

the Robotis-Op3 humanoid robot. The training step was

worked on multiple times. Tables 7 and 8 show the average

results relating to training/validation loss, parameter num-

ber, and training/testing time of the used model for learning

the shoulder roll and pitch positions of the humanoid robot,

respectively. Figure 13 shows the parameter numbers of all

models Figs. 14 and 15 show MSE loss values at the

training/validation stage, the training times, and the testing

times of the used model for learning the shoulder roll and

pitch positions of the Robotis-Op3 humanoid robot,

respectively.

Tables 7 and 8 list the results relating to training and

validation losses, parameter number, and training and

testing times of the used models for learning the shoulder

roll and pitch positions of the humanoid robot. Figures 7, 8,

and 9 show the training and validation MSE loss values of

the models with respect to the training epochs for the

shoulder roll position. Figures 10, 11, and 12 show training

and validation MSE loss values of the models with respect

to the training epochs for the shoulder pitch position.

Figure 13 shows the parameter numbers of all models. The

parameter numbers relating to the Models 1–6 are 233331,

231579, 220275, 144099, 86859, and 118755, respectively.

Figures 14 and 15 illustrate MSE loss values and the

training and testing times of the models at the training and

validation stages for the shoulder roll and pitch positions,

respectively. As can be seen from Tables 7 and 8 and

Figs. 13, 14, and 15, the proposed Model 1 in the form of

CNN results in low training and validation MSE losses. On

the other hand, Model 2 and Model 3 that are its factorized

variants with (3 9 1)(1 9 3) and (5 9 5)(3 9 3) depict

Fig. 20 The predicted and real results of a Model 2 and b Model 5 for shoulder pitch position

Fig. 21 The predicted and real results of a Model 3 and b Model 6 for shoulder pitch position
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the similar results with less parameter number, training

time and testing time. In addition, Models 4–6 in the form

of CNN-LSTM illustrate lower training and validation

losses with smaller parameter number, training time and

testing time than their CNN counterparts, Models 1–3,

respectively. The best model is Model 4 with the lowest

training and validation loss of 0.0011 and 0.0021 for

shoulder roll and pitch positions of the humanoid robot,

respectively. Considering the smallest parameter number

and the smallest testing time, the best one is Model 5 with

the testing time with 2.9666 s and the parameter number

with 86,859. All results clearly show that the CNN-LSTM

models provide more optimum results than the CNN

models. Moreover, as can be seen Figs. 7, 8, 9, 10, 11, 12,

14a and 15a, the overfitting risk at the training stage of the

CNN-LSTM models are less than the CNN models.

In the testing stage, while the humanoid robot manipu-

lates a ball, the shoulder roll and pitch positions obtained

from the CNN models and their counterparts CNN-LSTM

models and the real values are comparatively plotted in

Figs. 16, 17, 18, 19, 20 and 21. As can be seen from the

figures, the CNN-LSTM models achieve the approximation

with less noise and deviation. In all models, Model 4 and

Model 6 give the best approximation performances. On the

other hand, Model 2 provides the worst approximation

results including the deviation in higher levels than the

others. It is seen that the MSE results in Tables 7 and 8

coincide with the approximation results in Figs. 16, 17, 18,

19, 20 and 21. The low approximation performance is

considered as a disadvantage of the models.The perfor-

mance of our CNN and CNN-LSTM models can be

increased by using different optimization methods.

5 Conclusion

In this paper, a new teleoperation framework of LfD was

presented using deep learning methods. The new frame-

work successfully transfers the human behavior to the

humanoid robot. In the framework, a new CNN model, its

scaled versions, and their CNN-LSTM combinations are

employed for the object manipulation with humanoid

robots.

The main aim of applying CNN and LSTM in the LfD

system was to make use of the recognition skill of the CNN

models and approximating skill the time series data of the

LSTM models and then combine the skills to calculate both

fast and correctly the joint positions in the object manip-

ulation with the real humanoid robots.

The LfD system steps consist of the collecting the data

relating to joint positions and the images relating to the

environment in which the robot saw the moving the arms of

humanoid robot by the teleoperation, augmenting the data

set to produce the results with high accuracy, constructing

the vision-based CNN and CNN-LSTM models to

approximate the pitch and roll positions relating to the

shoulder of the Robotis-Op3 humanoid robot and finally

realizing the object manipulation embedding the trained

model into the real robot.

A comparative study was built for evaluating the pro-

posed model performances. The experimental results

showed that the proposed CNN and CNN-LSTM models

can approximate the nonlinear characteristics of object

manipulation. On the other hand, the scaled variants pro-

vided similar results to their counterparts with small

parameters. Moreover, compared with CNN models, the

proposed CNN-LSTM models presented smoother esti-

mation results and better tracking accuracy in the test stage.

Besides, the proposed CNN-LSTM models well learned the

joint positions with 0.001 and 0.002 MSE losses even

under random distributed noise in a faster way than the

others.

In addition, it is notable to state that the proposed

models can also be applied to other regression problems in

real life applications. Next studies will be designed based

on the deep reinforcement learning by using the models.
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from demonstation for object manipulation of robotis-Op3

humanoid robot. In: 2020 International Conference on INnova-

tions in Intelligent SysTems and Applications (INISTA). pp. 1–6.

IEEE (2020)

35. Robotis-Op3.: http://emanual.robotis.com/docs/en/platform/op3/

introduction/ (2020). Accessed 5 May 2020

36. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.:

Rethinking the inception architecture for computer vision. In:

Proceedings of the IEEE conference on computer vision and

pattern recognition. pp. 2818–2826 (2016)

37. Srinivas, S., Sarvadevabhatla, R.K., Mopuri, K.R., Prabhu, N.,

Kruthiventi, S.S., Babu, R.V.: A taxonomy of deep convolutional

neural nets for computer vision. Front. Robot. AI 2, 36 (2016)

Cluster Computing

123

https://arxiv.org/abs/1903.01267
https://doi.org/10.1109/JSEN.2021.3049247.
https://doi.org/10.1109/JSEN.2021.3049247.
https://doi.org/10.1007/s11431-020-1648-4
https://arxiv.org/abs/1306.6294
https://doi.org/10.1038/nature14539
http://emanual.robotis.com/docs/en/platform/op3/introduction/
http://emanual.robotis.com/docs/en/platform/op3/introduction/


38. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classifica-

tion with deep convolutional neural networks. Adv. Neural. Inf.

Process. Syst. 25, 1097–1105 (2012)

39. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov,

D., Erhan, D., Vanhoucke, V., Rabinovich, A.: Going deeper with

convolutions. In: Proceedings of the IEEE conference on com-

puter vision and pattern recognition. pp. 1–9 (2015)

40. Olah, C.: Understanding lstm networks (2015). https://colah.

github.io/posts/2015-08-Understanding-LSTMs/

41. Graves, A., Jaitly, N., Mohamed, A.: Hybrid speech recognition

with deep bidirectional LSTM. In: 2013 IEEE workshop on

automatic speech recognition and understanding. pp. 273–278.

IEEE (2013)

42. Bojarski, M., Del Testa, D., Dworakowski, D., Firner, B., Flepp,

B., Goyal, P., Jackel, L.D., Monfort, M., Muller, U., Zhang, J.:

End to end learning for self-driving cars. arXiv preprint https://

arxiv.org/abs/1604.07316 (2016)

43. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimiza-

tion. arXiv preprint https://arxiv.org/abs/1412.6980 (2014)

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Simge Nur Aslan received a BS

degree from the Mechatronics

Engineering Department at the

University of Firat of Turkey in

2019, respectively. He is cur-

rently a master student in the

same department. His research

interests include humanoid

robots and deep learning.
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