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A B S T R A C T   

Designing high-rise buildings is one of the complex tasks of architecture because it involves interdisciplinary 
performance aspects in the conceptual phase. The necessity for sustainable high-rise buildings has increased 
owing to the demand for metropolises based on population growth and urbanisation trends. Although artificial 
intelligence (AI) techniques support swift decision-making when addressing multiple performance aspects 
related to sustainable buildings, previous studies only examined single floors because modelling and optimising 
the entire building requires extensive computational time. However, different floor levels require various design 
decisions because of the performance variances between the ground and sky levels of high-rises in dense urban 
districts. This paper presents a multi-zone optimisation (MUZO) methodology to support decision-making for an 
entire high-rise building considering multiple floor levels and performance aspects. The proposed methodology 
includes parametric modelling and simulations of high-rise buildings, as well as machine learning and optimi-
sation as AI methods. The specific setup focuses on the quad-grid and diagrid shading devices using two daylight 
metrics of LEED: spatial daylight autonomy and annual sunlight exposure. The parametric model generated 
samples to develop surrogate models using an artificial neural network. The results of 40 surrogate models 
indicated that the machine learning part of the MUZO methodology can report very high prediction accuracies 
for 31 models and high accuracies for six quad-grid and three diagrid models. The findings indicate that the 
MUZO can be an important part of designing high-rises in metropolises while predicting multiple performance 
aspects related to sustainable buildings during the conceptual design phase.   

1. Introduction 

High-rise buildings began to emerge at the end of the 19th century to 
provide extra floor space in limited urban plots (Al-Kodmany and Ali, 
2013). In the 20th century, population growth and urbanisation trends 
increased in the world (Cohen, 2006). According to a United Nations 
report (UN, 2019), 30% of the world’s population lived in urban areas in 
1950. This percentage increased to 55% in 2018, and the projection by 
2050 was 68%. An increase in population and the percentage of those 
living in urban areas will add 2.5 billion people to the world’s urban 
population by 2050. Moreover, there were 33 megacities with more than 
10 million inhabitants in 2018. The projection indicates that this num-
ber will increase to 43 by 2030. Because of population growth and 

urbanisation trends, the number and height of completed high-rise 
buildings have also increased over time (CTBUH, 2020). 

Owing to a rapid and global increase in floor areas, the final energy 
use of buildings reached approximately 128 exajoules (EJ) in 2019, 
while it was 118 EJ in 2010 (IEA, 2020). An increasing number of high- 
rise buildings contribute significantly to energy use as they consume 
more energy with an additional effect of CO2 emissions compared with 
low-rise buildings (Godoy-Shimizu et al., 2018). Another consequence 
of constructing more and taller high-rise buildings is the increase in 
building density in urban areas (Lee et al., 2017). To achieve the targets 
of the International Energy Agency for sustainable development sce-
narios, architects and engineers should consider the following chal-
lenges while designing high-rise buildings for metropolises: 
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• Dense urban areas cause performance variations between ground 
and sky levels in high-rise buildings (Samuelson et al., 2016). 

• Sustainable buildings require the integration of multiple perfor-
mance aspects, such as natural daylight, energy consumption, and 
comfort (Evins, 2013). 

During the design process, the conceptual phase requires a high 
awareness of decisions because it affects the overall performance of the 
buildings (Sariyildiz, 2012). Owing to the complexity of design prob-
lems, optimisation algorithms are widely used to investigate sustainable 
design alternatives during the conceptual design phase (Asadi and 
Geem, 2015). Because the performance aspects of sustainable buildings 
require simulations, the optimisation process entails a significant 
amount of time. The common approach is to integrate machine learning 
(ML) techniques to predict performance aspects to support swift 
decision-making with optimisation algorithms in computationally 
expensive design problems (Westermann and Evins, 2019). Optimising 
high-rise buildings in dense urban districts is more challenging because 
various floor levels require different design decisions owing to perfor-
mance variations in ground and sky levels. In addition, these decisions 
are based on simulations, which require expensive computational time, 
and optimisation processes that need to cope with an enormous number 
of design parameters. Therefore, new methods are required to optimise 
the multiple floor levels of high-rise buildings when proposing sustain-
able alternatives within a limited time. 

This paper introduces a novel multi-zone optimisation (MUZO) 
methodology of optimising high-rises by considering multiple floor 
levels as different optimisation problems to investigate sustainable al-
ternatives during the conceptual phase. The proposed methodology in-
cludes parametric modelling and simulations of high-rise buildings, an 
artificial neural network (ANN) (an ML technique based on a network of 
neurones) for performance prediction, and computational optimisation 
with a decision framework. Part 1 of the MUZO study focuses on solving 
computationally expensive simulations while presenting the back-
ground, methodology, and setup for case studies that contain two types 
of shading devices: quad-grid and diagrid. The building performance 
model focuses on the daylight metrics of Leadership in Energy and 

Environmental Design (LEED) v4.1, namely, spatial daylight autonomy 
(sDA) and annual sunlight exposure (ASE), for each scenario. The results 
present the learning scores of 40 surrogate models developed for each 
performance aspect using advanced ANN techniques. Part 2 of the 
MUZO study deals with the optimisation challenge while explaining the 
problem formulations to optimise the sDA and ASE using the 40 pre-
dictive models presented in this paper. Considering the near feasibility 
threshold adaptive penalty function, the optimisation process employs 
three algorithms, namely, self-adaptive differential evolution with 
ensemble of mutation strategies using the Optimus plug-in (Cubukcuo-
glu et al., 2019), covariance matrix adaptation with evolution strategy, 
and radial basis function optimisation using the Opossum plug-in 
(Wortmann, 2017). After validating the method by comparing the 
MUZO results with the regular high-rise scenarios, the paper discusses 
the advantages and disadvantages and underlines the potential and 
future research directions. In this paper, Section 2 presents the state of 
the art, Section 3 introduces the MUZO methodology, Section 4 explains 
the setup, Section 5 reports the ANN results, and Section 6 concludes the 
paper. 

2. State of the art for AI in the design of sustainable high-rises 

This section presents previous studies focusing on performance as-
pects related to sustainable high-rise buildings in three subsections: ML, 
computational optimisation, and ML with optimisation applications. 
Subsequently, the original contribution of the MUZO methodology is 
summarised. 

2.1. Machine learning applications 

Over the last two decades, ML techniques have been used to address 
the computational burden of simulations of high-rise buildings. An early 
study discussed regression models to predict energy performance (Lam 
et al., 1997). After a decade, Ko et al. (2008) focused on the daylight 
factor as part of the LEED v2.2 for building shape, layout, and façade 
parameters. In the following years, Li and Li (2015) examined the 
annual ventilation rate, in addition to energy performance. Tian et al. 

Nomenclature 

Daylight metrics and material properties 
ASE Annual sunlight exposure [%] 
DA Daylight autonomy [%] 
DGP Daylight glare probability 
g-val. G value of the glazing material 
IL Illumination level [lux] 
sDA Spatial daylight autonomy [%] 
Tvis Visible transmittance of the glazing material 
UDI Useful daylight illuminance [%] 
U-val. U value of the glazing material [W/m2 K] 

Machine learning 
ANN Artificial neural network 
DNN Deep neural network 
FNN Feedforward neural network 
GBM Gradient boosting model 
GLM Generalised linear model 
kNN k-nearest neighbour 
MARS Multivariate adaptive regression splines 
ML Machine learning 
MLR Multiple linear regression 
MRA Multiple regression analysis 
RBF Radial basis function 

RBFNN Radial basis function neural network 
ReLU Rectified linear units 
RF Random forest 
SVM Support vector machine 

Statistics 
CV Cross-validation 
MAE Mean absolute error 
MSE Mean squared error 
R2 R-squared 
Std Standard deviation 

Optimisation 
GD Gradient descent 
NFL No free lunch 
SGD Stochastic gradient descent 

Others 
CTBUH Council on Tall Buildings and Urban Habitat 
GH Grasshopper 3D algorithmic modelling environment 
IEA International Energy Agency 
IES Illuminating Engineering Society 
LEED Leadership in Energy and Environmental Design 
MUZO Multi-zone optimisation 
USGBC United States Green Building Council  
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(2020) developed models for energy-efficient heating design in office 
buildings considering conventional modelling processes and an inno-
vative two-step method. Recently, researchers began to use sensitivity 
analyses with ML techniques to decrease the design complexity (Chen 
et al., 2017a; Chen et al., 2017b). Since the early years, various aspects 
have been used to predict the performance of high-rises. However, none 
of these studies focused on predicting the performance of an entire 
building. The general approach focused on a single-floor level (or part) 
of the high-rise model. 

2.2. Computational optimisation applications 

High-rise buildings are one of the complex design tasks of architec-
ture because various decisions are required for the shape, layout, and 
façade parameters considering multiple performance aspects. Therefore, 
different methods have been examined to address the complexity of 
these buildings. Considering resource production systems, Imam and 
Kolarevic (2016) proposed a concept to optimise energy, food, water, 

and land in high-rises. In addition to producing energy, two studies 
focused on energy performance (Chen et al., 2019a; Chen et al., 2019c), 
one study examined the energy demand with adaptive thermal comfort 
(Giouri et al., 2020), and another considered techno-economic aspects 
(Liu et al., 2020). In addition to façade parameters, Gan et al. (2019) 
investigated the geometric, position, and functional attributes to opti-
mise energy efficiency. Despite the promising results and design alter-
natives, two studies (Chen et al., 2019c; Li and Li, 2015) considered the 
surroundings of the plots being studied, one study compared various 
optimisation algorithms (Chen et al., 2019a), and none of them repli-
cated the heuristic optimisation process. Consequently, the general 
approach, as in ML applications, focuses on a single floor level (or part) 
of the high-rise model. 

2.3. Machine learning and computational optimisation applications 

In the high-rise domain, early examples of predictive models focused 
on evaluating the design performances. Some of the recent studies 

Fig. 1. MUZO methodology.  
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considered predictive models with optimisation algorithms because of 
the potential to determine optimal solutions in a short time. Early ex-
amples used regression models, support vector machines (SVMs), and 
multi-objective optimisation (Chen and Yang, 2017, 2018). In addition, 
Chen et al. (2019b) conducted a sensitivity analysis to decrease the 
design complexity. Despite the fast evaluation potential of using ML 
with optimisation, the aforementioned studies considered specific floor 
levels of high-rise models. 

2.4. Original contribution of the research 

The MUZO methodology is proposed to optimise the entire shape of a 
high-rise building to investigate sustainable design alternatives while 
addressing the computational burden. Because dense urban areas result 
in performance variations between the ground and sky levels, a unique 
optimisation strategy is required. Therefore, the MUZO methodology 
suggests dividing the high-rise building into equal subdivisions (or 
zones), which can be considered as different design problems. In addi-
tion, this paper suggests an advanced model selection to provide high 
prediction accuracies, as well as a decision framework by comparing the 
algorithms and replicating the optimisation process. Thus, the MUZO 
methodology aims to determine the optimal design solution by 
achieving sustainable high-rise alternatives for dense urban districts. 

3. Multi-zone optimisation methodology 

Previous studies demonstrated that the optimisation of high-rise 
buildings can focus on multiple performance aspects that may require 
various digital platforms. Considering the flexibility of integrating 
different software, Fig. 1 shows the phases of the MUZO methodology. 
The parametric high-rise model focuses on generating design alterna-
tives with performance evaluations in phase 1. ML for surrogate models 
addresses the computational burden of multiple performance aspects 
related to sustainable buildings in phase 2. Finally, the computational 
optimisation and decision-making phase investigates the desirable per-
formance for the entire high-rise building. 

3.1. Parametric high-rise model 

The first phase of the methodology considers the parametric model, 
which involves generating configurations of the high-rise building using 
design variables. Preparing the model requires three steps: developing 
the parametric high-rise model to generate design alternatives, identi-
fying zones according to the surroundings of the plot being studied, and 
integrating performance aspects. 

Step 1 (Generating high-rise alternatives): Initially, creating the context 
around the plot area is the first step during the development of the 
parametric high-rise model. This is because surroundings with different 
densities may require various design strategies and parameters in the 
conceptual phase. When the built environment is modelled, a parametric 
high-rise model that involves decision variables related to the building 
shape, façade design, layout, and operation is generated. Few tools are 
available for use in this step, i.e. Generative Components (Aish, 2003; 
Bentley, 2003), Dynamo (Dynamo, 2011; Keough, 2011), and Grass-
hopper 3D (GH) (Rutten, 2015). The MUZO methodology can include all 
of these parameter types and available tools during form generation. 

Step 2 (Identifying zones): As mentioned previously, dense urban 
districts result in performance variances between the ground and sky 
levels. Therefore, the second step of parametric modelling identifies the 
zones, which involves subdividing the entire building into smaller pieces 
to focus on various floor levels as different optimisation problems. The 
number of zones is a predefined variable that depends on the density of 
the plot under study. For instance, in urban areas with low-density, high- 
rise buildings can be divided into three zones, whereas this amount may 
increase to five in the mid-density scenarios. For high-density scenarios, 
more than five zones can be used for an extensive investigation of the 

effects of the surrounding at various levels. After determining the 
number of zones, the next step is to identify floor levels in each zone, 
because performance aspects, such as daylight and solar radiation, 
require floor surfaces for the simulation to be conducted. While a large 
number of selected floor levels requires an extensive simulation time, 
fewer selected floor levels may result in decision-making with limited 
awareness of the entire building’s performance. Fig. 2 shows zoning 
scenarios for low-density, mid-density, high-density urban areas and 
different selections of floor levels. 

Step 3 (Integrating performance aspects): The final step of the first 
phase in MUZO methodology involves evaluating the high-rise model 
using the performance aspects of sustainable buildings. The state of the 
art considers a limited number of performance criteria because of two 
reasons. First, considering multiple aspects requires extensive compu-
tational time for simulation-based evaluation. Second, the complexity of 
the design task increases owing to multiple performance aspects. In 
addition, conflicting performances introduce an additional challenge 
during the conceptual phase (Kirimtat et al., 2016). The proposed MUZO 
methodology can integrate any performance criteria to determine sus-
tainable high-rise alternatives. Challenges on computational burden and 
complexity are addressed in the subsequent phases. 

3.2. Machine learning for surrogate models 

When the parametric model and simulations are set, various design 
alternatives can present the simulation results to gain awareness of the 
performance for different design scenarios. ANN models, which can 
swiftly evaluate the building performance, are used in the second phase 
of MUZO, which requires three steps: 

Step 1 (Collection of samples): Sampling, which is the first step of ML 
in MUZO, is an essential process of surrogate modelling. With a specific 
distribution in the data, ML algorithms can learn and predict data with 
high accuracy. Recently, Westermann and Evins (2019) presented two 
types of sampling: static sampling (e.g. Latin hypercube sampling (Loh, 
1996)) and adaptive sampling (i.e. sequential space-filling (Crombecq 
and Dhaene, 2010)). The selection of the sampling method depends on 
the category of surrogate models that can be either global or local 
models. All sampling methods using a global modelling approach can be 
used in the MUZO methodology. On the effect of the sample size, 
Chatzikonstantinou and Sariyildiz (2016) discussed that the extension of 
the dataset is frequently beneficial. In addition, Roman et al. (2020) 
presented the most commonly used sampling methods in building- 
performance simulations. Among these sampling methods, one of the 
most common approaches is 

ns = 22.5ni (1)  

where ns is the sample size and ni is the number of independent vari-
ables. Because each subdivided part corresponds to a different optimi-
sation model, the MUZO methodology proposes a unique sample 
collection framework (Fig. 3). After subdividing the high-rise building 
into zones, each subdivision is used to generate its own samples. When 
the process is complete, each generated sampling file, which belongs to 
one zone, can be used in different surrogate models. 

Step 2 (Developing ANN models): ANNs, which correspond to the 
second step of the ML phase, are widely used methods in ML domains to 
predict various aspects of building performance. This because ANNs can 
manage large sample sizes for many variables and predict the perfor-
mance with high accuracies (Westermann and Evins, 2019). Various 
ANN types, such as feedforward neural networks (FNNs) and radial basis 
function neural networks (RBFNNs), have been used to estimate build-
ing performance (Roman et al., 2020). In this paper, the development of 
ANN models consists of two stages: 

Stage 1 (Neural net with dropout): The development of ANNs begins 
with reading and scaling the data, which frequently contain different 
parameters with units and metrics. After the reading process, scaling is 
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performed to obtain all inputs and outputs within the same boundaries 
using several scaling methods (Grus, 2019). For min–max scaling, the 
data is normalised as 

x′

= σ(max(x) − min(x))+min(x) (2)  

where x′ is the scaled value, x is the original value and σ is its standard 
deviation. Before selecting the scaling method, the problem type must be 

identified, which can be either classification or regression. While clas-
sification problems focus on predicting a class label, regression problems 
consider predicting a quantity. In addition, splitting data is crucial for 
identifying training and test sets using a rate, e.g. 0.2. or 0.25, according 
to Westermann and Evins (2019). When the ANN model is finalised, the 
architecture contains various layers (Fig. 4). 

Each neurone in the hidden layers receives the weighted sum of in-
puts to pass the result through an activation function. In the output 

Fig. 2. Zoning examples for various urban densities and floor selections.  

Fig. 3. Sample collection framework.  
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layer, the ANN predicts the final solution considering this procedure for 
all neurones. The network also involves bias layers that can shift the 
result of each layer. The activation (a) of each ith layer is 

ai = f

(

bi +
∑m

j=1
wijxi

)

(3)  

where f is the activation function, b is the bias, wij is the ith layer of the jth 

weight, and xi is the input vector of the ith layer. When using rectified 
linear units (ReLU), each neurone is activated as follows: 

f (x) =
{

0 for x⩽0
x for x > 0 (4) 

Different functions, e.g. sigmoid, softplus, and tanh, activate the 
neurones with various equations that may affect learning performance. 
The forward process of ANNs can predict the solution using Eq. (3). To 
achieve high accuracy, a backward process is necessary to determine the 
best values for the weights and biases. Hence, backpropagation (Hecht- 
Nielsen, 1992) involves a loss function and an optimisation algorithm. 
Researchers have widely used gradient descent (GD) (Ruder, 2016), 
stochastic gradient descent (SGD) (Bottou, 2010), Adam (Kingma and 
Ba, 2014), and RMSProp (Mukkamala and Hein, 2017) algorithms for 
optimisation. For the loss functions of classification problems, cross- 
entropy (De Boer et al., 2005) and Kullback–Leibler divergence (Kull-
back and Leibler, 1951) can be considered. In regression problems, re-
searchers use the mean squared error (MSE) in Eq. (5) (Mood, 1950), 
mean absolute error (MAE) in Eq. (6) (Willmott and Matsuura, 2005), 
and R-squared (R2) value in Eq. (7) (Draper and Smith, 1998): 

MSE =
1
n

∑n

i=1
(xi − yi)

2 (5)  

MAE =

∑n

i=1
|yi − xi|

n
(6)  

R2 = 1 −

∑

i
(xi − yi)

2

∑

i
(xi − x)2 (7)  

where yi is the predicted data, xi is the observed data, x is the mean of 

the observed data, and n is the sample size. Various loss functions can be 
used to validate the accuracy of the trained model (Chatzikonstantinou 
and Sariyildiz, 2016). In addition, the dropout technique (Srivastava 
et al., 2014), which randomly drops units from the neural network with 
their connections, avoids overfitting. The MUZO methodology can 
involve multiple loss functions and dropouts at a rate between 0 and 1. 

Stage 2 (Grid search with k-fold cross-validation (CV)): Developing a 
surrogate model is a black-box process. One of the reasons is that mul-
tiple hyperparameters, which are the parameters of the ANN (e.g. neu-
rone size and batch size), are involved in the learning process. Various 
combinations of these factors affect learning and prediction accuracies. 
Therefore, a model validation technique is required to evaluate the ac-
curacy of predictions. K-fold CV (Stone, 1974) is a well-known method 
for accurate estimations that randomly divides the original sample into k 
equal-sized subsamples. While one subsample is maintained as the test 
set, the remaining k − 1 subsamples are the training sets. The standard 
deviation (Std) indicates the difference for each error for the k-fold CV: 

Std =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N − 1

∑N

i=1
(xi − x)2

√
√
√
√ (8)  

where N is the number of observations, {x1, ..., xN} are the observed 
values, and x is the mean value of these observations. The aim is to 
determine satisfactory results for the MAE, MSE, and R2, and achieve 
small Std values for each accuracy metric. 

Step 3 (Selecting the best model): The final step of the ML phase in-
volves the selection of the best model using the results of the grid search. 
In each zone, the criteria are the highest R2 with low MAE, MSE, and Std 
for this process. Using the weights and biases of the final ANN, the 
predictive models are ready for use in the optimisation process. 

3.3. Computational optimisation and decision-making 

The final phase of the MUZO methodology, which consists of three 
steps, involves determining the design parameters for sustainable high- 
rise alternatives. The first step considers the development of predictive 
models using the ML outputs. The second step is selecting the problem 
formulation. Finally, the proposed decision-making framework reveals 
the optimised design solution by completing the MUZO methodology. 

Step 1 (Defining predictive models): The development of predictive 
models requires weight and bias results collected from each ANN model. 

Fig. 4. ANN architecture.  
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Subsequently, the collected results are transformed into matrices 
considering the input vector and neurone sizes for each layer to initiate 
the first step of the optimisation phase. The definition of activation with 
n layers is as follows. 

y = fn(fn− 1(fn− 2(fn− 3(x⋅wn− 3 + bn− 3)⋅wn− 2 + bn− 2)⋅wn− 1 + bn− 1)⋅wn + bn) (9)  

where y is the performance criterion to be predicted, x is the input 
vector, wn is the nth weight, bn is the nth bias, and fn is the nth activation 
function. For any given x, the model estimates the performance results. 
Having weights and biases as recorded data suggests the possibility of 
using predictive models in various platforms, such as C#, C++, Python, 
and GH, during the optimisation process. 

Step 2 (Selecting formulation): When the predictive models are ready, 
the next step is selecting the problem formulation for the optimisation 
process. Previous studies on building optimisation used single objective, 
weighted summation, multi-objective, many objectives, and constrained 
optimisation problems (Ekici et al., 2019a). For n parameters, the defi-
nition of the generalised problem formulation is 

min : f1(X), ..., fk(X), X = (x1, x2, ..., xn) and X ∈ S
subject to : gi(x)⩽0, i = 1, ..., p

hj(X) = 0, j = p + 1, ...,m
(10)  

where an integer k > 0 is the number of objective functions, S is the 
entire search space, p is the number of inequality constraints and m − p is 
the number of equality constraints. For the maximisation problem, the 
transformation of the function can be 

maxf (x) = − f (x) (11) 

The trade-off between building performance affects the selection of 
the formulation. For one aspect, e.g. maximising daylight (Mangkuto 
et al., 2018), the single-objective formulation is convenient for the 
optimisation process. Another scenario may have two conflicting ob-
jectives, such as maximising the sDA and minimising the ASE. If one of 
these aspects requires a threshold according to the building standards, 
the formulation can be a single-objective constrained optimisation (Vera 
et al., 2017). Otherwise, the multi-objective (Yi, 2019) or weighted 
summation (Wagdy et al., 2015) approaches can be alternatives. For 
more than three objectives, the options are multi-objective constrained 
or many-objective formulations (Pilechiha et al., 2020). 

Step 3 (Optimisation): The final step of phase 3 involves exploring the 
optimal alternative for each zone. In the optimisation domain, heuristic 
algorithms are employed to solve complex problems by mimicking 
behavioural patterns and social phenomena observed in nature (Del Ser 
et al., 2019). Additionally, in the domain of sustainable building design, 

heuristics are widely used because promising alternatives are discovered 
in a reasonable time frame (Evins, 2013). Despite their advantages, 
these algorithms do not guarantee an optimal solution. According to the 
no free lunch (NFL) theorem (Wolpert and Macready, 1997), a global 
algorithm that can determine the optimal result for all problems does 
not exist. In architectural design, the subject is more dynamic than the 
benchmark problems. Each design scenario is a specific problem owing 
to the variances in the surroundings. In addition, the surroundings of the 
different cities have diverse climate types (e.g. Mediterranean climate in 
Izmir, Oceanic climate in Amsterdam). Therefore, architects can propose 
various alternatives for the same design problem (i.e. high-rise build-
ings) because concerns and the required strategies are different. Thus, 
we may conclude that “the global optimal of each design problem is unex-
plored”. Therefore, the optimisation process of the MUZO methodology 
involves comparing various algorithms with replications for decision- 
making (Fig. 5). Single-objective optimisation algorithms report the 
best solution that can be used as the final design alternative. In multi- 
objective or many-objective optimisation problems, various post- 
optimisation analysis methods can be used to evaluate the quality of 
the single best solution during the decision-making process (Si et al., 
2019), e.g. weighted summation approach (Cevizci et al., 2019), TOPSIS 
(Kim et al., 2013), analytic hierarchy process (Goussous and Al-Refaie, 
2014), minimum distance to the utopic point (Riquelme et al., 2015), 
auto-associative models (Chatzikonstantinou and Sariyildiz, 2017). 

4. Setup of the case study 

This section explains the setup for evaluating the MUZO methodol-
ogy considering a hypothetical dense urban district. The first subsection 
describes a parametric high-rise building with variables for the two 
façade types. The subsequent subsection presents the selected perfor-
mance aspects of the simulation setup. Finally, surrogate modelling in-
troduces the details of the sample collection and the development of 
ANN models. 

4.1. Parametric high-rise model and the built environment 

The hypothetical district had 25 plots in GH, each with a 2500 m2 

footprint with building heights between 50 and 150 m, which were 
generated randomly. The focus of the study was the central plot with 60 
floors, 2100 m2 net one-floor area, 150,000 m2 gross floor area, and 50 
× 50 m façade length. Fig. 6 shows the subdivisions (zones) of the 
building beginning from ground-level zone 1 (Z1) to sky-level zone 10 
(Z10), as well as selected floor levels (second and fifth) of every zone for 
simulations. Table 1 presents the façade, shape, and glazing parameters 

Fig. 5. MUZO optimisation process and decision framework.  
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used in the parametric models for both scenarios. 
The first façade design focused on horizontal and vertical shading 

devices using the number, length, and rotation of the devices with four 
glazing types. The second design considered diagonal shading devices 
involving the number, length, and rotation of first and second-order 
diagonals with the same glazing types. The design setups in Figs. 7 
and 8 were used for each orientation, i.e. north (N), south (S), east (E), 
and west (W). Including floor-to-floor height and rotation parameters, 
the search space for the quad-grid scenario in one zone had 
2.893399115e+28 design alternatives with 26 parameters, whereas this 
number was 3.054543465e+23 for the diagrid scenario with 22 pa-
rameters. Floor-to-floor height and rotation parameters of the lower 
zones affected the height and rotation of the higher zones. Therefore, the 
total amount of the design parameters in one zone increased from Z1 to 
Z10 (Fig. 9). Consequently, the quad-grid design had 26 parameters in 
Z1 and 44 variables in Z10, while the diagrid design had 22 parameters 

in Z1 and 40 variables in Z10. 

4.2. Performance metrics and simulation setup 

We investigated two of the LEED v4.1 metrics for the case buildings, 
namely, the sDA and ASE, introduced for the green building certification 
program (USGBC, 2014). Both metrics are commonly used for various 
building functions to achieve sustainable design solutions (Bauer et al., 
2017; Korsavi et al., 2016; Nezamdoost et al., 2018; Nezamdoost and 
Van Den Wymelenberg, 2017; Sherif et al., 2016; Wagdy et al., 2017). 
Recently, Illuminating Engineering Society (IES) presented definitions 
for sDA and ASE metrics (IES, 2013). The sDA evaluates the annual ef-
ficiency of ambient daylight levels in interior spaces. The calculation 
method results in the percentage of an analysis area with a minimum 
daylight illuminance level for specific hours. In contrast, the ASE in-
dicates the potential visual discomfort in interior work environments. 

Fig. 6. Plot under study, zones (subdivisions) and selected floors of the high-rise for simulation.  

Table 1 
Parameters of the quad-grid and diagrid scenarios.   

Parameters Explanation Location Type Unit Boundary 

Quad-grid façade xQ1,xQ6,xQ11,xQ16  Number of vertical devices N-S-E-W Discrete – [0, 8]  
xQ2,xQ7,xQ12,xQ17  Length of vertical devices  Continues m [0.0, 1.5]  
xQ3,xQ8,xQ13,xQ18  Rotation of vertical devices  Discrete ◦ [− 60, 60]  
xQ4,xQ9,xQ14,xQ19  Number of horizontal devices  Discrete – [0, 2]  
xQ5,xQ10 ,xQ15 ,xQ20  Length of horizontal devices  Continues m [0.0, 1.5]  
xQ21 ,xQ22,xQ23,xQ24  Glazing type  Discrete – [1, 4]        

Diagrid façade xD1,xD5,xD9,xD13  Length of 1st order diagonal N-S-E-W Continues m [0.0, 1.5]  
xD2,xD6,xD10,xD14  Length of 2nd order diagonal  Continues m [0.0, 1.5]  
xD3,xD7,xD11,xD15  Rotation of diagonal devices  Discrete ◦ [− 60, 60]  
xD4,xD8,xD12,xD16  Number of diagonal devices  Discrete – [0, 5]  
xD17 ,xD18 ,xD19,xD20  Glazing type  Discrete – [1, 4]        

Building shape x1 , ...,x10  Floor-to-floor height of zones – Continues m [4.0, 5.0]  
x11 , ...,x20  Rotation of zones  Discrete ◦ [− 10, 10]   

Type Explanation Tvis U-val. g-val. 

Glazing types 1 Tinted float 8 mm blue − 12 mm air − Temperable Low-E 8 mm blue 0.22 1.6 0.28 
2 Temperable Low-E 8 mm neutral − 12 mm air − Clear float 8 mm − 12 mm air − Temperable Low-E 8 mm green 0.45 0.9 0.40 
3 Tinted float 8 mm green 0.68 5.6 0.51 
4 Ultra-clear float 8 mm − 12 mm air − Ultra clear float 8 mm 0.82 2.8 0.81  
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The method results in the percentage of direct sunlight that exceeds a 
defined illuminance for the specified number of hours for the analysis 
area. 

The simulation setup focused on the second and fifth floors of each 
zone (Fig. 10). The parametric model used the Diva plug-in v4.0.3.1 
(Jakubiec and Reinhart, 2011) developed for GH to simulate sDA and 
ASE metrics with an EnergyPlus weather data file for Izmir City with a 
dry summer Mediterranean climate, latitude: 38.423733 and longitude 
27.142826. Each zone was simulated using two analyses of planes with 
180 sensor points each and was 0.8 m above the finished floor. Four 
glazing types, listed in Table 1, were separately used as decision vari-
ables for each orientation. As suggested by (IES, 2013), the setup 
simulated sDA300/50% and ASE1000,250h for 10 h of occupation between 8 
am and 6 pm. A single simulation task of one zone involved 360 sensors. 
For the radiance parameters listed in Table 2, the simulation process 
used values similar to those in previous studies because of the high 
computational cost. The setup was used to simulate the daylight per-
formance of 7200 sensor points for the overall building evaluation of 
two scenarios. 

4.3. Surrogate modelling 

The surrogate modelling began with sampling collection, which 

considered 1000 samples for each zone using Latin hypercube sampling 
(Loh, 1996) and Eq. (1). One simulation required 4 min for two floors 
with the radiance parameters provided in Table 2. A computer with an 
Intel I7 4 core processor at 2.7 GHz and 16 GB DDR3 memory was used 
to calculate the computational burden as more than 55 days were 
required to collect 20,000 samples. In the next step, Python 3 (Van 
Rossum, 2009) was used with the additional libraries listed in Table 3 to 
develop ANN models with FNNs. After scaling the data for each zone 
with min–max scaling in Eq. (2), the SGD algorithm optimised weights 
and biases using Eq. (3) for all models considering 10-fold CV, three 
hidden layers, dropout rate with 0.1, and the ReLU activation function in 
Eq. (4). The automated Python program fit the model 324 times for all 
hyperparameter combinations for every zone. In total, the program ran 
6480 different ANN models with various complexities. 

5. Results 

This section presents the sampling, grid search with CV, and tuned 
ANN results. The supplementary material provides statistics of collected 
samples, selected ANN models with learning scores, weights, biases, and 
computation time spent on the model selection for each zone. 

Fig. 7. Quad-grid façade design.  

Fig. 8. Diagrid façade design.  
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5.1. Sampling results 

The collected samples, which were published as an open-access 
dataset in (Ekici et al., 2020), contain the simulation results for the 
quad-grid and diagrid. Each zone had ASE and sDA results indicated as 
ASE_1 and sDA_1 on the second floor and ASE_2 and sDA_2 on the fifth 
floor. ASE_avg and sDA_avg, which represent the average values of these 
floors (Fig. 11), were used to develop the surrogate models. 

The sDA results of the quad-grid application were between 41.9% 
and 100%, whereas ASE results were in the range of 9.4% and 50.7%. In 
the diagrid scenario, these results were 33.1% and 93.75% for sDA and 
16.75% and 46.2% for ASE. For the mean values, natural daylight 
availability increased from Z1 to Z10 for both scenarios. However, this 
caused an increment in ASE results. In addition, the means of the sDA 
results for the quad-grid were higher than those for the diagrid. 

5.2. Grid search with cross-validation results 

ANN models were trained using the developed Python program, 
considering grid search and 10-fold CV using the collected dataset. The 
average results and deviations of MSE, MAE, and R2 in Eqs. (5), (6), (7) 
and (8) were recorded for each parameter combination during the 

Fig. 9. Complexity matrix for quad-grid and diagrid scenarios.  

Fig. 10. Simulation setup for both scenarios.  

Table 2 
Radiance parameters.   

-aa -ab -ad -ar -as 

This paper 0.15 2 512 256 128 
(Ekici et al., 2019b) 0.15 2 512 256 128 
(Kirimtat et al., 2019) 0.15 2 1000 300 20 
(Yi, 2019) 0.15 2 512 256 128 
(Lee et al., 2019) 0.15 2 512 256 128  

Table 3 
Python libraries.  

Library Explanation Reference 

Scikit-learn ML library (Pedregosa et al., 
2011) 

Keras Deep learning library (Chollet, 2015) 
TensorFlow Open source ML platform (Abadi et al., 2016) 
Pandas Data analysis library (McKinney, 2010) 
Joypy Plot library (Taccari, 2017) 
Plotly The interactive graphing library (Plotly, 2015) 
Matplotlib Static, animated, and interactive 

visualisation library 
(Hunter, 2007)  
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search process. The best hyperparameters with their statistical results 
are shown in Fig. 12. 

The results indicated that 37 out of 40 ANN models had the best 
accuracy using 200 neurones. In the three models, the number of neu-
rones was 100. For the momentum parameter, 33 models had the best 
score with 0.9, five models had 0.6, and two models had 0.3. Addi-
tionally, 25 models had the highest score using 0.1 for the learning rate, 
while twelve models using 0.05, and three models using 0.01. For 
epochs, eighteen models had the highest accuracy with 500, fourteen 
models had 750, six models using 1000, and two models had 250. 
Finally, the best selection for the batch size was 50 in twenty-one 
models, whereas it was 100 in nine models and 10 in ten models. The 
deviations of MAE, MSE, and R2 indicated that all CV folds had similar 
results for all metrics with high accuracies. The R2 values of 33 models 
were higher than 0.9, whereas in seven models they were higher than 
0.8. All MAE, MSE, and Std results were less than 0.05. Consequently, 
the grid search results indicated promising accuracies to develop pre-
dictive models with the selected hyperparameters in the next step. 

5.3. Tuned ANN results 

Using the best hyperparameter sets shown in Fig. 12, ANN models 
were fit considering 0.2 for splitting data to demonstrate the learning 
behaviour and convergence by separating the dataset as training and test 
sets. Fig. 13 shows the R2 results of these models, and appendices A1 and 
A2 provide the convergence of MSE and MAE while fitting the ANN 
models. 

The R2 values for all training sets were higher than 0.9. For the test 
sets, R2 of fourteen quad-grid models out of twenty were higher than 0.9 
and higher than 0.8 for five models. R2 was slightly lower than 0.8 for 
only one model. In the diagrid application, R2 for seventeen models was 
higher than 0.9, while it was higher than 0.8 for three models. The ac-
curacy of the predictive models through the MSE and MAE results are 

also provided in Appendix A. All reported MSE results were lower than 
0.05. For the MAE, results of the ASE and sDA were lower than 0.05 in 
Z1, Z2, Z3, Z4, Z6, Z9, and Z10 for the quad-grid scenario. However, in 
other zones, the MAE of the ASE was slightly larger than 0.05, and it was 
lower than 0.05 for the sDA. In the diagrid scenario, the ASE and sDA 
models had MAE results lower than 0.05 in Z1, Z2, Z3, Z4, Z5, Z6, Z7, 
and Z9. In other zones, the MAE of the ASE was slightly higher than 0.05, 
whereas it was smaller than 0.05 for the sDA. 

To compare the accuracy results reported for different design com-
plexities, Fig. 14 shows the R2 of similar studies focusing on ML appli-
cations in daylight (Chatzikonstantinou and Sariyildiz, 2016; Chen et al., 
2017a,b; Chen and Yang, 2017; Kirimtat et al., 2019; Luo et al., 2021; 
Ngarambe et al., 2020; Sun et al., 2020). Papers in this domain have 
promising results for DA, sDA, illumination level (IL), and useful 
daylight illuminance (UDI). However, visual comfort metrics, such as 
daylight glare probability (DGP), have moderate accuracies for various 
ML applications. In this study, a similar result was achieved for the ASE 
metric because of the challenges in predicting comfort metrics. In 
addition, most of the previous studies considered design variables be-
tween 5 and 15, which provided less design complexity compared with 
this study. Only Kirimtat et al. (2019) considered 25 variables with R2 

values between 0.9 and 0.3. Consequently, the ML part of the MUZO 
methodology could address more complex designs while presenting high 
accuracies for all 40 models. 

6. Conclusion 

This paper presents the first part of the MUZO study, focusing on the 
background, methodology, setup, and ML results. The proposed meth-
odology managed sampling and ANN development for 40 different 
models using a parametric high-rise model in a dense urban district. In 
addition, the developed Python program was used to investigate the best 
models for all zones of the two scenarios in 403 h. Based on the reported 

Fig. 11. Distributions of collected samples.  
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accuracies, building zones close to the sky levels were more challenging 
than the ground levels because of the increasing number of design 
variables. The study also proved that dense urban surroundings affect 
the performance of high-rise buildings at various floor levels by deter-
mining different simulation results during the sampling process. 
Therefore, architects and engineers should consider various zones as 
different problems while designing sustainable high-rises in 
metropolises. 

The ML part of the MUZO methodology indicated prediction scores 
with high accuracies using different hyperparameters for batch size, 
epoch, neurone size, momentum, and learning rate in each model 
despite various design complexities considering multiple performance 
aspects. Future research can integrate more hyperparameters, such as 
activation function, dropout rate, various optimisation algorithms, 
different numbers of hidden layers, and sample sizes. Thus, the ANN 
models can provide higher accuracies with an exponential increment in 

Fig. 12. Grid search results of the best ANN models.  
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computational time. Hence, having all these parameters can be more 
applicable to real-world high-rise scenarios. 

In conclusion, the parametric high-rise model and ML for surrogate 
model phases of the MUZO methodology could automate form genera-
tion, performance evaluation, sampling, data processing, ANN devel-
opment, and reporting the predictive models for all zones in both high- 
rise scenarios. Using the ML part of the MUZO methodology, architects 
and engineers can address the computational burden while optimising 
the entirety of a high-rise building to propose sustainable alternatives in 
metropolises. Nevertheless, optimisation of the high-rise building, 
which is addressed in part 2 of this study, remains challenging owing to 
the high number of parameters involved in the design process. 

7. Data availability 

Datasets related to this article can be found at https://doi.org/ 
10.4121/uuid:8538ac2f-3a78-4923-8fca-5beb50017299, an open- 
source online data repository hosted at 4TU Research Data (Ekici 
et al., 2020). 
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Fig. 13. R2 results of training and test sets.  

Fig. 14. Summary of the previous studies for ML applications in daylight.  
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Appendix B. Diagrid MAE and MSE results for training and test sets
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