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ABSTRACT 

ACCELERATED MODULAR INVERSE ALGORITHM FOR MULTIDIGIT 

INTEGERS 

Şanal, Pakize 

Msc, Computer Engineering 

Advisor: Asst. Prof. Hüseyin HIŞIL 

 

July 2019 

In this thesis, a multi-digit modular multiplicative inverse algorithm has been aimed 

to SIMD parallelized by utilizing AVX2 instructions which are commonly 

encountered on new generation Intel processors. Euclid’s extended GCD approach is 

an well known method which also computes modular inverse and GCD together. 

Binary XGCD algorithms based upon this technique are quite fast in computer 

architecture since they only use shifting operations instead of multiplication. 

Generalized version of binary XGCD algorithm was firstly introduced by Lehmer. It 

reduces the numbers in digit level instead of bits, from left to right which makes the 

algorithm fast for large numbers. The accelerated GCD algorithm proposed by 

Jebelean and Weber also realized the same operation in reverse direction; from right 

to left. Their method has been improved by some other researchers, and eventually 

became more efficient. In all of these algorithms process Euclid's invariant equations 

the distinct data in similar way and by same operation, naturally convenient for SIMD 

parallelization. In this thesis, the modular multiplicative inverse version of this 

algorithm is developed. The fundamental part of this algorithm has been SIMD 

parallelized successfully and the sub-functions have been parallelized partially. 

Key Words: Greatest Common Divisor (GCD), modular multiplicative inverse, 

accelerated GCD, Lehmer algorithm, Jebelean-Weber algorithm, multi-digit GCD, 

Single Instruction Multiple Data (SIMD), Intel Intrinsic, Intel's Advanced Vector 

Extensions 2 (AVX2).
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ÖZ 

ÇOK BASAMAKLI SAYILAR İÇİN HIZLANDIRILMIŞ MODÜLER TERS 

ALMA ALGORİTMASI 

Şanal, Pakize 

Yüksek Lisans Tezi, Bilgisayar Mühendisliği 

Danışman: Yrd.Doç. Dr. Hüseyin HIŞIL, Ph.D. 

Temmuz 2019 

Bu tez, yeni model Intel işlemciler üzerinde bulunan AVX2 yönergeleri kullanılarak 

sağdan sola çok basamaklı küçültme yöntemiyle uygulanan modüler çarpımsal ters 

alma hesaplamasını SIMD paralel şekilde geliştirilmesini amaçlamaktadır. Euclid in 

genişletilmiş GCD metodu hem GCD yi hem de modüler ters almayı hesaplayan iyi 

bilinen bir yöntemdir. Bu yöntemle yazılan binary XGCD algoritmaları, çarpma 

operasyonu yerine kaydırma operasyonu kullandığı için bilgisayar mimarisinde hızlı 

algoritmalardır. Binary XGCD algoritmasının genelleştirilmiş hali, ilk kez Lehmer 

tarafından yazılmıştır. Bu algoritma, sayıları bit seyivesi yerine soldan sağa basamak 

seviyesinde küçültür, bu da algoritmayı büyük sayılar için hızlı bir yöntem haline 

getirir. Jebelean ve Weber tarafından sunulan genelleştirilmiş GCD algoritması da aynı 

işlemi tersten sağdan sola gerçekleştirmektedir. Bu method ise zaman içerisinde farklı 

araştırmacılar tarafından geliştirilmiş ve sonunda daha etkili hale getirilmiştir. Tüm bu 

algoritmalar, Euclid in invaryant denklemlerini birbirinden bağımsız ama benzer 

şekilde ve aynı operasyonlarla işlemektedir, bu da SIMD paralelleştirme için oldukça 

uygundur. Bu tezde, bu algoritmanın modular çarpımsal ters alma versiyonu 

geliştirildi. Bu algoritmanın ana döngüsü başarılı bir şekilde SIMD paralel hale 

getirildi ve alt fonksiyonlar kısmen paralelleştirildi. 

Anahtar Kelimeler: En büyük ortak bölen (GCD), modüler çarpımsal ters, 

hızlandırılmış GCD, Lehmer algoritması, Jebelean-Weber algoritması, çok basamaklı 

GCD, (Tek komut çoklu veri) SIMD, Intel Intrinsic, İntel’in Gelişmiş Vektör 

Uzantıları 2 (AVX2).
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CHAPTER 1

INTRODUCTION

Several number theoretic constructions makes frequent reference to greatest

common divisors (GCD) or related primitives such as Bezout identity or modular

inverses as subroutine. Typical examples include,

1. Number theoretic functions: Basis of a two dimensional lattice, finite fields,

Groebner basis theory.

2. Cryptographic functions: Elliptic curve cryptography, lattice based

cryptography, post quantum cryptography.

3. Cryptanalytic functions: Number field sieve algorithm, index calculus

algorithm, Pollard’s rho algorithm, Shank’s baby step giant step algorithm.

Since all of these subroutines are computed on binary computers a typical

question is to optimize GCD related computations.

As the clock speed of modern processors got close to its foreseeable physical

limit on the current semi-conductor based transistors, a rather old hardware

trend started to gain more attraction from hardware vendors i.e. manufacturing

single instruction multiple data (SIMD) instruction sets. New processors are

devoting a larger die area for these type of instruction sets. This is a limited

yet powerful way of parallel processing. For example, vpmuludq instruction

can accommodate four 32x32→64 bit unsigned integer multiplications. The

same processor can do only a single 64x64→128 bit multiplication on its amd64

integer circuit. The computational capabilities of such an instruction set can be

highly exploited in software if the underlying computation is suitable for SIMD

processing.

This thesis is a study of reviewing existing k-ary GCD based algorithms

and investigate their suitability to AVX2 programming. In particular, we

concentrate on a variant which was developed with accumulative results by

Jebelean (Jebelean, 1993), Weber (Weber, 1995), Sorenson (Sorenson, 2004), and

Sedjelmaci (Sedjelmaci, 2007). We call this algorithm as the JWSS algorithm in

this work.
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1.1 MOTIVATION

While developing and implementing a number theoretic function, oftentimes

there are two main concerns in mind,

i the function can be computed in finite time and memory.

ii having i satisfied, it would be very beneficial to compute efficiently.

One motivation of this thesis comes from computing GCD sequences

and other related operations such as modular inverses in above mentioned

fashion. Another motivation comes from low level parallelization of such

computations to utilize the underlying hardware at its peak. In particular, single

instruction multiple data (SIMD) support is an important feature of modern

microprocessors and is preferable in some implementations of cryptographic

primitives such as Montgomery and Genus-1&2 Kummer ladders, cf. (Bernstein,

2006), (Chou, 2015), (Bernstein et al., 2014), and (Karati and Sarkar, 2017).

Such implementations produce higher throughput in comparison to alternative

implementations using the 64 bit integer circuit. The key feature of the success

behind these implementations comes from the fact that ladder formulas can be

put in SIMD friendly form. A similar situation seems to be satisfied in k-ary

GCD algorithms given in Chapters 2 and 3. However, it is not clear whether a

SIMD implementation of these algorithms can provide any practical speed-up.

It is not even clear whether these algorithms can be realized at all in a SIMD

fashion. For instance, some GCD algorithms require integer division instruction

but not all SIMD platforms provide such an option. The most widely available

SIMD circuit, Intel’s AVX2, is one example of this class. Therefore, a SIMD

implementer has to overcome such inabilities. Yet, the linear transformation

phase of some other algorithms seems to be SIMD friendly. On the other hand,

no publicly available implementation is known to date in this context. These

unknowns also provide motivation to this thesis.

Intel introduced SIMD extension, MMX in the Pentium processor 1993, SSE

in Pentium III 1999 and then AVX in Sandy Bridge 2008. Intel AVX is 256

bit instruction set extension, twice the number of data elements that SSE can

process with a single instruction and four times that of MMX, has enhanced

performance with longer vectors, new extensible syntax, and rich functionality. It

is later extension, AVX2 was released in 2013 as a superior of AVX. Recently, Intel

AVX-512 was announced that available on the latest Xeon and i9 processors. This

fast development shows that the progress on SIMD is inevitable. Furthermore,

demanding technological development on Intel Intrinsics is easy to implement

suitable parallel algorithms in C language syntax. Having these in mind, SIMD

2



instructions have potential to boost the performance. This is mostly related with

how much the algorithm is suitable for SIMD parallelization. There are cases

where such a parallelization is not even possible. Therefore, a deeper research is

needed to test k-ary GCD algorithms in this context.

In summary, the main motivation of this thesis is to determine whether

Intel’s AVX2 instruction sets can be preferable in the implementation of these

algorithms over the 64 bit integer circuit. The expected outcome is to determine

whether one can obtain a better throughput in modular inverse computations

based on GCD sequences.

1.2 AIMS & OUTCOMES

The main objective of this thesis is to do research on SIMD implementation of

JWSS algorithm and its variants for computing multidigit modular multiplicative

inverse. The target hardware is widely available AVX2 on i3, i5, and i7 series

The programming environment is built on C language and Intel Intrinsics library.

Parallel implementation of the selected sequential algorithm is not a simple

task. Because it requires investigating the best combination of instructions by

considering many concerns simultaneously. This can be provided by maximizing

the range of options, reveal the necessary actions and reducing the bad choices

to achieve the best performance. In order to achieve this goal we determined the

following aims for this work:

• Perform a literature review on available algorithms to compute GCD and

modular multiplicative inverse.

• Modify JWSS algorithm to produce an extended GCD sequence. The

extended GCD sequence can then be simplified to produce Bezout’s

identity, modular inverse or simply GCD.

• Identify parts of JWSS algorithm that are suitable for SIMD programming.

• Determine hard-to-parallelize parts and develop efficient solutions/varia-

tions.

• Define the representation of the multidigit data with having in mind the

limitations of Intel AVX2 instructions.

• Implement the selected algorithm(s) with a high level programming

language. This language is Magma in our case.

3



• Implement SIMD version of the algorithm on AVX2 platforms reflecting

the Magma implementation.

• Measure the performance of several trials made. And then make a

comparison to determine the best strategy.

We obtained the following outcomes for this work:

• The k-ary style GCD algorithms are understood to be SIMD friendly

leaving a very small room for 2-ary algorithms on very small inputs. k-ary

GCD algorithms make some processing on a small portion of inputs and

then perform linear transformations to get rid of several bits at once. Two

classic approaches are left-to-right and right-to-left elimination of digits.

We selected the JWSS algorithm, a right-to-left method, to implement

after suitable modifications. Details are given in Chapters 2 and 3.

• A magma code is developed to satisfy the JWSS algorithm and our

modifications to be explained.

• A C/assembly SIMD implementation of the JWSS algorithms is developed.

This code showed that computation of GCD sequences can efficiently

benefit from widely available AVX2 SIMD instruction sets.

These aims and outcomes brought us to implementation oriented

contributions which are provided in Section 1.3.

1.3 CONTRIBUTIONS

Building on the aforementioned aims and outcomes, this work makes the

following contributions:

• Extended GCD adaptation of JWSS algorithm is proposed with minor

modifications for SIMD friendly implementation.

• The data permutation is costly on both AVX2 platforms. We show

how to eliminate all permutations despite the fact that SIMD lanes need

intercommunication. This allows a faster SIMD implementation of the

extended JWSS algorithm and of its variants. We provide a discussion of

how to represent data in order to get optimal performance.

• We provide the first AVX2 implementations of the variable-time modular

inversion algorithm based on our extended JWSS algorithm.

4



These contributions will provide implementers a wide angle of decision

alternatives when implementing a k-ary GCD algorithm in a SIMD platform.

Our reported experiences are expected to be very useful if the trend in SIMD

hardware support continues its progression.

1.4 OUTLINE

This master of science thesis is organized as follows. Chapter 2 provides a

literature review of selected algorithms in the context of aims of thesis work.

This chapter also provides extended GCD adaptations of both Lehmer and JWSS

algorithms. Chapter 3 provides the modular inverse variant of the extended GCD

algorithm and provides modifications tailored towards SIMD implementation.

Chapter 4 provides details on Magma and C/assembly implementations of JWSS

algorithms. Conclusions and future research directions are given in Chapter 5.

5
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CHAPTER 2

BACKGROUND ON K-ARY GCD

ALGORITHMS

There are several algorithms to compute the GCD of two inputs. These inputs

can be integers, polynomials over integers, or elements of some Euclidean domain.

This thesis focuses on integer inputs. On the other hand, one method developed

for integer inputs can oftentimes be applied analogously for other mathematical

objects.

The classical Euclidean algorithm with division step has quadratic (Knuth,

2014) time complexity. This algorithm can be applied on processors with integer

division instruction efficiently. The bits are processed from left to right in

Euclidean algorithm. Another approach is Stein’s algorithm. This algorithm

processes the bits from right to left and the complexity of the algorithm is again

of quadratic time, (Stein, 1967). Asymptotically faster GCD algorithms exist.

For instance, see (Knuth, 1971), (Schönhage, 1971), (Stehlé and Zimmermann,

2004), and (Möller, 2008). However, the take over input sizes for such algorithms

are not in the context of this thesis work and thus omitted hereafter.

Both Euclid and Stein type algorithms underwent several modifications

allowing faster software and hardware realizations. Historically most important

achievements can noted as Lehmer’s and Sorenson’s generalizations.

Lehmer’s algorithm, which is in the left-to-right category of GCD algorithms,

simulates the consecutive division steps of Euclidean GCD on most significant

part of the inputs and then jumps the intermediate steps with the help of a

linear transformation step. This linear transformation can be implemented very

efficiently with a fast signed integer multiplier. Most modern processors support

this feature. The main loop of Lehmer’s algorithm eliminates roughly one word

of each input in every iteration. Lehmer’s algorithm is therefore very suitable

for processors with fast multiplication and division circuits.

Sorenson’s k-ary algorithm (Sorenson, 1994) can be viewed as the right-to-

left adaptation of Lehmer’s approach. This algorithm can also be viewed as

the generalization of Stein’s binary GCD algorithm. Sorenson described how

jumps from right to left can be achieved via linear transformations but did not

give an explicit algorithm explaining how to compute auxiliary constants needed

by the linear transformation. Sorenson proves that such constants exist and

7



suggest to look up from a table. Jebelean (Jebelean, 1993) and Weber (Weber,

1995) independently found how to compute the missing auxiliary constants via

an Euclidean type algorithm. Jebelean and Weber’s variant was implemented

and used for a long time in GMP library. One drawback of Jebelean and Weber’s

variant is that the linear transformations have a potential to introduce spurious

factor in the results. Such spurious factor can be eliminated with a final fast GCD

step. Sorenson later showed how to prevent such spurious factors with a closer

analogy to Lehmer’s method. In 2007, Sedjelmaci provide an explicit algorithm

for computing GCD using Sorenson’s approach, see (Sedjelmaci, 2007). We call

Sedjelmaci’s variant as JWSS k-ary GCD algorithm.

The latest developments on GCD sequences concentrated more on developing

a constant-time yet efficient GCD sequence. The first attempt based on Kaliski’s

variant was proposed by Bos (Bos, 2014). Very recently, possibly a case closing

solution came from Bernstein and Yang in (Bernstein and Yang, 2019). Bernstein

and Yang developed a new rule set for the computing a left-to-right k-ary GCD

sequence which eliminates several irregularities suffered in both Lehmer and

JWSS type variants, which are long right shifts, long zero checks, long divisions,

and long conditional swaps at the expense of doing more iterations on the outer

loop. We refer to (Bernstein and Yang, 2019) for BY algorithm.

The following sections briefly summarize Lehmer and JWSS variants. The

section provides more details than the original ones appeared in the literature.

In particular, the presented work in this thesis extends these algorithms in the

context of extended GCD algorithms so that outputs satisfies invariant equations

throughout the computation, coming from Bezout’s identity.

2.1 LEHMER’S LEFT TO RIGHT K-ARY

GCD SEQUENCE

Lehmer’s algorithm is an alternative approach to Euclid’s algorithm which

eliminate expensive long divisions (Lehmer, 1938). At each iteration of the main

loop, the algorithm produces four auxiliary single digit signed integer values with

respect to the the high-order digit of x, y where y could be 0 but not x, see (Katz

et al., 1996). These auxiliary values are then used to jump several steps through

the classical Euclidean algorithm. In particular, the auxiliary values are used to

apply linear transformations as given Algorithms 2 to reduce the size of x and y

from left to right. If the least significant digit of the smaller number is zero, the

algorithm makes a larger jump through long division.

8



Algorithm 1: AuxiliaryCoefficients

input : Integers x̄ and ȳ with x̄ has β

bits.

output: Auxiliary values for Algorithm 2

1 A,B,C,D←− 1, 0, 0, 1

2 while (ȳ + C) 6= 0 and (ȳ +D) 6= 0 do

3 q, q
′ ←−

⌊(x̄+ A)/(ȳ + C)⌋, ⌊(x̄+B)/(ȳ +D)⌋
4 if q 6= q

′

then

5 Return A,B,C,D

6 else

7 A,C ←− C,A− qC

8 B,D ←− D,B − qD

9 x̄, ȳ ←− ȳ, x̄− qȳ

10 end

11 end

12 Return A,B,C,D

The original algorithm of Lehmer computes GCD only. We provide an

extended version in Algorithm 2.

9



Algorithm 2: Lehmer’s Algorithm

input : two positive integers x and y in

radix β representation, with

x ≥ y.

output: gcd(x, y), x′, y′ satisfying

x · x′ + y · y′ = gcd(x, y).

1 x
′

= 1, y
′

= 0, x
′′

= 0, y
′′

= 1

2 while y > 0 do

3 Set x̄, ȳ to be the high-order digit of x,

y, respectively (y could be 0).

4 A,B,C,D←
AuxiliaryCoefficients(x̄, ȳ)

5 if B = 0 then

6 q ← x/y

7 x, y ← y, x− q · y
8 x

′

, y′ ← y′, x
′ − q · y′

9 x
′′

, y′′ ← y′′, x
′′ − q · y′′

10 else

11 x, y ← A · x+B · y, C · x+D · y
12 x

′

, y′ ← A · x′

+B · y′

, C · x′

+D · y′

13 x
′′

, y′′ ← A ·x′′

+B ·y′′

, C ·x′′

+D ·y′′

14 end

15 end

16 return x, x′, y′.

Let x0, y0, x, y, x
′

, y
′

, x
′′

, y
′′ ∈ Z satisfy the invariant equations

x0x
′

+ y0y
′

= x and x0x
′′

+ y0y
′′

= y.

These equations are still satisfied after every linear transformations on x, y, x
′

,

y
′

, x
′′

, y
′′

;

x← ax+ by, y ← cx+ cy,

x
′ ← ax

′

+ bx
′′

, y
′ ← ay

′

+ by
′′

,

x
′′ ← cx

′

+ dx
′′

, y
′′ ← cy

′

+ dy
′′

.

To see this, observe that the initial values x
′

= 1, y
′

= 0, x
′′

= 0, y
′′

= 1 trivially

satisfy the equations above. Now, for arbitrary values of a, b, c, d, x
′

, y
′

, x
′′

, y
′′

in

10



the sequence of Algorithm 2, we get

ax0x
′

+ ay0y
′

= ax,

bx0x
′′

+ by0y
′′

= by.

which can be rewritten as

x0(ax
′

+ bx
′′

) + y0(ay
′

+ by
′′

) = ax+ by

x0(cx
′

+ dx
′′

) + y0(cy
′

+ dy
′′

) = cx+ dy.

It is possible to write a complete proof based on induction from this observation.

We recover the invariant equation once the updates on x, y, x
′

, y
′

, x
′′

, y
′′

are

performed. Similarly, we rewrite for the special case B = 0,

x0x
′

+ y0y
′

= x,

qx0x
′′

+ qy0y
′′

= qy.

in the form

x0(x
′ − qx

′′

) + y0(y
′ − qy

′′

) =x− qy,

x0(x
′′

) + y0(y
′′

) = y

recover the invariant equation once more.

Figure 2.1 depicts the extended GCD sequence computed with extended

Lehmer sequence using Algorithm 2. For comparison, Figure 2.2 repeats the

same for identical inputs with extended Euclidean algorithm, see Appendix A. It

can be observed that every line in Figure 2 appears in at some place in Figure 2.2,

while Lehmer is noticeably shorter. The speedup gained with Lehmer’s approach

(over Euclidean GCD) is constant. On the other hand, Lehmer’s algorithm is

still of quadratic time complexity.

Figure 2.1 Lehmer’s k-ary GCD illustration for
k = 28

x

18914144994474109809

252325405442301828

8467276359221531

398158332345611

2849687501021

227967054517

56942103850

66213039

741329

368361

4607

199

1

1

1

-43

1404

22239

-209411

43904963

285486965

-366014299

18588043247896

-18903101032001

56394245311898

4530442725983841

-7652331427004922736

13208195756785565049

x
′

y

20860527183790487785

45026087805066295

896568669652880

100252004961658

512942425923

57008316889

66213039

65103349

368361

4607

4408

30

1

0

0

75

-2315

-46793

7282592

-80527334

-366014299

314691769806

-18903101032001

56394245311898

-4474048480671943

-104143788452316445

13208195756785565049

-20860527183790487785

y
′

It can be noted that larger values of k makes the sequence even shorter. The

optimal choice for k depends heavily on the target hardware. For instance, a
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typical choice for k on an 64-bit processor is 62. One bit is preserved for sign

management and another for possible carry bit generated by the addition part

of the linear transformations in Algorithm 2.

Figure 2.2 Extended Euclidean GCD illustra-
tion

x

18914144994474109809

20860527183790487785

18914144994474109809

1946382189316377976

1396705290626708025

549676898689669951

297351493247368123

252325405442301828

45026087805066295

27194966416970353

17831121388095942

9363845028874411

8467276359221531

896568669652880

398158332345611

100252004961658

97402317460637

2849687501021

512942425923

284975371406

227967054517

57008316889

56942103850

66213039

65103349

1109690

741329

368361

4607

4408

199

30

19

11

8

3

2

1

1

0

1

-1

10

-11

32

-43

75

-418

493

-911

1404

-2315

22239

-46793

162618

-209411

7282592

-36622371

43904963

-80527334

285486965

-366014299

314691769806

-315057784105

18588043247896

-18903101032001

56394245311898

-4474048480671943

4530442725983841

-104143788452316445

629393173439882511

-733536961892198956

1362930135332081467

-2096467097224280423

5555864329780642313

-7652331427004922736

x
′

y

20860527183790487785

18914144994474109809

1946382189316377976

1396705290626708025

549676898689669951

297351493247368123

252325405442301828

45026087805066295

27194966416970353

17831121388095942

9363845028874411

8467276359221531

896568669652880

398158332345611

100252004961658

97402317460637

2849687501021

512942425923

284975371406

227967054517

57008316889

56942103850

66213039

65103349

1109690

741329

368361

4607

4408

199

30

19

11

8

3

2

1

0

0

1

0

1

-9

10

-29

39

-68

379

-447

826

-1273

2099

-20164

42427

-147445

189872

-6603093

33205337

-39808430

73013767

-258849731

331863498

-285329594513

285661458011

-16853694159151

17139355617162

-51132405393475

4056599381701687

-4107731787095162

94426698697795251

-570667923973866668

665094622671661919

-1235762546645528587

1900857169317190506

-5037476885279909599

6938334054597100105

y
′

The linear transformations in the case B 6= 0 seems to be SIMD friendly

since all multiplications can be computed in parallel. Unfortunately, the case

B = 0 is not. There is no obvious way of making the long integer division

SIMD compatible. Even worse, eliminating the case B = 0 does not seems to be

possible. Therefore, our conclusion is that Lehmer’s algorithm cannot put nicely

into SIMD parallel form. An implementer can of course insist on using SIMD

features in implementing the algorithm by using non-SIMD instructions for the

rare case B = 0. On the other hand, this would make the code hard develop and

sacrifice the code readability.

The next section discusses a right-to-left method which has a similar

disadvantage as in Lehmer’s algorithm. On the other hand, the situation can

be remedied by removing the long division step, namely dmod. The details are

provided in the following section.

2.2 JWSS RIGHT TO LEFT K-ARY GCD

SEQUENCE

The algorithm of Lehmer is oftenly used in GCD calculation of large numbers

which is also encountered in older versions of GNU-GMP library. While Lehmer’s

algorithm works in left to right fashion, JWSS method works in opposite

direction. The first explicit algorithm in this direction was proposed Jebelean and
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Weber independently in early 1990s (Jebelean, 1993), (Weber, 1995). Jebelean

proposed the mathematical background of this problem whereas Weber handled

this matter in a programmatic way. The main loop of Jebelean and Weber’s

algorithm has potential to produce spurious factors which are handled separately.

Sorenson (Sorenson, 2004) describes a modification that prevents spurious factors

from appearing. Sedjelmaci (Sedjelmaci, 2007) contributed to Sorenson’s idea

by decreasing the running time of the algorithm and by making complexity

analysis easier. This is the reason that we call Sedjelmaci’s version as JWSS

method. All these aforementioned papers made significant contribution to the

basis of this thesis work. Considering that the original algorithm proposed by

Weber represents the idea in a more generic way, his notation will be used in the

following parts. Algorithm 3 recalls Weber’s version.

Algorithm 3: Accelerated GCD Algo-

rithm
input : u0, v0 > 0, with ℓβ(u0) ≥ ℓβ(v0)

and gcd(u0, β) = gcd(v0, β) = 1.

output: gcd(u0, v0)

1 u← u0, v ← v0
2 while v 6= 0 do

3 if ℓβ(u)− ℓβ(v) > s(v) then

4 u← dmod(u, v, β)

5 else

6 (n, d)←
ReducedRatMod(u, v, β2t(v))

7 u← |nv − du|/β2t(v)

8 end

9 RemoveFactors(u, β)

10 swap(u, v)

11 end

12 x← gcd(dmod(v0, u, β), u)

13 return gcd(dmod(u0, x, β), x).

A toy example is provided below for t equals 216. Let u =

230073838367939094855 and v = 152188744061051876535. Writing the numbers

in radix 216 we have,

u = 12 · (216)4 + 30954 · (216)3 + 30979 · (216)2 + 8101 · (216)1 + 59719 · (216)0

v = 8 · (216)4 + 16395 · (216)3 + 2148 · (216)2 + 39894 · (216)1 + 13495 · (216)0

13



which can be succinctly summarized with the following sequences,

U = [12, 30954, 30979, 8101, 59719],

V = [8, 16395, 2148, 39894, 13495]

In the first iteration, ReducedRatMod operation is calculated with two the

least significant digits of the numbers u and v,

[n, d] = [40267, 27899]← ReducedRatMod([8101, 59719], [39894, 13495])

which satisfy the equality nv − du ≡ 0 (mod 22×16), and thus,

40267 · (39894 · 216 + 13495)− 27899 · (8101 · 216 + 59719) ≡ 0 (mod 232)

Then, u is assigned the value nv − du which clears away at least one lower

digit of the updated u, by construction. Now also clearing away factors of 2 from

u we get,

U = [7877, 63688, 26415].

The values appearing in this step together with the other steps are

enumerated in Table 1.

Table 1 Example of Accelerated GCD Algorithm

Step u v [n, d]

1 [12, 30954, 30979, 8101, 59719] [8, 16395, 2148, 39894, 13495] [40267, 27899]

2 [8, 16395, 2148, 39894, 13495] [7877, 63688, 26415] [34141, 40069]

3 [7877, 63688, 26415] [20660, 65261, 2609] [43805,−7421]
4 [20660, 65261, 2609] [7351, 3539] [9520, 19344]

5 [7351, 3539] [6098, 26707] [34324, 60436]

6 [6098, 26707] [3585] [12389,−20633]
7 [3585] [15] [239, 1]

- [15] [0]

In each step in the Table 1, new value of u is calculated, factors of 2 are

removed, and result is swapped with v. In the last step, when the number

represented in the v variable is 0, the GCD value is the number represented by

the u variable. The value of the GCD for the given example is 15.

The main part of Weber’s study is shown in Algorithm 3 and he named his

work as “Accelerated GCD Algorithm”. Besides, the algorithm has two auxiliary

14



parts, namely dmod and reducedRatMod.

The following conditions must be satisfied in order to utilize this algorithm

and kept during the loop,

1. u and v must be positive.

2. u must be greater then v.

3. v and β must be relatively prime.

The initial value of u being relatively prime with β, is a result of condition 2

and 3 written above.

Else condition is the most significant part of this work which reduces the

number u fairly quickly with respect to other algorithms. Herein, special (n, d)

values are produced by reducedRatMod function. The updated u with at least

two least significant digits 0, is obtained by special (n, d) values. Even though

the cropping operation has been realized in least two significant digits, the size

of the operands are trimmed around t bits.

An “if condition” is used when the difference between u and v is large

and it decreases the distance between operands by using the so called dmod

function. It ensures that reducedRatMod algorithm works successfully by

providing 2s(v) < t(v) − 1 so that u and v variables can be swapped without

searching any conditions. This function reduces the number u more efficiently

in two manners: it does one multiplication rather then two and it does not lead

spurious factors.

The condition gcd(v, β) = 1 is satisfied by RemoveFactors and swap

operations. At the end of the loop u = gcd(u0, v0) may not be realized. This is

due to possible spurious factors occurred in reducedRatMod by the subtraction of

nv−du. Spurious factors problem has been solved by using dmod & gcd functions

two times in a row.
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Algorithm 4: General ReducedRatMod

algorithm

input : x, y > 0, m > 1, with

gcd(x,m) = gcd(y,m) = 1.

output: (n, d) such that 0 < n, |d| < √m
and ny ≡ xd (mod m)

1 c← x/y mod m

2 f1 = (n1, d1)← (m, 0)

3 f2 = (n2, d2)← (c, 1)

4 while n2 ≥
√
m do

5 f1 ← f1 −
⌊

n1

n2

⌋

f2

6 swap(f1, f2)

7 end

8 Return f2.

Theorem 2.2.1. (Weber, 1995) The output from the general reducedRatMod

algorithm satisfies

ny ≡ nx (mod m) and 0 < n, |d| <
√
m

This is an Euclidean step. Define n
′

1, n
′

2 with initial values n1 and n2,

respectively. The initial values of e1, e2, d1, d2 are set as 0, 1, 0, 1, respectively.

Then, it is straight forward to show that the invariant equations

n
′

1e2 + n
′

2d1 =n1

n
′

1e1 + n
′

2d2 =n2

are satified in every iteration.

The equation is n1v−d1u ≡ 0 (mod 22t) where the initial values are n1 = 22t

and n2 = 0. After these successful linear transformation steps, the invariant

equations are still satisfied. The values e1 and e2 are not part of the computation

in Algorithm 4. They are rather auxiliary numbers to inspect through the

algorithm.
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Algorithm 5: dmod operation

input : u0, v0, β > 0, with gcd(v0, β) = 1.

output: |u0 − (u0/v0 mod

βℓβ(u0)−ℓβ(v0)+1)v0|/βℓβ(u0)−ℓβ(v0)+1

1 u← u0

2 while ℓβ(u) ≥ ℓβ(v0) +W do

3 if u 6≡ 0 (mod βW ) then

4 u← |u− (u/v0 mod βW )v0|
5 u← u/βW

6 end

7 end

8 d← ℓβ(u)− ℓβ(v0)

9 if u 6≡ 0 (mod βd+1) then

10 u← |u− (u/v0 mod βd+1)v0|
11 end

12 Return u/βd+1.

If the difference between the size of the operands gets too large, there is

an long division operation to make large jumps through the Euclidean steps.

Weber achieves this by using dmod (digit modulus) operation (Weber, 1995). In

contrast, Sedjelmaci makes this operation by using mod operation (Sedjelmaci,

2007). Weber’s version is given in Algorithm 5.

2.2.1 ELIMINATING SPURIOUS FACTORS

Despite the fact that spurious factors might occur, Jebelean-Weber algorithm is

a fast alternative to the classical Euclidean gcd algorithm. In our aim to compute

modular inverses however, these spurious factors are disasterous. One needs to

prevent them from happening even before attempting to compute the extended

gcd sequence with a Jebelean-Weber variant.

Sorenson (Sorenson, 2004) decribes how to prevent spurious factors from

appearing. Later on, Sedjelmaci (Sedjelmaci, 2007) uses Sorenson’s description

to provide an explicit k-ary gcd sequence. The core ideas are provided in the

following theorem.

Theorem 2.2.2 ((Sorenson, 2004)). Let a, b, c, d ∈ Z satisfy ad−bc = 1. Then,

gcd(u, v) = gcd(av − bu, cv − du).

Proof. We will show that gcd(u, v) | gcd(av− bu, cv− du) and gcd(av− bu, cv−
du) | gcd(u, v).
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Suppose k = gcd(av− bu, cv−du) where ad− bc = 1 for a, b, c, d ∈ Z. Then,

k | (av−bu) and k | (cv−du). Therefore, we have kα = av−bu and kβ = cv−du
for some α, β ∈ Z. We multiply these equations with c and a respectively and

get kcα = acv − bcu and kaβ = acv − adu. Now with subtraction we get

kcα − kaβ = k(cα − aβ) = (ad − bc)u = u. Similarly multiplying with d and b,

we get kdα = adv−bdu and kbβ = bcv−bdu. And so, k(dα−bβ) = (ad−bc)v = v.

Therefore, k | u and k | v. This implies gcd(av − bu, cv − du) | gcd(u, v).
Now, assume t = gcd(u, v). By definition, u = tα

′

and v = tβ
′

for some α
′

,

β
′ ∈ Z. Now, av − bu = atβ

′ − btα
′

and cv − du = ctβ
′ − dtα

′

, and we get

gcd(u, v) | gcd(av − bu, cv − du).

In conclusion, gcd(u, v) = gcd(av − bu, cv − du).

The solution, is therefore, requires a computation of two linear transformation

rather than one and operate on both operands. Building on this observation,

Chapter 3 presents an extended version of the JWSS algorithm. Our variant

does not use the long divison step which occurs rarely for practical values of t

(e.g. t=32-2=30 or t=64-2=62).
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CHAPTER 3

MODULAR INVERSE BASED ON JWSS

METHOD

In this chapter, we show how to use the JWSS method to compute the modular

inverse

V −1 mod U

for given two positive integers U > V > 0 with U is odd and GCD(U, V ) = 1.

The algorithm is essentially an extended GCD version of the JWSS algorithm.

We then analyze the algorithm and provide a proof of its correctness. We also

provide a Magma implementation at the end of this chapter.

3.1 EXTENDED JWSS METHOD AND

MODULAR INVERSE COMPUTATION

Since the notation and background on the JWSS algorithm has already been

provided in Chapters 2 and 3, it is suitable to give the extended version without

further discussion, in Algorithm 6. The computations regarding y′ and y′′ are

redundant. In other words, those computations can be removed from the modular

inverse computations. The algorithm is given in full detail to prevent repetition.
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Algorithm 6:Modular Inverse Algorithm Based On JWSS

Method
input : u0 > v0 > 0 integers with u is odd and

gcd(u0, v0) = 1.

output: (v0)
−1 mod u0

1 u← u0, v ← v0
2 x′ ← 0, x′′ ← 1

3 y′ ← 0, y′′ ← 1

4 E ← 0

5 v, x′, y′, E ← MakeOdd(v, x′, y′, E)

6 while v 6= 0 do

7 a, b, c, d← ReducedRatMod(u mod 22t, v mod 22t, 22t)

8 u, v← LinearTransform(u, v, a, b, c, d)

9 x′, x′′ ← LinearTransform(x′, x′′, a, b, c, d)

10 y′, y′′ ← LinearTransform(y, y′′, a, b, c, d)

11 u← RemoveDigits(u, 2t)

12 v ← RemoveDigits(v, 2t)

13 u, x′′, y′′, E ← MakeOdd(u, x′′, y′′, E)

14 v, x′, y′, E ← MakeOdd(v, x′, y′, E)

15 u, x′, y′ ← MakePositive(u, x′, y′, u < 0)

16 v, x′′, y′′ ← MakePositive(v, x′′, y′′, v < 0)

17 u, v, x′, x′′, y′, y′′ ← Swap(u, v, x′, x′′, y′, y′′, v > u)

18 E ← E + 2t

19 end

20 Return Modinv2e(x′, u0, E)

We subdivided basic tasks within the algorithm into auxiliary functions for

easier treatment. We start by detailing these functions all of which are self-

explanatory.
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Algorithm 7: Swap

input : x, y, a, b, c, d ∈ Z and

a boolean value k

1 if k = true then

2 Return y, x, b, a, d, c

3 else

4 Return x, y, a, b, c, d

5 end

Algorithm 8: Remove Digits

input : x, t ∈ Z where x ≡ 0

(mod 22t)

1 Return x/22t

Algorithm 9: Make Positive

input : x, a, b ∈ Z and a

boolean value k.

1 if k = true then

2 Return −x,−a,−b
3 else

4 Return x, a, b

5 end

Algorithm 10: Make Odd

input : x, a, b, E ∈ Z

1 while x = 0 (mod 2) and

x 6= 0 do

2 x, a, b, E ←
x/2, a · 2, b · 2, E + 1

3 end

4 Return x, y, E.

Algorithm 10 here needs some extra care. It is used to make the number odd

by clearing the multiples of 2. However, since we need to maintain the invariant

equations

v0x
′′ + u0y

′ = v ∗ 2E (3.1)

v0x
′ + u0y

′′ = u ∗ 2E (3.2)

whose coefficients may not be divisible by 2, we keep track of those missing

divisions in counter variable E. This is necessary because if v is not an odd

number, the modular inverse operation within the reducedRatMod function will

not work.

Algorithm 11: Linear Transformation

input : a, b, c, d, x, y ∈ Z.

1 Return bx− ay, dx− cy

Algorithm 11 provides the linear transformations to produce new values of

u, v, x and y using the numbers a, b, c, d generated from reducedRatMod function.

As seen in Theorem 3.2.2, linear transformations with these four updated values

does not violate the invariant equations.
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Algorithm 12: Modinv2e

input : x, u0, E ∈ Z where 2E mod u0.

output: x(2E)−1 mod u0

1 for i← 1 to k do

2 if x = 0 (mod 2) then

3 x← x+ u0

4 else

5 x← x/2

6 end

7 end

8 Return x.

The algorithm 12 is used to perform missing divisions by 2 which are delayed

with the help of the counter E.

3.2 CORRECTNESS AND ANALYSIS

We prove that our algorithm (i.e. Algorithm 6) is correct by introducing the

following three theorems: Theorem 3.2.1 bounds the intermediate values in

Algorithm 4, Theorem 3.2.2 asserts the invariant equations in Algorithm 6 and

Theorem 3.2.3 shows that the algorithm is correct.

Theorem 3.2.1. For the intermediate values u and v in Algorithm 6, let a, b

be the output of ReducedRatMod algorithm for the inputs u and v. Then 0 <

|av − bu| < 2(t+1)u.

Proof. By Theorem 2.2.1, we have 0 < a, |b| < 2t and it can be written as

0 < a < 2t and 0 < |b| < 2t respectively. Then,

|av − bu| ≤ |au|+ |bv| < (|a|+ |b|)u < (2t + 2t)u = 2(t+1)u.

It is known that |av − bu| is divided by 22t, then the size of u is decreased by

almost 2t in every iteration.

Theorem 3.2.2. In the Algorithm 6, let u0, v0 be the input values, and

u, v, x′, x′′, E be the intermediate values in while loop. Then the following

equations hold:

vx′ − ux′′ = 0 mod u0 (3.3)

v0x
′ = u2E mod u0 (3.4)

v0x
′′ = v2E mod u0 (3.5)
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Proof. We will prove by induction. Note that the equations hold for the initial

values (u, v, x′, x′′, E) ← (u0, v0, 0, 1, 0). Now, by assuming the equations hold

after some number of iterations for some intermediate values u, v, x′, x′′ and E,

it is enough to show the equations still hold in the next iteration. For the next

iteration, denote the updated intermediate values by unew, vnew, x
′

new, x
′′

new and

Enew.

In steps 8-9, the new intermediate values are set as unew ← av − bu, vnew ←
cv − du, x′

new ← ax′′ − bx′ and x′′

new ← cx′′ − dx′ using a, b, c, d obtained in step

7 and performing Linear Transformations later. Then

vnewx
′

new − unewx
′′

new = (cv − du)(ax′′ − bx′)− (av − bu)(cx′′ − dx′) (3.6)

= −bcvx′ − adux′′ + advx′ + bcux′′ (3.7)

= (ad− bc)(vx′ − ux′′) (3.8)

Since vx′−ux′′ = 0 mod u0 by our assumption, we have vnewx
′

new−unewx
′′

new = 0

mod u0. Moreover, since v0x
′ − u2E = 0 mod u0 and v0x

′′ − v2E = 0 mod u0,

we have

v0x
′

new − unew2
Enew = v0(ax

′′ − bx′)− (av − bu)2Enew (3.9)

= a(v0x
′′ − v2E)− b(v0x

′ − u2E) (3.10)

= 0 mod u0 (3.11)

and

v0x
′′

new − vnew2
Enew = v0(cx

′′ − dx′)− (cv − du)2Enew (3.12)

= c(v0x
′′ − v2E)− d(v0x

′ − u2E) (3.13)

= 0 mod u0. (3.14)

In the steps 15 and 16, it is clearly seen that the equations do still hold even

the signs of the intermediate values are changed after MakePositive functions,

because

(−vnew)x′

new − unew(−x′′

new) = − [vnewx
′

new − unewx
′′

new] = 0 mod u0,(3.15)

vnew(−x′

new)− unew(−x′′

new) = − [vnewx
′

new − unewx
′′

new] = 0 mod u0,(3.16)

v0(−x′

new)− (−unew)2
Enew = −

[

v0x
′

new − unew2
Enew

]

= 0 mod u0,(3.17)

v0(−x′′

new)− (−vnew)2Enew = −
[

v0x
′′

new − vnew2
Enew

]

= 0 mod u0.(3.18)

Without loss of generality, assume the signs of the intermediate values are
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suitably changed for the next steps, if it is necessary.

In steps 11, 12 and 18, the intermediate values are updated as unew ←
unew/2

2t, vnew ← vnew/2
2t, Enew ← Enew + 2t. Then

(vnew
22t

)

x′

new −
(unew

22t

)

x′′

new =
vnewx

′

new − unewx
′′

new

22t
= 0 mod u0

since vnewx
′

new − unewx
′′

new is divisible by 22t and u0 is odd. Moreover,

(unew

22t

)

2Enew+2t = unew2
Enew,

(vnew
22t

)

2Enew+2t = vnew2
Enew.

Thus, the equations do still hold. Continue to the next steps with updated

intermediate values.

In steps 13 and 14, unew ← unew/2, x
′′

new ← 2x′′

new, Enew ← Enew +

1 incrementally until unew is odd, and similarly vnew ← vnew/2, x
′

new ←
2x′

new, Enew ← Enew + 1 incrementally until vnew is odd. Similar to the proof

done for steps 11, 12 and 18, the equations do still hold. Continue to the next

steps with updated intermediate values.

In step 17, if the intermediate values are necessarily swapped as

unew, vnew, x
′

new, x
′′

new ← vnew, unew, x
′′

new, x
′

new, we have

unewx
′′

new − vnewx
′

new = − [vnewx
′

new − unewx
′′

new] = 0 mod u0, (3.19)

v0x
′′

new = vnew2
Enew mod u0 (3.20)

v0x
′

new = unew2
Enew mod u0. (3.21)

In the end of the while loop, we see that the equations still hold.

Theorem 3.2.3. For two odd integers u0 > v0 > 0 with gcd(u0, v0) = 1,

Algorithm 6 returns v−1
0 mod u0.

Proof. Recall the second equation in Theorem 3.2.2, i.e.

v0x
′ = u2E mod u0.

Note that, after the last iteration, v = 0 and u = 1. Therefore,

v0x
′ = 2E mod u0

where x′ here is the final value after the while loop. Then,

v0x
′(2E)−1 = 1 mod u0
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in other words x′(2E)−1 mod u0 is the desired solution which is obtained by

Algorithm 12.

3.3 MAGMA CODES

This section provides Magma implementations of the algorithms provided in

Section 3.1. These codes are then used to implement the same in C language.

1 Swap := function(x,y,a,b,c,d,k)
2 if k eq true then
3 return y,x,b,a,d,c;
4 end if;
5 return x,y,a,b,c,d;
6 end function;

Code 3.1: Magma Code for Swap

1 MakePositive := function(x,a,b,k)
2 if k eq true then
3 return -x, -a, -b;
4 else
5 return x, a, b;
6 end if;
7 end function;

Code 3.2: Magma Code for Make Positive

1 LinearTransform := function(x,y,a,b,c,d)
2 return b*x-a*y, d*x-c*y;
3 end function;

Code 3.3: Magma Code for Linear Transform

1 MakeOdd := function(x,a,b,E)
2 while IsEven(x) and (x ne 0) do
3 x := x div 2; a *:= 2; b *:= 2; E +:= 1;
4 end while;
5 return x,a,b,E;
6 end function;

Code 3.4: Magma Code for Make Digits Odd

1 Modinv2e := function(xdd,ud,k)
2 for i:=1 to k do
3 if IsOdd(xdd) then
4 xdd := xdd+ud;
5 end if;
6 xdd := xdd div 2;
7 end for;
8 return xdd;
9 end function;

Code 3.5: Magma Code for Modinv2e

1 RemoveDigits := function(x, _2t)
2 return x div 2^_2t;
3 end function;

Code 3.6: Magma Code for Remove Digits
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1 swapt := function(a,b)
2 return b, a;
3 end function;
4

5 ReducedRatMod := function(u, v, _2t)
6 c := (u * Modinv(v, 2^_2t)) mod 2^_2t;
7 a := 2^_2t;
8 b,d := copy2(0,1);
9 while a ge Sqrt(2^_2t) do

10 assert (A*e2 + B*b) eq a;
11 assert (A*e1 + B*d) eq c;
12

13 q := a div c;
14 a := a - q*c;
15 a, c := swapt(a,c);
16

17 b := b - q*d;
18 b, d := swapt(b,d);
19 end while;
20 return a,b,c,d;
21 end function;

Code 3.7: Magma Code for ReducedRatMod

1 accelModinv := function(u, v, base, s, t, W)
2 xdd,xd,ud,vd := copy4(1,0,u,v);
3 ydd,yd := copy2(0,1);
4 E := 0;
5 v,xd,yd,E := MakeOdd(v,xd,yd,E);
6 while (v ne 0) do
7 assert vd*xd + ud*yd eq u*2^E;
8 assert vd*xdd + ud*ydd eq v*2^E;
9 a,b,c,d := ReducedRatMod(u mod 2^(2*t), v mod 2^(2*t), 2*t);

10 u, v := LinearTransform(u,v,a,b,c,d);
11 xd, xdd := LinearTransform(xd,xdd,a,b,c,d);
12 yd, ydd := LinearTransform(yd,ydd,a,b,c,d);
13 u := RemoveDigits(u, 2*t);
14 v := RemoveDigits(v, 2*t);
15 u,xdd,ydd,E := MakeOdd(u,xdd,ydd,E);
16 v,xd,yd,E := MakeOdd(v,xd,yd,E);
17 u,xd,yd := MakePositive(u,xd,yd,u lt 0);
18 v,xdd,ydd := MakePositive(v,xdd,ydd,v lt 0);
19 u,v,xd,xdd,yd,ydd := Swap(u,v,xd,xdd,yd,ydd,v gt u);
20 E +:= 2*t;
21 end while;
22 return Modinv2e(xd,ud,E);
23 end function;

Code 3.8: Magma Code for k-ary Modular
Inverse
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CHAPTER 4

SIMD IMPLEMENTATION

Intel’s AVX2 instruction set is currently the most accessible high-end processing

platform since it is available in and after every Haswell processors including other

popular processor families like Skylake and Kabylake. Therefore, it is reasonable

to investigate the performance of Algorithm 6. AVX2 provides 16 × 256-bit ymm

registers. The amount of data that can be kept in these registers is over 4 times

more than the data that be accommodated in the 16 × 64-bit integer registers.

Therefore, inputs of Algorithm 6 has potential to be processed faster on AVX2.

This section investigates this possibility.

AVX2 feature is extremely important where time consuming operations are

in question. AVX2 instructions are capable of processing a large set of numbers

at a time, rather than processing them individually and so that enhance the

application performance. These large numbers are placed into AVX2 vectors

such that, they can enlarge up to 256 bits. AVX2 features can be accessed via

immitrin.h header file through Intel intrinsics.

In implementing Algorithm 6 over AVX2 circuit, the first question that arises

is how to represent large integers. There is a vast number of possibilities at this

phase. It is our experience that the representation choice tends to make a huge

difference in the overall performance. We summarize a few below and explain

the best choice out of them together with the reasoning.

4.1 HIGH LEVEL REPRESENTATION OF

DATA

One approach could be working over the four 64-bit lanes where the lanes are

dedicated to v, u, x′′, and x′. Such an approach look very simple, cf. Figure 4.2.

This approach leads to very poor utilization of the underlying hardware since

u and v tends to decrease where x′ and x′′ tends to increase in size. However,

when keeping then side by side in vector form, the implementer is forced to

allocate equal amount of memory for all. And then, several digits will be dummily

processed. Other problems do exist. For instance, one can easily compute bu,

av, bx′, and ax′′ but then one has to permute inside 128 bit lanes in order to

compute bu − av and bx′ − ax′′. Similar comments applies to linear transforms
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with c and d. Finally, the implementation will require extra permutations for

packing data back in aforementioned v, u, x′′, and x′ form horizontally aligned

in vector form.

Figure 4.1 4-way Representation, a first attempt

Another approach which solves some of these problems is to separate vector

variables for u & v and x′ & x′′. In this version, the 64 bit lanes in a vector

contains repeated data in the form u, u, and v, v. Yet another variable contains

x′, x′ and x′′, x′′. In this form u and v can share equal number of digits from start

to the end of computation. Similar applies to x′ and x′′. This approach partially

solves the digit count problem in the first approach. However, permutations are

still not eliminates. For instance, Figure 4.2 depicts linear transformation phase

in such a situation.

Figure 4.2 4-way Representation, a second attempt

The output av−bu is now need to be copied over the first two lanes of v. Similar

applies to cv − du, ax′ − bx′′, cx′ − dx′′. The programmer should prevent such

permutations as much as possible in order to obtain a high throughput.

A third approach could be place limbs of each variable vertically. Figure 4.3

summarizes this situation. The main problem here is the maintenance of carries

between limbs. For instance, carries from a2 to a3 would require a sizeable
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amount of extra code which will not only cost time but also sacrifice code

readability and easy maintenance.

Figure 4.3 4-way Representation, a third attempt

a0 a3 a6 a9

a1 a4 a7 a10

a2 a5 a8 a11

v[0][0] v[0][1] v[0][2] v[0][3]

v[1][0] v[1][1] v[1][2] v[1][3]

v[2][0] v[2][1] v[2][2] v[2][3]

vec1

vec2

vec3

.

.

.

.

.

.

Up to now, it seems that any alternative comes with a huge disadvantage.

Nevertheless, we were able to find the following fine grain solution.

The representation that we use separates all variables in to distinct vector

arrays and places the limbs of a variable first in horizontal fashion in 64 bit lanes

of a vector and then vertically over elements of the vector array. This approach

is depicted in Figure 4.4.

Figure 4.4 4-way Representation, the selected approach

a0 a1 a2 a3

a4 a5 a6 a7

a8 a9 a10 a11

v[0][0] v[0][1] v[0][2] v[0][3]

v[1][0] v[1][1] v[1][2] v[1][3]

v[2][0] v[2][1] v[2][2] v[2][3]

vec1

vec2

vec3

.

.

.

.

.

.

This final approach has its pros and cons. On the positive side, every variable is

maintained separately so that if not needed the limb access can be limited. In

addition, no permutation is needed between lanes. Moreover, the code readability

is fairly better in comparison with other alternatives. However, handling the

carries and right shifts seems to be problematic at the first glance. But we

found a programmatic way of minimizing the speed penalties referenced from

this representation. Our solution is as follows. We concentrate on Figure 4.4 for

simplicity. For instance, carries that needs to be transferred from a3 to a4 can

be handled by slow permutation operation. However, we want to eliminate all

such permutations. At this stage, one can define a vector pointer whose starting

address is a1. Then, the vector pointer acts as 64 bit right shifted array on

the whole number. This greatly simplifies doing the carries and the make odd

routine without causing untolerable speed penalties as in the other approaches.

In addition, the code reads much simpler and shorter. One obstacle is that, gcc
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-avx2 -O0 mode does not work properly for detailed debugging. Therefore, the

code is developed in gcc -avx2 -O3 mode and the debugging was performed

with screen outputs.

4.2 LOW LEVEL REPRESENTATION OF

DATA

AVX2 multipliers can handle 32×32→64-bit vector-vector integer multiplication.

Algorithm 6 operates on signed integers. Therefore, sign management is

necessary in our implementation. Therefore, we could use signed radix 31

representation. However, it is more beneficial to use signed radix 30 since we

can delay carries in linear transforms which requires a singed subtraction. When

the limbs are kept in 30 bits, the maximum value after linear transformation is

calculated as: (230−1) · (230−1) = 260−2 ·230+1. So that, numbers can be kept

in 64 bit registers easily including sign bit. After this operation, the numbers

must be reduced to 30 bits in order to perform the following iteration.

Our implementation works for arbitrary sizes of u. Table 1 and Figure 2.2

provides cycle counts on inputs of different sizes.

Table 2 Cycle Counts on Haswell i7-5500U
using AVX2 circuit for Algorithm 6

# of limbs # of bits cycle counts

3 360 13 680

5 600 26 064

7 840 41 568

10 1200 66 924

15 1800 146 688

20 2400 222 264

25 3000 310 440

30 3600 425 940

40 4800 731 112

45 5400 905 832

50 6000 1 094 868
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Figure 4.5 Graphical Illustration of Table 2

Larger inputs benefit more from AVX2 features since ReducedRatMod

operation generates coefficients a, b, c, d only once for each iteration and

once the vectors [a, b, a, b] and [c, d, c, d] are ready to be used in the linear

transformation, they are reused for each limb of the numbers. Therefore, the

cost of ReducedRatMod are less dominant for larger inputs, which is handled

with the 64-bit circuit in the classic way using signed long data type.

We also experienced using AVX2-only intrinsics for the ReducedRatMod

operation but this option seems to be slightly slower.
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CHAPTER 5

CONCLUSION

In this thesis, well-known quadratic time k-ary GCD algorithms which exist in

literature are examined. An extended version of a right-to-left GCD variant,

namely JWSS method, is provided. A modular inverse algorithm was derived

from the extended sequence and implemented. We conclude that SIMD

implementations of the modular inverse algorithm based on JWSS method is

very efficient on AVX2 circuit. Even better speeds are likely to be possible on

the new AVX-512 supported processors.

Bernstein and Yang have proposed a new k-ary gcd variant which allows fast

and constant-time implementation of gcd and modular inverses. Their algorithm

solves several irregularities of existing approaches and nicely optimizes the gcd

routine. It would be very interesting to investigate their algorithm on AVX

platforms in the context of this thesis. Because implementing their algorithm

would require an update on the ReducedRatMod function and completely deleting

subroutines MakeOdd, Swap, and IsZero. However, their algorithm came only

very recently (May 2019) towards the finishing of this thesis work. Therefore,

this investigation has been left as a future work.
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APPENDIX A

CLASSICAL GCD ALGORITHMS

Algorithm 13: Naive Euclid’s

GCD
input : a, b > 0 and a ≥ b.

output: gcd(a, b).

1 while b 6= 0 do

2 (a, b)←
(max(b, a−b), min(b, a−b))

3 end

4 return a.

Algorithm 14: Euclid’s GCD

input : a, b > 0 and a ≥ b.

output: gcd(a, b).

1 while b 6= 0 do

2 (a, b)← (b, a mod b)

3 end

4 return a.

The validity of algorithms above is related with the property of gcd;

gcd(a, b) = gcd(a− qv)

Algorithm 15: Binary GCD

input : a, b > 0 and a ≥ b.

output: gcd(a, b).

1 g ← 1

2 while a mod 2 = b mod 2 = 0 do

3 (g, a, b)← (2g, a/2, b/2)

4 end

5 while x 6= 0 do

6 while a mod 2 = 0 do

7 a← a/2

8 end

9 while b mod 2 = 0 do

10 b← b/2

11 end

12 t← |a− b|/2
13 if x ≥ y then

14 x← t

15 else

16 y ← t

17 end

18 end

19 return (g · a).
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The algorithm simply consist of successively reducing odd values by using the

following familiar properties of gcd function:

1. If a and b are both even, gcd(a, b) = 2 gcd(a/2, b/2).

2. If a is even and b is odd, gcd(a, b) = gcd(a/2, b).

3. If a is odd and b is even, gcd(a, b) = gcd(a, b/2).

4. If a and b is both odd, gcd(a, b) = gcd(|a− b|/2,min(a, b)).

Using the idea that division by 2 is only requires shift operation and so, it

is a better algorithm than Euclid’s, though its worst case running time is also

0(n2), where n = log2 n. Another difference from Euclid’s GCD is that it reduces

the least significant bits first. This algorithm is used in the GMP library for the

small size inputs.
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Algorithm 16: Extended Binary GCD

input : a, b > 0.

output: integers a, b and v such that

ax+ by = v, where v = gcd(x, y).

1 g ← 1

2 while x mod 2 = y mod 2 = 0 do

3 (g, x, y)← (2g, x/2, y/2)

4 end

5 (u, v)← (x, y)

6 (A,B,C,D)← (1, 0, 0, 1)

7 while u 6= 0 do

8 while u mod 2 = 0 do

9 u← u/2

10 if A mod 2 = B mod 2 = 0 then

11 (A,B)← (A/2, B/2)

12 else

13 (A,B)← ((A+y)/2, (B−x)/2)

14 end

15 end

16 while v mod 2 = 0 do

17 v ← v/2

18 if C mod 2 = d mod 2 = 0 then

19 (C,D)← (C/2, D/2)

20 else

21 (C,D)← ((C+y)/2, (D−x)/2)

22 end

23 end

24 if u ≥ v then

25 (u,A,B)← (u− v, A− C,B −D)

26 else

27 (v, C,D)← (v − u, C −A,D −B0)

28 end

29 end

30 return (a, b, g · v).

Idea of calculation Extended GCD is mostly used to find modular

multiplicative inverse by solving the following problem: given two integers x

and y, with at least one of them is nonzero, it computes d = gcd(x, y). Then,

there exits integers A, B s.t. Ax+By = d. The equation Ax+By = d is called

Bezout equation and A, B is called Bezout’s coefficients. In particular, if x and

y are relatively prime (i.e. gcd(x, y) = 1), then Ax+By = 1.
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If x0, y0 are the initial values and x, y is the next values,the following

invariants keep at the start of each iteration and after the loop: Ax0 +By0 = x

and Cx0 +Dy0 = y.

In the last case, B is called the modular multiplicative inverse of a wrt y

since By = 1 mod x. We then simply run Algorithm 16, the equation ends with

Ax+By = 1 mod x, and it is equal to y−1 = B mod x. Since the value x is not

needed in this calculation, we can simply ignore computing redundant A and C

values for modular inverse operation.

Figure A.1 Extended Binary GCD illustration
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12057427420293026742

5017992347562444995

12939259765676466390

12939259765676466390

12939259765676466390

5128221390735374951

5183335912321839929

13021931548056163857

10740046473402044910

3088138162046903508

-737815993630667193

10061355595079910296

-2004040079735920651

12323311762883854602

12323311762883854602

11145904202335863024

4395544540619939934

10351742166502237298

16939363158655645501

14390077365814228570

4645752890065697354

2322876445032848677

-9418245387968318460

-16450244526985326367

-208287576904632890

10378191697669085670

-2830004059116479379

-4192934194448560846

-15304662854009845472

-20860527183790487785

y
′
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APPENDIX B

SUPPLEMENTARY C CODES

1 typedef signed long si;
2 #define T 30
3 #define LIMB 3
4 #define MLIMB (LIMB+1)
5 #define vec __m256i
6 #define VMUL _mm256_mul_epi32
7 #define VSUB _mm256_sub_epi64
8 #define VADD _mm256_add_epi64
9 #define VSHR _mm256_srli_epi64

10 #define VSLR _mm256_slli_epi64
11 #define VBLD _mm256_blend_epi32
12 #define VSFL _mm256_shuffle_epi32
13 #define VPER _mm256_permute4x64_epi64
14 const vec ZERO = { 0UL, 0UL, 0UL, 0UL };
15 const vec ANDMASK = { (1UL << T) - 1, (1UL << T) - 1, (1UL << T) - 1, (1UL << T)
16 - 1 };
17 const vec POSMASK[LIMB] = { { 1UL << (2 * T + 1), 1UL << (2 * T + 1), 1UL
18 << (2 * T + 1), 1UL << (2 * T + 1) }, { 1UL << (2 * T + 1), 1UL
19 << (2 * T + 1), 1UL << (2 * T + 1), 1UL << (2 * T + 1) }, { 1UL
20 << (2 * T + 1), 0UL, 0UL, 0UL } };
21

22 const vec NEGMASK[LIMB] = { { 1UL << (T + 1), 1UL << (T + 1), 1UL << (T + 1),
23 1UL << (T + 1) }, { 1UL << (T + 1), 1UL << (T + 1), 1UL << (T + 1), 1UL
24 << (T + 1) }, { 1UL << (T + 1), 0UL, 0UL, 0UL } };
25

26 vec RANDMASK = { 0x00007FFFUL, 0UL, 0UL, 0UL };
27 void myrand(vec *z, int l) {
28 int i, j;
29 for (i = 0; i < l; i++) {
30 for (j = 0; j < 4; j++) {
31 z[i][j] = ((unsigned long) random()) & ((1UL << T) - 1);
32 }
33 }
34 z[0][0] |= 1;
35 z[2] &= RANDMASK;
36 }

Code B.1: C Header Code for ModInvAVX2

1 while (IsZero(g)) {
2 //reducedRatMod
3 //linear transform
4 for (i = 0; i < LIMB; i++) {
5 f[i] = VADD(f[i], POSMASK[i]);
6 g[i] = VADD(g[i], POSMASK[i]);
7 }
8

9 for (i = 0; i < LIMB; i++) {
10 tf[i] = VSHR(f[i], T);
11 tg[i] = VSHR(g[i], T);
12 }
13

14 for (i = 0; i < LIMB; i++) {
15 f[i] &= ANDMASK;
16 g[i] &= ANDMASK;
17 }
18 //makeodd
19 for (i = 0; i < LIMB; i++) {
20 f[i] = VSUB(tf[i], NEGMASKF[i]);
21 g[i] = VSUB(tg[i], NEGMASKG[i]);
22 }
23 //swap
24 }

Code B.2: C Main Code for ModInvAVX2

1 for (i = 0; i < LIMB; i++) {
2 uf[i] = VMUL(cc, g[i]);
3 vg[i] = VMUL(dd, f[i]);
4 qf[i] = VMUL(aa, g[i]);
5 rg[i] = VMUL(bb, f[i]);
6 f[i] = VSUB(uf[i], vg[i]);
7 g[i] = VSUB(qf[i], rg[i]);
8 }

Code B.3: C Code for LinearTransform
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1 void reducedRatMod(si* a, si* b, si* c, si* d, si u, si v, const
si tt) {

2 si nn = tt;
3 si n = 1 << tt;
4 si q, r, temp, Ud[1];
5 modinv_2e(Ud, v, nn);
6 r = (*Ud * u) & (n - 1);
7 set4(a, b, c, d, n, 0, r, 1);
8 si sqrtn = 1 << (nn / 2);
9 while (*a >= (sqrtn)) {

10 q = *a / *c;
11 a[0] -= q * (*c);
12 b[0] -= q * (*d);
13 temp = *a; *a = *c; *c = temp;
14 temp = *b; *b = *d; *d = temp;
15 }
16 }

Code B.4: C Code for reducedRatMod

1 void makeodd(vec* a) {
2 int i;
3 vec af[MLIMB];
4 vec *as;
5 for (i = 0; i < MLIMB; i++) {
6 af[i] = ZERO;
7 }
8 int cnt = 0;
9 si tmp = a[0][0];

10 while (!(tmp & 1)) {
11 tmp = tmp >> 1;
12 cnt++;
13 }
14 if (cnt != 0) {
15 vec CNTMASK = { (1UL << cnt) - 1, (1UL << cnt) - 1, (1UL <<

cnt)
16 - 1, (1UL << cnt) - 1 };
17 for (i = 0; i < LIMB; i++) {
18 NEGMASK[i] = VSHR(NEGMASK[i], cnt);
19 af[i] = VSLR(a[i] & CNTMASK, T - cnt);
20 a[i] = VSHR(a[i], cnt);
21 }
22 as = (vec *) &af[0][1];
23 for (i = 0; i < LIMB; i++) {
24 a[i] = VADD(a[i], as[i]);
25 }
26 }
27 }

Code B.5: C Code for MakeOdd

1 void swap(vec* a, vec* b) {
2 vec af[MLIMB], bf[MLIMB];
3 int c = 0;
4 int i, k;
5 for (i = 0; i < MLIMB; i++) {
6 af[j] = bf[j] = ZERO;
7 }
8 for (i = LIMB; i >= 0; i--) {
9 af[i] = _mm256_abs_epi32(a[i]);

10 bf[i] = _mm256_abs_epi32(b[i]);
11 for (k = 3; k >= 0; k--) {
12 if (af[i][k] < bf[i][k]) {
13 c = 1; k = 0; i = 0;
14 } else {
15 c = 0; k = 0; i = 0;
16 }
17 }
18 }
19

20 if (c == 1) {
21 for (i = 0; i < LIMB; i++) {
22 af[i] = a[i]; a[i] = b[i]; b[i] = af[i];
23 }
24 }
25 }

Code B.6: C Code for Swap
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