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ABSTRACT 

VULNERABILITY ANALYSIS FOR EXECUTABLE CODES 

Yıldırak, Armağan 

MSc in Computer Engineering 

Advisor: Assoc. Prof. Dr. Ahmet Hasan KOLTUKSUZ 

June 2020 

 

In this study, a different type of fuzzer which is used in software vulnerability testing, 

is implemented. The focus is on finding buffer-overflows in ELF (Executable and 

Linkable Format) binaries. Several binary analysis techniques such as dynamic 

analysis, static analysis, hybrid analysis etc., are used in this fuzzer. The fuzzer also 

has a new technique which is a debug profiler. The debug profiler can be dynamically 

changed. It can modify more options such as open or close ASLR (Address Space 

Layout Randomization), and dynamically change command-line inputs or stdin inputs. 

 

Key Words: Dynamic analysis, Static analysis, Hybrid analysis, ASLR, ELF, Buffer-

overflow, Fuzzer. 
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ÖZ 

ÇALIŞTIRILABİLİR KODLAR İÇİN ZAFİYET ANALİZİ 

Yıldırak, Armağan 

Yüksek Lisans, Bilgisayar  Mühendisliği 

Danışman: Doç. Dr. Ahmet Hasan KOLTUKSUZ 

Haziran 2020 

 

Bu çalışmada, yazılım güvenlik açığı testinde kullanılan farklı bir tip fuzzer 

kullanılmıştır. Odak noktası ELF ikili dosyalarında arabellek taşmaları bulmaktır. Bu 

fuzzer’da  farklı dinamik analiz, statik analiz, hibrid analiz, vb teknikler kullanılmıştır. 

Fuzzer ayrıca bir hata ayıklama profilcisi olan yeni bir tekniğe sahiptir. Hata ayıklama 

profili dinamik olarak değiştirilebilir. ASLR'yi açma veya kapama gibi daha fazla 

seçeneği değiştirebilir, komut satırı girişlerini veya stdin girişlerini dinamik olarak 

değiştirebilir. 

Anahtar Kelimeler: Dinamik analiz, Statik analiz, Hibrid analiz, ASLR, ELF, 

Arabellek taşmaları, Fuzzer.
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CHAPTER 1 

INTRODUCTION 

This thesis strives to investigate the novel and extraordinary uses of fuzz-testing. This 

study distinguishes itself from most of the work on Linux binaries which aims to 

increase the efficiency of known models; the emphasis here is to gain an understanding 

of possible vulnerabilities usages and how to find them in Linux environments.  Much 

investigative work is needed before developing the ideas presented here. This thesis 

requires a considerable amount of self-teaching in related areas, such as the memory 

layouts of C programs, assembly coding, concepts of stack and heap memory segments, 

Linux system calls, stack buffer overflows, modifying data/stack, modifying program 

control flow, shellcodes, ret2libc attacks, format string vulnerabilities, heap overflows, 

modern exploit mitigation techniques (such as ASLR, stack canaries, DEP) and 

bypassing the exploit mitigation techniques. These topics are investigated in literature 

review section and background chapter. 

Most bugs detection and vulnerability analysis can be done by fuzzing method. or Fuzz 

testing (Fuzzing) is an automated software testing technique involving the provision 

of invalid, unexpected or random data as inputs to a computer program. The input 

program is monitored for exceptions such as crashes, failed assertions of built-in code 

or potential memory leaks. Fuzzer, which is the software tools utilized, is usually used 

for testing programs which take standardized inputs. Its structure is defined, e.g. in a 

file format or protocol, and differentiates between valid and invalid input. An efficient 

fuzzer generates semi valid input; valid enough as it is not rejected directly rather 

creates unexpected behaviors deeper within the program and is sufficiently invalid to 

reveal corner cases not properly addressed. Input that crosses a trust boundary is often 

the most important for the purpose of defense. For instance, fuzz code which handles 

a file upload by any user is more important than fuzzing the code that parse a settings 

file that can only be accessed by a privileged user. A different type of fuzzer is 

implemented in this study. The study has been detailed in implementation chapter. The 

advantages and the drawbacks of tool have been highlighted in discussion as well as 
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conclusion chapter.    

1.1. SCOPE 

This research work is implemented on Linux operating system.  It works on Executable 

and Linkable Formats (ELF) file formats which are based on Linux operating systems. 

1.2. MOTIVATION AND AIM 

The purpose of this thesis is improving the outputs of the fuzz-testing and creating a 

new binary analysis tool by using static, dynamic and hybrid analysis techniques. This 

implementation provides a new fuzzer that gives more detailed test results of 

vulnerabilities analysis in the ELF binaries. 

1.3. NOVELTY OF THIS RESEARCH 

Following the relevant works and tools surveyed as an anointed bibliography in the 

literature section, this thesis provides a novel approach to find bugs and vulnerabilities 

in programs, with promising result from the  implementation  exposing bugs and 

vulnerabilities  in the target programs.  

1.4. LITERATURE REVIEW 

Stackguard Automatic adaptive detection and prevention of buffer-overflow 

attacks, (Cowan, 1998). 

StackGuard is a simple extension for compilers enhancing the executable code such 

that the softwares are protected from buffer-overflow attacks. StackGuard detects 

changes in the return address by using a canary word next to the function return address 

on the stack. The buffer overflow attack method takes advantage of the fact that the 

return address word is very close to a byte array with weak boundary control, the only 

tool the attacker has. Under these limited situations, it is difficult to overwrite the word 

to return address without disturbing the word canary as the canary word changes every 

execution so that the attacker cannot guess it. A MemGuard, which is a tool used for 

additional security, prevent the buffer-overflow attacks by protecting a return address 

when a function is called and unprotecting the return address when the function returns. 
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Libsafe: Protecting Critical Elements of Stacks. Bell Labs, (Baratloo et al., 1999) 

Libsafe is an implementation that is a copy of the vulnerable C library functions. These 

copied functions keep their functionalities, but they check the source and the 

destination buffer size, so they do not overwrite the return address. 

 

A first step towards automated detection of buffer overrun vulnerabilities, 

(Wagner et al., 2000) This work defined a technique for detecting possible buffer 

overflow in C source code. The technique mainly detects security bugs with a static 

analysis that security bugs can be eliminated before code is deployed. 

 

Transparent runtime defense against stack-smashing attacks, (Baratloo et al., 

2000) 

In this paper, two methods were shown for detecting and handling buffer overflow 

attacks. The first method stops all known vulnerable library function calls. This 

method creates a proxy version of the corresponding function which has the same 

functionality, but any buffer overflows are included within the current stack frame. 

The second method protects the critical stack elements for using a binary modification 

of the process memory. These two methods implemented on Linux as dynamically 

loadable libraries. 

 

A compile-time solution to buffer overflow attacks, (Chiueh & Hsu, 2001) 

A return address defender (RAD) which is a compiler-based solution of the buffer 

overflow attack problem is implemented. Attackers change the return address for 

executing their malicious codes and RAD tries to prevent buffer overflow attacks. 

RAD is a compiler extension that creates a secure area and keeps the return addresses 

in this area. This operation does not need to modify the source code of the programs. 

RAD does not touch the stack frame layout and the source code can be generated with 

existing libraries and other object files. 

 

Accurate buffer overflow detection via abstract payload execution, (Toth & 

Krugel, 2002) 

Toth and Krugel introduce a technique that exactly detects buffer overflow code in the 

request’s payload by focusing on the sled of the attack. The sled is used to rise up the 

luck of a successful unauthorized entry by attacker using a long code segment to 



4 

change the program counter for exploiting the malicious code which should be run in 

the CPU. The technique perfumes an   abstract code execution to identify buffer 

overflow attacks.   

 

Architecture support for defending against buffer overflow attacks, (Xu et al., 

2002) 

Xu et al made two hardware-based solutions for buffer overflow attacks. The first 

solution is a split control and data stack that to stop the return address function from 

overwriting. This solution was applied with the architectural supported compiler 

support by changing the semantics of the calls and return instructions. The other 

technique is a secure return address (SRAS) which detect the buffer overflow attacks. 

SRAS made an unnecessary copy of the return address provided by CPU to validate 

the return addresses for detecting exploit code attacks. 

 

Cyclone: A safe dialect of C, (Jim et al., 2002) 

Cyclone is a secure adaptation of the C programming language.  It is designed   for 

preventing the buffer overflows, the format string attacks, and memory management 

errors by protecting the same C syntax and semantics.   

 

ARCHER: using symbolic, path-sensitive analysis to detect memory access errors, 

(Xie et al., 2003) 

ARCHER is a memory scanner that is static and efficiently control memory access. 

ARCHER utilizes path-sensitive, inter-procedural symbolic analysis to link values of 

both variables and memory sizes. It analyzes established values to be used by a static 

analyzer for every access list, uninitialized reference, or a feature that requires a size 

parameter to be used. Accesses that ignore limits are marked as errors. For those that 

are exploitable by malevolent attackers are labeled as security flaws. 

 

PointguardTM: Protecting pointers from buffer overflow vulnerabilities, (Cowan 

et al., 2003) 

PointGuard is a compiler strategy designed to defend against several forms of buffer 

overflows by encrypting pointers while placed in memory and decrypting them only 

after loaded into processor registers. PointGuard struggles to have a buffer flow attack 

as the corrupted value of the intruder passes through the PointGuard decryption 
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method, produces a random address connection, except with reasonably sparse address 

spaces, probably causing the system to crash. Crashing is the objective: to allow the 

target software to fail, rather than turn over access to the intruder. 

 

Protecting C programs from attacks via invalid pointer dereferences, (Yong & 

Horwitz, 2003) 

Yong and Horwitz defined the creation and application of a C-program protection 

method handling buffer overflow attacks. It had a small executable overhead that did 

not allow the programmer to change its source code, did not disclose any false-positive 

information, and provides security against a vast array of attacks. The method used 

static analysis to recognize potentially unsafe pointer deference and memory positions 

that are valid targets for such pointers. Dynamic monitors were applied. Unless the 

goal of inappropriate deference was not in a legal range at run-time, a possible security 

breach was identified, and the program was stopped. 

 

Testing C programs for buffer overflow vulnerabilities, (Haugh & Bishop, 2003) 

Haugh and Bishop produce a test technique that monitors computer programs that keep 

track of memory buffers, and tests arguments for functions to decide if they satisfy 

those requirements alerts when a buffer overload occurs. This was the case in 

comparison with test data causing buffer overflows when performed with regular test 

data. Using this approach, a framework (two different versions of wu-ftpd and net-

tools) have been developed and validated using three widely used software packages. 

This analysis revealed that the approach detects vulnerabilities in a buffer overflow, 

and has a small, false-positive rate, and does well compared to other techniques. 

 

Valgrind: A program supervision framework, (Nethercote & Seward, 2003) 

Valgrind is a programmable platform to develop tools including bug detectors and 

profilers for program monitoring. It executes supervised programs using dynamic 

binary translation, giving complete control over each component without needing 

source code, and without the need for recompilation or re-linking prior to execution. 

 

A dynamic technique for eliminating buffer overflow vulnerabilities (and other 

memory errors), (Rinard et al., 2004) 

Rinard et al in this work implemented a compiler that incorporates dynamic checks 
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into the created code to detect all out of bounds memory accesses. When a boundless 

write is observed, the value stored away in the hash table is returned as the matching 

value reads out of bounds. The net result is to give an unbounded size to every allocated 

memory frame and to delete unbound access as a software bug. This approach has been 

tested by many commonly used open-source servers (Apache, Sendmail, Pine, Mutt, 

and Midnight Commander). Both these servers were vulnerable to buffer overflow 

attacks with standard compilers recorded in websites for security monitoring. These 

security flaws were deleted from this compiler. Results have shown that the compiler 

allows servers to successfully conduct buffer overflow threats so that user requests for 

service without security flaws can be continued correctly. 

 

A practical dynamic buffer overflow detector, (Ruwase & Lam, 2004) 

Ruwase and Lam represented a practical buffer overflow detector which was called C 

Range Error Detector (CRED). The GNU C compiler version 3.3.1 was built to provide 

CRED.  CRED noticed all buffer overrun attacks when checking memory access 

boundaries directly. CRED had not violated the current code, because it used a new 

approach to help program management for those out-of-bounds addresses, in contrast 

to the original referent object-based bound monitoring technique. 

 

Automatic generation of buffer overflow attack signatures: An approach based 

on program behavior models, (Liang & Sekar, 2005) 

 

Liang and Sekar developed a technique that could recognize the features of an attack 

by buffer overflow and eliminate potential attacks or their variants as the availability 

of servers under regular attacks has increased considerably. The method is fully 

automated, have no source code, and low overhead costs for operating time. It was 

successful against most assaults during the tests and showe any false positive results. 

 

Dynamic taint analysis for automatic detection, analysis, and signature 

generation of exploits on commodity software, (Newsome and Song, 2005) 

Newsome and Song suggested dynamic taint research, covering most forms of 

vulnerabilities, to automatically detect overwriting attacks. The observed program 

source code or special configuration is not required, and the default software is not 

working. TaintCheck, a system that can perform dynamic taint analysis by performing 
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binary re-writing on time, isused to illustrate the idea. The technique shows that 

TaintCheck detects most exploits reliably. For any of the several different programs 

tested, TaintCheck provided no wrong positives. The automatic signature generation 

could be improved by TaintCheck in many ways. 

 

Exploiting ecc-memory for detecting memory leaks and memory corruption 

during production runs, (Qin et al., 2005) 

Qin et al.   proposed a SafeMem method to find out on-the-fly memory leaks and 

memory manipulation. No hardware support for this tool. Instead, the ECC memory 

technology used to detect memory leakage and degradation uses sophisticated 

dynamic memory consumption behavior analysis. Seven real-world applications with 

memory leaks or memory glitches were tested. With low overhead, SafeMem detects 

all checked bugs. The findings also showed that the ECC-protection was effective for 

the detection of mistaken memory leaks and the reduction in memory monitoring 

memory waste when it was observed in comparison with page-consciousness. 

 

Using valgrind to detect undefined value errors with bit-precision, (Seward & 

Nethercote, 2005) 

Memcheck is a method implemented with the Valgrind Dynamic Binary 

Instrumentation System. It identifies a large variety of memory errors while running 

in applications and focusing on finding flaws in undefined values. These flaws are 

common, and sometimes cause bugs in programs written in languages such as C, C++, 

and Fortran that are hard to find. Memcheck's accuracy check improves that of 

previous methods by being precise to the level of the individual bits. This accuracy 

offers a true and correct negative score for Memcheck.   

 

Diehard: probabilistic memory safety for unsafe languages, (Berger & Zorn, 2006 

DieHard is a runtime framework that tolerates buffer overflows, dangling pointers, and 

uninitialized data errors while probabilistically preserving soundness. DieHard uses 

randomization and duplication to obtain probabilistic memory protection by 

approximating an infinite size heap. DieHard's memory manager allocates objects to a 

heap at least twice the size needed. This algorithm avoids heap corruption and ensures 

that memory bugs are prevented. DieHard works in a replicated mode for extra 

protection where several replicas run concurrently with the same program. The 
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replicated version of DieHard increases the probability of correct execution when it 

initializes each replica with various random seeds and needs a consensus on its 

performance because errors will have no similar impact on all replicas. 

 

Securing software by enforcing data-flow integrity, (Castro et al., 2006) 

Castro et al introduced a simplified technique that prevented the manipulation and 

data-flow integrity of buffer overflows and format string vulnerabilities. It 

instrumented the software using static analysis to maintain data flow in the data flow 

graph at runtime. The technique defined the efficiency of data-flow integrity 

application using static analysis to minimize overhead instrumentation. This execution 

can also be used to detect a wide range of attacks and faults as it could be automatically 

used without changes for C and C++ applications, without false positive and with low 

overhead. 

 

Static detection of vulnerabilities in x86 executables, (Cova et al., 2006) 

Cova et al. proposed a vulnerability detection method in ELF binary format with x86 

executables. This method focused on static analysis and symbolic execution. Symbolic 

execution is a way of evaluating a program to decide which inputs would trigger what 

part of the program to run. The implementation detected taint-style vulnerabilities in 

binary code. 

 

A smart fuzzer for x86 executables, (Lanzi et al., 2007) 

Lanzi et al identified a vulnerability detection method in the object code called smart 

fuzzing. Although traditional flushing uses random input to detect crash conditions, 

intelligent flushing restricts the space input with preliminary static program analysis 

and then is refined by tracking through output. In other words, the quest is led by a 

mixture of static and dynamic analyzes, which enables the execution route to lead to 

the most vulnerable corner cases, thereby increasing the efficiency of the flow to help 

detect security violations in black box programs. 

 

Bouncer: securing software by blocking bad input, (Costa et al., 2007) 

Bouncer uses existing software tools to detect attacks and automatically creates filters 

to block vulnerability exploitations. By instructing device calls to remove abused 

messages, the filters are implemented automatically. These filters add low overheads 
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and allow programs to run properly. Bouncer implements three techniques of 

generalization of filters to make it difficult to bypass program slicing which utilizes a 

combination of static and dynamic analysis to remove unnecessary conditions from 

the symbolic filters for specific library functions that succinctly characterize their 

behaviors, and generate alternative exploits driven by symbolic principles. Bouncer 

filters have low overhead, they have no false design positive, and can produce filters 

that block any real weakness.    

 

Valgrind: a framework for heavyweight dynamic binary instrumentation, 

(Nethercote & Seward, 2007) 

Frameworks for Dynamic binary instrumentation (DBI) make it simple to develop 

dynamic binary analysis (DBA) tools like checkers and profilers. Nethercote et al 

developed Valgrind, a DBI system designed for the construction of heavyweight DBA 

instruments. The focus of this approach was on its unique support of shadow values, 

an effective but unknown and difficult DBA technique, which required a tool to 

shadow every register, and every memory value with an additional value explaining it. 

This support includes many essential features designed to distinguish Valgrind from 

other DBI frameworks. Despite these features, lightweight tools designed with 

Valgrind run fairly slowly, but Valgrind could be used to create more interesting, 

heavyweight tools with other DBI frameworks like Pin and DynamoRIO which were 

hard or impossible to create with. 

 

Bitblaze: A new approach to computer security via binary analysis, (Song et al., 

2008) 

BitBlaze is a binary analysis approach to machine protection. In general, BitBlaze 

focuses on developing and using a single binary analysis framework to provide 

innovative solutions to a wide range of different security issues. This binary analysis 

framework allows precise analysis, an expandable architecture, and integrates static, 

dynamic analysis and software testing strategies to meet specific safety requirements. 

BitBlaze allows a root-case approach to computer security with the direct extraction 

of security-related properties from binary programs and offers innovative and efficient 

solutions, as seen by over a dozen various security applications. 
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Marple: a demand-driven path-sensitive buffer overflow detector, (Le & Soffa, 

2008) 

Marple is a static analyzer for the identification and evaluation of buffer overflows 

with the basic concept of classifying software paths for vulnerability. For accuracy and 

scalability, Marple blends path-sensitivity with a demand-driven analysis. Marple 

constructs a buffer overflow vulnerability model and then uses the model to create an 

analyzer that is responsive to requests. Marple recognizes and defines categories of 

paths that include, don't know, infeasible, secure, vulnerable, and overflow-input-

independent. The classification allows goals to be set if the root causes of vulnerable 

pathways are to be pursued. 

  

Preventing memory error exploits with WIT, (Akritidis et al., 2008) 

A technique called Write Integrity Testing (WIT) that provides realistic defense against 

exploiting memory error to take control of vulnerable software attacks has been 

introduced by Akritidis et al. At compile time, WIT used point analysis to determine a 

graph of monitor flow and collection of artifacts that could be entered in the program 

with each instruction. Then it produced code that was instrumented to stop instructions 

from modifying objects not included in the static analysis set and also to make sure 

that implicit control transfers are made possible by the control-flow graph. To enhance 

coverage where the analysis was not accurate enough, WIT inserted small guards 

between both the original program objects. This approach has been described as the 

effective implementation of optimizations to reduce leverage space and time. 

 

Vulnerability analysis for x86 executables using genetic algorithm and fuzzing, 

(Liu et al., 2008) 

Fuzzing was widely used in common programs, although released without source code, 

to find security vulnerabilities. Insecurity analysis, it has become a critical tool but 

requires big input space. In an interactive program called the GAFuzzing (Genetic 

Algorithm Fuzzing), Liu et al implemented a tool to detect vulnerabilities that 

incorporates static and dynamic analysis to maximize random Fuzzing. First, the 

structural nature, interface, and interest area of code were obtained with static analyzes, 

and the testing criteria formally defined. Second, a genetic algorithm was used to 

handle the development of testing data and boost the research target. In comparison to 

other software testing methods, the execution without source code was evaluated 
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explicitly in this implementation. This review demonstrates that GAFuzzing for 

vulnerability analysis was preferable to random Fuzzing. 

 

Dynamic test generation to find integer bugs in x86 binary linux programs, 

(Molnar et al., 2009) 

Integer errors, including integer overflow, width conversions, and signed / unsigned 

conversion issues have been a significant root cause. Molnar et al present a method to 

find integer bugs utilizing dynamic test generation on x86 binaries and this method 

was defined as main design choice to execute those programs symbolically efficiently. 

It is a method used to search Linux x86 binary executables in a SmartFuzz prototype 

tool. 

 

Dieharder: securing the heap, (Novark & Berger, 2010) 

DieHarder is the first systematic handling of the effect on the protection of allocator 

design. It analyzes a number of widely used memory assignment devices (including 

Windows, Linux, FreeBSD, OpenBSD) that are vulnerable to attack. It then introduces 

DieHarder, a new assignor that has this research guiding in design. DieHarder offers 

the highest degree of protection from heap-based attacks by any functional allocator 

we know of while enforcing modest overhead efficiency. The web browser is running 

with DieHarder, in particular, as good as with the Linux allocator. 

 

Paricheck: an efficient pointer arithmetic checker for C programs, (Younan et al., 

2010) 

PAriCheck abounds with a verifier to verify that attackers can't exploit buffer overflow 

vulnerabilities. The key technique is to test the arithmetic of the predictor rather than 

the deference when carrying out boundary controls. The tests are conducted by giving 

each object a specific label and checking that perhaps the label is compatible with 

every memory location in which the object is occupied. Whenever the arithmetic 

marker appears, this label is contrasted with the corresponding arithmetic mark. If the 

labels are different there has been an out-of-bound estimate. 

 

Taintscope: A checksum-aware directed fuzzing tool for automatic software 

vulnerability detection, (Wang et al., 2010) 

TaintScope is an automated flood framework that uses symbolic execution techniques 
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and dynamic taint analysis to resolve security problems. First, in input cases, 

TaintScope can define the controlling sum fields, locate checksum integrity checks 

accurately using branch sampling techniques, and bypass these checks by modifying 

the control flow. Secondly, TaintScope is a flush-based X86 binary method. TaintScope 

decides which bytes in a well-formed input are employed in safety sensible operations 

based upon finely grained dynamic taint detection and then concentrate on changing 

these bytes. This makes it easier to trigger potentially vulnerable inputs produced.  

Thirdly, from searching, flushing, to the repairing of crashed specimens, TaintScope is 

fully automatic. The checksum values can be set in generated inputs using symbolic 

execution techniques and combined concrete. 

 

On the expressiveness of return-into-libc attacks, (Tran et al.) 

Return-into-libc (RILC) is the most common method of using code. An attacker is used 

in this attack to interrupt control-flow with existing processes in the legal program. 

Although risky, the power of the attacker is usually considered to be restricted as it 

makes only straight-line code executable. In other words, it is assumed that RILC 

attacks are unable to arbitrarily compute as they are not completed by Turing. 

Therefore, researchers have developed other techniques of code re-use, such as return-

oriented programming (ROP), to overcome the limitation. Tran et al make the 

counterargument and show that Turing is indeed the original RILC technique. The 

RILC attack called the complete RILC Turing (TC-RILC) makes arbitrary calculations 

in particular. TC-RILC meets the formal Turing-completeness criteria. Furthermore, 

since the TC-RILC attack can be portable between different versions of operating 

systems because it depends on libc's well-defined semantic functions, and of course it 

has a negative impact on some existing anti-ROP defenses. The development of TC-

RILC both on Linux and on Windows shows how articulated and realistic the 

widespread RILC attack is. 

  

Practical memory checking with dr. memory, (Bruening & Zhao, 2011) 

Memory corruption, uninitialized memory access, free memory, and other memory-

related bugs are some of the hardest programming bugs to detect and fix since the error 

was delayed and non-deterministic and connected to observed symptoms. Windows 

and Linux based memory management tool which is called Dr. Memory manages the 

dynamic, undocumented windows environment and does not disclose false positive 
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memory leaks that plague algorithms with conventional leaks. Dr. Memory uses 

effective instrumentation techniques and direct comparisons with the state-of-the-art 

device.  Valgrind Memcheck shows that Dr. Memory, on average, is twice as fast as 

Memcheck and on individual tests is up to four times quicker. 

 

Ropdefender: a detection tool to defend against return-oriented programming 

attacks, (Davi et al., 2011) 

Modern attacks on runtime are increasingly using strong, return-oriented (ROP) 

programming. These attacks also operate under contemporary memory security 

frameworks such as the prevention of data execution (DEP). ROPdefender detects 

classic ROP attacks dynamically. Unlike existing solutions, ROPdefender can be 

deployed immediately by end-users, as it does not rely on lateral information which is 

seldom provided in action. 

 

ROP payload detection using speculative code execution, (Polychronakis & 

Keromytis, 2011) 

Polychronakis and Keromytis present a method for detecting ROP payloads in 

arbitrary data such as network traffic or process memory buffers. This technique 

speculates in driving code execution, which already exists at the defined input data 

address space of a targeted process and, identifies the output of valid ROP code in 

runtime. This experimental evaluation has shown that the implementation of this 

system can detect a wide range of ROP exploits without getting false positives on 

Windows applications and easily incorporate them into existing shell code detection 

defenses. 

 

Addresssanitizer: A fast address sanity checker, (Serebryany et al., 2012) 

AddressSanitizer is a detector for memory error, find out-of-bound access, and use-

after-free bugs, heap, stack, and global objects. It employs a specialized memory 

allocator and code instrumentation which is fairly easy to apply in any compiler, binary 

translation program, or hardware. 

 

Binary stirring: self-randomizing instruction addresses of legacy x86 binary code, 

(Wartell et al., 2012) 

Wartell et al implement native code x86 with the ability to auto-randomize the 
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addresses of its instruction every time it is started. The STIR input is just the binary 

code of the application, with no source code index that dynamically defines the basic 

block addresses at the time of load. So even through an intruder binary instance, the 

instruction addresses are unpredictable in other instances. An array of binary 

conversion techniques enables STIR to transparently protect massive, practical 

applications that cannot be completely disassembled due to calculated jumps, 

interleaving of code-data, operating system callbacks, dynamic linking, and several 

other difficult binary functions. 

 

Buffer overflow patching for C and C++ programs, (Shahriar et al., 2013) 

Shahriar et al suggest a compilation of general rules for minimizing C/ C++ 

applications' buffer overflow vulnerabilities. Such rules define computer weakness and 

how to unlock it. The proposed approach involves simple and complicated code types 

that can over-load the buffer from inappropriate library calls to show the direction in 

which control flow frames are used. Two open-source C / C++ frames and two 

experiments are included in this approach. The findings demonstrate that, in addition 

to the previously identified drawbacks in a buffer overflow, the current regulations 

even find additional vulnerabilities. Furthermore, the patching laws tax the client 

insignificantly. 

 

Dowser: A guided fuzzer for finding buffer overflow vulnerabilities, (Haller et al., 

2013) 

Dowser is a fuzzer that mixes taint detection, static analysis and symbolic execution 

to detect buffer overflow bugs in the program's logic. A software part of complex 

arithmetic instructions could be more vulnerable to memory loss than basic array entry. 

The more complicated vulnerabilities and the larger the math of the references, the 

more complicated it is to locate using proven methods such as random fuzzage and 

static analysis. Dowser lists the instructions for uninitialized by its complexity and 

then uses symbolic implementation to zoom in into more interesting operations. 

Dowser can severely reduce the required search space for covering the application by 

zooming in on actual activities. The symbolic execution stage uses a new search 

algorithm to maximize pointer coverage rather than classical code coverage. Dowser 

steers the execution forward branches that can exploit the value of a pointer more 

efficiently. This means that in true programs, Dowser finds deep bugs. 
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Rule-based source level patching of buffer overflow vulnerabilities, (Shahriar & 

Haddad, 2013) 

This particular work focuses on monitoring and modifying security flaws in the buffer 

overflow. This detection identifies programming elements, such as language 

restrictions, related libraries, and logical faults, that may trigger a buffer overflow. This 

work contains many patterns of code which include simple and complex buffer 

overflow types. In order to avoid the overflow of buffers without changing application 

functionality, their research   suggested eight rules that handle vulnerable code. The 

method suggested addresses buffer overflow problems not only at the unit level but 

also at the embedded level which passes information about the buffer size. 

 

Who allocated my memory? detecting custom memory allocators in C binaries, 

(Chen et al., 2013) 

MemBrush is a tool for detecting high-precision memory assignment and relocation 

functions in stripped binaries. For existing reverse tools, MemBrush can provide 

detailed data for the Memory Management API, thereby analyzing the specific 

application structures of a programmer. MemBrush uses dynamic analysis to detect 

memory assignment and distribution routines by finding functions that are suited to 

the generic features of assigning and relocating assignments. 

 

Hacking blind, (Bittau et al., 2014) 

Bittau et al demonstrate that remote stack buffer overflow can be written against 

services resuming after a crash without getting a copy of the target binary or source 

code. This allows hackers to manually build and install private programs or open-

source servers from the source when the binary remains unknown. Classic methods 

are usually combined with a certain binary, and the assailant knows where useful 

Return Oriented Programming (ROP) gadgets are located. Blind ROP (BROP) Attack 

finds enough ROP gadgets from a remote location to call for a writing system and then 

transfers the vulnerable binary to the network. This is done by leaking a single small 

amount of information over whether or not a specific input crashed. 

 

Statically detecting use after free on binary code, (Feist et al., 2014) 

Graph of Use-After-Free to Exploit Binary (GUEB) is a static tool that detects Use 

after Free flaws on disassembled software. GUEB has basically three steps. Firstly, 
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GUEB tracks heap operations and address transfers using a special value analysis, 

taking into account aliases. Secondly, GUEB uses the results to identify statically the 

flaws of Use-After-Free. Finally, for every Use-After-Free, the subgraphs of GUEB 

extract sequentially describe the creation, releasing, and utilization of the danger 

pointer. 

 

Automated exploit generation for stack buffer overflow vulnerabilities, 

(Padaryan et al., 2015) 

Padaryan et al. have introduced an automated exploit technique to build exploits for 

stack buffer overflow flaws and prioritize software bugs. The method is based on 

dynamic analysis and symbolic program execution. It can be implemented for 

executable programs and includes no debug information. This tool has been used to 

generate exploits for a total of eight Linux and Windows software vulnerabilities, of 

which three were not resolved at that time. 

 

Firmalice - automatic detection of authentication bypass vulnerabilities in binary 

firmware, (Shoshitaishvili et al., 2015) 

Firmalice supports the analysis of firmware operating in integrated devices by using a 

binary analysis framework. Firmalice is designed based on symbolic execution engines 

methods to increase its scalability, such as slicing the program. It uses an 

authentication bypass model regarding the ability of the attacker to determine the 

necessary inputs to operate privileged. It also was able to identify that an attacker could 

not exploit the backdoor in the third firmware sample without knowing about a set of 

unprivileged credentials. 

 

Memorysanitizer: fast detector of uninitialized memory use in C++, (Stepanov & 

Serebryany, 2015) 

MemorySanitizer is a dynamic tool used in C and C++ to identify uninitialized 

memory usages. The method is compile-time instrumentation on bit-precise shadow 

memory during runtime. Shadow propagation method is used to prevent a copy of 

uninitialized memory with false-positive reports. 
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Parallax: Implicit code integrity verification using return-oriented programming, 

(Andriesse et al., 2015) 

Parallax is a self-contained solution to verification of code integrity that preserves 

instructions by overlapping gadgets with Return-Oriented Programming (ROP). This 

methodology confirms integrity implicitly by translating verification code into ROP 

code which uses gadgets dispersed throughout the binary. Manipulating the protected 

instructions ruins the gadgets contained therein so that the verification code fails, thus 

preventing the opponent from using the modified binary. Parallax does not depend on 

code check-summing as compared to previous solutions, so it is not vulnerable to 

instruction cache alteration attacks that affect check-summing techniques. Parallax 

does not measure execution hashes and thus can secure code with the non-deterministic 

state. Parallax restricts efficiency output to the verification code, while the safe code 

executes at its usual speed. 

 

Preventing use-after-free with dangling pointers nullification, (Lee et al., 2015) 

DANGNULL is a program that identifies temporary memory security violations such 

as use-after-free and double-free during run-time. DANGNULL relies on a significant 

assumption that the root cause is that after the target object has been released, the 

pointers are not nullified. DANGNULL automatically trace the relationships of the 

object via pointers and cancel out all pointers when the target object is released based 

on this observation. 

 

Stackarmor: Comprehensive protection from stack-based memory error 

vulnerabilities for binaries, (Chen et al., 2015) 

StackArmor is a robust security strategy for vulnerabilities in binaries including stack-

based memory error. It depends on binary analysis and rewrite techniques to 

dramatically minimize conventional call stack organizations' remarkably high 

predictability of space and temporal memory. Unlike previous approaches, 

StackArmor can defend against arbitrary stack-based attacks, does not require access 

to software, and offers a policy-driven defense approach that allows end-users to tailor 

the security performance tradeoff to their needs. 
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The BORG: nanoprobing binaries for buffer overreads, (Neugschwandtner et al., 

2015) 

BORG (Buffer Over-Read Guard) is a method for the monitoring of buffer over-

reading errors in real-world programs that use static or dynamic software analysis, tint 

propagation, and symbolic execution. BORG first operates by choosing buffers, which 

can lead to over-reading and then to symbolic execution, which then leads to 

overreading access to the program paths. BORG works on binaries and needs no source 

code. 

 

Driller: Augmenting fuzzing through selective symbolic execution, (Stephens et 

al., 2016) 

Driller, a hybrid method for excavation of vulnerabilities that complements flush and 

selective concolic efficiency to find deeper bugs. Cost-effective fuzzing is used to 

exercise program compartments, while concolic execution is used to produce inputs 

that satisfy complicated compartment separation tests. With the strengths of both 

approaches combined, Driller mitigates its limitations by avoiding a concolic analysis 

route failure and the incompleteness of the fuzzing. Driller only selects the paths 

considered important by the fuzzer to investigate and establish inputs for conditions 

not satisfied by the fuzzer. 

 

SOK: (state of) the art of war: Offensive techniques in binary analysis, 

(Shoshitaishvili et al., 2016) 

Shoshitaishvili et al introduce a framework for binary analysis that uses a collection of 

analysis techniques suggested in the past. The framework provides a systematized 

application of these techniques that enables the composition and creation of new 

methods by other researchers. The use of such techniques in a single context allows 

them to be clearly compared and their pros and cons defined. 

  

Delta pointers: buffer overflow checks without the checks, (Kroes et al., 2018) 

Delta Pointers is a buffer overflow identification method focused on the efficient 

labeling of the pointers. Delta Pointers use existing hardware features to monitor 

contiguous and non-contiguous overflows on dereferences without any verification of 

additional branches or memory access operations by carefully adjusting the display of 

pointers without violating the language specification. Delta Pointer's emphasis on 
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buffer overflows instead of other vulnerabilities offers a special control-free 

architecture to provide high efficiency while retaining compatibility. 

 

T-fuzz: Fuzzing by program transformation, (Peng et al., 2018) 

In order to maximize coverage, current fuzzing methods are based on imprecise 

heuristics or complex input adjustment techniques (such as symbolic execution or taint 

analysis). This approach identifies coverage from a different perspective: by removing 

sanity tests in the target program. T-Fuzz uses a guided input coverage fuzzer and 

whenever the fuzzer cannot trigger new code paths, input check for failure by 

lightweight dynamic tracing technique. These controls are taken out of the target 

program. Fuzzing would then start on the transformed software.  T-Fuzz uses a 

symbolic execution-based approach as an auxiliary post-processing stage to filter out 

false positives and replicate true bugs in the original program  allowing the code to be 

activated and possible bugs found shielded by the removed controls. Fuzzing 

converted error finding systems raises two problems. The first is to eliminate controls 

leading to over-approximation and false positives, and the second for true bugs and 

not to cause the crash feedback of the converted program in the original software. 

 

Vulnerability detection in binary code, (Boudjema et al., 2020) 

VYPER is an almost non-false positive form of identifying security flaws in binary 

code. It depends on the concolic execution of executable program as well as on the 

annotation of the vulnerable region of the corresponding traces of the program. The 

framework was developed to show the technique's feasibility as a support tool for the 

identification of software vulnerability, based on dynamic behavioral pattern 

recognition.
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CHAPTER 2 

BACKGROUND 

2.1. INTRODUCTION 

Background topics are discussed in this chapter. Firstly, parts of a C program in 

memory is defined in first section and then a short review of assembly language and 

overview of program stack are covered. The subsequent sections are about different 

classes of vulnerabilities and how they can be utilized in exploitation. Finally, 

mitigation and bypass techniques are defined. 

There are 16 general purpose registers:  The 64-bit versions of the 'original' x86 

registers are named as: 

    • rax - register a extended 

    • rbx - register b extended 

    • rcx - register c extended 

    • rdx - register d extended 

    • rbp - register base pointer (start of stack) 

    • rsp - register stack pointer (current location in stack, growing downwards) 

    • rsi - register source index (source for data copies) 

    • rdi - register destination index (destination for data copies) 

The registers added for 64-bit mode are named: 

    • r8 - register 8 

    • r9 - register 9 

    • r10 - register 10 

    • r11 - register 11 

    • r12 - register 12 

    • r13 - register 13 

    • r14 - register 14 

    • r15 - register 15 

These may be accessed as: 

    • 64-bit registers using the 'r' prefix: rax, r15 
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    • 32-bit registers using the 'e' prefix (original registers: e_x) or 'd' suffix (added 

registers: r__d): eax, r15d 

    • 16-bit registers using no prefix (original registers: _x) or a 'w' suffix (added 

registers: r__w): ax, r15w 

    • 8-bit registers using 'h' ("high byte" of 16 bits) suffix (original registers - bits 8-15: 

_h): ah, bh 

    • 8-bit registers using 'l' ("low byte" of 16 bits) suffix (original registers - bits 0-7: 

_l) or 'b' suffix (added registers: r__b): al, bl, r15b 

Usage during syscall/function call: 

    • First six arguments are in rdi, rsi, rdx, rcx, r8d, r9d; remaining arguments are on 

the stack. 

    • For syscalls, the syscall number is in rax. 

    • Return value is in rax. 

    • The called routine is expected to preserve rsp,rbp, rbx, r12, r13, r14, and r15 but 

may trample any other registers. 

 Some instructions are used in this chapter. First is MOV instruction which means 

moves to/from/between memory and registers. Second instruction, PUSH/POP 

instruction, is about stack usage:  for writing data to stack we use PUSH instruction, 

and for removing data from stack we us POP instruction. Third instruction is JMP or 

other J type instructions (JE, JNE, JC, JNC etc.). While JMP instruction does an 

unconditional jump, other J type instructions jumps with a condition. For example, 

JE/JNE instruction jumps if equal/not equal. Fourth instruction is CALL/RET. The 

CALL instruction pushes the next instruction address into stack and jump the 

function/subroutine. The RET instruction pops a value from stack and jump this value. 

Last instruction is NOP which means no operation and thus does nothing. 

2.1.1. MEMORY LAYOUT OF C PROGRAM 

A standard C-Program memory model includes text section, data section initialized, 

uninitialized data segment, stack, and heap. They are shown in Figure 2.1.  
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Text Segment:  Also called a code segment or basically a text section, Text segment 

includes executable instructions and is one of the object-file parts. To avoid violating 

the overflow of the heap and stack, the text segment can be placed under a heap or 

stack as a memory area. The text section is typically shareable so that only a copy has 

to be saved for programs that are run regularly, including code editors, C compilers, 

shells, etc. Moreover, the text section is most often read-only, so that a program cannot 

wrongly alter the instructions. (The GNU C Reference Manual, n.d) 

Initialized Data Segment: The data segment began, typically referred to just as a data 

segment. Data segment is a part of the software virtual address space that contains 

global parameters and the developer initialized static variables. The data segment is 

not read-only. The values of the variables can be changed in run-time. This section can 

also be categorized into an initialized read-only and read-write area. (Data Segment, 

2020) 

Uninitialized Data Segment: It is also called the section of bss, named after an old 

assembly operator who worked for a symbol-started block. If a programmer initialized 

Figure 2.1 Memory Layout. 
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data, it is located in initialized data segment. The data in this section is initialized to 0 

in the kernel before the uninitialized data starts at the end of the data section and 

includes all global and static variables initialized to 0 or not initialized specifically in 

the source code (bss, 2019). 

Stack: Typically, the stack area overlapped the heap area, and the reverse direction is 

expanded. When the stack pointer hit the heap pointer, free memory is used up. The 

stack area includes a stack of the LIFO-structure program, which is normally located 

in the higher memory. In the PC x86 norm, it grows in the opposite direction in some 

other architectures. A stack frame that includes a return address at least is called the 

collection of values pushed for one call. Stack where automated variables and 

information are saved on calling a method. The location of a caller's address and other 

caller information, such as some computer registries, is stored on the stack each time 

a feature is called up. The newly named feature then provides space for its automatic 

and temporary variables to the stack. In C, recursive functions will operate like this. 

When a recursive function calls, a new stack frame is used so that the variables do not 

interfere in a single instance (Call Stack, 2020). 

Heap: Heap is the section that typically requires a complex memory task. The heap 

area is regulated by malloc, realloc, and free that can take advantage of calls from brk 

to sbrk system to change its dimensions. The heap area starts at the end of the BSS 

segment and expands into larger numbers. All shared libraries and modules are shared 

in the Heap area during a process. 

2.1.2. ASSEMBLY CODE REVIEW 

The first code is C for a small program, and the second is x64 assembly code as shown 

in Figure 2.2. The first two lines of C code contain multiple global variables defined 

as an integer. The x64 corresponding lines indicate that the parameters are stored in 

the memory. v1 and v2 global variables in C code were written in specific memory 

addresses such as obj.v1 and obj.v2 then these values are stored in edx and eax 

registers and send to ALU  to calculate the line v1 = v1 + v2 in the C code. The 

calculated value is written back in eax register. After that value of eax is stored in the 

obj.v1. 
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One of the differences between global and local variables is that global variables write 

in hard coded in assembly code. In Figure 2.3, v1 value is stored in [rbp-0x4] and v2 

value is stored in [rbp-0x8]. The base pointer is the rbp, which is also known as the 

Frame Pointer. If a function is called, some amount of the stack will be allocated as a 

dump memory based on its memory needs. It is here that the rbp enters. The function 

stack starts at the onset of a function frame. It acts as a pointer. They are stored in the 

stack when creating local variables because the variables are temporary and live only 

within their own scope. The location of the stack start for the function requires rbp to 

use its offsets to access local variables. If the rbp points were at the very top of the 

example stacks, the first word on the stack would be [rbp-0x4] with [rbp-0x8] as its 

second. 

 

2.1.3. OVERVIEW OF STACK 

In Figure 2.4, the assembly code shows function frame. First of all, the rbp is always 

placed onto the stack. This preserves a Frame Pointer of the previous function, so it is 

possible to access local variables and memory when it is returned, and where the 

Figure 2.2 Global Variables. 

Figure 2.3 Local Variables. 
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beginning of the stack is. The next required operation is to transfer the rsp into the 

rbp. This moves the rbp primarily from the beginning of the stack to where the rsp 

points. A new function frame will be installed. Only functional frames that have a stack 

space need the next move. The number below a certain number from rsp allocates the 

stack memory by generating space from rbp to rsp. These two instructions are called 

the function frame epilogue. In fact, the leave instruction consists of two instructions: 

mov rsp, rbp and pop rbp. If rbp moves into rsp the previously assigned stack is 

essentially eliminated. Now, the stack pointer is where the base pointer had previously 

been saved. This is, where rbp was originally inserted in the other command, ret, is in 

reality a pop rip alias. The rip is what is called a command point. It is his job to switch 

to the following direction. The rip cannot be affected directly by pop instruction, so 

ret is instead used. The rip loads each instruction's next address to prepare it for 

execution. 

 

 

This results in the x64 assembly calling convection called cdecl. The basis of this is 

that before calling the function all functions have to provide their parameters above 

the stack. Two integer parameters are used for the callee function. The two instructions 

above pass integers into both rsp+4 and rsp+0 before callee is named in the assembly. 

This is the same as moving the entries one by one because they are on the stack at the 

same location. This is because some of the stack have already been reserved, and the 

assigned space is better used. Obviously, two instructions are the call instruction, just 

like the leave instruction: move rip and jmp FUNCTION. Two things have to be noted:  

First, the rip register carried the address of the next command so that the code is 

Figure 2.4 Function Frames and Calling Convention. 
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executed on this command when it returns to the original function code and secondly, 

the command jmp only sets rip to the label's raw address or address to be given. The 

final thing about cdecl is to always save the return data in rax. 

2.2. STACK BUFFER OVERFLOW 

When a function is called, the next instruction's address is pushed, and then the C code 

of the function called moves rbp. Local variables are the other key factor. Note that 

local variables are saved as rbp offsets on the stack. The combination of these factors 

can lead to a traditional buffer overflow. In Figure 2.5 C code, the basic example is to 

assign some space to a local buffer and then fill it. 

 

 

When the code starts, “This is a sentence.” pushes on to stack and jump the cpy 

function which creates local tmp character array and stores the “This is a sentence.” 

from stack and call strcpy function. However, that function does not have any bound 

check. It basically copies the source string to destination variable. So, the stack is 

overwritten with other characters. When the ret instruction executes the instruction 

pointer shows the irrelevant memory address because rbp and return address 

overwritten so the program crash by accidentally. 

2.2.1. MODIFYING DATA/STACK CONTROL 

In Figure 2.6 notCalled function is never called. The rip displays the address of the 

following instruction. The saved rip will be overwritten by the local buffer and receive 

Figure 2.5 Buffer Overflow Example. 
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a segmentation fault when the rip tries to go to the invalid location. It is possible to 

execute notCalled function for changing the rip register value to notCalled starting 

address. Now that the objective is to control the stored rip, I which it to be done in a 

manner that is useful to control the flow. The first true move is to recognize and discern 

what the system is doing. 

 

 

Looking at code in Figure 2.6, only two arguments will be accepted and in Figure 2.6 

the second argument will be handed over to cpy. A program's argv is provided via the 

command-line. The argv[0] is the file name in reality, and argv[1] is the user's first 

argument. It uses argv's argument and sends it to the cpy function which copies a 4-

character buffer with the input string. If the user sends more than 4-character to buffer, 

the buffer overflow is expected. The buffer is now to decide how and where the 

overflow will occur. The code in Figure 2.6 should compile like gcc -fno-stack-

protector overflow.c -o overflow and ASLR should stop like echo 0 | sudo tee 

/proc/sys/kernel/randomize_va_space. Firstly, overflow executable runs with 

different input length and observe with dmesg | tail command which is printing kernel 

messages in Figure 2.7. 

Figure 2.6 Control Flow. 
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When the rip register is overwritten with the user input, the address of the notCalled 

function is required. Radare2 is used to find the address of notCalled function’s 

starting address in Figure 2.8. 

 

 

So that exploit can be written with using python like python -c "print 

'A'*<overflow_byte_length> + '<function_address>'”. When exploit run, 

“CALLED!” string print in the console in Figure 2.9. 

 

Figure 2.7 Overwrite RIP. 

Figure 2.8 Find Function Address. 

Figure 2.9 Change the Control Flow. 
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2.2.2. SHELLCODE 

A set of instructions that are injected by the user and executed by the exploited binary. 

Using shell code, a program can execute code that is not existed in the original binary. 

Shellcode is not so commonly used today because some protections that make the stack 

inexecutable in most systems are implemented. The situations where an attacker uses 

shellcode is when a stack is executable, and a buffer overflow target is not clear to the 

attacker. The shellcode lets the attacker inject and execute custom-built code on the 

stack. For writing shellcode, the first step is understanding how system calls (syscall) 

work in C and assembly code. Second step is the syscall which is needed to transform 

C code into assembly code. Third step is modifying assembly code to bytecode which 

is the payload of the exploit. Last step is writing the exploit. 

System calls are how userland programs talk to the kernel to do anything interesting 

such as open files, read, write, map memory, execute programs, etc. The libc functions 

are high level syscall wrappers such as fopen(), sscanf(), execv(), printf(), etc. 

Syscalls can be made in x86 using interrupt 0x80 (int 0x80) and in x64 using syscall 

instruction. 

In Figure 2.10, “mov eax, 4” is the first parameter for system call and the 4 tells kernel 

to prepare itself for write mode. The “mov ebx, 1” is the second parameter for setting 

the write buffer in console (stdout). “pop ecx” sets the buffer to store the string. “mov 

edx, 13” is setting the buffer length. All these assembly codes actually mean ‘write (1, 

“Hello World\n”, 13);’.  Summary for syscall: Specific syscalls are loaded into eax 

and arguments for call are placed in different registers, and then int 0x80 executes call 

to syscall(). The Cpu switches to kernel mode. 

 

 

 

 

 

 

 

 

 

 
Figure 2.10 Syscalls 1. 
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Figure 2.11, execve is a syscall which executes a filepath-pointed binary, and assembly 

code represented in AT&T syntax. execve has 3 parameters–– the first parameter 

consists of filename, the second parameter has arguments and the third one is 

environment variable. In assembly code, there are three parameter that can be loaded 

into ebx, ecx and edx registers and syscall number, which is 0x0b, and can be loaded 

in eax register. The first push instruction loads the little-endian representation of 

“/bin/sh” string. The “mov %esp, %ebx” instruction does a move of esp into ebx for 

the shellcode works any location. Since the push instruction changes the address in 

esp, the existing address is given in esp points to the NULL-terminated string pushed 

into the stack by the second push. Setting the first argument of the execve call to pass 

this address into ebx. The first set of the second parameter is an argument pointer. This 

applies to the filename (‘/bin/sh’) and to the environment variable NULL. “push 0x0” 

to the stack and then to push the pointer to the filename which is in ebx to the stack. 

Then “mov %esp, %ecx” moves the esp into ecx to get a pointer to the arguments. 

The last argument is NULL so “mov $0x0, %edx” moves 0x0 into edx. So, code can 

be compiled but for running shellcode as a payload it needs to change byte codes. 

 

 

Figure 2.12 shows the byte codes with NULL bytes. For the effective working 

shellcodes, the NULL bytes must be removed and rewrite the assembly code to get rid 

of the NULL bytes. 

Figure 2.11 Syscalls 2. 
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In Figure 2.13, the assembly code was rewritten with removing the NULL bytes 

removing the NULL bytes to use the smaller parts of registers and removing some 

NULL values which are byte representation of string in little endian format in Figure 

2.13. There is no NULL byte code in Figure 2.13 and the output is 

‘\x31\xc0\xb0\x0b\x31\xd2\x52\x68\x2f\x2f\x73\x68\x68\x2f\x62\x69\x6e\x89\xe3\

x52\x53\x89\xe1\xcd\x80’ in 25 bytes. 

 

 

The code in Figure 2.6 compile with gcc -z execstack -fno-stack-protector 

overflow.c -o overflow for making the stack to be executable. Then run the exploit 

like `./overflow $(python -c "print ‘\x90'*16 + '\x10\xcb\xff\xff' + '\x90'*28 

+'\x31\xc0\xb0\x0b\x31\xd2\x52\x68\x2f\x2f\x73\x68\x68\x2f\x62\x69\x6e\x89\xe3

\x52\x53\x89\xe1\xcd\x80' + '\x90'*4"; ls)`. x90 is nop instruction, which does 

Figure 2.12 Byte Codes. 

Figure 2.13 Byte Code without NULL Bytes. 
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nothing, as a byte code. The result is shown in Figure 2.14. 

 

2.2.3. RET2LIBC ATTACKS 

The ret2libc attack can be used for subsequent situations such as memory is non-

executable, stack protection disabled, stack canaries disabled and ASLR independent. 

As the title suggests, it overflows the buffer and updates the return address in a shared 

library by overflowing the buffer. In Figure 2.15, it sounds like the stack is in the new 

function frame and it may be in the same way as the function starts to come back from 

the function in Figure 2.16. 

 

 

 

Figure 2.14 Run Shellcode. 

Figure 2.15 Stack with Function Frames 1. 
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The control does not return to the previous function but will go to some other function 

as the call instruction's default behavior. The call to the new feature assumes it will 

start calling regular. Call instruction basically pushes the return address into the stack 

and jump to function address, but this operation is carried out in three steps. The first 

step is the deletion of return value and argument space. In the second step, the new 

function space is moved to stack and the return address. In the final step, the return 

address is already pushed to stack for a new return address. The next function will take 

care of other instructions. Since it is only a return instruction, anything like this did 

not occur. So, it makes the stack look like a normal function call, but if it returns for 

now, the stack looks like Figure 2.17. 

 

 

 

 

Figure 2.16 Stack with Function Frames 2. 

Figure 2.17 Stack with Function Frames 3. 
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When the command goes to the next function, rbp / ebp is pushed. From the 

perspective of the next function, it must look like Figure 2.18 

 

 

 

Figure 2.19 will display the next function stack. Next function knows there will be an 

argument of the previous function as a return address at the top of rbp / ebp return 

address. 

 

 

The overflow of the buffer will bypass the stack so that the stack appears in Figure 

2.19 at the next step. The idea behind the ret2libc is quite simple: In the C library there 

are several useful functions. The ret2libc attacks allows the execute code in executable 

part of the memory but stack is not executable, so shellcodes are not useful. However, 

this attack does not work nowadays because of the protection technique used in every 

compiler and operating system. The first one is stack canaries and second one is ALSR. 

Figure 2.18 Stack with Function Frames 4. 

Figure 2.19 Stack with Function Frames 5. 
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2.3. FORMAT STRINGS VULNERABILITY 

The format strings are specified by the C and C++ languages. Indeed, there are several 

popular, unique formats: %s for a string, %c for chars, %d for decimals, %f for 

floats, %x for hex, and %n for the variable to be written. When a programmer passes 

an attached buffer to a printf call (or any function related to a string such as sprintf, 

fprintf) as an argument, the attacker can write to an arbitrary memory address. Figure 

2.20 shows that wrong usage of printf function. 

 

 

 

 

 

 

 

In Figure 2.21, if “%p %p %p %p” was passed into program as a parameter, the 

printf function in Figure 20 run the “%p %p %p %p” argument so top of the values 

in stack is printed in the console. This shows the format string vulnerability. 

 

 

If the argument is "AAAA %p %p %p %p %p %p %p", “AAAA” string is written 

onto stack shown hex version like “0x414141” in Figure 2.22. 

Figure 2.20 Format Strings 1. 

Figure 2.21 See Stack's Content. 
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In Figure 2.23, the control flow can be changed with a written data in var variable. 

Consider the Figure 2.23 C code. Find the buffer address from the current stack 

position using a flaw in the format string. echo -e 

"AAAA %p %p %p %p %p %p %p" | ./string command give the output: AAAA 

0xf7ffc8a0 0xffffcc1a 0x56556228 (nil) 0xc30000 0x1 0x41414141. Argument 7th is 

the buffer variable starting location. echo -e 

"AAAA %p %p %p %p %p %p %p %n" | ./string command can write size of the 

beginning of A to %n is 25. The 7th argument is written onto the memory address 

linking by 0x41414141. Since the read-only memory can be used, the segmentation 

fault can be received. If any sensible address is added in place of 0x41414141 on the 

buffer. %n shall write to the location-pointed memory. 

 

 

 

 

 

 

 

 

 

Figure 2.22 Write Data on the Stack. 

Figure 2.23 Format Strings 2. 
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For writing the sensible address instead of 0x41414141, the global variable “var” 

address is needed. GDB is a useful tool for finding this address (Commands for getting 

this address are break main, run, print &var). In Figure 2.24, exploit is represented. 

 

2.4. HEAP EXPLOITATION 

2.4.1. HEAP 

The stack is a part of the memory used to dynamically store variables generated using 

the allocation family. There is no ambiguity in the stack dynamic variables. Stack 

variables are split in run-time, but the separation family functions are generated in the 

heap state in run-time. The generated memory in this section is global as any program 

function will share this memory. Figure 2.25 demonstrates what memory control calls 

the program performs and which of its elements are system dependent or independent. 

 

 

Figure 2.24 Writing Data on the Absolute Memory Location. 

Figure 2.25 Function Call Connection 
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Through the location of the program break, brk gets memory from the kernel. At first 

starting (brk) will point to the same position and at the end of the heap section. Initially, 

start_brk refers to the memory segment which points to the end of the BSS while 

running the program. The start_brk value for the programs can be obtained by passing 

the argument 0 into the system call sbrk. Figure 26 shows how the sbrk works. 

 

 

 

 

 

 

 

 

 

 

 

In Figure 2.26, 555555559000 – 55555557b000 is virtual address range of this 

segment. rw-p flag means read, write, non-executive and private. Since sbrk and brk 

are used to get or set the break-off program, mmap is used to get kernel memory to 

connect the stack to the program and update the brk program. Mass memory can be 

handled by functions. 

2.4.2. ORGANIZATION OF HEAP 

Heap has multiple assignment modules, which glibc implements to help manage the 

heap quickly. Arenas, Bins, Chunks are the various allocation structures.   

Arenas: Glibc's malloc allows more than one region of memory to be active at a time 

in order to manage multi-threaded applications effectively. Different threads can, 

therefore, access various memory regions without interfering. These memory regions 

are known as arenas. One arena, the primary arena, is equal to the initial heap of the 

Figure 2.26 How the sbrk Works. 
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program. In the malloc code, there is a static variable pointing out at the arena and 

each arena has the next indicator for linking other arenas. The heap itself is divided 

into understandable parts. The main arena starts immediately after the start brk break. 

Arena is made up of bins sets. 

Bins: These are the set of free memory units known as chunks. In a specific space, 4 

different types of bins are been.  Each bin includes a data allocation structure that 

tracks free chunks. The allocated chunks do not stay in any space. There are certain 

numbers of special bins in each arena. The bins are fast, unsorted, small and large. The 

fast bins have different single linked list which is working LIFO manner. The fast bin 

has 10 different chunk size. When the small and large chunks are freed, they are kept 

in the unsorted bins. The regular bins are split into small bins of the same size for each 

piece and large bins of chunks of different sizes. When a chunk in these bins is inserted, 

it is first combined with adjacent chunks to turn them into larger chunks. These chunks 

are not next to other chunks. Small and large chunks are double linked in order to 

eliminate chunks from the center. 

Chunks: Chunks in bins are the basic unit of allocation. The heap memory is split into 

chunks of different sizes depending on where they are allocated. Every chunk contains 

meta-data about how large it is, and where the neighboring chunks are. When the chunk 

is released, the memory used by   application data is re-purposed for extra arena-related 

information, like pointers inside linked lists, so that suitable chunks can be quickly 

found and re-used when required. The chunk size is always in multiples of 8 which 

lets the use of the last three bits as flags which are  for allocated arena is a main arena 

uses the program heap, M for mmap chunk is allocated to mmap with a single request, 

and is not at all part of a heap, P for previous chunk. 

2.4.3. HEAP EXPLOITATION 

For the assignment of chunks in small or large bins, glibc malloc utilizes a fit algorithm. 

The first free memory location that can accommodate the new request size is broken 

down according to the requirement and assigned with the new request in this 

implementation, as the name implies. Figure 2.27 shows the use after free exploit to 

run the c code in Figure 2.27 and note that pointing to the same position is the pointer 

‘c’ and pointing ‘a’. There is scope for use after free flaw of small and big chunks or 

bins. Where the freed pointer can be manipulated even after it has been freed. 
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The fast bins are kept as a single linked list. Bins just mean the free chunks, not the 

chunks allocated. Programmers are responsible for providing free and allocated chunks 

that are not in use. If a chunk is freed, it is placed into the header of a fast bin list. The 

main node group is deleted from the list and separated. If fast bins have not been 

properly managed, double-free operations may be used. For which the author wrongly 

releases two times a memory that may be exploited to do something illegal by the 

attacker. In Figure 2.28, the code will make pointers ‘d’ and ‘f’ points to the location 

of the same memory. It is known as double-free flaw. 

Figure 2.27 Use After Free. 
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2.5. MITIGATIONS AND BYPASS TECHNIQUES 

2.5.1. ADDRESS SPACE LAYOUT RANDOMIZATION (ASLR) 

Address space layout randomization (ASLR) is a computer security method that helps 

avoid memory corruption flaws from being exploited. ASLR randomly organizes the 

address space for important data regions of a process, including the base of the 

executable, and the stack, heap, and libraries, in order to prevent an attacker from 

jumping into a special memory function in a reliable manner. (Address space layout 

randomization, 2020). ASLR can be bypassed with brute force method. Attacker just 

write simple payload and run this payload again and again. If attacker waits for a 

reasonable (enough) amount of time, the payload can exploit the binary. 

2.5.2. STACK CANARIES 

Stack canaries, called a canary in a coal mine, will be used before malicious code 

execution to delete stack buffer overflow. This technique works by putting a small 

integer in memory just before the stack return pointer, the value of which is selected 

randomly at program initialization (Stack buffer overflow, 2020). Bypassing the 

canary value is possible but it is 8-byte integer in 64-bit system and 4byte integer in 

32 bit system. The attacker needs 18446744073709551615 iteration to find canary 

value in 64-bit system and needs 4294967295 iteration in 32-bit system. 

Figure 2.28 Double Free. 
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2.5.3. DATA EXECUTION PREVENTION (DEP) 

An advantageous mitigation technique to ensure that only code segments are always 

marked executable. DEP defines some program areas as non-executable, so it cannot 

execute stored information or data as code. DEP This is significant as it stops attackers 

from saving the custom shellcode stored on the stack or in a global variable. It is also 

known as DEP, NX, XN, XD, W^X. 

2.5.4. RETURN ORIENTED PROGRAMMING (ROP) 

ROP is the idea of chaining small assembly snippets with a stack control together to 

cause the program to do more complex things. ROP has stack control that can be very 

powerful since it allows the attacker to overwrite saved instruction pointers, giving the 

attacker control over what the program does next. Most programs do not have a 

convenient shell function however, so the attacker needs to find a way to manually 

invoke system or another exec function to get shell. 

2.5.5. BYPASSING DEP WITH ROP 

In Figure 2.29, the C code has a buffer overflow. The code reads bytes in a file and 

copy this byte in filebuf character array. After that call the overflow function copy the 

filebuf character array to buf character array. 

 

Figure 2.29 64 Bit ROP Example. 
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First of all, compile the C code like gcc rop.c -static -o rop, and use ROPgadget tool 

for finding ROP chains. The command is ROPgadget --ropchain --binary rop > 

ropstat which is create a python script with ROP chain to get a shell. It is basically 

shown in Figure 2.30. 

 

 

ROP chain script should be modified because padding value should add into the python 

script. At the beginning of the ROP chain script, p += ‘A’*12 in this case for the 

overflowing buffer. The next step is running the ropstat script and write the output in 

a file because in Figure 2.29 C code reads a file.  then run the exploit like in Figure 

2.31. 

 

Figure 2.30 ROPgadget Creates ROP Chain 

Figure 2.31 Run the ROP Chain. 
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DEP prevents an attacker from running inserted shellcode easily if the instruction 

pointer is managed. Shellcodes almost always ends up in RW- regions. If attacker 

cannot inject the shellcode, the attacker can use existing code, called ROP. So, the 

attacker has bypassed the DEP.
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CHAPTER 3 

IMPLEMENTATION 

The act of inserting data and tossing it at a target program to see if it somehow 

mismanages is the whole idea of Fuzzing and a tool that performs this action is known 

as a Fuzzer. One must identify the target system and identify the inputs to perform a 

fuzz test and then generate a fuzzed data and execute the test using fuzzy data. 

Subsequently, monitor the system behavior and log the detections. There are 3 different 

types of fuzzers–– the mutation-based, the generation-based and the protocol-based 

fuzzers. Mutation-based fuzzers, change samples of existing data to generate new test 

data. It is a very clear and easy approach; it begins with legitimate protocol samples 

and holds every byte or file disfigured. Generation-Based Fuzzers describes new data 

based on a model's feedback. It begins from zero producing input data based on the 

specification. Protocol-based fuzzer have a comprehensive protocol format checking 

and is the most popular fuzzer.  Its definition is focused on the specification. It requires 

writing the specification array in the program, and then using model-based test 

generation methods, the data content and sequence irregularity are applied. Sometimes 

also called the syntax checks, grammar checks, robustness tests, etc. Fuzzer can create 

existing test cases or can use true or invalid inputs. The main purpose of this thesis is 

to create different fuzzer to detect software vulnerabilities. The architecture of this 

implementation shown in Figure 3.1. 
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Figure 3.1 Fuzzer Implementation. 
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The first step of this fuzzer is creating a debug profiler file which contains command-

line arguments of the program to be tested or input value for scanf, gets etc type 

functions. The Figure 3.2 shows an example of the debug profiler file. 

 

 

 

 

 

 

‘@12@A’ means patterns of ‘A’ with size of 12. Then load the binary to be tested in 

the memory. After that, analyze all function scopes addresses and store the target 

functions information except for C library functions. When the hybrid tester starts, the 

debug profiler is set up, then the instruction pointer to the first target in stored target 

functions is set.  and then make static analysis for identifying vulnerable C library 

functions shown in Table 3.1 

Figure 3.2 Debug Profiler. 
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Table 3-1 SDL List of Banned Functions (Intel, n.d) 

Banned Function Replacement Function 

alloca(), _alloca() malloc(), new() 

scanf(), wscanf(), sscanf(), swscanf(), 

vscanf(), vsscanf() 

fgets() 

strlen(), wcslen() strnlen_s(), wcsnlen_s() 

strtok(), strtok_r(), wcstok() strtok_s() 

strcat(), strncat(), wcscat(), wcsncat() strcat_s(), strncat_s(), strlcat()*, wcscat_s(), 

wcsncat_s() 

strcpy(), strncpy(), wcscpy(), wcsncpy() strcpy_s() strncpy_s(), strlcpy()*, wcscpy_s(), 

wcsncpy_s() 

memcpy(), wmemcpy() memcpy_s() wmemcpy_s() 

stpcpy(), stpncpy(), wcpcpy(), wcpncpy() stpcpy_s(), stpncpy_s(), wcpcpy_s(), 

wcpncpy_s() 

memmove(), wmemmove() memmove_s(), wmemmove_s()  

memcmp(), wmemcmp() memcmp_s(), wmemcmp_s() 

memset(), wmemset() memset_s(), wmemset_s() 

gets() fgets() 

sprintf(), vsprintf(), swprintf(), vswprintf() snprintf()  

snprintf(), vsnprintf() Consider using a wrapper function to prevent 

constructing vargs, and using compile-time 

tests on the parameters passed to snprintf(). 

realpath() Use realpath() with NULL as a second 

parameter to force allocation of an appropriate 

sized buffer on the heap. 

getwd() use getcwd() instead because it checks the 

buffer size 

wctomb(), wcrtomb(), wcstombs(), 

wcsrtombs(), wcsnrtombs() 

Wide character to multi-byte string conversion 

routines can generate buffer overflows but no 

alternatives are currently available. If there are 

enough requests that suggest these functions 

are in large use and there is a need for safer 

alternatives, these functions can be added to the 

library extensions.  
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If one of the vulnerable functions is found in targeted function, run the targeted 

function. If it is not found, set instruction pointer the next targeted function. If the 

overflow occurs, save the buffer length and control flow of the targeted function which 

is shown as an example in Figure 3.3. If the overflow does not occur, increment the 

fuzz input and load the program again in memory. 

 

 

When the dynamic tester starts, the debug profile is specified and the instruction 

pointer the targeted function is set. Next, run the function and observe the buffer 

overflow or etc. If the overflow occurs, run save buffer length and control flow. If the 

overflow does not occur, increment the fuzz input and load the program again in 

memory.   

Figure 3.3 Control Flow. 
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CHAPTER 4 

DISCUSSION AND CONCLUSIONS 

There are different types of detecting bugs by fuzz testing. For instant there is an 

approach which is used commonly in large systems where bugs impact memory 

integrity, which is a serious flaw.  Another approach is an invalid input for the fuzz-

test, and fuzzers are used for the generation of an incorrect input to check routines, 

which would be necessary for the program that does not monitor its input. Simple 

fuzzing can be referred to as a way of automating negative testing.  There is also   

another approach called correctness bugs. In general, fuzzing can also be used to 

identify other forms of bugs. For example, corrupted databases, bad search results.   

There are some advantages and disadvantages of fuzz testing. The first advantage is 

fuzz testing improves software security testing. The second advantage is that flaws in 

fuzzing are rarely serious and much of the time attackers use, including crashes, 

memory leaks, unprocessed exceptions, etc. Also, another advantage is to identify 

these bugs in the Fuzz test if any of the bugs cannot be found by testers because of the 

restricting time and resources. On the other hand, one of the disadvantage is that the 

fuzz test alone cannot offer an overall security risk or bug a detailed picture.  Another 

disadvantage is the efficiency of fuzz testing for security risks which do not cause 

problems, such as viruses, worms, trojans, etc. Thirdly, the fact that fuzz tests can only 

detect basic faults or attacks is disadvantage. In addition, a clear disadvantage is to be 

successfully done, which would require a considerable period. The last disadvantage, 

to be mentioned here is that it is very problematic to set a limit value condition with 

random inputs, but most testers are now solving this problem through deterministic 

algorithms based on user feedback. 

Secure coding is so important topic for organizations because if any flaws is found in 

their application, it may cause damage to the organizations. However, secure coding 

training is not required in most computer science programs. Organizations that aim to 

mitigate the risks of an ever-expanding field of attack need to take a close look at their 

security policies for implementation. At the application layer, there are many ways to 

handle the risks. Most people consider application security tools to be the solution to 

identify vulnerabilities so that developers can fix them. It is true that organizations can 

and should use security solutions for the application to identify security problems. But 
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they can also slow development processes and will not find it all. Another way to 

reduce security issues is to avoid introducing them in the application layer first. Of 

course, no developer can commit the perfect code at any time. But organizations should 

act to train developers to practice secure coding. This study shows that when developer 

used string functions from c libraries, they should check the size of the strings and they 

should not use banned functions as shown in Table 3.1. Also, developers should parse 

correctly input strings because most of security flaws come up wrongly parsed strings. 

These are the basic solutions steps which if followed can produce more secure codes. 

The main statement of this thesis is detecting vulnerabilities in an executable program. 

In this thesis a different type of fuzzer is constructed. In this fuzzer, the target program 

is loaded in memory and each function of the target program tested for all different 

types of security flaws and show the control flow of the function which has buffer-

overflow. 
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APPENDIX 1 – System setup instructions 

1. Packages that need to be installed. 

1.1 System designed for Linux based operating systems. 

1.2 Command line tools and installing requirements. 

 1.2.1 C: Required programming language version 9.3.0. 

  1.2.1.1 sudo apt install gcc gcc-multilib  

 1.2.2 Python: Required programming language version Python 2.7.18rc1. 

  1.2.2.1 sudo apt install python 

 1.2.3 GDB: GNU debugger for a toolkit version 9.1. 

  1.2.3.1 sudo apt install gdb 

 1.2.4 git: fast, scalable, distributed revision control system version 2.25.1 

 1.2.5 Radare2: Reverse engineering framework version 4.5.0-git. 

  1.2.5.1 git clone https://github.com/radare/radare2.git 

  1.2.5.2 cd radare2 

  1.2.5.3 sudo sys/install.sh  

 1.2.6 pip: The python package installer version 20.1. 

  1.2.6.1 sudo apt install python-pip 

 1.2.7 ROPgadget: Searching rop chains. 

  1.2.7.1 sudo pip install ropgadget 

 1.2.8 objdump: Getting information object files. 

  1.2.8.1 sudo apt install binutils 

 1.2.9 readelf: Displays information about ELF files. 

  1.2.9.1 sudo apt install binutils 

 1.2.10 grapviz: Graph virtualization software. 

  1.2.10.1 sudo apt install graphviz 
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 1.2.11 pydot: Python interface to Graphviz's Dot 

  1.2.11.1 sudo pip install pydot 


