YAŞAR UNIVERSITY
GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

MASTER THESIS

BI-OBJECTIVE NO-WAIT PERMUTATION FLOWSHOP SCHEDULING PROBLEMS

DAMLA YÜKSEL

THESIS ADVISOR: PROF. DR. LEVENT KANDİLLER CO-ADVISOR: PROF. DR. MEHMET FATİH TAŞGETİREN

INDUSTRIAL ENGINEERING

PRESENTATION DATE: 28.06.2019

We certify that, as the jury, we have read this thesis and that in our opinion it is fully adequate, in scope and in quality, as a thesis for the degree of Master of Science.

Jury Members:

Prof. Dr. Levent KANDİLLER (Advisor)
Yaşar University

Prof. Dr. Mehmet Cemali DİNÇER
Yaşar University

Assoc. Prof. Dr. Özgür ÖZPEYNİRCI İzmir University of Economics

ABSTRACT
 BI-OBJECTIVE NO-WAIT PERMUTATION FLOWSHOP SCHEDULING PROBLEMS

Yüksel, Damla
MSc, Industrial Engineering
Advisor: Levent KANDİLLER, PhD
Co-Advisor: Mehmet Fatih TAŞGETİREN, PhD

June 2019

In the field of permutation flowshop scheduling problems, there is a vast literature covering mathematical models and heuristics approaches. However, less work has been reported in the field of no-wait permutation flowshop scheduling problems, a variant of permutation flow shop scheduling problem where the waiting time for the jobs between the machines is not allowed. This thesis proposes both mixed-integer linear programming and constraint programming model formulations for no-wait permutation flowshop scheduling problem under various objectives such as (i) makespan, (ii) total flow time and (iii) total tardiness.

Moreover, energy-efficient scheduling has become very popular recently since energy consumption in high volume manufacturing is the leading essential difficulty in most industries. Both mixed-integer programming and constraint programming model formulations are developed in this thesis on the energy-efficient (bi-objective) no-wait permutation flowshop scheduling problems with the objective of minimizing (i) makespan, (ii) total flow time and (iii) total tardiness, separately. The bi-objective no-wait permutation flowshop scheduling problems treat the total energy consumption as a second objective in this study. Furthermore, due to the NP-hardness nature of the first objective of the problem, a novel multi-objective discrete artificial bee colony algorithm (MO-DABC), a traditional multi-objective genetic algorithm (MO-GA) and a variant of multi-objective genetic algorithm (MO-GALS) are proposed for the biobjective no-wait permutation flowshop scheduling problems. Consequently, a comprehensive comparative metaheuristic analysis is carried out.

Hence, this thesis contributes to the literature of no-wait permutation flowshop scheduling problem for not only single-objective problems but also the bi-objective problems which consider energy efficient scheduling by ensuring various new mathematical models and metaheuristics.

Key Words: no-wait permutation flowshop scheduling problems, mixed-integer linear programming, constraint programming, bi-objective optimization, metaheuristics

İKİ AMAÇLI BEKLEMESİZ PERMUTASYON AKIŞ TİPİ Çi̇ZELGELEME PROBLEMLERİ

Yüksel, Damla
Yüksek Lisans, Endüstri Mühendisliği
Danışman: Prof. Dr. Levent KANDİLLER
Yardımcı Danışman: Prof. Dr. Mehmet Fatih TAŞGETİREN

June 2019

Permütasyon akış tipi çizelgeleme problemlerinin literatür incelenmesinde matematiksel modellerin ve sezgisel yaklaşımların yaygın olarak kullanılmakta olduğu görülmüştür. Ancak, makineler arasındaki işler için bekleme süresine izin verilmeyen bir permütasyon akış tipi çizelgeleme problemi çeşidi olan beklemesiz permütasyon akış tipi çizelgeleme problemleri alanında daha az çalışma yapılmıştır. Bu tez, beklemesiz permütasyon akış tipi çizelgeleme problemi için hem karma-tamsayılı doğrusal programlama hem de kısıt programlama model formülasyonunu, (i) iş üretim süresi, (ii) toplam akış süresi ve (iii) toplam gecikme gibi çeşitli amaçlar altında önermektedir.

Ek olarak, enerji verimli çizelgeleme son zamanlarda oldukça popüler hale gelmiştir, çünkü yüksek hacimli imalattan kaynaklanan enerji tüketimi çoğu sektörde karşılaşılan en başta gelen problemdir. Bu nedenle, hem karma-tamsayılı programlama hem de kısıt programlama model formülasyonları, iki-amaçlı beklemesiz permütasyon akış tipi çizelgeleme problemleri üzerinde, yine (i) iş üretim süresini, (ii) toplam akış süresini ve (iii) toplam gecikmeyi ayrı ayrı en aza indirmek amacıyla çalışılmıştır. Bu tezde, iki-amaçlı beklemesiz permütasyon akış tipi çizelgeleme problemlerinin toplam enerji tüketimini ikinci bir amaç olarak kullandığı kabul edilmiştir. Ayrıca, ilk amaç fonksiyonunda bile NP-Hard sınıfında olan bu problem kapsamında, iki-amaçlı beklemesiz permütasyon akış tipi çizelgeleme problemleri için yeni bir çok-amaçlı ayrık yapay arı kolonisi algoritması (MO-DABC), bir geleneksel çok-amaçlı genetik algoritma (MO-GA) ve bir çok-amaçlı genetik algoritma çeşidi (MO-GALS) önerilmiştir. Sonuç olarak, iki amaçlı beklemesiz permütasyon akış tipi çizelgeleme problemleri için kapsamlı bir karşılaştırmalı metasezgisel analiz yapılmıştır.

Bu nedenle, bu tez, beklemesiz permütasyon akış tipi çizelgeleme problemi literatürüne sadece tek-hedefli problemler için değil aynı zamanda iki-hedefli enerji verimli çizelgeleme problemleri için çeşitli yeni matematiksel modeller ve metasezgisel yöntemler sağlayarak katkıda bulunmaktadır.

Anahtar Kelimeler: beklemesiz permütasyon akış tipi çizelgeleme problemleri, karma-tamsayılı lineer programlama, kısıt programlama, iki-amaçlı optimizasyon, sezgisel yöntemler

ACKNOWLEDGEMENTS

First of all, I would like to express my special appreciation and sincere gratitude to my thesis advisor Prof. Dr. Levent Kandiller for his immense knowledge, guidance and patience during this study. His valuable guidance significantly helped in all the time of research and writing of this thesis. His father-like approach supported me in overcoming numerous obstacles and in moving in the right direction whenever I thought I needed it. I could not have imagined having a better advisor for my master study. Secondly, I would specially like to thank my thesis co-advisor Prof. Dr. Mehmet Fatih Taşgetiren for his substantial guidance during this way. He always shared his ideas with me to acquire results of better quality and to enhance my skills as a researcher. Also, I would like to thank Prof. Dr. Deniz Türsel Eliiyi for her help during the early stages of this thesis. Moreover, I appreciate to jury members Prof. Dr. Mehmet Cemali Dinçer and Assoc. Prof. Dr. Özgür Özpeynirci for their many insightful comments, suggestions and contributions.

Next, I would particularly like to thank my beloved husband Yiğit Yüksel for the support, love, as well as immutable encouragement I have gotten over the years. He always exchanged ideas and facilitated my improved skills and expand my point of view during each and every single step along this way. In particular, I would like to express my profound gratitude to my mother, my father and my sister Deniz. I undoubtedly could not have done this without their unfailing support and continuous encouragement.

Finally, the last but by no means the least, I have spent a great amount of time at the Department of Industrial Engineering in the Yaşar University and it was like my second home. Thus, I appreciate to faculty, colleagues and especially my dearest office mates whose endorsement are always with me.

Thanks for all your encouragement!

TEXT OF OATH

I declare and honestly confirm that my study, titled "BI-OBJECTIVE NO-WAIT PERMUTATION FLOWSHOP SCHEDULING PROBLEMS" and presented as a Master's Thesis, has been written without applying to any assistance inconsistent with scientific ethics and traditions. I declare, to the best of my knowledge and belief, that all content and ideas drawn directly or indirectly from external sources are indicated in the text and listed in the list of references.

Damla Yüksel

July 2, 2019

TABLE OF CONTENTS

ABSTRACT v
ÖZ. ix
ACKNOWLEDGEMENTS xiii
TEXT OF OATH xv
TABLE OF CONTENTS xvii
LIST OF FIGURES xxv
LIST OF TABLES xxix
SYMBOLS AND ABBREVIATIONS xxxiii
CHAPTER 1 INTRODUCTION 1
CHAPTER 2 PROBLEM DEFINITION AND LITERATURE REVIEW 5
2.1. Single-Objective No-Wait Permutation Flowshop Scheduling Problems 5
2.2. Bi-Objective (Energy-Efficient) No-Wait Permutation Flowshop Scheduling Problem 7
2.3. Literature Review on No-Wait Permutation Flowshop Scheduling Problems 9
2.4. Literature Review on Energy Efficient Scheduling 11
2.5. Discussion 12
CHAPTER 3 SINGLE OBJECTIVE NO-WAIT PERMUTATION FLOWSHOPSCHEDULING PROBLEMS15
3.1. No-Wait Permutation Flowshop Scheduling Problem with Minimizing Makespan 15
3.1.1. Mixed Integer Linear Programming Model 15
3.1.2 Constraint Programming Model 16
3.1.3. Valid Inequalities for $\left(\mathrm{F}_{\mathrm{M}}|\mathrm{NWT}| \mathrm{C}_{\mathrm{MAX}}\right)$ Problem. 17
3.1.4. Computational Results and Comparison of the MILP and CP Models 18
3.2. No-Wait Permutation Flowshop Scheduling Problem with Minimizing Total Flow Time 24
3.2.1. Mixed Integer Linear Programming Model 24
3.2.2. Constraint Programming Model 25
3.2.3. Computational Results and Comparison of the MILP and CP Models 26
3.3. No-Wait Permutation Flowshop Scheduling Problem with Minimizing Total Tardiness 31
3.3.1. Mixed Integer Linear Programming Model 31
3.3.2. Constraint Programming Model 32
3.3.3. Computational Results and Comparison of the MILP and CP Models 33
CHAPTER 4 BI-OBJECTIVE NO-WAIT PERMUTATION FLOWSHOP SCHEDULING PROBLEMS 35
4.1. Bi-Objective No-Wait Permutation Flowshop Scheduling Problem with Minimizing Makespan and Total Energy Consumption 36
4.1.1. Mixed Integer Linear Programming Model 36
4.1.2 Constraint Programming Model 37
4.1.3. Comparison of MILP and CP Models 38
4.2. Bi-Objective No-Wait Permutation Flowshop Scheduling Problem with Minimizing Total Flow Time and Total Energy Consumption 40
4.2.1. Mixed Integer Linear Programming Model 40
4.2.2. Constraint Programming Model 42
4.2.3. Comparison of MILP and CP Models 43
4.3. Bi-Objective No-Wait Permutation Flowshop Scheduling Problem with Minimizing Total Tardiness and Total Energy Consumption 45
4.3.1. Mixed Integer Linear Programming Model 45
4.3.2 Constraint Programming Model 47
4.2.3. Small Sized (Truncated) Instances for ($\mathrm{F}_{\mathrm{M}}|\mathrm{NWT}| \sum \mathrm{T}_{\mathrm{I}}$) Problem 48
4.2.4. Comparison of MILP and CP Models 50
CHAPTER 5 METAHEURISTICS FOR BI-OBJECTIVE NO-WAIT PERMUTATION FLOWSHOP SCHEDULING PROBLEMS 53
5.1. Solution Representation and Initial Population 55
5.2. Multi-Objective Discrete Artificial Bee Colony Algorithm (MO-DABC) 59
5.3. Multi-Objective Genetic Algorithm (MO-GA) 65
5.4. Multi-Objective Genetic Algorithm with a Local Search (MO-GALS) 66
CHAPTER 6 COMPUTATIONAL RESULTS FOR BI-OBJECTIVE NO-WAIT PERMUTATION FLOWSHOP SCHEDULING PROBLEMS 67
6.1. Computational Results for Bi-Objective No-Wait Permutation Flowshop Scheduling Problem with Minimizing Makespan and Total Energy Consumption 69
6.2. Computational Results for Bi-Objective No-Wait Permutation Flowshop Scheduling Problem with Minimizing Total Flow Time and Total Enery Consumption73
6.3. Computational Results for Bi-Objective No-Wait Permutation Flowshop Scheduling Problem with Minimizing Total Tardiness and Total Energy Consumption78
6.4. A Summary of Computational Results for Bi-Objective No-Wait Permutation
Flowshop Scheduling Problems 82
CHAPTER 7 CONCLUSIONS AND FUTURE RESEARCH 85
REFERENCES 87
APPENDIX A - Computational Results for $\left(\mathrm{F}_{\mathrm{m}}|\mathrm{nwt}| \mathrm{C}_{\mathrm{max}}\right)$ 91
Table A.1. MILP and CP Comparison Table for 5 machines (VRF Instances) 91
Table A1.1.(Cont'd.) MILP and CP Comparison Table for 5 machines (VRF Instances) 92 92
Table A.2. MILP and CP Comparison Table for 10 machines (VRF Instances) 93
Table A.2.(Cont'd.) MILP and CP Comparison Table for 10 machines (VRF Instances) 94
Table A.3. MILP and CP Comparison Table for 15 machines (VRF Instances) 95
Table A.3.(Cont'd.) MILP and CP Comparison Table for 15 machines (VRF Instances) 96
Table A.4. MILP and CP Comparison Table for 20 machines (VRF Instances) 97
Table A.4.(Cont'd.) MILP and CP Comparison Table for 20 machines (VRF Instances) . 98 98
Table A.5. MILP-Prime and CP-Prime Comparison Table with Lower and Upper Bounds for 5 machines (VRF Instances) 99
Table A.5.(Cont'd.) MILP-Prime and CP-Prime Comparison Table with Lower and Upper Bounds for 5 machines (VRF Instances) 100
Table A.6. MILP-Prime and CP-Prime Comparison Table with Lower and Upper Bounds for 10 machines (VRF Instances) 101
Table A.6.(Cont'd.) MILP-Prime and CP-Prime Comparison Table with Lower and Upper Bounds for 10 machines (VRF Instances) 102
Table A.7. MILP-Prime and CP-Prime Comparison Table with Lower and Upper Bounds for 15 machines (VRF Instances) 103
Table A.7.(Cont'd.) MILP-Prime and CP-Prime Comparison Table with Lower and Upper Bounds for 15 machines (VRF Instances) 104
Table A.8. MILP-Prime and CP-Prime Comparison Table with Lower and Upper Bounds for 20 machines (VRF Instances) 105
Table A.8.(Cont'd). MILP-Prime and CP-Prime Comparison Table with Lower and Upper Bounds for 20 machines (VRF Instances) 106
Table A.9. MILP and CP Comparison Table for 20 jobs (Taillard Instances) 107
Table A.10. MILP and CP Comparison Table for 50 jobs (Taillard Instances) 108
Table A.11. MILP and CP Comparison Table for 100 jobs (Taillard Instances) 109
Table A.12. MILP and CP Comparison Table for 200 jobs (Taillard Instances) 110
APPENDIX B - Computational Results for ($\mathrm{F}_{\mathrm{m}}|\mathrm{nwt}| \sum \mathrm{C}_{\mathrm{iM}}$) 111
Table B.1. MILP and CP Comparison Table for 5 machines (VRF Instances) 111
Table B.1.(Cont'd.) MILP and CP Comparison Table for 5 machines (VRF Instances). 112
Table B.2. MILP and CP Comparison Table for 10 machines (VRF Instances) 113
Table B.2.(Cont'd.) MILP and CP Comparison Table for 10 machines (VRF Instances) 114
Table B.3. MILP and CP Comparison Table for 15 machines (VRF Instances) 115
Table B.3.(Cont'd.) MILP and CP Comparison Table for 15 machines (VRF Instances) 116
Table B.4. MILP and CP Comparison Table for 20 machines (VRF Instances) 117
Table B.4.(Cont'd.) MILP and CP Comparison Table for 20 machines (VRF Instances) 118
Table B.5. MILP and CP Comparison Table for 20 jobs (Taillard Instances) 119
Table B.6. MILP and CP Comparison Table for 50 jobs (Taillard Instances) 120
Table B.7. MILP and CP Comparison Table for 100 jobs (Taillard Instances) 121
Table B.8. MILP and CP Comparison Table for 200 jobs (Taillard Instances) 122
APPENDIX C - Computational Results for ($\mathrm{F}_{\mathrm{m}}|n w t| \sum \mathrm{T}_{\mathrm{i}}$) 123
Table C.1. MILP and CP Comparison Table for 20 jobs (Taillard Instances) 123
Table C.2. MILP and CP Comparison Table for 50 jobs (Taillard Instances) 124
Table C.3. MILP and CP Comparison Table for 100 jobs (Taillard Instances) 125
Table C.4. MILP and CP Comparison Table for 200 jobs (Taillard Instances) 126
APPENDIX D -Small Sized Instances for ($\mathrm{F}_{\mathrm{m}}|\mathrm{nwt}| \sum \mathrm{T}_{\mathrm{i}}$, TEC $)$ 127
Table D.1. Truncated Instances with a sets of $5 \times 5,5 \times 10$, and 5×20 127
Table D.1.(Cont'd.) Truncated Instances with a sets of $5 \times 5,5 \times 10$, and 5×20 128
Table D.1.(Cont'd.) Truncated Instances with a sets of $5 \times 5,5 \times 10$, and 5×20 129
Table D.1.(Cont'd.) Truncated Instances with a sets of $5 \times 5,5 \times 10$, and 5×20 130

LIST OF FIGURES

Figure 2.1. Gantt Chart for an Example of NWPFSP .. 5

Figure 3.1. Comparison of MILP and CP models for $\left(F_{m}|n w t| C_{\max }\right)$ Problem on VRF Instances (Small Sized)

Figure 3.2. Comparison of MILP and CP Models for ($F_{m}|n w t| C_{\max }$) Problem on VRF
Instances (5 Machines) 19
Figure 3.3. Comparison of MILP and CP Models for $\left(F_{m}|n w t| C_{\max }\right)$ Problem on VRF Instances (10 Machines) 20

Figure 3.4. Comparison of MILP and CP Models for $\left(F_{m}|n w t| C_{\max }\right)$ Problem on VRF Instances (15 Machines)
Figure 3.5. Comparison of MILP and CP Models for ($F_{m}|n w t| C_{\max }$) Problem on VRF Instances (20 Machines) 21
Figure 3.6. Comparison of MILP and CP models for $\left(F_{m}|n w t| \sum C_{i M}\right)$ Problem on VRF Instances (Small Sized) 26
Figure 3.7. Comparison of MILP and CP Models for $\left(F_{m}|n w t| \sum C_{i M}\right)$ Problem on VRF Instances (5 Machines) 27
Figure 3.8. Comparison of MILP and CP Models for $\left(F_{m}|n w t| \sum C_{i M}\right)$ Problem on VRF Instances (10 Machines) 28
Figure 3.9. Comparison of MILP and CP Models for $\left(F_{m}|n w t| \sum C_{i M}\right)$ Problem on VRF Instances (15 Machines) 29
Figure 3.10. Comparison of MILP and CP Models for $\left(F_{m}|n w t| \sum C_{i M}\right)$ Problem on VRF Instances (20 Machines) 30
Figure 4.1. The Pareto Optimal Set of 5x5_01 for ($F_{m}|n w t| C_{\max }, T E C$) Problem 39
Figure 4.2. The Pareto Optimal Set of $5 \times 5 _01$ for $\left(F_{m}|n w t| \sum C_{i M}, T E C\right)$ Problem 44
Figure 4.3. The Pareto Optimal Set of 5x5_01 for ($F_{m}|n w t| \sum T_{i}, T E C$) Problem 51
Figure 5.1. Gantt Chart for an Example NWPFSP with Distances 53
Figure 5.2. FRB5 Constructive Heuristic 57
Figure 5.3. Insertion Local Search 57
Figure 5.4. Iterated Greedy Algorithm. 60
Figure 5.5. Insertion Local Search with Speed Levels 61
Figure 5.6. Block Insertion Move 62
Figure 5.7. Iterated Local Search 64

LIST OF TABLES

Table 2.1. The Contribution of the Thesis to the Literature of NWPFSPs 12
Table 2.2. The Contribution of the Thesis to the Literature of Bi-Objective (Energy-
Efficient) NWPFSPs ... 13

Table 3.1. Comparison of MILP and MILP-Prime in terms of Averages 23

Table 4.1. MILP and CP Time Comparison for $\left(F_{m}|n w t| C_{\max }, T E C\right)$ Problem on Small
Sized Instances ... 40
Table 4.2. MILP and CP Time Comparison for ($F_{m}|n w t| \sum C_{i M}, T E C$) Problem on Small Sized Instances

Table 4.3. EDD Sequence of 20x5_01 Instance Based on PFSP
Table 4.4. EDD Sequence of Cropped 20x5_01 Instance Based on PFSP 49
Table 4.5. EDD Sequence of 5x5_01 Instance Based on PFSP ... 50
Table 4.6. EDD Sequence of 5x5_01 Instance with New Due Dates 50
Table 4.7. MILP and CP Time Comparison for $\left(F_{m}|n w t| \sum T_{i}, T E C\right)$ Problem on Small
\qquad

Table 5.1. Individual Solution Representation... 55

Table 6.1. Comparison of MO-DABC, MO-GA and MO-GALS with CPLEX on Small Sized Instances for ($F_{m}|n w t| C_{\max }, T E C$) When Population Size is 30............... 69

Table 6.2. Comparison of MO-DABC, MO-GA and MO-GALS on Larger Instances in terms of Cardinality and Distribution Spacing for $\left(F_{m}|n w t| C_{\text {max }}, T E C\right)$ When Population Size is 30

Table 6.3. Comparison of MO-DABC, MO-GA and MO-GALS on Larger Instances in terms of Coverage for ($F_{m}|n w t| C_{\max }, T E C$) When Population Size is 30

Table 6.4. Comparison of MO-DABC, MO-GA and MO-GALS on Larger Instances in terms of Cardinality and Distribution Spacing for $\left(F_{m}|n w t| C_{\text {max }}, T E C\right)$ When Population Size is 1072

Table 6.5. Comparison of MO-DABC, MO-GA and MO-GALS on Larger Instances in terms of Coverage for ($F_{m}|n w t| C_{\max }, T E C$) When Population Size is 1073

Table 6.6. Comparison of MO-DABC, MO-GA and MO-GALS with CPLEX on Small Sized Instances for $\left(F_{m}|n w t| \sum C_{i M}, T E C\right)$ When Population Size is 30

Table 6.7. Comparison of MO-DABC, MO-GA and MO-GALS on Larger Instances in terms of Cardinality and Distribution Spacing for $\left(F_{m}|n w t| \sum C_{i M}, T E C\right)$ When Population Size is 30

Table 6.8. Comparison of MO-DABC, MO-GA and MO-GALS on Larger Instances in terms of Coverage for $\left(F_{m}|n w t| \sum C_{i M}, T E C\right)$ When Population Size is $30 \ldots76$

Table 6.9. Comparison of MO-DABC, MO-GA and MO-GALS on Larger Instances in terms of Cardinality and Distribution Spacing for $\left(F_{m}|n w t| \sum C_{i M}, T E C\right)$ When Population Size is 10

Table 6.10. Comparison of MO-DABC, MO-GA and MO-GALS on Larger Instances in terms of Coverage for $\left(F_{m}|n w t| \sum C_{i M}, T E C\right)$ When Population Size is 10 .

Table 6.11. Comparison of MO-DABC, MO-GA and MO-GALS with CPLEX on Small Sized Instances for $\left(F_{m}|n w t| \sum T_{i}, T E C\right)$ When Population Size is 30 .

Table 6.12. Comparison of MO-DABC, MO-GA and MO-GALS on Larger Instances in terms of Cardinality and Distribution Spacing for ($F_{m}|n w t| \sum T_{i}, T E C$) When Population Size is 30

Table 6.13. Comparison of MO-DABC, MO-GA and MO-GALS on Larger Instances in terms of Coverage for $\left(F_{m}|n w t| \sum T_{i}, T E C\right)$ When Population Size is 30 .

Table 6.14. Comparison of MO-DABC, MO-GA and MO-GALS on Larger Instances in terms of Cardinality and Distribution Spacing for ($F_{m}|n w t| \sum T_{i}, T E C$) When Population Size is 10 . 81

Table 6.15. Comparison of MO-DABC, MO-GA and MO-GALS on Larger Instances in terms of Coverage for $\left(F_{m}|n w t| \sum T_{i}, T E C\right)$ When Population Size is 10

SYMBOLS AND ABBREVIATIONS

$F_{m}\left\|n w t, S T_{s i}\right\| C_{\max }$	No-Wait Permutation Flowshop Scheduling Problem for Minimization of Makespan with Sequence Independent Setup Times
$F_{m}\left\|n w t, S T_{s d}\right\| C_{m a x}$	No-Wait Permutation Flowshop Scheduling Problem for Minimization of Makespan with Sequence Dependent Setup Times
DC	Destruction and Construction
IGA	Iterated Greedy Algorithm
BIH	Insertion Local Search Insertion Heuristic
ILS	Multi-Objective Discrete Artificial Bee Colony Algorithm
MO-DABC	Multi-Objective Generic Algorithm
MO-GA	Multi-Objective Genetic Algorithm with a Local Search
MO-GALS	

SYMBOLS:
$N \quad$ Number of jobs
$M \quad$ Number of machines
$i, k \quad$ Indices for jobs $(1 \leq i, k \leq|N|)$
$r \quad$ Index for machines $(1 \leq r \leq|M|)$
$P_{\text {ir }} \quad$ Processing time of job $i \in N$ on machine $r \in M$
$D D_{i} \quad$ Due date of job $i \in N$
$Q \quad$ A very large number
$C_{i r} \quad$ Completion time of job $i \in N$ on machine $r \in M$
$D_{i k} \quad 1$ if job $i \in N$ is scheduled any time before job $k \in N, 0$ otherwise $(i<k)$
$T_{i} \quad$ Tardiness of job $i \in N$

$C_{\text {max }}$	Maximum completion time (makespan)
$J o b_{i r}$	Interval variable for the processing time $\left(P_{i r}\right)$ of job $i \in N$ on machine $r \in M$
$M a c_{r}$	Sequence variable for machines over all JobInt ir
s_{l}	Speed factor of processing speed level l $l \in L$
λ_{l}	Conversion factor for processing speed level l $l \in L$
φ_{r}	Conversion factor for idle time on machine $r \in M$
τ_{r}	Power of machine $r \in M(\mathrm{~kW})$
$y_{i r l}$	1 if job i is processed at speed l on machine $\in M, 0$ otherwise
θ_{r}	Idle time on machine $r \in M$
TEC	Total energy consumption (kWh)
JobOpt ${ }_{\text {irl }}$	Optional interval variable for the processing time ($P_{i r}$) of job $i \in N$ on machine $r \in M$ which has the speed levels of $l \in L$
$d[i, j]$	Minimum distance between two consecutive jobs i and j on the first machine
$d([i, j][l, t])$	Minimum distance between two consecutive jobs i and j on the first machine if their speed levels are l and t, respectively.

CHAPTER 1

INTRODUCTION

The no-wait permutation flowshop scheduling problem (NWPFSP) is a variant of permutation flowshop scheduling problems (PFSP) that are most studied scheduling problems yielding significant practical applications in chemical, steel, plastic, foodprocessing, pharmaceutical and electronic industries (Aldowaisan \& Allahverdi, 2004; Sapkal \& Laha, 2013). The no-wait flowshop scheduling problems differ from the traditional flowshop problems by the following extra restriction: any holding up is not allowed between two consecutively used machines for any job. In the manufacturing areas of the above mentioned industries, owing to the technological restrictions, there might not be any storage area between two machines, which proceed the same job successively. In other words, once a job starts processing on the first machine, it must be processed without disruption until the end of the processing on the last machine. Furthermore, it is necessary to mention that the no-wait flowshop scheduling problems are perceived as permutation flowshop problems where each job follows the same order on machines (Fink \& Voß, 2003). Hence, NWPFSPs target to find a job sequence for all jobs on the machines where each job follows the same order on the machines and where there is no waiting time between consecutive machines for a job.

This thesis aims to investigate a new fundamental mathematical modelling for three important NWPFSPs: (i) no-wait flowshop scheduling problem with the objective of makespan minimization, (ii) no-wait flowshop scheduling problem with the objective of total flow time minimization, and (iii) no-wait flowshop scheduling problem with the objective of total tardiness minimization. To be consistent with the standard 3-tuple notation framework, these problems are denoted as $\left(F_{m}|n w t| C_{\max }\right)$, ($F_{m}|n w t| \sum C_{i M}$) and ($F_{m}|n w t| \sum T_{i}$), respectively (Graham et al. 1979). According to this notation, F_{m} represents a flowshop with m machines and $n w t$ indicates the nowait restriction of the jobs between successive machines. $C_{\max }, \sum C_{i M}$ and $\sum T_{i}$ denote that the objective is to minimize the makespan, the total flow time and the total tardiness, respectively.

Moreover, this thesis contributes to the energy efficient scheduling literature in such a way that the total energy consumption is considered. Recently, the energy efficient scheduling and energy consumption consideration increase its popularity within the scope of scheduling environment due to the fact that the high-energy consumption is the biggest current concern during production (Fang et al., 2011). To reduce the high-energy consumption in the manufacturing environment, energyefficient machines are required to be used. On the other hand, this might not be applicable in most of the processes due to the substantial amount of financial investment. Therefore, energy-efficiency concept is employed at the operational planning level on machines by means of developing solution techniques for energy efficient no-wait permutation flowshop scheduling problems, in this thesis. Hence, this thesis aims to investigate a novel fundamental mathematical modelling for three important bi-objective NWPFSPs: (i) bi-objective no-wait flowshop scheduling problem to minimize the makespan and the total energy consumption, (ii) bi-objective no-wait flowshop scheduling problem to minimize the total flow time and the total energy consumption, and (iii) bi-objective no-wait flowshop scheduling problem to minimize the total tardiness and the total energy consumption. Again, to be consistent with the standard 3 -tuple notation framework, these problems are denoted as $\left(F_{m}|n w t| C_{m a x}, T E C\right)$ and ($\left.F_{m}|n w t| \sum C_{i M}, T E C\right),\left(F_{m}|n w t| \sum T_{i}, T E C\right)$, respectively. Here, the term TEC denotes the total energy consumption. We propose two types of models formulating: mixed-integer linear programming (MILP) and constraint programming (CP). In addition, since the problem is NP-Hard, a multi-objective discrete artificial bee colony (MO-DABC), and a multi-objective genetic algorithm (MO-GA), also a variant of this algorithm (MOGALS) are developed, as heuristic solution methods. The performance of these algorithms over MILP and CP are measured in terms of small sized instances, then the comparative performance of the heuristic algorithms is measured in terms of larger instances with respect to various performance metrics.

The remainder of the thesis is organized as follows: In Chapter 2, the problem definition and an extensive literature review for single-objective NWPFSPs and energy efficient scheduling problems are presented. Then, the mathematical models and constraint programming models for single-objective NWPFSPs and bi-objective NWPFSPs are provided in Chapter 3 and Chapter 4, respectively. While three energy
efficient metaheuristics are proposed for bi-objective NWPFSPs in Chapter 5, the computational results are provided in Chapter 6. Finally, the concluding remarks are stated and future research directions are addressed in Chapter 7.

CHAPTER 2

PROBLEM DEFINITION AND LITERATURE REVIEW

In this chapter, initially, the problem definitions are stated for single-objective NWPFSPs and bi-objective (energy-efficient) NWPFSPs. Then, all sets, parameters and decision variables are presented for both mixed-integer linear programming model (MILP) and constraint programming model (CP) by reflecting the insight of the nowait restrictions. Next, a comprehensive literature review for both single-objective NWPFSPs and energy efficient scheduling problems are provided. At the end, the gaps found in the literature and the contribution of this thesis to the literature are discussed.

2.1. Single-Objective No-Wait Permutation Flowshop Scheduling

Problems

The no-queue restriction makes the NWPFSP a special variant of PFSPs. Hence, the assumptions of the NWPFSPs can be summarized as follows.

- Each job can only be processed in one machine at a time and each machine can only process one job at a time.
- Each machine must process the jobs in an identical order, meaning that this problem is a variant of permutation flow shop scheduling problems.
- The jobs cannot wait between the machines. Once they start being processed, they must complete their processes until the last machine without any interruption between machines. This is referred as the no-wait restriction.
- Each job either follows a job or proceeds a job on all machines.

According to these assumptions, the Gantt chart for an example of NWPFSP, where 4 jobs is required to be scheduled on 3 machines, can be seen in Figure 2.1.

Figure 2.1. Gantt Chart for an Example of NWPFSP
The no-wait permutation flowshop scheduling problem (NWPFSP) is increasing its popularity due to the high level of applicability in most industries. This type of scheduling problems can be applicable when there is no any buffer spaces between the
machines and/or when it is compulsory for the jobs to be processed without any interruption (Hall \& Sriskandarajah, 1996). For example, in the food processing industry, the cooking operation must be started immediately after the canning operation for the assurance of freshness. Next, in silverware or plastic molding manufacturing industries, a bunch of operations required to be proceeded one after another. In chemical and pharmaceutical industries, the same reason of consecutive operations exists. Another example is steel production. Molding, unmolding, preliminary rolling, etc. require continuous production processes. Ultimately, no-wait scheduling problem arises even on the service industries where waiting in process of customers might inevitably costs high.

Various objective functions can be studied for scheduling problems such as makespan, maximum flow time, total flow time, total weighted flow time, maximum tardiness, maximum lateness, maximum earliness, total lateness, total tardiness, total earliness, total weighted tardiness, total number of tardy jobs, etc. However, in this thesis, three objective functions; (i) makespan, (ii) total flow time and (iii) total tardiness are studied separately. In other words, $\left(F_{m}|n w t| C_{\max }\right),\left(F_{m}|n w t| \sum C_{i M}\right)$ and $\left(F_{m}|n w t| \sum T_{i}\right)$ problems are employed. Hence, the sets, indices, parameters and decision variables are provided below:

Sets and Indices	
N	Set of jobs
M	Set of machines
i, k	Indices for jobs $(1 \leq i, k \leq\|N\|)$
r	Index for machines $(1 \leq r \leq\|M\|)$

Parameters	
$P_{i r}$	Processing time of job $i \in N$ on machine $r \in M$
$D D_{i}$	Due date of job $i \in N$
Q	A very large number

Decision Variables for MILP Model

$C_{i r} \quad$ Completion time of job i on machine r
$D_{i k} \quad 1$ if job i is scheduled any time before job $k, 0$ otherwise $(i<k)$
$T_{i} \quad$ Tardiness of job $i \in N$

Decision Variables for CP Model
 $J o b_{i r} \quad$ Interval variable for the processing time $\left(P_{i r}\right)$ of job i on machine r
 $M a c_{r} \quad$ Sequence variable for machines over all JobInt ${ }_{i r}$

N and M stands for set of jobs and set of machines, respectively. Also, i and k are used for jobs indices, and r is used for machine index. In this problem framework, the processing times $P_{i r}$ are preliminarily obtained so that the sequencing will depend on the processing times of jobs. Furthermore, due dates $D D_{i}$ of jobs are required for the ($F_{m}|n w t| \sum T_{i}$) problem. Q is provided for only the MILP model and it will be used in the sequencing constraints. $C_{i r}$ is the completion time of job i on machine r. Namely, it equals to the starting time of job i on the first machine plus its processing times on all machines, due to the no-wait restriction. $D_{i k}$ will be used to distinguish the jobs sequence in such a way that it takes the value of 1 if job i is scheduled any time before job k, or 0 otherwise $(i<k)$. But this condition is checked for only the situations where $i<k$ since the construction of MILP model. For the ($F_{m}|n w t| \sum T_{i}$) problem, the tardiness T_{i} is calculated as follows: $T_{i}=\max \left\{\left(C_{i M}-D D_{i}\right), 0\right\}$ means that the tardiness of each job i equals to either the maximum of the difference between the completion time of the jobs on the last machine and its due date or 0 . Namely, if the completion time of a job on the last machine goes beyond the due date of job, it becomes a tardy job. $C_{\max }$ is the maximum completion time of all jobs, called as makespan. While considering the CP model, some additional decision variables are used due to the nature of CP . The interval variable JobInt ${ }_{i r}$ converts the processing time information provided in the problem into a variable which keeps the information as an interval of a time during which job i is processed on machine r. Then, the sequence variable Mac_{r} is reserved for the sequence information of all the jobs. All the detailed information about the single-objective MILP and CP models is given in Chapter 3.

2.2. Bi-Objective (Energy-Efficient) No-Wait Permutation Flowshop Scheduling Problem

Energy consumption consideration for resource efficient manufacturing has been rapidly increasing recently. The main reason is that the energy consumption in
high volume is the leading essential difficulty in most industries (Fang et al., 2011). Therefore, reduction of energy and power consumption in manufacturing carries huge importance while maintaining the same service levels. Thus, the studies in the scope of energy-efficient scheduling literature are increasing rapidly. In this thesis, the energy consumption is studied in the no-wait permutation flow shop setting (NWPFSPs). The importance of the total energy consumption comes from the usage of high, normal and slow speed levels. If a machine processes in high speed level, it decreases the jobs' process time and vice versa. Therefore, the existence of speed levels reveals that "lower speed levels uses up less energy but raises process times" and "higher speed levels uses up more energy but reduces process times". Speed scaling strategy is a novel contribution of the Fang et al. (2011) that allows the machines operate at different speed levels when the different jobs are processed. Therefore, the tradeoff between the processing time and the total energy consumption is an existing fact and this leads to two main conflicting objectives. Generally, these problems can be notated as ($F_{m}|n w t|$ ProcessTime, TEC). However, in this study, three objective functions ((i) makespan, (ii) total flow time and (iii) total tardiness) are again studied for the bi-objective (energy-efficient) no-wait permutation flowshop scheduling problems, separately. In other words ($F_{m}|n w t| C_{\text {max }}, T E C$), $\left(F_{m}|n w t| \sum C_{i M}, T E C\right)$ and ($F_{m}|n w t| \sum T_{i}, T E C$) problems are focused. Hence, the used sets, indices, parameters and decision variables are provided below:

Sets and Indices	
N	Set of jobs
M	Set of machines
L	Set of speed levels
i and k	Indices for jobs $(1 \leq i, k \leq\|N\|)$
r	Index for machines $(1 \leq r \leq\|M\|)$
l	Index for speed levels $(1 \leq l \leq\|L\|)$
Parameters	
$P_{i r}$	Processing time of job $i \in N$ on machine $r \in M$
$D D_{i}$	Due date of job $i \in N$
Q	A very large number
s_{l}	Speed factor of processing speed level $l \in L$
λ_{l}	Conversion factor for processing speed level $l \in L$

φ_{r}	Conversion factor for idle time on machine $r \in M$
τ_{r}	Power of machine $r \in M(\mathrm{~kW})$

Decision Variables for MILP Model	
$C_{i r}$	Completion time of job i on machines r
$D_{i k}$	1 if job i is scheduled any time before job $k, 0$ otherwise $(i<k)$
T_{i}	Tardiness of job $i \in N$
$C_{\text {max }}$	Maximum completion time (makespan)
$y_{i r l}$	1 if job i is processed at speed l on machine $r, 0$ otherwise.
θ_{r}	Idle time on machine r
$T E C$	Total energy consumption (kWh)

Decision Variables for CP Model

$J o b_{i r} \quad$ Interval variable for the processing time $\left(P_{i r}\right)$ of job i on machine r $\mathrm{Mac}_{r} \quad$ Sequence variable for machines over all JobInt ${ }_{\text {ir }}$
JobOpt $t_{\text {irl }} \quad$ Optional interval variable for the processing time $\left(P_{i r}\right)$ of job i on machine r which has the speed levels of l
$\theta_{r} \quad$ Idle time on machine r
$C_{\max } \quad$ Maximum completion time (makespan)
TEC Total energy consumption (kWh)
Additively to the single-objective NWPFSPs, some other settings are needed to be made. For example, L stands for set of speed levels. Because the speed scaling strategy will be used in the bi-objective MILP and CP model formulations. Also, l is used for denoting the speed levels. Then, s_{l} is the equivalent of the factor effect of speed level l. λ_{l} and φ_{r} are the conversion factors for processing speed level l and for idle time on machine r, respectively. τ_{r} stands for the power of machine r. All these parameters are inspired from Mansouri et al. (2016). Other detailed information about the bi-objective MILP and CP model formulations is given in Chapter 4.

2.3. Literature Review on No-Wait Permutation Flowshop Scheduling Problems

This problem is a variant of the permutation flow shop scheduling problem (PFSP) where the jobs cannot wait between two consecutive machines. In other words, once a job starts it processing on the first machine, it must be processed on all
downstream machines until completion without any interruption. Because of the technological restrictions, NWPFSPs are applicable in various industries such as chemical, electronics, plastics, metal, etc. (Sapkal \& Laha, 2013) where the processing of each job must be continuous from the start to the end without any interruption. This problem is NP-hard for three or more machines (Röck, 1984). Deman \& Baker (1974) proved that the mean flow time for NWPFSPs where there is no intermediate queue between the machines, can be solved with a branch and bound algorithm for smaller size of instances such as up to 12 jobs, while Wismer (1972) presented a branch and bound algorithm for the makespan criterion.

The total flow time criterion is studied by using a discrete harmony search algorithm by embedding a local search procedure (Gao et al. 2011). The mean flow time is minimized in a two-stage flexible no-wait flow shop problem (Shafaei et al. 2011). Next, a hybrid harmony search algorithm is studied with the help of a speed up method to reduce the running time requirement (Gao et al. 2012). A discrete differential evolution algorithm with the variable neighborhood descent algorithm is applied in NWPFSP (Tasgetiren et al. 2007). Another study proposes an improved iterated greedy algorithm that uses a tabu-based reconstruction strategy for the local minima search by Ding et al. (2015). Next, four composite and two constructive heuristics are proposed to minimize the total flow time in Gao et al. (2013). A hybrid particle swarm optimization algorithm regarding memetic algorithm, where a local search is hybridized, is computed on this problem by Akhshabi et al. (2014). Also, as a very comprehensive study, an discrete particle swarm optimization algorithm is developed for both makespan and total flow time depending on various speed-up methods for both the insert and swap neighborhood structures (Pan et al. 2008). Also, there is a recent study of Chaudhry et al. (2018) that proposes a genetic algorithm to minimize total flow time. Besides, Ying et al. (2016) proposed a self-adaptive ruin-and-recreate algorithm for the $\left(F_{m}|n w t| \sum C_{i M}\right)$ problem and this algorithm improves almost more than half of the benchmark instances.

There are recent studies in literature regarding NWPFSPs. A very comprehensive literature review is presented in Lin \& Ying (2016) and the makespan criterion is studied by converting the problem into an asymmetric travelling salesperson problem for the $\left(F_{m}|n w t| C_{\max }\right)$ problem. Then, the problem is solved optimally by two metaheuristics. In this study, the optimal results of makespan minimization are reported. More importantly, the study of Samarghandi \& Behroozi
(2017) proposed a mixed integer linear programming, two quadratic mixed integer programming and two constraint programming model formulations for the ($F_{m}\left|n w t, d_{i}\right| C_{m a x}$) problems where due date restrictions are considered for the makespan minimization.

Moreover, a particle swarm optimization algorithm by Samarghandi (2015) is employed on the ($F_{m}\left|n w t, d_{i}\right| C_{\max }$) problem which minimizes makespan with due date restrictions. Ying \& Lin (2018) converted the ($F_{m}\left|n w t, S T_{s i}\right| C_{\text {max }}$) and ($F_{m}\left|n w t, S T_{s d}\right| C_{\max }$) problems into asymmetric travelling salesman problem and find the optimal solutions as they did in Lin \& Ying (2016). Furthermore, although Aldowaisan \& Allahverdi (2012) developed a simulated annealing and a genetic algorithm with the aid of dispatching rules for the ($F_{m}|n w t| \sum T_{i}$) problem, they suggested the same algorithms for the ($F_{m}\left|n w t, S T_{s i}\right| \sum T_{i}$) problem in Aldowaisan \& Allahverdi (2015), as well.

In addition, from the multi-objective perspective, Tavakkoli-Moghaddam et al. (2008) studied the weighted mean completion time and the weighted mean tardiness simultaneously for the NWPFSP with the help of an immune algorithm and they indicated the performance of the proposed algorithm over a multi-objective genetic algorithm. Another bi-criteria study is the study of Pan et al. (2009). They proposed a novel differential evolution algorithm to minimize the makespan and the maximum tardiness at the same time and show that the proposed algorithm performs superior than multi-objective genetic algorithm regarding the quality, efficiency, robustness and diversity level.

Finally, as a review paper, Nagano \& Miyata (2016) provided a very extensive literature search for constructive heuristics under several criterion objectives and classify the heuristics as simple and composite by mentioning also the improvement heuristics, as well.

2.4. Literature Review on Energy Efficient Scheduling

The companies are searching more energy efficient scheduling techniques since the high-energy consumption is the most current difficulty of industries (Fang et al., 2011). Thus, the studies within the scope of energy-efficient scheduling literature are kept increasing. The energy efficient scheduling approaches which consider improving energy efficiency are analyzed as a review study in Gahm et al. (2016). An
operational method was revealed to minimize the energy consumption of manufacturing equipment in Mouzon et al. (2007). A novel method was proposed which indicates that an adequate amount of energy can be saved, if the machines are turned-off during their idle times. Then, this method was used for the single machine scheduling problem by the total tardiness and the total energy consumption minimization in (Mouzon \& Yıldırım, 2008) and for flexible flow shop problem by the makespan and the total energy consumption minimization in Dai et al. (2013). Also, the single machine total tardiness problem with sequence dependent setup times is recently studied on energy efficiency scheduling framework (Taşgetiren et al. 2018). In scope of PFSP, job-based speed scaling strategy is used for two-machine sequencedependent PFSP where both the makespan and the total energy consumption are minimized (Mansouri et al. 2016). An energy-efficient formulation is recently made where the total flow time and the total energy consumption are studied simultaneously in Öztop et al. (2018). Furthermore, a backtracking algorithm is proposed for the energy efficient PFSP (Lu et al. 2017). On the other hand, studies regarding environmental effects and/or energy consumption consideration which are employed on NWPFSPs have not been rather exist.

2.5. Discussion

To the best of our knowledge, there is only one article which proposes MILP and CP models for ($F_{m}\left|n w t, d_{i}\right| C_{\max }$) problem that considers the due date restriction (Samarghandi and Behroozi, 2017) and few articles proposing MILP models for ($F_{m}|n w t| C_{\max }$). However, there is no any study construct MILP or CP models for ($F_{m}|n w t| \sum C_{i M}$) and ($F_{m}|n w t| \sum T_{i}$) problems. This thesis proposes MILP and CP model formulations for all $\left(F_{m}|n w t| C_{m a x}\right),\left(F_{m}|n w t| \sum C_{i M}\right)$ and $\left(F_{m}|n w t| \sum T_{i}\right)$ problems to fill this gap in the literature. In addition, a number of valid inequalities have been studied for ($F_{m}|n w t| C_{\max }$) problem as represented in Table 2.1.

Table 2.1. The Contribution of the Thesis to the Literature of NWPFSPs

	$\left(F_{\boldsymbol{m}}\|n w t\| C_{m a x}\right)$	$\left(F_{\boldsymbol{m}}\|n w t\| \sum C_{i M}\right)$	$\left(F_{\boldsymbol{m}}\|n w t\| \sum T_{i}\right)$
MILP	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
$\mathbf{C P}$	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Valid Inequalities	$\sqrt{ }$		

Furthermore, there is no any study, to the best of our knowledge, on bi-objective (energy-efficient) NWPFSPs which aims to minimize the total energy consumption. Hence, a bi-objective MILP and CP model formulations have been proposed to fill that gap, where the jobs can be processed at different speed levels corresponding to different energy consumption levels. Moreover, due to the NP-Hardness of the problem, we develop three metaheuristics for bi-objective ($F_{m}|n w t| C_{\max }, T E C$), $\left(F_{m}|n w t| \sum C_{i M}, T E C\right)$ and ($\left.F_{m}|n w t| \sum T_{i}, T E C\right)$ problems as depicted in Table 2.2.

Table 2.2. The Contribution of the Thesis to the Literature of Bi-Objective (EnergyEfficient) NWPFSPs

One last contribution is that, the small size instance generation scheme is proposed for the ($F_{m}|n w t| \sum T_{i}$) problem, since there is no any small sized instances exist for this criterion objective.

CHAPTER 3

SINGLE OBJECTIVE NO-WAIT PERMUTATION FLOWSHOP SCHEDULING PROBLEMS

In this chapter, no-wait permutation flowshop scheduling problem (NWPFSP) with the objective of minimizing the makespan, the total flow time and the total tardiness have studied in Sections 3.1, 3.2, 3.3 respectively. Namely, $\left(F_{m}|n w t| C_{\max }\right)$, $\left(F_{m}|n w t| \sum C_{i M}\right)$ and ($F_{m}|n w t| \sum T_{i}$) problems are employed. Both Mixed Integer Linear Programming (MILP) and Constraint Programming (CP) models have developed for each objective, as presented in this chapter. In addition, the comparison of the models are represented at the end of each section.

3.1. No-Wait Permutation Flowshop Scheduling Problem with Minimizing Makespan

NWPFSP with the objective of minimizing makespan $\left(F_{m}|n w t| C_{\max }\right)$ aims to find such a sequence of jobs, which minimizes makespan, on machines by not allowing the jobs to wait between the machines. $\left(F_{m}|n w t| C_{\max }\right)$ problem with m machines when m is greater than or equal to 4 is NP-Hard, whereas in polynomial time the ($F_{m}|n w t| C_{\max }$) problem can be solved when m equals to 2 (Röck, 1984). The proposed MILP and CP models for ($F_{m}|n w t| C_{\max }$) are presented below.

3.1.1. Mixed Integer Linear Programming Model

The mixed integer linear programming model for the single objective no-wait permutation flow shop problem for minimization of the makespan $\left(F_{m}|n w t| C_{\text {max }}\right)$ is given below:

Model 1. The MILP Model for the $\left(F_{m}|n w t| C_{\max }\right)$

Objective

Minimize $C_{\text {max }}$
Constraints

$$
\begin{array}{ll}
C_{i 1} \geq P_{1 i} & \forall i \in N \\
C_{i r}-C_{i, r-1} \geq P_{i r} & \forall i \in N, \forall r \in M: r \geq 2 \\
C_{i r}-C_{k r}+Q D_{i k} \geq P_{i r} & \forall i \in N: k>i, \forall r \in M \\
C_{i r}-C_{k r}+Q D_{i k} \leq Q-P_{k r} & \forall i \in N: k>i, \forall r \in M
\end{array}
$$

$$
\begin{array}{ll}
C_{\max } \geq C_{i M} & \forall i \in N \\
C_{i r}-C_{i, r-1} \leq P_{i r} & \forall i \in N, \forall r \in M: r \geq 2 \\
C_{i r} \geq 0 & \forall i \in N, \forall r \in M \\
D_{i k} \in\{0,1\} & \forall i, k \in N: k>i \tag{1-09}
\end{array}
$$

The objective function (1-01) minimizes the makespan. Constraint (1-02) allows that the completion time of the jobs is to be at least its processing time on the first machine. It is assured that the completion time of each job on machine r can only be greater than or equal to the completion time of the job on machine $r-1$ plus to the processing time of the job on machine r by constraint (1-03). Then, constraint sets (104) and (1-05) provide that job k either follows the job i, or precedes the job i, in the sequence. Later, the makespan is set to the completion time of maximum of all the last job on the last machine by constraint (1-06). Next, constraint (1-07) assures that the completion time of each job on machine r can only be less than or equal to the completion time of the job on machine $r-1$ plus to the processing time of the job on machine r. Hence, this constraint provides that the no-wait constraint together with the constraint (1-03). In other words, the differences between the completion time of each job on machine r and the completion time of the job on machine $r-1$ must be equal to the processing time of the job on machine r. Lastly, the sign restrictions are given in (1-08) and (1-09). Note that this model formulation is an extension of the permutation flow shop problem of Manne (1960) with the addition of no-wait restriction. This model provides a basis for the thesis in such a way that all the following mathematical model formulations will be conducted by modifying required changes over this model.

3.1.2. Constraint Programming Model

The constraint programming model for the single objective no-wait permutation flow shop problem for minimization of makespan $\left(F_{m}|n w t| C_{\max }\right)$ is given below:

Model 2. The CP Model for the $\left(F_{m}|n w t| C_{\max }\right)$

Objective

Minimize $\max _{i \in N}\left(\operatorname{ENDOF}\left(J o b_{i M}\right)\right.$
Constraints

$$
\begin{array}{ll}
\operatorname{ENDAtSTART}\left(J o b_{i r}, J o b_{i, r+1}\right) & \forall i \in N, \forall r \in M: r<M \\
\operatorname{NOOVEELAP}\left(M a c_{r}\right) & \forall r \in M
\end{array}
$$

The objective function (2-01) minimizes the maximum of the end of the job intervals on the last machines, that is makespan. Constraint (2-02) is basically the nowait constraint which provides that the job interval of any given job i on the machine r will be end at the starting time of the job interval of the same job i on the machine $r+1$. Constraint (2-03) assures that there cannot be any overlap on the machines which means that each machine can only process one job at a time. Lastly, the same sequence for the jobs on each machine is preserved by constraint (2-04).

This proposed constraint programming model is an original model which contributes to the literature of the no-wait flow shop scheduling problems. As it was mentioned in Section 2.1 previously, there are few constraint programming models for ($F_{m}\left|n w t, d_{i}\right| C_{\max }$) in the literature but they are looking to the problem from another point of view (Samarghandi \& Behroozi, 2017). Hence, this model allows us to investigate various sides of the $\left(F_{m}|n w t| C_{\max }\right)$ problem.

3.1.3. Valid Inequalities for $\left(\boldsymbol{F}_{\boldsymbol{m}}|\boldsymbol{n w t}| \boldsymbol{C}_{\max }\right)$ Problem

For the $\left(F_{m}|n w t| C_{m a x}\right)$ problem, four valid are proposed as represented below.

Valid Inequalities

$$
\begin{align*}
& C_{\max } \leq \sum_{i=1}^{|N|} \sum_{r=1}^{|M|} P_{i, r} \tag{V-01}\\
& C_{\max } \leq \sum_{i=1}^{|N|} C_{i M} \tag{V-02}
\end{align*}
$$

$$
C_{\max } \geq \sum_{i=1}^{|N|} P_{i, M}
$$

$$
C_{\max } \geq \sum_{i=1}^{|N|} P_{i, M}+\sum_{i=1}^{|N|} \sum_{r=1}^{|M-1|} y_{i} * P_{i r}
$$

$$
\sum_{i=1}^{|N|} y_{i}=1 \forall_{i}
$$

$$
C_{i 1}-P_{i 1} \leq Q\left(1-y_{i}\right) \forall_{i}
$$

(V-01) is an upper bound for the makespan that calculates the sum of processing time of all jobs on all machines. (V-02) is another upper bound for makespan that
restricts the makespan as the sum of all completion time of all jobs. (V-03) is a lower bound which the sum of jobs' processing times on the last machine restricts the makespan. Lastly, the (V-04) is another lower bound that aims to find the first job in the sequence. If the job i is in the first position, then y_{i} becomes 1 . Thus, this bound sums the processing time of the first job and the processing time of other jobs on the last machine.

3.1.4. Computational Results and Comparison of the MILP and CP Models

Initially, the proposed MILP and CP models are run on the first part of the instances of Vallada et al. (2015), which consist of 240 small instances including 24 different combinations of $n=\{10,20,30,40,50,60\}$ jobs with $m=\{5,10,15,20\}$ machines. (These instances are also called as VRF instances, in the literature.) There are 10 instances of each combination. The optimal value (Lin \& Ying, 2016), objective function of MILP, gap of MILP, objective function of CP model and gap of CP models are reported in Appendix A. The tables are prepared regarding the number of machines therefore the set of instances of $10,20,30,40,50,60$ jobs $x 5$ machines, $10,20,30,40,50,60$ jobs $\times 10$ machines, 10,20,30,40,50,60 jobs $x 15$ machines and $10,20,30,40,50,60$ jobs $x 20$ machines are reported in Tables A.1., A.2., A.3. and A.4., respectively. Then, to be able to analyze the performance of the MILP and CP models, the averages of each set are calculated.

Next, the proposed valid inequalities are made use of and they are added to the MILP and CP models. The MILP model is named as MILP-Prime and the CP model is named as CP-Prime with the addition of all valid inequalities. The results are presented in Appendix A (Table A.5, Table A.6., Table A.7., Table A.8.). (V-01) that is an upper bound and (V-03) that is a lower bound are calculated separately and reported in the mentioned tables. According to these results, the valid inequalities improves the performance of MILP model so that MILP-Prime performs better than MILP. However, the performance of CP-Prime is very close to CP model. Moreover, although the MILP-Prime is superior than MILP, its performance cannot exceed the performance of CP model. Finally, also the valid inequality (V-03) can be extended by addition of minimum of sum of the processing times of each job until the last machine.

The detailed results are provided in the following. The proposed MILP and CP come up with the optimal solutions for the instances with 10 jobs and 5,10,15,20 machines. The average results for these set of instances are given in Figure 3.1.

Figure 3.1. Comparison of MILP and CP models for $\left(F_{m}|n w t| C_{\max }\right)$ Problem on VRF Instances (Small Sized)

As seen in the Figure 3.1., the MILP and CP find the optimal solution for ($F_{m}|n w t| C_{\max }$) problem. However, in terms of the computational time, MILP model performs better than the CP model on these small instances of 10 jobs. Then, the averages for the 5, 10, 15 and 20 machines are plotted on Figures 3.2., 3.3., 3.4., and 3.5., respectively based on the information obtained from the Tables A1.1., to A1.4.

Figure 3.2. Comparison of MILP and CP Models for $\left(F_{m}|n w t| C_{\max }\right)$ Problem on VRF Instances (5 Machines)

According to the Figure 3.2., the average gap of CP model stays between 17\% and 18% even though the number of jobs is increasing. However, the average gap of the MILP model increases significantly when the number of jobs is increasing. The maximum MILP gap is 86% while the CP gap is significantly less.

Figure 3.3. Comparison of MILP and CP Models for $\left(F_{m}|n w t| C_{\max }\right)$ Problem on VRF Instances (10 Machines)

According to the Figure 3.3., the average gap of CP model stays between 30\% and 33% even though the number of jobs is increasing. However, the average gap of the MILP model increases significantly when the number of jobs is increasing. The maximum MILP gap is 83% while the CP gap is comparatively less.

Figure 3.4. Comparison of MILP and CP Models for $\left(F_{m}|n w t| C_{\max }\right)$ Problem on VRF Instances (15 Machines)

According to the Figure 3.4., the average gap of CP model stays between 35\% and 41% even though the number of jobs is increasing. However, the average gap of the MILP model increases significantly when the number of jobs is increasing. The maximum MILP gap is 81% while the CP gap is comparatively less.

Figure 3.5. Comparison of MILP and CP Models for $\left(F_{m}|n w t| C_{\max }\right)$ Problem on VRF Instances (20 Machines)

According to the Figure 3.5., the average gap of CP model stays between 37\% and 45% even though the number of jobs is increasing. However, the average gap of the MILP model increases significantly when the number of jobs is increasing. The maximum MILP gap is 79% while the CP gap is much less than the MILP gap.

To sum up, all of the graphs state that the gap of the CP model is not being affected by the changes in the number of jobs. Its trend follows a similar way when the number of jobs is increasing. In addition, CP model performs much better than MILP model in terms of the magnitude of the objective function and the gap percentage found in 3600 seconds.

From Appendix A (Tables A.1., A.2., A.3. and A.4.) and Appendix A (Tables A.5., A.6., A.7. and A.8.) MILP and MILP-Prime results can be seen, respectively. However, to see the effect of valid inequalities, a comparison table is presented in Table 3.1. According to Table 3.1., the benefits of valid inequalities can be interpreted, since the MILP-Prime model formulation finds almost the same objective function but with a lower percentage gap.

Table 3.1. Comparison of MILP and MILP-Prime in terms of Averages

Instance	MILP	Time (Seconds)	Gap \%	MILP- Prime	Time (Seconds)	Gap $\%$
10_5_Average	793.60	0.427	0.00%	793.60	0.628	0.00%
10_10_Average	1241.10	0.477	0.00%	1241.10	1.002	0.00%
10_15_Average	1629.50	0.380	0.00%	1629.50	1.730	0.00%
10_20_Average	1962.00	0.380	0.00%	1962.00	1.875	0.00%
20_5_Average	1460.30	3600	41.77%	1466.70	3600	27.42%
20_10_Average	2031.50	3600	36.20%	2027.80	3600	37.03%
20_15_Average	2546.90	3600	33.66%	2536.10	3600	35.44%
20_20_Average	3018.50	3600	29.25%	2998.40	3600	32.42%
30_5_Average	2195.50	3600	67.77%	2225.50	3600	31.57%
30_10_Average	2932.50	3600	62.39%	2946.60	3600	43.12%
30_15_Average	3661.60	3600	59.91%	3670.90	3600	49.33%
30_20_Average	4241.50	3600	56.95%	4282.40	3600	50.99%
40_5_Average	3059.30	3600	78.24%	3069.00	3600	32.81%
40_10_Average	4022.30	3600	74.67%	4040.20	3600	46.19%
40_15_Average	4831.80	3600	71.63%	4844.70	3600	50.81%
40_20_Average	5548.10	3600	68.55%	5681.40	3600	55.96%
50_5_Average	3816.70	3600	82.60%	3869.20	3600	34.26%
50_10_Average	4933.40	3600	79.48%	5062.10	3600	46.97%
50_15_Average	6041.40	3600	77.63%	6167.10	3600	53.27%
50_20_Average	6975.00	3600	75.20%	7178.90	3600	57.45%
60_5_Average	4599.80	3600	86.45%	4667.90	3600	35.03%
60_10_Average	6176.50	3600	83.12%	6198.40	3600	47.75%
60_15_Average	7258.00	3600	81.29%	7375.40	3600	53.91%
60_20_Average	8382.50	3600	79.16%	8481.70	3600	57.92%

Lastly, the proposed MILP and CP models are run 3600 seconds on the instances of Taillard (1993) with 11 different combinations of 20x5, 20x10, 20x20, $50 \times 5,50 \times 10,50 \times 20,100 \times 5,100 \times 10,100 \times 20,200 \times 10$ and 200×20 set of instances where the first number indicates the number of jobs and the second indicates the number of machines. There are 10 instances of each combination so that 110 instances are studied. All the objective function results are reported in Appendix A (Table A.9.,

Table A.10., Table A.11, Table A.12.). According to these results, similar with results of VRF instances, CP model performs superior than MILP model. Namely, the gaps of CP are lower than the gaps of MILP, also the objective function values of CP are lower than the objective function of MILP. Another important point here is that while MILP model cannot find any feasible solution for 100x10, 100x20, 200x10 and 200x20 instances, CP model can find a solution for those instances within 3600 seconds.

3.2. No-Wait Permutation Flowshop Scheduling Problem with Minimizing Total Flow Time

NWPFSP with the objective of minimizing the total flow time $\left(F_{m}|n w t| \sum C_{i M}\right)$ aims to find the sequence of jobs which minimizes the total completion time of all jobs without permitting process queue for the jobs between the machines. The completion time of jobs can obviously be expressed as the sum of starting time of the job on the first machine and its total processing time on all machines.

3.2.1. Mixed Integer Linear Programming Model

The mixed integer linear programming model formulation for the single objective no-wait permutation flow shop problem for minimization of the total flow time ($F_{m}|n w t| \sum C_{i M}$) is given below:
Model 3. The MILP Model for the ($F_{m}|n w t| \sum C_{i M}$)

Objective

Minimize $\sum_{i \in N} C_{i M}$

Constraints

$$
\begin{array}{ll}
C_{i 1} \geq P_{i 1} & \forall i \in N \\
C_{i r}-C_{i, r-1} \geq P_{i r} & \forall i \in N, \forall r \in M: r \geq 2 \\
C_{i r}-C_{k r}+Q D_{i k} \geq P_{i r} & \forall i \in N: k>i, \forall r \in M \\
C_{i r}-C_{k r}+Q D_{i k} \leq Q-P_{k r} & \forall i \in N: k>i, \forall r \in M \\
C_{i r}-C_{i, r-1} \leq P_{i r} & \forall i \in N, \forall r \in M: r \geq 2 \\
C_{i r} \geq 0 & \forall i \in N, \forall r \in M \\
D_{i k} \in\{0,1\} & \forall i, k \in N: k>i \tag{3-08}
\end{array}
$$

The objective function (3-01) minimizes the total flow time. Constraint (3-02) provides that the completion time of the jobs is to be at least its processing time on the first machine. Constraint (3-03) assures that the completion time of each job on
machine r can only be greater than or equal to the completion time of the job on machine $r-1$ plus to the processing time of the job on machine r. Then, constraint (3-04) and (3-05) provide that job k either follows the job i, or precedes the job i, but not both in the sequence. Next, it is provided that the completion time of each job on machine r can only be less than or equal to the completion time of the job on machine $r-1$ plus to the processing time of the job on machine r by constraint (3-06). Hence, this constraint satisfies the no-wait requirement together with the constraint (3-03). In other words, the differences between the completion time of each job on machine r and the completion time of the job on machine $r-1$ must be equal to the processing time of the job on machine r. Lastly, the sign restrictions and binary variables are given in (3-07) and (3-08). Note that this model is an extension of the permutation flow shop problem of Manne (1960) by adding the no-wait constraint and by considering the total flow time in the objective function, too.

3.2.2. Constraint Programming Model

The constraint programming model for the single objective no-wait permutation flow shop problem for minimization of total flow time ($F_{m}|n w t| \sum C_{i M}$) is given below:
Model 4. The CP Model for the ($F_{m}|n w t| \sum C_{i M}$)

Objective

Minimize $\sum_{i \in N} \operatorname{ENDOF}\left(J o b_{i M}\right)$
Constraints

$$
\begin{array}{ll}
\text { ENDATSTART }\left(J o b_{i r}, J o b_{i, r+1}\right) & \forall i \in N, \forall r \in M: r<M \\
\text { NOOVERLAP(} \left.M a c_{r}\right) & \forall r \in M \\
\text { SAMESEQUENCE }\left(M a c_{1}, M a c_{r}\right) & \forall r \in M: 1<r \tag{4-04}
\end{array}
$$

The objective function (4-01) minimizes the sum of the end of the job intervals on the last machine, which is the total flow time. Constraint (4-02) is the no-wait constraint which provides that the job interval of any given job i on the machine r will be ended at the starting time of the job interval of the same job i on the machine $r+1$. Constraint (4-03) provides that there cannot be any overlap on the machines which means that each machine can only process one job at a time. Lastly, the same sequence for the jobs on each machine is preserved by the constraint (4-04).

This proposed constraint programming model is an original model which adds
value to the literature of the no-wait flow shop scheduling problems which minimize the total flow time.

3.2.3. Computational Results and Comparison of the MILP and CP Models

Initially, the proposed MILP and CP models are run on the first part of instances of Vallada et al. (2015) which consist of 240 small instances including 24 different combinations of $n=\{10,20,30,40,50,60\}$ jobs with $m=\{5,10,15,20\}$ machines. There are 10 instances of each combination. The objective function of MILP, gap of MILP, objective function of CP model and gap of CP models are reported in Appendix B. The tables are prepared regarding the number of machines; therefore, the set of instances of $10,20,30,40,50,60$ jobs $x 5$ machines, 10,20,30,40,50,60 jobs x 10 machines, 10,20,30,40,50,60 jobs $\times 15$ machines and 10,20,30,40,50,60 jobs $x 20$ machines are reported in Tables B.1., to B.4., respectively. Then, to be able to analyze the performance of the MILP and CP models, the averages of each set are calculated. The proposed MILP and CP find the optimal solutions for the instances with 10 jobs and $5,10,15,20$ machines. The results for these instances are given in Figure 3.6.

Figure 3.6. Comparison of MILP and CP models for $\left(F_{m}|n w t| \sum C_{i M}\right)$ Problem on VRF Instances (Small Sized)

Figure 3.6. indicates that the MILP and CP models reach the optimal solution for ($F_{m}|n w t| \sum C_{i M}$) problem in a small run time. On the other hand, if models are compared with each other, the MILP model is better than the CP model in terms of the computational time.

Then, the averages for the $5,10,15$ and 20 machines are plotted on the Figures 3.7. to 3.10., respectively based on the information obtained from the Tables B.1., to B. 4

Figure 3.7. Comparison of MILP and CP Models for $\left(F_{m}|n w t| \sum C_{i M}\right)$ Problem on VRF Instances (5 Machines)

According to the Figure 3.7., the average gap of the CP model stays between 25% and 31% even though the number of jobs is increasing. However, the average gap of the MILP model increases significantly when the number of jobs is kept increasing.

Figure 3.8. Comparison of MILP and CP Models for $\left(F_{m}|n w t| \sum C_{i M}\right)$ Problem on VRF Instances (10 Machines)

According to the Figure 3.8., the average gap of the CP model stays between 29% and 42% even though the number of jobs is increasing. However, the average gap of the MILP model increases significantly when the number of jobs is increasing.

Figure 3.9. Comparison of MILP and CP Models for $\left(F_{m}|n w t| \sum C_{i M}\right)$ Problem on VRF Instances (15 Machines)

According to the Figure 3.9., the average gap of the CP model stays between 31% and 46% even though the number of jobs is increasing. On the other hand, the average gap of the MILP model rises sharply when the number of jobs is increasing.

Figure 3.10. Comparison of MILP and CP Models for $\left(F_{m}|n w t| \sum C_{i M}\right)$ Problem on VRF Instances (20 Machines)

According to the Figure 3.10., the average gap of the CP model stays between 31% and 47% even though the number of jobs is increasing. However, the average gap of the MILP model increases widely when the number of jobs is increasing.

To sum up, if we consider all of the graphs the gap of the CP model is not being affected by the changes in the number of jobs. Its trend follows a similar way when the number of jobs is increasing. In addition, the CP model performs much better than MILP model in terms of the magnitude of the objective function and the gap percentage found within 3600 seconds.

Secondly, the proposed MILP and CP models are executed 3600 seconds on the instances of Taillard (1993) with 11 different combinations of 20x5, 20x10, 20x20, $50 \times 5,50 \times 10,50 \times 20,100 \times 5,100 \times 10,100 \times 20,200 \times 10$ and 200×20 set of instances where the first number indicates the number of jobs and the second indicates the number of machines. There are 10 instances of each combination so that 110 instances are studied. All the objective function results are reported in Appendix B (Table B.5.,

Table B.6., Table B.7, Table B.8.). According to these results, like Vallada instances, the CP model outperforms the MILP model. Namely, the gaps of CP is lower than the gaps of MILP, also the objective function values of CP are lower than the objective function of MILP. Another important point here is that while MILP model cannot find any feasible solution for $100 \times 10,100 \times 20,200 \times 10$ and 200x20 instances, CP model can find a solution for those instances in 3600 seconds.

3.3. No-Wait Permutation Flowshop Scheduling Problem with Minimizing Total Tardiness

NWPFSP with the objective of minimizing total flow time ($F_{m}|n w t| \sum T_{i}$) aims to find such a sequence of jobs, which minimizes the total amount of tardiness of all jobs without permitting process queue for the jobs between the machines. The tardiness of jobs T_{i} can be expressed as $T_{i}=\max \left\{\left(C_{i M}-D D_{i}\right), 0\right\}$. That is, a job can be tardy if its completion time exceed its due date.

3.3.1. Mixed Integer Linear Programming Model

The mixed integer linear programming model for the single objective no-wait permutation flow shop problem for the minimization of total tardiness $\left(F_{m}|n w t| \sum T_{i}\right)$ is given below:

Model 5. The MILP Model for the ($F_{m}|n w t| \sum T_{i}$)

Objective

$$
\begin{equation*}
\text { Minimize } \sum_{i \in N} T_{i} \tag{5-01}
\end{equation*}
$$

Constraints

$$
\begin{array}{ll}
C_{i 1} \geq P_{i 1} & \forall i \in N \\
C_{i r}-C_{i, r-1} \geq P_{i r} & \forall i \in N, \forall r \in M: r \geq 2 \\
C_{i r}-C_{k r}+Q D_{i k} \geq P_{i r} & \forall i \in N: k>i, \forall r \in M \\
C_{i r}-C_{k r}+Q D_{i k} \leq Q-P_{k r} & \forall i \in N: k>i, \forall r \in M \\
C_{i r}-C_{i, r-1} \leq P_{i r} & \forall i \in N, \forall r \in M: r \geq 2 \\
T_{i} \geq C_{i M}-D D_{i} & \forall i \in N \\
T_{i} \geq 0 & \forall i \in N \\
C_{i r} \geq 0 & \forall i \in N, \forall r \in M \\
D_{i k} \in\{0,1\} & \forall i, k \in N: k>i \\
D D_{i} \geq 0 & \forall i \in N \tag{5-11}
\end{array}
$$

The objective function (5-01) minimizes the total tardiness. Constraint (5-02) provides that the completion time of the jobs is to be at least its processing time on the first machine. Constraint (5-03) assures that the completion time of each job on machine r can only be greater than or equal to the completion time of the job on machine $r-1$ plus to the processing time of the job on machine r. Then, constraint (5-04) and (5-05) provide that job k either follows the job i, or precedes the job i, in the sequence. Next, it is provided that the completion time of each job on machine r can only be less than or equal to the completion time of the job on machine $r-1$ plus to the processing time of the job on machine r by constraint (5-06). Hence, this constraint ensures the no-wait requirement together with the constraint (5-03). In other words, the differences between the completion time of each job on machine r and the completion time of the job on machine $r-1$ must be equal to the processing time of the job on machine r. Constraint (7) and (8) together provide that (i) if a job is tardy, then the tardiness of the job at least the completion time of the job on the last machine minus its due; (ii) if a job is early, then its tardiness will be 0 . Lastly, the sign restrictions and binary variables are given in (5-09), (5-010) and (5-11). Note that this model is an extension of the permutation flow shop problem of Manne (1960) by adding the no-wait constraint together with tardiness criterion and by considering the total tardiness in the objective function.

3.3.2. Constraint Programming Model

The constraint programming model for the single objective no-wait permutation flow shop problem for minimization of total tardiness $\left(F_{m}|n w t| \sum T_{i}\right)$ is given below:

Model 6. The CP Model for the ($F_{m}|n w t| \sum T_{i}$)

Objective

Minimize $\sum_{i \in N} T_{i}$ where

Constraints

$$
\begin{array}{ll}
\operatorname{EndAtSTART}\left(J o b_{i r}, J o b_{i, r+1}\right) & \forall i \in N, \forall r \in M: r<M \\
\operatorname{NoOvERLAP}\left(M a c_{r}\right) & \forall r \in M \\
\operatorname{SAMESEQUENCE}\left(M a c_{1}, M a c_{r}\right) & \forall r \in M: 1<r \\
T_{i}=\max \left(\left(\operatorname{ENDOF}\left(J o b_{i M}\right)-D D_{i}\right), 0\right) & \forall i \in N \tag{6-05}
\end{array}
$$

The objective function (6-01) minimizes the total tardiness. Constraint (6-02) is the no-wait constraint which provides that the job interval of any given job i on the
machine r will be end at the starting time of the job interval of the same job i on the machine $r+1$. Constraint (6-03) provides that there cannot be any overlap on the machines which means that each machine can only process one job at a time. Then, the same sequence for the jobs on each machine is preserved by the constraint (6-04). Lastly, in constraint (6-05) tardiness is expressed as the maximum of end of job intervals on the last machine minus the due dates or 0 . Note that a job cannot be tardy if it is finished before its due.

This proposed constraint programming model is an original model which contributes value to the literature of the no-wait flow shop scheduling problems which minimizes the total tardiness.

3.3.3. Computational Results and Comparison of the MILP and CP Models

The instance generation for the tardiness objective is very critic. Although there are some instances for PFSPs with due dates (Vallada et al., 2008; Allahverdi \& Aldowaisan, 2004; Ruiz \& Stützle, 2008) some considers sequence dependent set up times while generating due dates or some creates different due dates to instances while generating the process times over again. However, since the instances of Taillard (1993) have been used up to this section, the same instances are considered in this section as well. Because the due date generation method of Minella et al. (2008), is employed on the Taillard (1993)'s instances and the resulting due dates are presented in the literature. Hence, 11 different combinations of 20x5, 20x10, 20x20, 50x5, 50x10, 50x20, 100x5, 100x10, 100x20, 200x10 and 200x20 set of instances, where the first number indicates the number of jobs and the second indicates the number of machines, are studied on the ($F_{m}|n w t| \sum T_{i}$) problem. These instances can be found in the http://soa.iti.es website. The due date generation method is the following:

$$
\begin{equation*}
D D_{i}=\sum_{r=1}^{M} P_{i r} *(1+\operatorname{random}(0,1) * 3) \tag{D-01}
\end{equation*}
$$

Consecutively, the proposed MILP and CP models are executed 3600 seconds on the instances of Taillard (1993) where 110 instances are studied. All the objective function results are reported in Appendix C (Table C.1., Table C.2., Table C.3., Table C.4.). According to these results, similar with $\left(F_{m}|n w t| C_{\max }\right)$ and $\left(F_{m}|n w t| \sum C_{i M}\right)$ problems, the CP model performs superior than the MILP model. However, the observed trend in the $\left(F_{m}|n w t| C_{\max }\right)$ and ($F_{m}|n w t| \sum C_{i M}$) problems could not been
encountered in the ($F_{m}|n w t| \sum T_{i}$) problem. Also, some other different results have seen. For example, as seen in Appendix C (Table C.1), MILP model solved the set of 20×20 optimally whereas CP model can solve the same set of instances optimally except the 20x20_05 instance which results 95.57% gap, interestingly. Note that, in the $\left(F_{m}|n w t| C_{\max }\right)$ and ($F_{m}|n w t| \sum C_{i M}$) problems the set of 20×20 cannot be solved in 3600 seconds. In addition, as seen in Appendix C (Table C.1), MILP model solved the 20×10 instance set with a gap of 48.92%, however CP model has a 98.23% gap. So, CP has a higher gap than MILP on this set of instance. Any of these situations did not encountered in the ($F_{m}|n w t| C_{m a x}$) and the ($F_{m}|n w t| \sum C_{i M}$) problems. The reason of these is that the nature of the due date generation method in those instances. The other thing is that, although MILP model cannot find any feasible solution for 100x10, 100x20, 200x10 and 200x20 instances, the CP model can find a solution for those instances in 3600 seconds. However, this is encountered in the $\left(F_{m}|n w t| C_{\max }\right)$ and the $\left(F_{m}|n w t| \sum C_{i M}\right)$ problems, too.

To sum up, all the computational results of this chapter demonstrates that CP model is good at finding better solutions than MILP model by also having lower level of solution gap. However, these solutions are still not enough to find optimal solutions for all instances. Hence, some lower bounds and upper bounds are required; constructive heuristics or metaheuristics can be candidates for upper bounds.

CHAPTER 4

BI-OBJECTIVE NO-WAIT PERMUTATION FLOWSHOP SCHEDULING PROBLEMS

In this chapter, bi-objective no-wait flowshop scheduling problem (BI-OBJ NWPFSP) with the objective of minimizing the makespan, the total flow time and the total tardiness while considering the total energy consumption as the second objective have been studied in Sections 4.1, 4.2 and 4.3 respectively. Namely, $\left(F_{m}|n w t| C_{m a x}, T E C\right),\left(F_{m}|n w t| \sum C_{i M}, T E C\right)$ and ($F_{m}|n w t| \sum T_{i}, T E C$) problems are focused. Both mixed-integer linear programming (MILP) and constraint programming (CP) model formulations have been developed for each objective, as reported in this chapter. Moreover, the comparison of the models are represented at the end of each section. Resulting from the bi-objective nature of the problem, a non-dominated set of solutions called as Pareto-optimal set is obtained. Therefore, the dominance relationship features are used when solving the energy efficient NWPFSP (Deb, 2001). The dominance relation concept of Deb (2001) is used while obtaining the results for BI-OBJ NWPFSPs and it is as follows:

- Dominance relation: A solution x^{i} dominates another solution x^{j} if the two following solutions are satisfied (denoted as $x^{i}<x^{j}$):
- $\forall p \in 1, \ldots, P ; f_{p}\left(x^{i}\right) \leq f_{p}\left(x^{j}\right)$
- $\exists p \in 1, \ldots, P ; f_{p}\left(x^{i}\right)<f_{p}\left(x^{j}\right)$

A solution x^{i} weakly dominates another solution x^{j} if the two following solutions are satisfied (denoted as $x^{i} \leqslant x^{j}$) if:

- $\forall p \in 1, \ldots, P ; f_{p}\left(x^{i}\right) \leq f_{p}\left(x^{j}\right)$

A solution x^{i} is indifferent to another solution x^{j} if the two following solutions are satisfied (denoted as $x^{i} \sim x^{j}$) if:

- $\forall p \in 1, \ldots, P ; f_{p}\left(x^{i}\right) \nsubseteq f_{p}\left(x^{j}\right) \wedge f_{p}\left(x^{j}\right) \nsubseteq f_{p}\left(x^{i}\right)$
- Non-dominated set: Amongst a set of solutions X, the non-dominated set of solutions are the elements of the set X^{*} non-dominated by any element of the set X.
- Pareto-optimal set: The non-dominated set of the entire feasible search space S is called the Pareto-optimal solutions.

Also, in this study, from the solution methods for multi-objective problems, the
augmented ε-constraint method is employed, as it generates only Pareto-optimal solutions. (Mavrotas, 2009).

4.1. Bi-Objective No-Wait Permutation Flowshop Scheduling Problem with Minimizing Makespan and Total Energy Consumption

BI-OBJ NWPFSP with the objective of minimizing the makespan and the total energy consumption ($F_{m}|n w t| C_{m a x}$, TEC $)$ goals to obtain a sequence of jobs providing no-wait conditions within the production environment while both objectives simultaneously.

4.1.1. Mixed Integer Linear Programming Model

The mixed integer linear programming model for the bi-objective no-wait permutation flow shop problem for minimization of makespan and total energy consumption $\left(F_{m}|n w t| C_{\max }, \mathrm{TEC}\right)$ is given below:
Model 7. The MILP Model for the ($F_{m}|n w t| C_{\max }$, TEC)

Objectives

Minimize $C_{\text {max }}$, Minimize TEC

Constraints

$$
\begin{array}{ll}
C_{i 1} \geq \sum_{l \in L} \frac{P_{i 1} * y_{i 1 l}}{s_{l}} & \forall i \in N \\
C_{i r}-C_{i, r-1} \geq \sum_{l \in L} \frac{P_{i r} * y_{i r l}}{s_{l}} & \forall i \in N, \forall r \in M: r \geq 2 \\
C_{i r}-C_{k r}+Q * D_{i k} \geq \sum_{l \in L} \frac{P_{i r} * y_{i r l}}{s_{l}} & \forall i \in N: k>i, \forall r \in M \\
C_{i r}-C_{k r}+Q * D_{i k} \leq Q-\sum_{l \in L} \frac{P_{k r} * y_{k r l}}{s_{l}} & \forall i \in N: k>i, \forall r \in M \\
C_{m a x} \geq C_{i M} & \forall i \in N \\
C_{i r}-C_{i, r-1} \leq \sum_{l \in L} \frac{P_{i r} * y_{i r l}}{s_{l}} & \forall i \in N, \forall r \in M: r \geq 2 \\
\sum_{l \in L} y_{i r l}=1 & \forall i \in N, \forall r \in M \\
y_{i r l}=y_{i, r+1, l} & \forall i \in N, \forall r \in M: r<M, \forall l \in L \\
\theta_{r}=C_{m a x}-\sum_{i \in N} \sum_{l \in L} \frac{P_{i r} * y_{i r l}}{s_{l}} & \forall r \in M \\
T E C=\sum_{i \in N} \sum_{r \in M} \sum_{l \in L} \frac{P_{i r} * \tau_{r} * \lambda_{l}}{60 s_{l}} y_{i r l}+\sum_{r \in M} \frac{\varphi_{r} * \tau_{r} * \theta_{r}}{60} \\
y_{i r l} \in\{0,1\} & \forall i \in N, \forall r \in M, \forall l \in L \\
C_{i r} \geq 0 & \forall i \in N, \forall r \in M \tag{7-13}
\end{array}
$$

$$
\begin{equation*}
D_{i k} \in\{0,1\} \tag{7-14}
\end{equation*}
$$

$$
\forall i, k \in N: k>i
$$

The objective function (7-01) minimizes makespan and total energy consumption. Constraint (7-02) ensures that the completion time of each job must be at least its processing time on machine 1 . Constraint (7-03) provides that the completion time of each job on machine r is at least the sum of completion time of the job on machine $r-1$ and the processing time of the job. Constraint (7-04) and (7-05) together assure that either job i follows job k or job k follows job i in the sequence, but not both at the same time. Constraint (7-06) calculates the maximum of completion times of all jobs on the last machine which is makespan. Next, constraint (7-07) assures that the completion time of each job on machine r can only be less than or equal to the completion time of the job on machine $r-1$ plus to the processing time of the job on machine r. Hence, this constraint provides that the no-wait constraint together with the constraint (7-03). In other words, the differences between the completion time of each job on machine r and the completion time of the job on machine $r-1$ must be equal to the processing time of the job on machine r. Constraints (7-08) and (7-09) guarantee that one speed level will be chosen for each job as proposed by Mansouri et al. (2016) and each job will have the same speed level on each machine. Then, constraint (7-10) calculates the idle time on all machines. Finally, the total energy consumption is calculated in kilowatt hour by constraint (7-11) as provided by Mansouri et al. (2016). The sign restriction and the binary variables are provided in constraints (7-12), (7-13) and (7-14). Note that this model is an extension of Manne (1960)'s PFSP model by adding the no-wait restriction and by considering total energy consumption in the objective function as the second objective; correspondingly, with the addition of idle time, total energy consumption calculations as well as the speed level assumptions as constraints.

4.1.2. Constraint Programming Model

The constraint programming model for the bi-objective no-wait permutation flow shop problem for minimization of the makespan and the total energy consumption ($F_{m}|n w t| C_{\text {max }}, T E C$) is given below:
Model 8. The CP Model for the ($F_{m}|n w t| C_{\text {max }}$, TEC $)$

Objectives

Minimize $\max _{i \in N}\left(\operatorname{ENDOF}\left(J o b_{i M}\right)\right.$, Minimize TEC

Constraints

$$
\begin{array}{ll}
\text { ENDATSTART }\left(J o b_{i r}, J o b_{i, r+1}\right) & \forall i \in N, \forall r \in M: r<M \\
\text { NOOVERLAP }\left(\text { Mac }_{r}\right) & \forall r \in M \\
\text { SAMESEQUENCE }\left(\text { Mac }_{1}, \text { Mac }_{r}\right) & \forall r \in M: 1<r \\
\text { ALTERNATIVE }\left(J o b_{i r}, \text { all }(l \text { in } L) J o b O p t_{i r l}\right) & \forall i \in N, \forall r \in M \\
\text { PRESENCEOF }\left(J o b O p t_{i r l}\right)= & \forall i \in N, \forall r \in M: \\
\text { PRESENCEOF }\left(J o b O p t_{i, r+1, l}\right) & r<M, \forall l \in L \\
C_{\text {max }}=\max _{i \in N}\left(\text { ENDOF }\left(J o b_{i M}\right)\right. & \\
\theta_{r}=C_{m a x}- & \forall r \in M \\
\sum_{i \in N} \sum_{l \in L} \text { PRESENCEOF }\left(J o b O p t_{i r l}\right) * \frac{P_{i r}}{s_{l}} & \\
T E C=\sum_{i \in N} \sum_{r \in M} \sum_{l \in L} \text { PRESENCEOF }\left(J o b O p t_{i r l}\right) * \frac{P_{i r *} * \tau_{r} * \lambda_{l}}{60 s_{l}}+\sum_{r \in M} \frac{\varphi_{r} * \tau_{r} * \theta_{r}}{60} \tag{8-09}
\end{array}
$$

The objective function (8-01) minimizes makespan and total energy consumption. Makespan is the maximum of the end of the job intervals on the last machines. Constraint (8-02) is the no-wait constraint which provides that the job interval of any given job i on the machine r will be end at the starting time of the job interval of the same job i on the machine $r+1$. Constraint (8-03) assures that there cannot be any overlap on the machines which means that each machine can only process one job at a time. The same sequence for the jobs on each machine is preserved by constraint (8-04). Constraints (8-05) and (8-06) guarantee that one speed level will be chosen for each job and each job will have the same speed level on each machine. Then, constraint (8-08) calculates the idle time on all machines where the makespan is obtained by constraint (8-07). Lastly, the total energy consumption is calculated in kilowatt hour by constraint (8-08) as provided by Mansouri et al. (2016).

This proposed bi-objective constraint programming model is a novel model which adds value to the literature of the energy-efficient no-wait flow shop scheduling problems which minimizes the makespan.

4.1.3. Comparison of MILP and CP Models

Initially, the ($F_{m}|n w t| C_{\text {max }}$, TEC $)$ problem is solved by both MILP and CP models for small sized instances " 5 jobs $x 5$ machines, 5 jobs x 10 machines, 5 jobs x 20 machines" which are truncated by cropping the first 5 jobs of all " 20 jobs $x 5$
machines, 20 jobs x 10 machines, 20 jobs x 20 machines" instances of Taillard (1993).
To show the conflict between the total energy consumption and the makespan, an example of Pareto optimal set is represented by addressing the $5 \times 5 _01$ instance in Figure 4.1.

Figure 4.1. The Pareto Optimal Set of 5×5 _01 for $\left(F_{m}|n w t| C_{\max }, T E C\right)$ Problem
As seen in Figure 4.1., two objectives cannot be minimized simultaneously because the total energy consumption increases while the makespan is decreasing and vice versa.

The same pareto optimal set for the makespan and the total energy consumption minimization is obtained for each small sized instance by both MILP and CP model formulations by the augmented ε-constraint method (Mavrotas, 2009), thus the comparison depending on only the computation time of the model formulations can be found in Table 4.1.

Table 4.1. MILP and CP Time Comparison for $\left(F_{m}|n w t| C_{\text {max }}, T E C\right)$ Problem on Small Sized Instances (in seconds)

$\begin{gathered} \text { Instance } \\ \text { Set } \end{gathered}$	Instance					Instance		
	MILP	CP	Set	MILP	CP	Set	MILP	CP
5x5_01	8.48	113.43	5x10_01	4.51	125.41	5x20_01	7.76	352.53
5x5_02	6.57	73.76	5x10_02	5.48	105.58	5x20_02	5.53	462.84
5x5_03	3.36	51.03	5x10_03	6.14	138.57	5x20_03	4.59	518.88
5x5_04	3.79	41.05	5x10_04	4.00	109.44	5x20_04	5.68	346.18
5x5_05	3.37	44.97	5x10_05	5.54	196.21	5x20_05	8.32	648.80
5x5_06	3.71	69.64	5x10_06	6.25	189.99	5x20_06	4.56	418.61
5x5_07	6.18	85.56	5x10_07	4.21	184.76	5x20_07	7.34	549.38
5x5_08	4.50	52.48	5x10_08	7.32	203.58	5x20_08	7.29	663.32
5x5_09	2.45	8.70	5x10_09	5.23	131.13	5x20_09	5.06	555.46
5x5_10	6.82	42.16	5x10_10	7.17	178.68	5x20_10	8.03	579.15
Average	4.92	58.28	Average	5.59	156.34	Average	6.42	509.52

Hence, the superiority of MILP on CP regarding solution time can be seen clearly from Table 4.1. However, since the performance of CPLEX even with 3600 seconds time limit run on single-objective NWPFSPs is not satisfactory, only the proposed heuristics are studied on larger instances.

4.2. Bi-Objective No-Wait Permutation Flowshop Scheduling Problem with Minimizing Total Flow Time and Total Energy Consumption

BI-OBJ NWPFSP with the objective of minimizing total flow time and total energy consumption ($\left.F_{m}|n w t| \sum C_{i M}, \mathrm{TEC}\right)$ targets to acquire a permutation of jobs providing no-wait conditions within the production environment while minimizing total flow time and total energy consumption at the same time.

4.2.1. Mixed Integer Linear Programming Model

The mixed integer linear programming model for the bi-objective no-wait permutation flow shop problem for minimization of total flow time and total energy consumption $\left(F_{m}|n w t| \sum C_{i M}, \mathrm{TEC}\right)$ is given below:

Model 9. The MILP Model for the ($F_{m}|n w t| \sum C_{i M}$, TEC)

Objectives

Minimize $\sum_{i \in N} C_{i M}$, Minimize TEC

Constraints

$$
\begin{array}{ll}
C_{i 1} \geq \sum_{l \in L} \frac{P_{i 1} * y_{i 1 l}}{s_{l}} & \forall i \in N \\
C_{i r}-C_{i, r-1} \geq \sum_{l \in L} \frac{P_{i r} * y_{i r l}}{s_{l}} & \forall i \in N, \forall r \in M: r \geq 2 \\
C_{i r}-C_{k r}+Q * D_{i k} \geq \sum_{l \in L} \frac{P_{i r} * y_{i r l}}{s_{l}} & \forall i \in N: k>i, \forall r \in M \\
C_{i r}-C_{k r}+Q * D_{i k} \leq Q-\sum_{l \in L} \frac{P_{k r *} * y_{k r l}}{s_{l}} & \forall i \in N: k>i, \forall r \in M \\
C_{\text {max }} \geq C_{i M} & \forall i \in N \\
C_{i r}-C_{i, r-1} \leq \sum_{l \in L} \frac{P_{i r} * y_{i r l}}{s_{l}} & \forall i \in N, \forall r \in M: r \geq 2 \\
\sum_{l \in L} y_{i r l}=1 & \forall i \in N, \forall r \in M \\
y_{i r l}=y_{i, r+1, l} & \forall i \in N, \forall r \in M: r<M, \forall l \in L \\
\theta_{r}=C_{m a x}-\sum_{i \in N} \sum_{l \in L} \frac{P_{i r} * y_{i r l}}{s_{l}} & \forall r \in M \\
T E C=\sum_{i \in N} \sum_{r \in M} \sum_{l \in L} \frac{P_{i r} * \tau_{r} * \lambda_{l}}{60 s_{l}} y_{i r l}+\sum_{r \in M} \frac{\varphi_{r} * \tau_{r} * \theta_{r}}{60} \\
y_{i r l} \in\{0,1\} & \forall i \in N, \forall r \in M, \forall l \in L \\
C_{i r} \geq 0 & \forall i \in N, \forall r \in M \\
D_{i k} \in\{0,1\} & \forall i, k \in N: k>i \tag{9-14}
\end{array}
$$

The objective function (9-01) minimizes total flow time and total energy consumption. Constraint (9-02) ensures that the completion time of each job must be at least its processing time on machine 1. Constraint (9-03) provides that the completion time of each job on machine r is at least the sum of completion time of the job on machine $r-1$ and the processing time of the job. Constraints (9-04) and (905) together assure that either job i follows job k or job k follows job i in the sequence, but not both at the same time. Constraint $(9-06)$ calculates the maximum of completion times of all jobs on the last machine which is makespan. This constraint is required since makespan is essential for the idle time calculation. Next, constraint (9-07) assures that the completion time of each job on machine r can only be less than or equal to the completion time of the job on machine $r-1$ plus to the processing time of the job on machine r. Hence, this constraint provides that the no-wait constraint together with the constraint (9-03). In other words, the differences between the completion time of each
job on machine r and the completion time of the job on machine $r-1$ must be equal to the processing time of the job on machine r. Constraints (9-08) and (9-09) guarantee that one speed level will be chosen for each job and each job will have the same speed level on each machine. Then, constraint (9-10) calculates the idle time on all machines. Finally, the total energy consumption is calculated in kilowatt hour by constraint (9 11) as provided by Mansouri et al. (2016). The sign restriction and the binary variables are provided in constraints $(9-12),(9-13)$ and (9-14). Note that this model is an extension of Manne (1960)'s PFSP model by converting the objective function to total flow time, by adding the no-wait restriction and by considering the total energy consumption in the objective function as the second objective; correspondingly, with the addition of idle time, total energy consumption calculation as well as the speed level assumptions in the model constraints.

4.2.2. Constraint Programming Model

The constraint programming model for the bi-objective no-wait permutation flow shop problem for minimization of total flow time and total energy consumption $\left(F_{m}|n w t| \sum C_{i M}, \mathrm{TEC}\right)$ is given below:
Model 10. The CP Model for the ($F_{m}|n w t| \sum C_{i M}$,TEC)

Objectives

Minimize $\sum_{i \in N} \operatorname{ENDOF}\left(J o b_{i M}\right)$, Minimize TEC

Constraints

$$
\begin{array}{ll}
\text { ENDATSTART }\left(J o b_{i r}, J o b_{i, r+1}\right) & \forall i \in N, \forall r \in M: r<M \\
\text { NOOVERLAP }\left(\text { Mac }_{r}\right) & \forall r \in M \\
\text { SAMESEQUENCE }\left(\text { Mac }_{1}, \text { Mac }_{r}\right) & \forall r \in M: 1<r \\
\text { ALTERNATIVE }\left(J o b_{i r}, \text { all }(l \text { in } L) \text { JobOpt } t_{i r l}\right) & \forall i \in N, \forall r \in M \\
\text { PRESENCEOF }\left(J o b O p t_{i r l}\right)= & \forall i \in N, \forall r \in M: \\
\text { PRESENCEOF }\left(J o b O p t_{i, r+1, l}\right) & r<M, \forall l \in L \\
C_{m a x}=\max _{i \in N}\left(\text { ENDOF }\left(J o b I n t_{i M}\right)\right. & \\
\theta_{r}=C_{m a x}- & \forall r \in M \\
\sum_{i \in N} \sum_{l \in L} \operatorname{PRESENCEOF}\left(J o b O p t_{i r l}\right) * \frac{P_{i r}}{s_{l}} & \\
T E C=\sum_{i \in N} \sum_{r \in M} \sum_{l \in L} \operatorname{PRESENCEOF}\left(J o b O p t_{i r l}\right) * \frac{P_{i r} * r_{r} * \lambda_{l}}{60 s_{l}}+\sum_{r \in M} \frac{\varphi_{r} * \tau_{r} * \theta_{r}}{60}
\end{array}
$$

The objective function (10-01) minimizes total flow time and total energy consumption. Total flow time is the sum of the end of the job intervals on the last machines. Constraint (10-02) is the no-wait constraint which provides that the job interval of any given job i on the machine r will be end at the starting time of the job interval of the same job i on the machine $r+1$. Constraint (10-03) assures that there cannot be any overlap on the machines which means that each machine can only process one job at a time. The same sequence for the jobs on each machine is preserved by constraint (10-04). Constraints (10-05) and (10-06) guarantee that one speed level will be chosen for each job and each job will have the same speed level on each machine. Then, constraint (10-08) calculates the idle time on all machines where the makespan is obtained by constraint (10-07). Lastly, the total energy consumption is calculated in kilowatt hour by constraint (10-08) as provided by (Mansouri et al., 2016).

This proposed bi-objective constraint programming model is an original model which contributes to the literature of the energy-efficient no-wait flow shop scheduling problems which minimizes total flow time.

4.2.3. Comparison of MILP and CP Models

Initially, the ($F_{m}|n w t| \sum C_{i M}$, TEC $)$ problem is solved by both MILP and CP models for small sized instances " 5 jobs $x 5$ machines, 5 jobs $x 10$ machines, 5 jobs x 20 machines" which are truncated by cropping the first 5 jobs of all " 20 jobs $x 5$ machines, 20 jobs x 10 machines, 20 jobs x 20 machines" instances of Taillard (1993).

To show the conflict between the total energy consumption and the total flow time, an example of pareto frontier is represented by addressing the instance of $5 \times 5 _01$ in Figure 4.2. As seen in Figure 4.2., two objectives cannot be minimized simultaneously because the total energy consumption increases while the total flow time is decreasing and vice versa.

Figure 4.2. The Pareto Optimal Set of $5 \mathrm{x} 5 _01$ for $\left(F_{m}|n w t| \sum C_{i M}, T E C\right)$ Problem
The same pareto optimal set for the total flow time and the total energy consumption is obtained for each small sized instance by both MILP and CP models, thus the comparison depending on only the computation time of the models can be found in Table 4.2.

Table 4.2. MILP and CP Time Comparison for ($\left.F_{m}|n w t| \sum C_{i M}, T E C\right)$ Problem on Small Sized Instances (in seconds)

$\begin{gathered} \text { Instance } \\ \text { Set } \end{gathered}$	MILP	CP	$\begin{gathered} \text { Instance } \\ \text { Set } \end{gathered}$	MILP	CP	$\begin{gathered} \text { Instance } \\ \text { Set } \end{gathered}$	MILP	CP
5x5_01	14.61	166.65	5x10_01	5.40	307.26	5x20_01	17.31	1688.73
5x5_02	11.68	163.88	5x10_02	10.26	386.06	5x20_02	11.00	1495.02
5x5_03	7.68	176.45	5x10_03	6.04	300.84	5x20_03	14.31	2156.56
5x5_04	7.20	112.40	5x10_04	6.20	303.77	5x20_04	9.20	1238.21
5x5_05	4.34	102.89	5x10_05	5.54	325.91	5x20_05	16.29	1707.89
5x5_06	4.53	101.50	5x10_06	9.98	604.54	5x20_06	11.46	1436.78
5x5_07	6.75	250.45	5x10_07	8.26	630.87	5x20_07	10.62	1774.45
5x5_08	6.87	208.45	5x10_08	5.59	409.74	5x20_08	13.32	1997.10
5x5_09	4.23	152.53	5x10_09	6.96	403.35	5x20_09	11.93	1620.52
5x5_10	8.75	140.88	5x10_10	8.79	414.53	5x20_10	11.46	1385.07
Average	7.66	157.61	Average	7.30	408.69	Average	12.69	1650.03

Therefore, the superiority of MILP on CP regarding solution time can be seen clearly from Table 4.2. However, since the performance of CPLEX even with 3600 seconds time limit run on single-objective NWPFSPs is not satisfactory, only the proposed heuristics are studied on larger instances.

4.3. Bi-Objective No-Wait Permutation Flowshop Scheduling Problem with Minimizing Total Tardiness and Total Energy Consumption

BI-OBJNWPFSP with the objective of minimizing total tardiness and total energy consumption ($F_{m}|n w t| \sum T_{i}$), TEC) targets to provide a permutation of jobs by ensuring the no-wait requirement of the production environment while minimizing total tardiness and total energy consumption concurrently.

4.3.1. Mixed Integer Linear Programming Model

The mixed integer linear programming model for the bi-objective no-wait permutation flow shop problem for minimization of total tardiness and total energy consumption ($F_{m}|n w t| \sum T_{i}$, TEC $)$ is given below:

Model 11. The MILP Model for the ($F_{m}|n w t| \sum T_{i}$), TEC)

Objectives

Minimize $\sum_{i \in N} T_{i}$, Minimize TEC

Constraints

$C_{i 1} \geq \sum_{l \in L} \frac{P_{i 1} * y_{i 1 l}}{s_{l}} \quad \forall i \in N$
$C_{i r}-C_{i, r-1} \geq \sum_{l \in L} \frac{P_{i r}{ }^{*} y_{i r l}}{s_{l}} \quad \forall i \in N, \forall r \in M: r \geq 2$
$C_{i r}-C_{k r}+Q * D_{i k} \geq \sum_{l \in L} \frac{P_{i r} * y_{i r l}}{s_{l}} \quad \forall i \in N: k>i, \forall r \in M$
$C_{i r}-C_{k r}+Q * D_{i k} \leq Q-\sum_{l \in L} \frac{P_{k r} * y_{k r l}}{s_{l}} \quad \forall i \in N: k>i, \forall r \in M$
$C_{\text {max }} \geq C_{i M} \quad \forall i \in N$
$C_{i r}-C_{i, r-1} \leq \sum_{l \in L} \frac{P_{i r} * y_{i r l}}{s_{l}} \quad \forall i \in N, \forall r \in M: r \geq 2$
$T_{i} \geq C_{i M}-D D_{i} \quad \forall i \in N$
$T_{i} \geq 0$
$\forall i \in N$
$\sum_{l \in L} y_{i r l}=1$
$\forall i \in N, \forall r \in M$
$y_{i r l}=y_{i, r+1, l}$
$\forall i \in N, \forall r \in M: r<M, \forall l \in L$

$$
\begin{array}{ll}
\theta_{r}=C_{m a x}-\sum_{i \in N} \sum_{l \in L} \frac{P_{i r} * y_{i r l}}{s_{l}} & \forall r \in M \\
\text { TEC }=\sum_{i \in N} \sum_{r \in M} \sum_{l \in L} \frac{P_{i r} * \tau_{r} * \lambda_{l}}{60 s_{l}} y_{i r l}+\sum_{r \in M} \frac{\varphi_{r} * \tau_{r} * \theta_{r}}{60} \\
y_{i r l} \in\{0,1\} & \forall i \in N, \forall r \in M, \forall l \in L \\
C_{i r} \geq 0 & \forall i \in N, \forall r \in M \\
D_{i k} \in\{0,1\} & \forall i, k \in N: k>i \\
D D_{i} \geq 0 & \forall i \in N \tag{11-17}
\end{array}
$$

The objective function (11-01) minimizes total tardiness and total energy consumption. Constraint (11-02) ensures that the completion time of each job must be at least its processing time on machine 1 . Constraints (11-03) provides that the completion time of each job on machine r is at least the sum of completion time of the job on machine $r-l$ and the processing time of the job. Constraints (11-04) and (11-05) together assure that either job i follows job k or job k follows job i in the sequence, but not both at the same time. Constraint (11-06) calculates the maximum of completion times of all jobs on the last machine which is makespan. This constraint is required since makespan is essential for the idle time calculation. Next, constraint (11-07) assures that the completion time of each job on machine r can only be less than or equal to the completion time of the job on machine $r-1$ plus to the processing time of the job on machine r. Hence, this constraint provides that the no-wait constraint together with the constraint (11-03). In other words, the differences between the completion time of each job on machine r and the completion time of the job on machine $r-1$ must be equal to the processing time of the job on machine r. Constraints (11-08) and (11-09) together provide that (i) if a job is tardy, then the tardiness of the job at least the completion time of the job on the last machine minus its due; (ii) if a job is early, then its tardiness will be 0 . Constraints (11-10) and (1111) guarantee that one speed level will be chosen for each job and each job will have the same speed level on each machine. Then, constraint (11-12) calculates the idle time on all machines. Finally, the total energy consumption is calculated in kilowatt hour by constraint (11-13) as provided by (Mansouri et al., 2016). The sign restriction and the binary variables are provided in constraints (11-14), (11-15), (11-16) and (11-17). Note that this model is an extension of Manne (1960)'s PFSP model by converting the objective function to total tardiness, by adding the no-wait restriction and by considering the total energy consumption in the objective function as the second
objective; correspondingly, with the addition of total tardiness, idle time, total energy consumption calculation as well as the speed level assumptions in the model constraints.

4.3.2. Constraint Programming Model

The constraint programming model for the bi-objective no-wait permutation flow shop problem for minimization of total tardiness and total energy consumption $\left(F_{m}|n w t| \sum T_{i}, \mathrm{TEC}\right)$ is given below:

```
Model 12. The CP Model for the ( \(F_{m}|n w t| \sum T_{i}\), TEC)
```


Objectives

Minimize $\sum_{i \in N} T_{i}$, Minimize TEC

Constraints

EndATSTART $\left(J o b_{i r}, J o b_{i, r+1}\right) \quad \forall i \in N, \forall r \in M: r<M \quad(10-02)$
noOverlap $\left(M a c_{r}\right) \quad \forall r \in M$
$\operatorname{SAMESEQUENCE}\left(\right.$ Mac $\left._{1}, \mathrm{Mac}_{r}\right) \quad \forall r \in M: 1<r$
$T_{i}=\max \left(\left(\right.\right.$ EndOF OobInt $\left.\left.\left._{i M}\right)-D D_{i}\right), 0\right) \quad \forall i \in N$
alternative $\left(J o b_{i r}\right.$, all (l in L) JobOpt $i_{i r l}$) $\quad \forall i \in N, \forall r \in M$
PRESENCEOF $\left(J o b O p t_{i r l}\right)=\quad \forall i \in N, \forall r \in M$:
PRESENCEOF(JobOpt $\left.t_{i, r+1, l}\right)$
$r<M, \forall l \in L$
$C_{\text {max }}=\max _{i \in N}\left(\mathrm{ENDOF}\left(\right.\right.$ JobInt $\left._{\text {iM }}\right)$
$\theta_{r}=C_{\text {max }}-\quad \forall r \in M$
$\sum_{i \in N} \sum_{l \in L}$ PRESENCEOF(JobOpt $\left.t_{i r l}\right) * \frac{P_{i r}}{s_{l}}$
TEC $=\sum_{i \in N} \sum_{r \in M} \sum_{l \in L}$ PRESENCEOF $\left(J o b O p t_{i r l}\right) * \frac{P_{i r} * \tau_{r} * \lambda_{l}}{60 s_{l}}+\sum_{r \in M} \frac{\varphi_{r}^{*} * \tau_{r} * \theta_{r}}{60}$

The objective function (12-01) minimizes both the total tardiness and the total energy consumption. A job becomes tardy, if the completion time of the job exceeds its due date. Constraint (12-02) is the no-wait constraint which provides that the job interval of any given job i on the machine r will be end at the starting time of the job interval of the same job i on the machine $r+1$. Constraint (12-03) assures that there cannot be any overlap on the machines which means that each machine can only process one job at a time. The same sequence for the jobs on each machine is preserved by constraint (12-04). In constraint (12-05), tardiness is expressed as the maximum of
end of job intervals on the last machine minus the due dates or 0 . Because a job cannot be tardy, if it is finished before its due. Constraints (12-06) and (12-07) guarantee that one speed level will be chosen for each job and each job will have the same speed level on each machine. Then, constraint (12-09) calculates the idle time on all machines where the makespan is obtained by constraint (12-08). Lastly, the total energy consumption is calculated in kilowatt hour by constraint (12-10) as provided by Mansouri et al. (2016).

This proposed bi-objective constraint programming model is a new model which adds value to the literature of the energy-efficient no-wait flow shop scheduling problems which minimizes total tardiness.

4.2.3. Small Sized (Truncated) Instances for ($F_{m}|n w t| \sum T_{i}$, TEC) Problem

Total tardiness problem is a very complex problems comparatively to other objectives. Also, there is a limited number of instances in the literature for PFSP which specifies the due dates for each job. Since the instances of Taillard (1993) are employed in this study, the due dates for these instances are taken from Minella et al. (2008). These instances have the due dates $D D_{i}$ for each job $i \in N$ which $D D_{i}$ is calculated with the following formulation as given in Section 3.3.3.

$$
\begin{equation*}
D D_{i}=\sum_{r=1}^{M} P_{i r} *(1+\text { random }(0,1) * 3) \tag{D-01}
\end{equation*}
$$

In order to have a $5 \times 5,5 \times 10$, and 5×20 sets of instances, 20x5, 20x10 and 20×20 instances are made use of. For the total tardiness objective, each job's individual tardiness is very important. Indeed, the one which creates the total tardiness when adding up together all. Hence, while cropping instances from the jobs view, the aim is the conversation of individual tardiness. Firstly, the schedule for 20x5, 20x10 and 20×20 instances are created as if they are sequenced by PFSP assumptions with the EDD rule. For example, the sequence of 20x5_01 instance is provided in Table 4.3.

Table 4.3. EDD Sequence of 20x5_01 Instance Based on PFSP

Sequence	EDD Sequence	Due Date of Jobs	Cmax of Jobs in EDD	Tardiness of Jobs
1	3	328	126	0
2	14	482	250	0
3	19	495	356	0
4	8	503	397	0
5	13	525	405	0
6	17	533	498	0
7	9	539	567	28
8	16	568	654	86
9	5	591	707	116
10	6	592	769	177
11	12	602	841	239
12	20	607	869	262
13	18	743	941	198
14	1	767	1047	280
15	2	770	1103	333
16	7	771	1156	385
17	10	805	1196	391
18	15	823	1286	463
19	11	1025	1410	385
20	4	1239	1495	256
		Sum	$\mathbf{1 6 0 7 3}$	$\mathbf{3 5 9 9}$

According to Table 4.3., after having the permutation with EDD rule, the individual tardiness of each job is obtained. After this point, the followed idea is to find the jobs which creates 25% of the total tardiness, since 5 jobs will be truncated from the instance of having 20 jobs. Herewith, the total tardiness will be truncated by one quarter. If we follow the same example, 16-5-6-12-20 jobs gives $86+116+177+239+262=880$ tardiness that is the 24.45% of 3599 . Thus, these 5 jobs will be cropped (see Table 4.4.).

Table 4.4. EDD Sequence of Cropped 20x5_01 Instance Based on PFSP

Sequence	EDD Sequence	Due Date of Jobs	Cmax of Jobs in EDD	Tardiness of Jobs
1	16	568	654	86
2	5	591	707	116
3	6	592	769	177
4	12	602	841	239
5	20	607	869	262
		Sum	$\mathbf{8 8 0}$	

At this point, the completion time of each job $C_{i M}$ and their due dates $D D_{i}$ are known. Then, only these 5 jobs are sequenced by PFSP assumptions with EDD rule
and the results are provided in Table 4.5.
Table 4.5. EDD Sequence of 5x5_01 Instance Based on PFSP

Sequence	EDD Sequence	Due Date of Jobs	Cmax of Jobs in EDD	Tardiness of Jobs
1	16	568	265	0
2	5	591	430	0
3	6	592	503	0
4	12	602	575	0
5	20	607	603	0

Now, the new completion time of each job $C_{i M}^{*}$ is known, but the new due dates are required to be created. The main aim is to protect the individual tardiness T_{i} values. Therefore, the following idea is implemented: $T_{i}=C_{i M}-D D_{i}=C_{i M}^{*}-D D_{i}^{*}$. According to this idea, new due dates can be calculated as: $D D_{i}^{*}=C_{i M}^{*}-C_{i M}+D D_{i}$. Therefore, the new due dates of the example can be obtained as in Table 4.6.

Table 4.6. EDD Sequence of 5x5_01 Instance with New Due Dates

Sequence	EDD Sequence	Due Date of Jobs	Cmax of Jobs in EDD	Tardiness of Jobs
1	16	$\mathbf{1 7 9}$	265	86
2	5	$\mathbf{3 1 4}$	430	116
3	6	$\mathbf{3 2 6}$	503	177
4	12	$\mathbf{3 3 6}$	575	239
5	20	$\mathbf{3 4 1}$	603	262
			Sum	$\mathbf{8 8 0}$

Hence, the problem generation for small size instances are completed in such a way that individual tardiness values of jobs are preserved. All sets of $5 \times 5,5 \times 10$, and 5×20 instances are reported in Appendix D (Table D.1.)

4.2.4. Comparison of MILP and CP Models

Initially, the ($F_{m}|n w t| \sum T_{i}$, TEC) problem is solved by both MILP and CP models for small sized instances " 5 jobs $x 5$ machines, 5 jobs x 10 machines, 5 jobs x 20 machines" which are truncated from the instances of Taillard (1993) by the proposed method described in Section 4.2.3.

To show the conflict between the total energy consumption and the total tardiness, an example of pareto frontier is represented by addressing the instance of $5 \times 5 _01$ in Figure 4.3. As seen in Figure 4.3., two objectives cannot be minimized simultaneously because the total energy consumption increases while the total tardiness is decreasing
and vice versa.

Figure 4.3. The Pareto Optimal Set of $5 \times 5 _01$ for the $\left(F_{m}|n w t| \sum T_{i}, T E C\right)$ Problem
The same pareto optimal set for makespan and total energy consumption is obtained for each instance by both MILP and CP models, thus the comparison depending on only the computation time of the models can be found in Table 4.7.

Table 4.7. MILP and CP Time Comparison for $\left(F_{m}|n w t| \sum T_{i}, T E C\right)$ Problem on Small Sized Instances (in seconds)

$\begin{aligned} & \text { Instance } \\ & \text { Set } \end{aligned}$	MILP	CP	Instance Set	MILP	CP	Instance Set	MILP	CP
5x5_01	6.09	101.29	5x10_01	3.43	112.53	5x20_01	9.93	1216.39
5x5_02	10.09	136.50	5x10_02	3.23	111.50	5x20_02	6.29	1014.68
5x5_03	5.40	137.85	5x10_0	4.61	163.86	5x20_03	6.82	811.27
5x5_04	6.96	123.20	5x10_04	3.81	124.15	5x20_04	2.43	251.89
5x5_05	5.37	85.21	5x10_05	5.53	197.38	5x20_05	19.25	1228.36
5x5_06	9.34	119.84	5x10_0	8.64	373.16	5x20_06	6.64	700.38
5x5_07	10.03	206.81	5x10_07	3.17	84.77	5x20_07	5.71	1057.69
5x5_08	6.43	144.71	5x10_08	3.78	126.54	5x20_08	11.15	1100.63
5x5_09	13.28	305.94	5x10_09	8.18	244.50	5x20_09	6.56	527.76
5x5_10	9.51	138.65	5x10_10	14.04	317.97	5x20_10	5.07	368.58
Average	8,25	150,00	Average	5,84	185,64	Average	7,99	827,76

The superiority of MILP on CP regarding solution time can be seen clearly from Table 4.3. However, since the performance of CPLEX even with 3600 seconds time limit on single-objective NWPFSPs is not satisfactory, only the proposed heuristics those ones explained in the next chapter are studied on larger instances.

CHAPTER 5

METAHEURISTICS FOR BI-OBJECTIVE NO-WAIT PERMUTATION FLOWSHOP SCHEDULING PROBLEMS

Regarding the metaheuristic formulation, a significant characteristic of the NWPFSP is employed as proposed by Tasgetiren et al., 2007, Pan et al., 2008, and Wismer, 1972. The difference between the completion time of two consecutive jobs, depends only on the processing times of both jobs, independent from the job's positions in the sequence or the positions of the other jobs in the sequence. Hence, the distance between each combination of two consecutive jobs on the first machine $d[i, j]$ can be calculated as represented in Figure 5.1.

Machines

$$
\begin{array}{|l|c|c|c|}
\hline d[1,3] & d[3,2] & d[2,4] & \sum_{r=1}^{3} P_{4 r} \\
\hline
\end{array}
$$

Figure 5.1. Gantt Chart for an Example NWPFSP with Distances

$$
d[i, j]=\{(\text { start time of job } j \text { on machine } 1)-
$$

(start time of job i on machine 1) \} if j is processed directly after job i.

If this idea is converted to energy efficient scheduling with the speed scaling strategy, then the distance calculation follows the proposed way:

Let a job permutation $\pi=\left\{\pi_{1}, \pi_{2}, \ldots, \pi_{N}\right\}$ represent the schedule of jobs to be processed in m machines and $l_{\pi}=\left\{l_{\pi_{1}}, l_{\pi_{2}}, \ldots, l_{\pi_{N}}\right\}$ indicate the speed level of job in the sequence of π.

Let $d\left(\left[\pi_{k-1}, \pi_{k}\right]\left[l_{\pi_{k-1}}, l_{\pi_{k}}\right]\right)$ be the distance between two consecutive jobs in the $k-1^{\text {th }}$ and $k^{t h}$ positions, π_{k-1} and π_{k}, whose speed levels are $l_{\pi_{k-1}}$ and $l_{\pi_{k}}$, respectively. Therefore, these distance values for each pair of job and for each speed level can be written in a $D_{(N) x(N)} L_{(N) x(N)}$ matrix. Thus, there exist $9 D_{(N) x(N)} L_{(N) x(N)}$ matrices, namely $\left[\pi_{k-1}, \pi_{k}\right][1,1], d\left[\pi_{k-1}, \pi_{k}\right][1,2], \ldots, d\left[\pi_{k-1}, \pi_{k}\right][3,3]$. So, these
distances values basically indicate the minimum delay between the start of job π_{k-1} and the start of job π_{k} on the first machine if the job π_{k-1} directly processed before job π_{k} with speed levels $l_{\pi_{k-1}}$ and $l_{\pi_{k}}$, respectively, whenever the no-wait restrictions is conserved. The $d\left(\left[\pi_{k-1}, \pi_{k}\right]\left[l_{\pi_{k-1}}, l_{\pi_{k}}\right]\right)$ formulation and the required formulations based on $d\left(\left[\pi_{k-1}, \pi_{k}\right]\left[l_{\pi_{k-1}}, l_{\pi_{k}}\right]\right)$ are given below:

Metaheuristic Formulations. Metaheuristic Formulations for Bi-Objective
Permutation Flowshop Scheduling Problems (For makespan, total flow time and total tardiness)

$$
\begin{aligned}
& d\left(\left[\pi_{k-1}, \pi_{k}\right]\left[l_{\pi_{k-1}}, l_{\pi_{k}}\right]\right) \\
& \quad=\frac{p_{\pi_{k-1}, 1}}{s_{l_{\pi_{k-1}}}}+\max \left\{0, \max _{2 \leq k \leq m}\left\{\sum_{h=2}^{k} \frac{p_{\pi_{k-1}, h}}{s_{l_{\pi_{k-1}}}}-\sum_{h=1}^{k-1} \frac{p_{\pi_{k}, h}}{s_{l_{\pi_{k}}}}\right\}\right\}
\end{aligned}
$$

$$
\forall k=2, \ldots, N, \forall l \in\{1,2,3\}
$$

$$
\begin{equation*}
C_{\pi_{1, M}}\left(\pi_{1}\right)=\sum_{r=1}^{M} \frac{P_{\pi_{1}, r}}{S_{l_{\pi_{1}}}} \tag{H-02}
\end{equation*}
$$

$$
\begin{equation*}
C_{\pi_{k}, M}\left(\pi_{k}\right)=\sum_{k=2}^{k} d\left(\left[\pi_{k-1}, \pi_{k}\right]\left[l_{k-1}, l_{k}\right]\right)+\sum_{r=1}^{M} \frac{P_{\pi_{k}, r}}{s_{l_{\pi_{k}}}} \quad \forall k \tag{H-03}
\end{equation*}
$$

$$
=2, \ldots, N
$$

$$
\begin{equation*}
C_{\max }(\pi)=\sum_{k=2}^{N} d\left(\left[\pi_{k-1}, \pi_{k}\right]\left[l_{k-1}, l_{k}\right]\right)+\sum_{r=1}^{M} \frac{P_{\pi_{N}, r}}{s_{l_{\pi_{k}}}} \tag{H-04}
\end{equation*}
$$

$$
\operatorname{TotalFlowTime}(\pi)=\sum_{k=1}^{N} C_{\pi_{k}, M}\left(\pi_{k}\right)
$$

$$
\begin{equation*}
\operatorname{TotalTardiness}(\pi)=\sum_{k=1}^{N} \max \left(\left(C_{\pi_{k}, M}\left(\pi_{k}\right)-D D_{\pi_{k}}\right), 0\right) \tag{H-07}
\end{equation*}
$$

$\theta_{r}=C_{\text {max }}(\pi)-\sum_{k=1}^{N} \frac{P_{\pi_{k}, r}}{s_{l_{\pi_{k}}}} \quad \forall r=1, \ldots, M$
$T E C=\sum_{k=1}^{N} \sum_{r=1}^{M} \frac{P_{\pi_{k}, r} * \tau_{r} * \lambda_{l_{\pi_{k}}}}{60 s_{l_{\pi_{k}}}}+\sum_{r=1}^{M} \frac{\vartheta_{r} * \tau_{r} * \theta_{r}}{60}$

Equation (H-01) is the minimum delay between the start of job π_{k-1} and the start of job π_{k} on the first machine if the job π_{k} directly processed after job π_{k-1} with a speed level $l_{\pi_{k}}$ and $l_{\pi_{k-1}}$, respectively. Equation (H-02) calculates the completion time of the first job in the sequence, that is π_{1}. The completion time of the $k^{t h}$ job in the sequence, is calculated in Equation ($\mathrm{H}-03$) and it equals to the sum of its processing
time and the total delay until the $k^{t h}$ job. Thus, makespan is calculated in Equation (H-04) as the sum of the processing time of the last jobs in the sequence and the total delay until the last job. Similarly, for the two other objective functions Equation (H05) and ($\mathrm{H}-06$) are presented to express the total flow time and total tardiness, respectively. To be consistent with the MILP and CP models given in Chapter 4, idle time and total energy consumption values are calculated in the same way as proposed by Mansouri et al. (2016) in Equation (H-07) and (H-08).

In this thesis, three multi-objective metaheuristic algorithms are proposed: a novel multi-objective discrete artificial bee colony algorithm (MO-DABC), a traditional multi-objective genetic algorithm (MO-GA) and a multi-objective genetic algorithm with a local search (MO-GALS). Firstly, solution representation and initial population are presented in Section 5.1.1, then the MO-DABC, MO-GA and MOGALS algorithms are provided in the following sections. Next, all these algorithms are studied to minimize three objectives and the results are represented for bi-objective ($\left.F_{m}|n w t| C_{m a x}, T E C\right),\left(F_{m}|n w t| \sum C_{i M}, T E C\right)$ and ($F_{m}|n w t| \sum T_{i}, T E C$) problems in Sections 5.2, 5.3 and 5.4, respectively.

5.1. Solution Representation and Initial Population

As it is mentioned in the problem definition, a job-based speed scaling strategy is used for the NWPFSP. Also, similar with the mathematical modelling, the same speed level strategy for all machines is assumed. Therefore, the multi-chromosome structure of Öztop et al. (2018) and Taşgetiren et al. (2018) is used in all algorithms due to the existence of speed level of each job. This structure includes both the permutation for N jobs and a speed vector for three speed levels where $L=\{1$ (fast), 2(normal), 3(slow) \}. Hence, an individual x_{i} 's solution can be demonstrated as an example for 5 -jobs and 3 -speed levels as given in Table 5.1. As shown in Table 5.1, the individual $x^{i}\left(\pi_{k}^{i}, l_{\pi_{k}}^{i}\right)$ indicates a solution where the $3^{\text {rd }}$ job is placed in the $1^{\text {st }}$ position $\left(\pi_{1}^{i}=3\right)$ and its speed level is fast $\left(l_{\pi_{1}}^{i}=1\right)$; the $2^{\text {nd }}$ job is placed in the $2^{\text {nd }}$ position $\left(\pi_{2}^{i}=2\right)$ and its speed level slow $\left(l_{\pi_{2}}^{i}=3\right)$ and so on.

Table 5.1. Individual Solution Representation

		π_{1}	π_{2}	π_{3}	π_{4}	π_{5}
$x^{i}\left(\pi_{k}^{i}, l_{\pi_{k}}^{i}\right)$	π	3	2	1	4	5
	l	1	3	2	1	2

Hence, metaheuristic formulations, is mapped one to one as given below:
Metaheuristic Formulations-Example. An Example for Metaheuristic
Formulations for Bi-Objective Permutation Flowshop Scheduling Problems (For the makespan, the total flow time and the total tardiness)

$$
\begin{align*}
& C_{\pi_{1, M}}(3)=\sum_{r=1}^{M} \frac{P_{3, r}}{s_{1}} \tag{H-09}\\
& C_{\pi_{2, M}}(2)=d([3,2][1,3])+\sum_{r=1}^{M} \frac{P_{2, r}}{s_{3}} \tag{H-10}\\
& C_{\pi_{3, M}}(1)=d([3,2][1,3])+d([2,1][3,2])+\sum_{r=1}^{M} \frac{P_{1, r}}{s_{2}} \tag{H-11}\\
& C_{\pi_{4}, M}(4)=d([3,2][1,3])+d([2,1][3,2])+d([1,4][2,1])+\sum_{r=1}^{M} \frac{P_{4, r}}{S_{1}} \tag{H-12}\\
& \begin{array}{c}
C_{\pi_{5}, M}(5)=d([3,2][1,3])+d([2,1][3,2])+d([1,4][2,1]) \\
\quad+d([4,5][1,2])+\sum_{r=1}^{M} \frac{P_{5, r}}{s_{2}}
\end{array} \tag{H-13}\\
& \begin{array}{c}
C_{\text {max }}(\pi)=C_{\pi_{5}, M}(5) \\
\text { TotalFlowTime }(\pi)=\sum_{k=1}^{5} C_{\pi_{k}, M}\left(\pi_{k}\right) \\
\quad=C_{\pi_{1}, M}(3)+C_{\pi_{2}, M}(2)+C_{\pi_{3}, M}(1)+C_{\pi_{4}, M}(4)+C_{\pi_{5}, M}(5)
\end{array}
\end{align*}
$$

$$
\begin{align*}
& \text { TotalTardiness }(\pi) \tag{H-16}\\
& \qquad \begin{aligned}
& \left.\left.=\max \left(C_{\pi_{1, M}}(3)-D D_{\pi_{1}}\right), 0\right)+\max \left(C_{\pi_{2, M}}(2)-D D_{\pi_{2}}\right), 0\right) \\
& \left.\left.+\max \left(C_{\pi_{3, M}}(1)-D D_{\pi_{3}}\right), 0\right)+\max \left(C_{\pi_{4}, M}(4)-D D_{\pi_{4}}\right), 0\right) \\
& \left.+\max \left(C_{\pi_{5, M}}(5)-D D_{\pi_{5}}\right), 0\right)
\end{aligned}
\end{align*}
$$

To generate the initial population with size $N P=10$, FRB5 heuristic of Farahmand Rad et al. (2009), that is an extension of NEH heuristic by Nawaz et al. (1983), is initially used to find an initial solution π^{0}, in all of the proposed algorithms (See Figure 5.2.).

```
\(O=\) Decreasing \(\operatorname{Order}\left(\sum_{r=1}^{M} P_{i r}\right)\)
\(x^{0}\left(\pi_{1}^{0}\right)=O_{1}\)
for \(i=2\) to \(N\) do
    \(x^{0}\left(\pi^{0}\right)=\) InsertJobInBestPosition \(\left(x^{0}\left(\pi^{0}\right), O_{i}\right)\)
    \(x^{0}\left(\pi^{0}\right)=\) ApplyInsertionLocalSearch \(\left(x^{0}\left(\pi^{0}\right)\right)\)
end for
return \(\pi^{0}\) with \(n\) jobs
```

Figure 5.2. FRB5 Constructive Heuristic
FRB5 algorithm initially sort the jobs in a descending order (O) of their total processing times on all machines and the first job in O is chosen to establish a partial solution. Then, the remaining jobs in O are sequentially inserted into the partial solution. Note that, an insertion local search is also applied to the partial solution at each iteration as a local search strategy and it is represented in Figure 5.3.
for all jobs in the individual

```
    \(\left(\pi_{j}^{*}\right)=\) Remove the job at position \(j\) from \(x^{i}\)
    \(x^{*}\left(\pi^{*}\right)=\operatorname{InsertInBestPosition}\left(x^{i}\left(\pi_{j}^{*}\right)\right)\)
    if \(\left(f\left(x^{*}\right) \succ f\left(x^{i}\right)\right)\) then do
        \(x^{i}=x^{*}\)
    end if
```

end for
return x^{i}

Figure 5.3. Insertion Local Search
As an example, let's consider that we have a current solution of $x^{0}\left(\pi_{j}^{i}\right)=$ $\{3-2-1-4-5\}$ which is sorted in a descending order of their total processing times and we select the first job as $x^{0}\left(\pi_{1}^{0}\right)=\{3\}$. Then, the second job is inserted into all possible positions as follow: $x^{0}\left(\pi^{0}\right)=\{3-2\}$ and $x^{0}\left(\pi^{0}\right)=\{2-3\}$. The best solution is obtained, say, $x^{0}\left(\pi^{0}\right)=\{3-2\}$. Then, the insertion local search is applied in such a way that each job inserted into all positions. For example, $x^{0}\left(\pi^{0}\right)=\{3-2\}$ and $x^{0}\left(\pi^{0}\right)=\{2-3\}$ are again obtained since there are 2 jobs until this step. Then, if the best solution is $x^{0}\left(\pi^{0}\right)=\{2-3\}$, the $3^{\text {rd }}$ job in the sequence is inserted into all
positions as follows: $x^{0}\left(\pi^{0}\right)=\{1-2-3\}, x^{0}\left(\pi^{0}\right)=\{2-1-3\}$ and $x^{0}\left(\pi^{0}\right)=$ $\{2-3-1\}$. Then, let's say the best solution is $x^{0}\left(\pi^{0}\right)=\{1-2-3\}$. At this point, insertion local search shows its affect with the insertion of each job into each position and results 6 different permutation as follows: $x^{0}\left(\pi^{0}\right)=\{2-3-1\}, x^{0}\left(\pi^{0}\right)=$ $\{2-1-3\}, x^{0}\left(\pi^{0}\right)=\{3-2-1\}, x^{0}\left(\pi^{0}\right)=\{3-1-2\}, x^{0}\left(\pi^{0}\right)=\{1-2-3\}$ and $x^{0}\left(\pi^{0}\right)=\{1-3-2\}$. Next, let's say that the best solution is $x^{0}\left(\pi^{0}\right)=$ $\{3-1-2\}$, then the $4^{\text {th }}$ job in the sequence is inserted into all position as follows: $x^{0}\left(\pi^{0}\right)=\{4-3-1-2\}, x^{0}\left(\pi^{0}\right)=\{3-4-1-2\}, x^{0}\left(\pi^{0}\right)=\{3-1-4-2\}$ and $x^{0}\left(\pi^{0}\right)=\{3-1-2-4\}$ and the resulting best solution is, say, $x^{0}\left(\pi^{0}\right)=$ $\{3-1-2-4\}$. Next, the above mentioned insertion local search is applied on this solution that is each job is inserted into all positions, then we obtain 24 different permutations. Hence, one best solution is obtained among them, say, $x^{0}\left(\pi^{0}\right)=$ $\{2-4-3-1\}$. This procedure allows the individual to improve itself and have a chance to all jobs to be inserted into all positions. If we repeat all steps for the $5^{\text {th }}$ job, then, we obtain, say, $x^{0}\left(\pi^{0}\right)=(=\{5-4-2-3-1\}$ as the initial solution.

Then, the population size is fixed to $N P=1$ with the initial solution $x^{0}\left(\pi^{0}\right)$ and 25% of total CPU time is dedicated to MO-DABC, MO-GA and MO-GALS algorithms along with the determination of speed levels as $l_{\pi^{0}}=2$, to be able obtain a diversified initial population. Hence, three algorithms are run with normal speed level $\left(l_{\pi^{0}}=2\right)$ for all jobs so that an individual $\pi^{\text {best }}$ is obtained. After that, the population size is specified. In order to analyze the effect of population size, NP is specified for different levels. In this thesis, $N P$ is set as $N P=30$ and $N P=10$, and the computational results for each population size are provided in Chapter 6. Then, by determining fast, normal and slow speed levels to each job in the $\pi^{\text {best }}$, the first, second and third individuals are constructed in this new population, respectively. The rest of the population is constructed by determining the random speed level to each job in the $\pi^{\text {best }}$. It is important to mention that when the speed level of a job is altered in the permutation, this leads to a different solution. Then, the archive set Ω which is empty in the beginning of the procedure is updated by the initial population's nondominated solutions. In further stages, this archive set Ω is filled by the new nondominated solutions while the any dominated member of this set is moved out of the set.

5.2. Multi-Objective Discrete Artificial Bee Colony Algorithm (MO-DABC)

Recently, researchers' interest on swarm intelligence, that is basically depends on the self-organized systems' collective behavior, has rapidly increasing. A novel artificial bee colony (ABC) algorithm is revealed in Karaboğa \& Baştürk (2008) by the inspiration taken from honey bee swarms' particular bright behavior as a unique swarm intelligence example. This algorithm aims the optimization of multi-variable and multi-modal continuous functions in principle. The competitiveness of the ABC algorithm's performance is illustrated by several comparisons, since the algorithm requires less number of control parameters than the other population-based algorithms (Karaboga \& Basturk, 2008). A discrete variant of ABC algorithm has recently been implemented on lot-streaming flow shop problem to minimize weighted earliness and tardiness penalties in Pan et al. (2011). However, there is no any study which employs ABC algorithm for NWPFSP with makespan, total flow time and total tardiness objectives separately while considering the total energy consumption as the second objective. Hence, a novel multi-objective discrete artificial bee colony algorithm (DABC) for NWPFSP is proposed for the ($F_{m}|n w t| C_{\text {max }}, \mathrm{TEC}$), $\left(F_{m}|n w t| \sum C_{i M}, \mathrm{TEC}\right)$ and $\left(F_{m}|n w t| \sum T_{i}, \mathrm{TEC}\right)$ problems.

MO-DABC consists of three phases: employed bee phase; onlooker bee phase and scout bee phase.

Employed Bee Phase:

Food sources are generated by the employed bees in the neighborhood of their current positions in the basic ABC algorithm. Therefore, a destruction and construction (DC) methodology is used in the employed bee phase of the algorithm as proposed for the iterated greedy algorithm (IGA) in Ruiz \& Stützle (2006). The pseudocode of IGA is given in Figure 5.4. According to the DC, the destruction size determines the $d S$ number of jobs to be removed with their speed levels from each individual x^{i} in the population. In this study, the destruction size is taken as 2 . The removed jobs and the remaining jobs are stored in x_{D}^{i} and x_{P}^{i}, respectively. Thus, an insertion local search with speed levels is now applicable on the partial solution x_{P}^{i} as given in Figure 5.5. That is, the first job is removed from the current partial solution, x_{P}^{i} and its speed level is randomly changed and then it is inserted into all positions in x_{P}^{i}. Then, this insertion procedure is repeated for all the jobs until the last job is inserted into all positions with
its randomly changed speed level. At the end, the one which is non-dominated will replace the partial solution. Later on, random speed levels are dedicated as $x_{D}^{i}\left(\pi_{j}^{i}, l_{\pi_{j}}^{i}\right)=\operatorname{rand}() \% 3$ to each job in x_{D}^{i}. Each job with their speed levels is inserted into partial solution x_{P}^{i} for construction one by one in the order that they are destructed. At this point, two partial solutions in the population are compared using the partial dominance rule. Then, a non-dominated solution from n insertion is obtained. After that, the same local search strategy is applied to the individual obtain by the construction. If the new solution x^{*} dominates the individual x^{i} in the population, then x^{i} is replaced by x^{*}. Eventually, the archive set Ω is updated by the non-dominated solutions.
for all individuals in the population
$x_{D}^{i}\left(\pi_{j}^{i}, l_{\pi_{j}}^{i}\right)=$ Remove the dS of jobs at position j and its speed from x^{i}
//Destruction
$x_{P}^{i}\left(\pi_{j}^{i}, l_{\pi_{j}}^{i}\right)=$ Partial solution after removal
$x_{P}^{\mathbf{■}}\left(\pi_{j}^{\mathbf{!}}, l_{\pi_{j}}^{\boldsymbol{\Pi}}\right)=$ InsertionLocalSearchtoPartialSolution $\left(x_{P}^{i}\left(\pi_{j}^{i}, l_{\pi_{j}}^{i}\right)\right)$
$l_{\pi_{j}}^{i}=\operatorname{rand}() \% 3 / /$ randomly change the speed levels of $x_{D}^{i}\left(\pi_{j}^{i}, l_{\pi_{j}}^{i}\right)$

//Construction
$x^{*}\left(\pi^{*}, l^{*}\right)=$ InsertionLocalSearchtoCompleteSolution $\left(x\right.$ ■ $\left.\left(\pi^{\bullet ■}, l \boldsymbol{\bullet}\right)\right)$
if $\left(f\left(x^{*}\right)>f\left(x^{i}\right)\right)$ then do

$$
x^{i}=x^{*}
$$

end if
end for
return x^{i}
Figure 5.4. Iterated Greedy Algorithm

```
for all jobs in the individual
    \(\left(\pi_{j}^{*}, l_{\pi_{j}}^{*}\right)=\) Remove the job at position \(j\) and its speed from \(x^{i}\)
    \(l_{\pi_{j}}^{*}=\operatorname{rand}() \% 3\)
    \(x^{*}\left(\pi^{*}, l^{*}\right)=\operatorname{InsertInDominatingPosition~}\left(x^{i}\left(\pi_{j}^{*}, l_{\pi_{j}}^{*}\right)\right)\)
    if \(\left(f\left(x^{*}\right) \succ f\left(x^{i}\right)\right)\) then do
        \(x^{i}=x^{*}\)
    end if
end for
return \(x^{i}\)
```

Figure 5.5. Insertion Local Search with Speed Levels
As an example, let's consider that we a current solution of $x^{i}\left(\pi_{j}^{i}, l_{\pi_{j}}^{i}\right)=$ $\left\{\begin{array}{l}3-2-1-4-5 \\ 1-3-2-1-1\end{array}\right\}$ and the $d S=2$. After removing random 2 jobs, two partial solutions are obtained: $x_{D}^{i}\left(\pi_{k}^{i}, l_{\pi_{k}}^{i}\right)=\left\{\begin{array}{l}1-5 \\ 2-1\end{array}\right\}$ and $x_{P}^{i}\left(\pi_{k}^{i}, l_{\pi_{k}}^{i}\right)=\left\{\begin{array}{l}3-2-4 \\ 1-3-1\end{array}\right\}$. Note that, firstly the job 1 is destructed and then job 5 is destructed. Next, an insertion local search is implemented on $x_{P}^{i}\left(\pi_{k}^{i}, l_{\pi_{k}}^{i}\right)=\left\{\begin{array}{l}3-2-4 \\ 1-3-1\end{array}\right\}$ in such a way that each job is removed with its speed level and inserted into all possible positions. Thus, an non-dominated partial solution for $x_{P}^{i}\left(\pi_{k}^{i}, l_{\pi_{k}}^{i}\right)$ is obtained, say, $x_{P}^{\mathbf{p}}\left(\pi_{j}^{\mathbf{!}}, l_{\pi_{j}}^{\boldsymbol{!}}\right)=$ $\left\{\begin{array}{l}4-3-2 \\ 2-3-2\end{array}\right\}$. Then, the random speed levels are assigned to the destructed jobs, say, $x_{D}^{i}\left(\pi_{k}^{i}, l_{\pi_{k}}^{i}\right)=\left\{\begin{array}{l}1-5 \\ 1-3\end{array}\right\}$ so that the construction can be processed. Then, job 1 is inserted into all possible positions, thus the non-dominated partial solution is obtained. Next, job 5 is inserted into all possible positions and then the non-dominated solution is reached by construction, say, $x \boldsymbol{\bullet}(\pi \mathbb{\bullet}, l \boldsymbol{\bullet})=\left\{\begin{array}{l}5-3-1-4-2 \\ 3-3-1-2-2\end{array}\right\}$. Finally, the same insertion local search is applied on $x^{\boldsymbol{\bullet}}\left(\pi^{\boldsymbol{\bullet}}, l^{\boldsymbol{\bullet}}\right)$ and then a non-dominated solution $x^{*}\left(\pi^{*}, l^{*}\right)=\left\{\begin{array}{l}4-2-1-5-3 \\ 1-3-1-3-1\end{array}\right\}$ is selected. Eventually, the archive set Ω is updated with $x^{*}\left(\pi^{*}, l^{*}\right)$.

Onlooker Bee Phase:

The block insertion heuristic (BIH) that is proposed by Taşgetiren et al. (2016) is used in the onlooker bee phase of MO-DABC for each individual x^{i}. BIH determines a block $b S$ of jobs with their speed levels from each individual x^{i}. In this study, the block size is taken as 2 . The removed jobs and the remaining jobs are stored
in x_{B}^{i} and x_{P}^{i}, respectively. Then, random speed levels are dedicated as x_{B}^{i} by $x_{B}^{i}\left(\pi_{j}^{i}, l_{\pi_{j}}^{i}\right)=\operatorname{rand}() \% 3$ to each job in x_{B}^{i}. The same insertion local search (see Figure 5.5.) that is used in the employed bee phase is implemented on the partial solution x_{P}^{i}. The block $x_{i, B}$ is inserted into the partial solution x_{P}^{i} for all positions (n $b S+1)$. The dominance rule is used when comparing two partial solutions. Next, a nondominated solution $x^{*}\left(\pi_{j}^{*}, l_{\pi_{j}}^{*}\right)$ from $n-b S+1$ insertion is obtained. If the new solution x^{*} dominates the individual x^{i} in the population, then x_{i} is replaced by x^{*}. Eventually, the archive set Ω is updated by the non-dominated solutions. The pseudocode of BIH is given in Figure 5.6.
for all i's in the population

$$
\begin{aligned}
& x_{B}^{i}\left(\pi_{j}^{i}, l_{\pi_{j}}^{i}\right)=\text { Remove the block of jobs with size bS from } x^{i} \\
& x_{P}^{i}\left(\pi_{j}^{i}, l_{\pi_{j}}^{i}\right)=\text { Partial solution after removal } \\
& x_{P}^{\mathbf{■}}\left(\pi_{j}^{\mathbf{*}}, l_{\pi_{j}}^{\mathbf{\bullet}}\right)=\text { InsertionLocalSearch }\left(x_{P}^{i}\left(\pi_{j}^{i}, l_{\pi_{j}}^{i}\right)\right) \\
& l_{\pi_{j}}^{i}=\text { rand }() \% 3 \text { //randomly change the speed levels of } x_{B}^{i}\left(\pi_{j}^{i}, l_{\pi_{j}}^{i}\right) \\
& x^{*}\left(\pi^{*}, l^{*}\right)=\text { Insert } x_{B}^{i}\left(\pi_{j}^{i}, l_{\pi_{j}}^{i}\right) \text { in all } n-b S+1 \text { positions }\left(x_{P}^{\mathbf{Q}}\left(\pi_{j}^{\mathbf{\bullet}}, l_{\pi_{j}}^{\mathbf{l}}\right)\right) \\
& \text { if }\left(f\left(x^{*}\right) \succ f\left(x^{i}\right)\right) \text { then do } \\
& \quad x^{i}=x^{*}
\end{aligned}
$$

end if
end for
return x^{i}
Figure 5.6. Block Insertion Move
As an example, let consider that we a current solution of $x^{i}\left(\pi_{j}^{i}, l_{\pi_{j}}^{i}\right)=$ $\left\{\begin{array}{l}3-2-1-4-5 \\ 1-3-2-1-1\end{array}\right\}$ and the $b S=2$. After removing a random block with size 2 , two partial solutions are obtained: $x_{B}^{i}\left(\pi_{k}^{i}, l_{\pi_{k}}^{i}\right)=\left\{\begin{array}{l}2-1 \\ 3-2\end{array}\right\}$ and $x_{P}^{i}\left(\pi_{k}^{i}, l_{\pi_{k}}^{i}\right)=\left\{\begin{array}{l}3-4-5 \\ 1-1-1\end{array}\right\}$. Then, the random speed levels are assigned to, say, $x_{B}^{i}\left(\pi_{k}^{i}, l_{\pi_{k}}^{i}\right)=\left\{\begin{array}{l}2-1 \\ 2-3\end{array}\right\}$. Later on, an insertion local search is implemented on $x_{P}^{i}\left(\pi_{k}^{i}, l_{\pi_{k}}^{i}\right)=\left\{\begin{array}{l}3-4-5 \\ 1-1-1\end{array}\right\}$ in such a way that each job is removed with its sped level and inserted into all possible positions.

Thus, an non-dominated partial solution for $x_{P}^{i}\left(\pi_{k}^{i}, l_{\pi_{k}}^{i}\right)$ is obtained, say, $x_{P}^{\mathbf{■}}\left(\pi_{j}^{\mathbf{E}}, l_{\pi_{j}}^{\mathbf{\bullet}}\right)=\left\{\begin{array}{l}4-5-3 \\ 1-2-3\end{array}\right\}$. At the end, the block $x_{B}^{i}\left(\pi_{k}^{i}, l_{\pi_{k}}^{i}\right)=\left\{\begin{array}{l}2-1 \\ 2-3\end{array}\right\}$ is inserted into $n-b S+1$ positions as follows: x ($\left.\pi_{j}^{\boldsymbol{\bullet}}, l_{\pi_{j}}^{\boldsymbol{\bullet}}\right)=\left\{\begin{array}{l}2-1-4-5-3 \\ 2-3-1-2-3\end{array}\right\}$, x ■ $\left(\pi_{j}^{\mathbf{\bullet}}, l_{\pi_{j}}^{\boldsymbol{\bullet}}\right)=\left\{\begin{array}{l}4-2-1-5-3 \\ 1-2-3-2-3\end{array}\right\}, x$ ■ $\left(\pi_{j}^{\mathbf{\bullet}}, l_{\pi_{j}}^{\mathbf{\bullet}}\right)=\left\{\begin{array}{l}4-5-2-1-3 \\ 1-2-2-3-3\end{array}\right\} \quad$ and x ■ $\left(\pi_{j}^{\mathbf{E}}, l_{\pi_{j}}^{\boldsymbol{\bullet}}\right)=\left\{\begin{array}{l}4-5-3-2-1 \\ 1-2-3-2-3\end{array}\right\}$. Eventually, the non-dominated one $x^{*}\left(\pi_{k}^{*}, l_{\pi_{k}}^{*}\right)$ is selected among them and the archive set Ω is updated.

Scout Bee Phase:

A food source is generated randomly by a scout bee in the predetermined search space of basic $A B C$ algorithm. However, the effectiveness of search is decreased by this generation, because more information is being derived by the best food source in the population. The reason is that the most promising region is the search region around the best food source. Thus, iterated local search (ILS) as presented in Lourenco et al. (2003) is applied for each individual x^{i} in the scout bee phase. The pseudocode of ILS is given in Figure 5.7. The aim of the ILS is to escape from local minima. To do so, a perturbation is made on each individual x^{i}, by removing $p S$ number of jobs with their speed levels and inserting each job to another position in the individual at random. The removed jobs and the remaining jobs are stored in x_{I}^{i} and x_{P}^{i}, respectively. The perturbation size is used as 2. After perturbation, the same insertion local search (see Figure 5.5.) as in the previous phases are implemented to the solution generated. Similarly, the comparison of new solution x^{*} and the individual x^{i} is made by the dominance rule and the achieve set Ω is updated by the non-dominated solutions.
for all i's in the population

$$
\begin{aligned}
& x_{I}^{i}\left(\pi_{j}^{i}, l_{\pi_{j}}^{i}\right)=\text { Remove the } p S \# \text { of jobs at position } j \text { and its speed from } x^{i} \\
& x_{P}^{i}\left(\pi_{j}^{i}, l_{\pi_{j}}^{i}\right)=\text { Partial solution after removal } \\
& x^{■}\left(\pi_{j}^{\mathbf{\bullet}}, l_{\pi_{j}}^{\mathbf{\bullet}}\right)=\text { Insert } x_{I}^{i}\left(\pi_{j}^{i}, l_{\pi_{j}}^{i}\right) \text { in random positions }\left(x_{P}^{i}\left(\pi_{j}^{i}, l_{\pi_{j}}^{i}\right)\right) \\
& x^{*}\left(\pi^{*}, l^{*}\right)=\text { InsertionLocalSearch }\left(x^{\mathbf{■}}\left(\pi_{j}^{\mathbf{e}}, l_{\pi_{j}}^{\mathbf{!}}\right)\right) \\
& \text { if }\left(f\left(x^{*}\right) \succ f\left(x^{i}\right)\right) \text { then do } \\
& \quad x^{i}=x^{*}
\end{aligned}
$$

end if
end for
return x^{i}
Figure 5.7. Iterated Local Search
As an example, let consider that we a current solution of $x^{i}\left(\pi_{k}^{i}, l_{\pi_{k}}^{i}\right)=$ $\left\{\begin{array}{l}3-2-1-4-5 \\ 1-3-2-1-1\end{array}\right\}$ and the $p S=2$. After removing the random 2 jobs, two partial solutions are obtained: $x_{I}^{i}\left(\pi_{j}^{i}, l_{\pi_{j}}^{i}\right)=\left\{\begin{array}{l}2-4 \\ 3-1\end{array}\right\}$ and $x_{P}^{i}\left(\pi_{j}^{i}, l_{\pi_{j}}^{i}\right)=\left\{\begin{array}{l}3-1-5 \\ 1-2-1\end{array}\right\}$. Then, each job in $x_{I}^{i}\left(\pi_{j}^{i}, l_{\pi_{j}}^{i}\right)$ is inserted into randomly a position in $x_{P}^{i}\left(\pi_{j}^{i}, l_{\pi_{j}}^{i}\right)$, say job 2 is inserted into the $1^{\text {st }}$ position and job 4 is inserted into the $3^{\text {rd }}$ position. Hence, x ■ $\left(\pi_{j}^{\boldsymbol{■}}, l_{\pi_{j}}\right)=\left\{\begin{array}{l}2-3-1-4-5 \\ 3-1-2-1-1\end{array}\right\}$ is obtained. Then, an insertion local search is implemented on $x^{i}\left(\pi_{j}^{i}, l_{\pi_{j}}^{i}\right)$ in such a way that each job is removed with its sped level and inserted into all possible positions. Thus, an non-dominated solution for $x^{*}\left(\pi_{j}^{*}, l_{\pi_{j}}^{*}\right)$ is obtained, say, $x^{*}\left(\pi_{j}^{*}, l_{\pi_{j}}^{*}\right)=\left\{\begin{array}{l}5-1-4-3-2 \\ 2-2-1-2-1\end{array}\right\}$. At the end, the archive set Ω is updated with the non-dominated solution.

The performance of MO-DABC algorithm is highly remarkable to minimize the makespan. Nevertheless, the need for changing speed levels within the algorithm is essential. Hence, a uniform crossover operator is performed for only the speed levels where keeping the same permutation for each individual x^{i}. To perform this, an individual x^{k} is selected from the population randomly, for each individual x^{i}. Then, based on the probability of crossover, a new solution is constructed in such a way that either using the speed level of x^{i} or x^{k}. The construction method of the new solution
with a uniform crossover rate is as follows:

$$
x^{*}\left(\pi^{*}, l^{*}\right)=\left\{\begin{array}{lr}
l_{\pi_{j}}^{i}, & \text { if } r_{\pi_{j}}^{i} \leq C R[i] \tag{H-17}\\
l_{\pi_{j}}^{k}, & \text { otherwise }
\end{array} \quad j=1, \ldots, N\right.
$$

where $r_{\pi_{j}}^{i}$ is generated as a random number that is distributed as Uniform $(0,1)$. Also, the probability of crossover that is $C R[i]$ is derived as $\operatorname{Normal}(0.5,0.1)$. If x^{i} is dominated by x^{*}, then x^{i} is replaced by x^{*} in the population and the archive set Ω is updated. The procedure is followed for all individuals.

Then, a mutation strategy is applied for the speed levels of jobs of each individual x^{i}, after the crossover local search. The strategy is as follows:

$$
x^{i}\left(\pi_{j}^{i}, l_{\pi_{j}}^{i}\right)=\left\{\begin{array}{lr}
l_{\pi_{j}}^{i}=\operatorname{rand}() \% 3, & \text { if } r_{\pi_{j}}^{i} \leq M R[i] \tag{H-18}\\
l_{\pi_{j},}^{i} & \text { otherwise }
\end{array} \quad j=1, \ldots, N,\right.
$$

where $r_{\pi_{j}}^{i}$ is generated as a random number that is distributed as $\operatorname{Uniform}(0,1)$. Also, the probability of mutation that is $M R[i]$ is derived as $\operatorname{Normal}(0.05,0.01)$.

5.3. Multi-Objective Genetic Algorithm (MO-GA)

Multi-objective genetic algorithm employs only crossover and mutation strategies. In this algorithm, a two-cut PTL crossover operator as proposed by Pan et al. (2008) is applied to each individual through random selection of another individual from the population by considering the speed levels, as well. If the current individual x^{i} is dominated by the generated offspring x^{*}, then the offspring x^{*} substitutes x^{i} and the archive set Ω is updated. After that, the mutation for the speed levels as it is explained in Equation (H-18) is applied. That is, an individual is selected randomly for each individual and two-cut PTL crossover operator is used. If the new offspring x^{*} domintas the individual x^{i} it is substituted by the x^{i} and the archive set Ω is updated. At the end, the population is mutated by Equation (H-18). It is significant to express that in MO-GA, insertion local search (Figure 5.5.) and speed crossover (Equation (H-17)) are not implemented whereas these two strategies are implemented in MO-GALS.

5.4. Multi-Objective Genetic Algorithm with a Local Search (MO-GALS)

Multi-objective genetic algorithm with a local search (MO-GALS) is a variant of MO-GA where insertion local search as proposed in Figure 5.3. and crossover local search as provided in Equation (H-17) are additively used on the speed levels. Namely, an individual is selected randomly for each individual and two-cut PTL crossover operator is used. If the new offspring x^{*} domintas the individual x^{i}, it is substituted by the x_{i} and the archive set Ω is updated. At the end, the population is mutated by Equation (H-18). Particularly, an insertion local search (Figure 5.5.) and speed crossover (Equation H-17) are implemented in MO-GA.

CHAPTER 6

COMPUTATIONAL RESULTS FOR BI-OBJECTIVE NO-WAIT PERMUTATION FLOWSHOP SCHEDULING PROBLEMS

A comprehensive computational analysis is carried out on PFSP benchmark instances of Taillard (1993) to evaluate the performance of the algorithms. Initially, since solving NWPFSP is computationally hard, 30 small size instances with 10 instances of each $5 \times 5,5 \times 10$ and 5×20 set are truncated from 20x5, 20x10 and 20×20 instances. Here, the first number specifies the number of jobs and second number specifies the number of machines in this representation. For $\left(F_{m}|n w t| C_{\max }, T E C\right)$ and ($F_{m}|n w t| \sum C_{i M}, T E C$) problems, the truncation does not affect the objective function analysis, thus only the first five jobs are cropped from 20x5, 20x10 and 20×20 instances and the $5 \times 5,5 \times 10$, and 5×20 sets are obtained. However, for ($\left.F_{m}|n w t| \sum T_{i}, T E C\right)$ problem, the truncation is very important since each job's tardiness will affect the total tardiness at the end. Therefore, while truncating the jobs, theirs due dates also needs to be truncated somehow. So, an analysis is provided for the truncation of small sized instances for $\left(F_{m}|n w t| \sum T_{i}, T E C\right)$ problem and it is already presented in Section 4.2.3.

The speed levels are used as $L=\{1$ (fast), 2(normal), 3(slow) $\}$. Then, the speed factor and conversion factor for processing speed levels are approved as $s_{l}=\{1.2,1.0,0.8\}$ and $\lambda_{l}=\{1.5,1.0,0.6\}$, respectively. Also, the conversion factor for idle time and the power of machines are 0.05 and 60 kW , respectively. All these parameters for the energy efficient scheduling are taken from Mansouri et al. (2016). The mathematical model formulation is coded with the augmented ε-constraint method by using the epsilon value as 10^{-2} (Mavrotas, 2009) and all instances are run in IBM ILOG CPLEX 12.6.3 on a Core i7, $2.60 \mathrm{GHz}, 8 \mathrm{~GB}$ RAM computer in Windows operating system.

After the analysis on small size instances, the larger instances are processed. However, due to the computational difficulty of CPLEX in larger instances, the proposed metaheuristic algorithms are studied on the larger instances which are the first 110 instances of Taillard (1993) for PFSP with 10 instances of each 20x5, 20x10, $20 \times 20,50 \times 5,50 \times 10,50 \times 20,100 \times 5,100 \times 10,100 \times 20,200 \times 10$ and 200x20. The MODABC, MO-GA and MO-GALS algorithms are coded in C++ programming language
on Microsoft Visual Studio 2013. All large instances are solved on a Core i5, 3.20 $\mathrm{GHz}, 8 \mathrm{~GB}$ RAM computer. For each instance, 10 replications are carried out. In each replication, the algorithms are run for 25 nm milliseconds for small instances and 50 nm milliseconds for larger instances, where n is the number of jobs and m is the number of machines.

To test the performance of MO-DABC, MO-GA and MO-GALS algorithms with CPLEX in small sized instances, three performance measures are used:
(i) ratio of the Pareto-optimal solutions found: $R_{p_{A}}=|A \cap P| /|P|$,
(ii) inverted generational distance: $I G D_{A}=\sum_{v \in P} d(v, A) /|P|$, where the minimum Euclidean distance between two solutions is denoted as $d(v, A)$ (Coello et al. 2002).
*If the IGD value is low, it means that set A is very close to set P.
(iii) distribution spacing: $D S_{A}=\left[\frac{1}{|A|} \sum_{i \in A}\left(d_{i}-\bar{d}\right)^{2}\right]^{1 / 2} / \bar{d}$ (Tan et al. 2006). *If the distribution spacing value is low, it means that the solutions in M are evenly scattered.

Note that the set A refers to the non-dominated solution set of the heuristic algorithms (MO-DABC, MO-GA or MO-GALS). However, to distinguish the algorithms, the sets X, Y, and Z are defined for the non-dominated solution set of the MO-DABC, MO-GA and MO-GALS algorithms, respectively. Also, P refers to pareto optimal set.

To test the performance of algorithms with each other in larger instances, three performance measures are used:
(i) cardinality of non-dominated solutions: $|H|$
(ii) coverage of two sets: $C(T, H)=|\{h \in H ; \exists t \in T: t \geqslant h\}| /|H|$ where $C(T, H)$ equals to 1 , if some solutions of T weakly dominate all solutions of H (Zitzler et al. 1999).
(iii) distribution spacing: $D S_{H}=\left[\frac{1}{|H|} \sum_{i \in H}\left(d_{i}-\bar{d}\right)^{2}\right]^{1 / 2} / \bar{d}$ (Tan et al. 2006).

Note that T and H refer to the non-dominated solution set of the heuristic algorithms (MO-DABC, MO-GA or MO-GALS).

6.1. Computational Results for Bi-Objective No-Wait Permutation Flowshop
 Scheduling Problem with Minimizing Makespan and Total Energy Consumption

The three multi-objective algorithms are studied on of small instances for $\left(F_{m}|n w t| C_{\max }, T E C\right)$ problem and the averages are represented in Table 6.1. The performance of algorithms on each instance is represented in Appendix D (Table D.1.) Note that, the small size instances for ($F_{m}|n w t| C_{\max }, T E C$) are cropped only truncating the first 5 jobs of the set of $20 \times 5,20 \times 10,20 \times 20$ instances.

Table 6.1. Comparison of $\operatorname{MO}-\mathrm{DABC}(\mathrm{X}), \mathrm{MO}-\mathrm{GA}(\mathrm{Y})$ and $\mathrm{MO}-\mathrm{GALS}(\mathrm{Z})$ with CPLEX on Small Sized Instances for ($F_{m}|n w t| C_{\max }, T E C$) When Population Size is 30.

	MO-DABC			MO-GA			MO-GALS		
Instance									
Set	$\boldsymbol{R}_{\boldsymbol{p}_{X}}$	$I G D_{X}$	DS ${ }_{X}$	$\boldsymbol{R}_{\boldsymbol{p}_{Y}}$	$I G D_{Y}$	DS S_{Y}	$\boldsymbol{R}_{\boldsymbol{p}_{\text {Z }}}$	$I_{G D}{ }_{Z}$	DS ${ }_{\text {Z }}$
5x5	1.000	0.000	0.623	1.000	0.000	0.623	1.000	0.000	0.623
5x10	1.000	0.000	0.817	1.000	0.000	0.817	1.000	0.000	0.817
5x20	1.000	0.000	0.835	1.000	0.000	0.835	1.000	0.000	0.835
Average	1.000	0.000	0.758	1.000	0.000	0.758	1.000	0.000	0.758

It is seen that MO-DABC, MO-GA and MO-GALS algorithms detects 100% of the Pareto-optimal set that is created by MILP and CP models with the implementation of augmented ε-constraint method. Also, the inverted generational distance is 0 . Moreover, the distribution spacing is low which indicates that the solutions in set of solutions found by MO-DABC, MO-GA and MO-GALS algorithms are uniformly distributed.

Then, the proposed algorithms are run on the large instances and the averages for each set of instances are reported in Tables 6.2 and 6.3.

Table 6.2. Comparison of MO-DABC, MO-GA and MO-GALS on Larger Instances in terms of Cardinality and Distribution Spacing for ($\left.F_{m}|n w t| C_{\max }, T E C\right)$ When Population Size is 30 .

Instance Set	$\mid \boldsymbol{X}$ \|	$\|\boldsymbol{Y}\|$	\| \mathbf{Z}	${ }^{D} S_{X}$	$\mathrm{DS}_{\boldsymbol{Y}}$	$D S_{Z}$
20x5	76.80	45.60	74.00	0.799	0.959	0.782
20x10	67.90	27.00	57.90	0.856	1.294	0.925
20x20	53.70	13.70	46.10	0.972	1.663	0.907
50x5	103.20	32.70	81.70	1.211	2.344	1.105
50x10	76.00	15.50	47.30	1.336	2.414	1.097
50x20	49.60	6.60	24.90	1.092	1.688	1.452
100×5	87.10	39.30	62.20	3.824	3.461	3.316
100×10	65.30	15.80	38.20	1.473	2.844	2.181
100x20	45.90	6.30	15.40	1.177	1.436	2.634
200x10	76.80	19.10	16.50	1.647	3.337	3.406
200x 20	49.50	6.60	13.00	1.185	1.410	2.672
Average	68.30	20.70	43.40	1.420	2.080	1.860

According to the Table 6.2., MO-DABC finds nearly 3.30 and 1.57 times as many non-dominated solutions than MO-GA and MO-GALS, respectively. Furthermore, lower distribution spacing values indicates uniformly distributed set of solutions so that MO-DABC performs better on terms of this metric.

Table 6.3. Comparison of MO-DABC, MO-GA and MO-GALS on Larger Instances in terms of Coverage for $\left(F_{m}|n w t| C_{\max }, T E C\right)$ When Population Size is 30 .

Instance Set	$\boldsymbol{C}(\boldsymbol{X}, \boldsymbol{Y})$	$\boldsymbol{C}(\boldsymbol{Y}, \boldsymbol{X})$	$\boldsymbol{C}(\boldsymbol{X}, \boldsymbol{Z})$	$\boldsymbol{C}(\boldsymbol{Z}, \boldsymbol{X})$	$\boldsymbol{C}(\boldsymbol{Y}, \boldsymbol{Z})$	$\boldsymbol{C}(\boldsymbol{Z}, \boldsymbol{Y})$
$\mathbf{2 0 x 5}$	0.887	0.089	0.437	0.544	0.078	0.909
$\mathbf{2 0 x} \mathbf{1 0}$	0.991	0.035	0.584	0.444	0.053	0.982
$\mathbf{2 0 x 2 0}$	1.000	0.025	0.573	0.420	0.040	1.000
$\mathbf{5 0 x 5}$	0.939	0.037	0.638	0.258	0.066	0.936
$\mathbf{5 0 x 1 0}$	0.841	0.063	0.609	0.223	0.099	0.819
$\mathbf{5 0 x 2 0}$	0.957	0.058	0.645	0.172	0.118	0.953
$\mathbf{1 0 0 x 5}$	0.620	0.079	0.619	0.202	0.206	0.535
$\mathbf{1 0 0 x} \mathbf{1 0}$	0.543	0.056	0.560	0.224	0.176	0.437
$\mathbf{1 0 0 x} \mathbf{2 0}$	0.755	0.013	0.712	0.170	0.055	0.685
$\mathbf{2 0 0 x} \mathbf{1 0}$	0.356	0.026	0.784	0.060	0.149	0.193
$\mathbf{2 0 0 \times 2 0}$	0.603	0.007	0.763	0.099	0.071	0.531
$\mathbf{A v e r a g e}$	$\mathbf{0 . 7 7 0}$	$\mathbf{0 . 0 4 0}$	$\mathbf{0 . 6 3 0}$	$\mathbf{0 . 2 6 0}$	$\mathbf{0 . 1 0 0}$	$\mathbf{0 . 7 3 0}$

One important point is that MO-DABC perform prior with respect to the coverage metric because 77% of the solutions of MOGA are weakly dominated by some solutions of MO-DABC. Also, some solutions of MO-DABC dominates the 63% of the solutions of MOGALS. As a result, MO-DABC performs much better than two other algorithms in terms of both quality and cardinality of non-dominated solutions sets.

Besides, to analyze the effect of population size on the MO-DABC algorithm, population size is taken as 10 and all analyses are repeated, and the results are reported in Tables 6.4 and 6.5. All algorithms find the same pareto optimal set for small size instances with the situation when the population size is 30 . Then, the further analysis become meaningful.

Table 6.4. Comparison of MO-DABC, MO-GA and MO-GALS on Larger Instances in terms of Cardinality and Distribution Spacing for $\left(F_{m}|n w t| C_{\max }, T E C\right)$ When Population Size is 10 .

Instance Set	$\|\boldsymbol{X}\|$	$\|Y\|$	$\|Z\|$	$\boldsymbol{D S}_{\boldsymbol{X}}$	${ }^{D} S_{Y}$	DS ${ }_{\text {Z }}$
20x5	85.10	42.00	80.70	0.787	0.987	0.845
20x10	67.60	24.60	54.40	0.883	1.426	0.924
20x20	54.50	12.30	43.00	0.901	1.643	1.094
50x5	121.70	31.90	88.60	1.121	1.795	1.094
50x10	81.90	14.10	52.70	1.320	2.219	1.206
50x20	55.40	6.50	29.20	1.112	1.593	1.282
100x5	87.00	33.50	96.10	3.935	3.133	3.504
100×10	61.70	14.40	59.50	1.372	2.611	2.117
100x20	42.00	4.90	25.80	1.220	1.012	3.148
200x10	64.30	16.80	33.00	1.838	2.858	3.546
200x20	42.80	8.30	18.70	1.755	1.775	2.905
Average	69.50	19.00	52.90	1.477	1.914	1.970

According to the Table 6.4., MO-DABC finds nearly 3.66 and 1.31 times as many non-dominated solutions than MOGA and MOGALS, respectively. Furthermore, lower distribution spacing values indicates uniformly distributed set of solutions therefore MO-DABC's performance is much better in terms of these metrices.

Table 6.5. Comparison of MO-DABC, MO-GA and MO-GALS on Larger Instances in terms of Coverage for $\left(F_{m}|n w t| C_{\max }, T E C\right)$ When Population Size is 10 .

Instance Set	$\boldsymbol{C}(\boldsymbol{X}, \boldsymbol{Y})$	$\boldsymbol{C}(\boldsymbol{Y}, \boldsymbol{X})$	$\boldsymbol{C}(\boldsymbol{X}, \boldsymbol{Z})$	$\boldsymbol{C}(\boldsymbol{Z}, \boldsymbol{X})$	$\boldsymbol{C}(\boldsymbol{Y}, \boldsymbol{Z})$	$\boldsymbol{C}(\boldsymbol{Z}, \boldsymbol{Y})$
$\mathbf{2 0 x 5}$	0.974	0.041	0.488	0.525	0.037	0.967
$\mathbf{2 0 x 1 0}$	1.000	0.025	0.604	0.425	0.045	0.992
$\mathbf{2 0 x 2 0}$	1.000	0.025	0.602	0.338	0.043	1.000
$\mathbf{5 0 x 5}$	0.976	0.032	0.627	0.304	0.050	0.940
$\mathbf{5 0 x} \mathbf{1 0}$	0.951	0.036	0.666	0.174	0.091	0.908
$\mathbf{5 0 x} \mathbf{x 0}$	0.986	0.053	0.641	0.198	0.103	0.945
$\mathbf{1 0 0 x 5}$	0.657	0.063	0.464	0.224	0.165	0.744
$\mathbf{1 0 0 x} \mathbf{1 0}$	0.556	0.049	0.560	0.192	0.150	0.653
$\mathbf{1 0 0 \times 2 0}$	0.807	0.073	0.403	0.233	0.139	0.835
$\mathbf{2 0 0 x} \mathbf{x 1 0}$	0.316	0.045	0.689	0.117	0.113	0.274
$\mathbf{2 0 0 x} \mathbf{2 0}$	0.531	0.069	0.654	0.116	0.193	0.529
Average	$\mathbf{0 . 8 0 0}$	$\mathbf{0 . 0 5 0}$	$\mathbf{0 . 5 8 0}$	$\mathbf{0 . 2 6 0}$	$\mathbf{0 . 1 0 0}$	$\mathbf{0 . 8 0 0}$

Significantly, when population size becomes 10, MO-DABC again performs better with respect to the coverage metric because some solutions of MO-DABC dominates 80% of the solutions of MO-GA. Also, 58% of the solutions of MOGALS are weakly dominated by some solutions of MO-DABC. Therefore, there is a small increase in coverage of MO-GA, but there is a decrease in coverage of MO-GALS.

In conclusion, when the population size is taken as 10 , the performance of MODABC algorithm gets better over MO-GA, while the coverage behavior over MOGALS decreases slightly.

6.2. Computational Results for Bi-Objective No-Wait Permutation Flowshop Scheduling Problem with Minimizing Total Flow Time and Total Energy Consumption

The three multi-objective algorithms are studied on of small instances for $\left(F_{m}|n w t| \sum C_{i M}, T E C\right)$ problem and the averages are represented in Table 6.6. Note that, the small size instances for $\left(F_{m}|n w t| \sum C_{i M}, T E C\right)$ are cropped only truncating the first 5 jobs of the set of $20 \times 5,20 \times 10$ and 20×20 instances.

Table 6.6. Comparison of MO-DABC, MO-GA and MO-GALS with CPLEX on Small Sized Instances for ($F_{m}|n w t| \sum C_{i M}, T E C$) When Population Size is 30 .

	DABC			MOGA			MOGALS		
Instance									
Set	$\boldsymbol{R}_{\boldsymbol{p}_{X}}$	$I G D_{X}$	DS $\boldsymbol{S}_{\boldsymbol{X}}$	$\boldsymbol{R}_{p_{Y}}$	$I G D_{Y}$	DS ${ }_{Y}$	$\boldsymbol{R}_{\boldsymbol{p}_{Z}}$	$\underline{I G D}{ }_{Z}$	$D S_{Z}$
5x5	1.000	0.000	0.810	1.000	0.000	0.810	1.000	0.000	0.810
5×10	1.000	0.000	0.777	1.000	0.000	0.777	1.000	0.000	0.777
5×20	0.997	0.196	0.741	1.000	0.000	0.741	1.000	0.000	0.741
Average	0.999	0.065	0.776	1.000	0.000	0.776	1.000	0.000	0.776

It is seen that the DABC algorithm detects on the average 99.9% of the Paretooptimal set. The average IGD value is 0.065 indicating that very close approximations to the Pareto-optimal set are found by MO-DABC. There is only one point in one instance that is $5 \times 20 _03$ in which the algorithm did not found the one point from the Pareto-optimal. Also, the distribution spacing is low which indicates that the solutions in set of solutions found by MO-DABC are uniformly distributed. Hence, MO-DABC performs superior performance since it finds 99.9% of the solution in Pareto-optimal set. Both MOGA and MOGALS algorithms show the same results.

Later, the proposed algorithms are run on the large instances and the averages for each set of instances are reported in Tables 6.7 and 6.8.

Table 6.7. Comparison of MO-DABC, MO-GA and MO-GALS on Larger Instances in terms of Cardinality and Distribution Spacing for $\left(F_{m}|n w t| \sum C_{i M}, T E C\right)$ When Population Size is 30 .

Instance Set	$\|\boldsymbol{X}\|$	$\|\boldsymbol{Y}\|$	$\|\boldsymbol{Z}\|$	DS ${ }_{X}$	DS_{Y}	$D S_{Z}$
20x5	104.60	55.90	96.60	0.897	1.217	0.929
20x10	97.80	39.20	90.40	0.826	0.887	0.922
20x20	102.10	29.90	80.90	0.825	0.799	0.933
50x5	123.50	44.10	100.10	1.285	1.173	1.590
50x10	119.30	27.00	74.90	1.226	1.132	1.619
50x20	101.30	15.70	45.50	1.245	1.276	1.737
100×5	94.70	39.00	77.50	2.628	1.110	2.221
100x10	85.40	20.10	51.90	1.702	1.206	2.409
100×20	74.00	12.60	30.10	1.292	1.400	1.882
200x10	96.60	20.50	29.90	1.569	1.385	1.989
200x20	72.50	11.90	19.50	1.482	1.209	1.577
Average	97.44	28.72	63.39	1.360	1.160	1.620

According to Table 6.7., MO-DABC finds nearly 3.39 and 1.53 times as many non-dominated solutions than MO-GA and MO-GALS, respectively. Furthermore, all algorithms have low distribution spacing values which means that they find the uniformly distributed points.

Table 6.8. Comparison of MO-DABC, MO-GA and MO-GALS on Larger Instances in terms of Coverage for $\left(F_{m}|n w t| \sum C_{i M}, T E C\right)$ When Population Size is 30 .

Instance Set	$\boldsymbol{C}(\boldsymbol{X}, \boldsymbol{Y})$	$\boldsymbol{C}(\boldsymbol{Y}, \boldsymbol{X})$	$\boldsymbol{C}(\boldsymbol{X}, \boldsymbol{Z})$	$\boldsymbol{C}(\boldsymbol{Z}, \boldsymbol{X})$	$\boldsymbol{C}(\boldsymbol{Y}, \boldsymbol{Z})$	$\boldsymbol{C}(\boldsymbol{Z}, \boldsymbol{Y})$
$\mathbf{2 0 x 5}$	0.978	0.033	0.430	0.537	0.028	0.970
$\mathbf{2 0 x 1 0}$	0.998	0.020	0.577	0.386	0.024	0.987
$\mathbf{2 0 x 2 0}$	0.996	0.016	0.663	0.340	0.024	0.992
$\mathbf{5 0 x 5}$	0.958	0.052	0.788	0.140	0.097	0.914
$\mathbf{5 0 x 1 0}$	0.993	0.030	0.912	0.059	0.122	0.931
$\mathbf{5 0 x 2 0}$	0.995	0.040	0.828	0.103	0.159	0.949
$\mathbf{1 0 0 x 5}$	0.753	0.043	0.735	0.113	0.221	0.667
$\mathbf{1 0 0 x} \mathbf{x 0}$	0.697	0.052	0.807	0.075	0.326	0.596
$\mathbf{1 0 0 x} \mathbf{2 0}$	0.760	0.068	0.794	0.118	0.222	0.812
$\mathbf{2 0 0 x} \mathbf{x 0}$	0.652	0.029	0.899	0.040	0.219	0.385
$\mathbf{2 0 0 x} \mathbf{2 0}$	0.619	0.039	0.865	0.076	0.124	0.383
Average	$\mathbf{0 . 8 5 0}$	$\mathbf{0 . 0 4 0}$	$\mathbf{0 . 7 5 0}$	$\mathbf{0 . 1 8 0}$	$\mathbf{0 . 1 4 0}$	$\mathbf{0 . 7 8 0}$

In addition, MO-DABC perform prior in terms of the coverage metric because 85% of the solutions of MOGA are weakly dominated by some solutions of MODABC. Also, some solutions of MO-DABC dominates the 75% of the solutions of MOGALS. As a result, MO-DABC performs much better than two other algorithms in terms of both quality and cardinality of non-dominated solutions sets.

Additively, population size is taken as 10 to measure the effect of population size and all analyses are repeated, and the results are reported in Table 6.9. and 6.10. All algorithms find the same pareto optimal set for small sized instances with the situation when the population size is 30 . Then, the further analysis become meaningful.

Table 6.9. Comparison of MO-DABC, MO-GA and MO-GALS on Larger Instances in terms of Cardinality and Distribution Spacing for $\left(F_{m}|n w t| \sum C_{i M}, T E C\right)$ When Population Size is 10 .

Instance Set	$\|X\|$	$\|Y\|$	\| ${ }^{\text {\| }}$	DS ${ }_{X}$	DS ${ }_{Y}$	$D S_{Z}$
20x5	152.80	56.60	90.80	1.072	1.096	1.074
20×10	137.50	47.90	82.00	0.968	0.947	0.858
20x20	138.70	35.10	76.70	1.013	0.722	0.986
50x5	220.60	55.20	113.40	1.465	1.198	1.464
50x10	232.60	25.00	78.70	1.407	0.944	1.298
50x20	201.50	12.60	48.80	1.274	0.894	1.551
100×5	140.00	36.00	111.50	1.735	1.235	2.102
100x10	98.90	20.10	75.60	1.503	1.450	2.165
100×20	77.90	11.60	39.90	1.699	1.453	1.571
200x10	77.50	20.40	54.20	1.843	1.385	3.120
200x20	62.60	14.10	29.80	1.738	1.176	1.695
Average	140.05	30.42	72.85	1.429	1.136	1.626

Table 6.10. Comparison of MO-DABC, MO-GA and MO-GALS on Larger Instances in terms of Coverage for $\left(F_{m}|n w t| \sum C_{i M}, T E C\right)$ When Population Size is 10.

Instance Set	$\boldsymbol{C}(\boldsymbol{X}, \boldsymbol{Y})$	$\boldsymbol{C}(\boldsymbol{Y}, \boldsymbol{X})$	$\boldsymbol{C}(\boldsymbol{X}, \boldsymbol{Z})$	$\boldsymbol{C}(\boldsymbol{Z}, \boldsymbol{X})$	$\boldsymbol{C}(\boldsymbol{Y}, \boldsymbol{Z})$	$\boldsymbol{C}(\boldsymbol{Z}, \boldsymbol{Y})$
$\mathbf{2 0 x 5}$	1.000	0.000	0.872	0.072	0.011	0.975
$\mathbf{2 0 x 1 0}$	1.000	0.000	0.920	0.046	0.000	0.998
$\mathbf{2 0 x 2 0}$	1.000	0.000	0.892	0.076	0.003	0.991
$\mathbf{5 0 x 5}$	1.000	0.000	1.000	0.000	0.318	0.615
$\mathbf{5 0 x 1 0}$	1.000	0.000	1.000	0.000	0.089	0.916
$\mathbf{5 0 x 2 0}$	1.000	0.000	1.000	0.000	0.062	0.924
$\mathbf{1 0 0 x 5}$	0.979	0.023	0.844	0.037	0.119	0.913
$\mathbf{1 0 0 x} \mathbf{1 0}$	0.814	0.044	0.837	0.057	0.189	0.763
$\mathbf{1 0 0 x} \mathbf{2 0}$	0.966	0.048	0.842	0.088	0.158	0.963
$\mathbf{2 0 0 x} \mathbf{1 0}$	0.596	0.036	0.826	0.063	0.214	0.502
200x20	0.730	0.063	0.847	0.084	0.192	0.620
Average	$\mathbf{0 . 9 1 7}$	$\mathbf{0 . 0 1 9}$	$\mathbf{0 . 8 9 8}$	$\mathbf{0 . 0 4 8}$	$\mathbf{0 . 1 2 3}$	$\mathbf{0 . 8 3 5}$

According to Tables 6.9. and 6.10., MO-DABC finds nearly 4.60 and 1.92 times as many non-dominated solutions than MO-GA and MO-GALS, respectively. One important point is that MO-DABC is much better with respect to the coverage metric because 91.70% of the solutions of MO-GA are weakly dominated by some solutions of DABC. Also, 89.80% of the solutions of MO-GALS are weakly dominated by some solutions of MO-DABC. However, distribution spacing indicates that MO-GA is distributed more uniformly than the solutions of MO-DABC and MO-GALS. As a results, MO-DABC performs much better than two other algorithms in terms of both quality and cardinality of non-dominated solutions sets.

To sum up, when the population size is taken as 10 , the performance of MODABC algorithm improves over MO-GA and MO-GALS algorithms.

6.3. Computational Results for Bi-Objective No-Wait Permutation Flowshop
 Scheduling Problem with Minimizing Total Tardiness and Total Energy Consumption

The three multi-objective algorithms are studied on of small instances for ($F_{m}|n w t| \sum T_{i}, T E C$) problem and the averages for each instance set are represented in Table 6.11. Note that, the small size instances for $\left(F_{m}|n w t| \sum T_{i}, T E C\right)$ are obtained by the truncation method that is mentioned in Section 4.2.3. Also, the truncated instances are provided in Appendix D (Table D.1.).

Table 6.11. Comparison of MO-DABC, MO-GA and MO-GALS with CPLEX on Small Sized Instances for $\left(F_{m}|n w t| \sum T_{i}, T E C\right)$ When Population Size is 30 .

	DABC			MOGA			MOGALS		
Instance									
Set	$\boldsymbol{R}_{p_{X}}$	$I G D_{X}$	DS \boldsymbol{S}_{X}	$\boldsymbol{R}_{p_{Y}}$	$I G D_{Y}$	$D S_{Y}$	$\boldsymbol{R}_{\boldsymbol{p}_{Z}}$	$I G D_{Z}$	DS $\boldsymbol{Z}_{\text {Z }}$
5x5	1.000	0.000	0.791	1.000	0.000	0.791	1.000	0.000	0.791
5x10	1.000	0.000	0.570	1.000	0.000	0.570	1.000	0.000	0.570
5x20	1.000	0.000	0.565	1.000	0.000	0.565	1.000	0.000	0.565
Average	1.000	0.000	0.642	1.000	0.000	0.642	1.000	0.000	0.642

It is seen that MO-DABC, MO-GA and MO-GALS algorithms detects 100\% of the Pareto-optimal set that is created by MILP and CP models with the implementation of augmented ε-constraint method. Also, there is no any inverted
generational distance which is 0 . Also, the distribution spacing is low which indicates that the solutions in set of solutions found by MO-DABC, MO-GA and MO-GALS algorithms are uniformly distributed.

Next, the all proposed algorithms are runned on the large instances and the averages for each set of instances are reported in Tables 6.12 and 6.13.

Table 6.12. Comparison of MO-DABC, MO-GA and MO-GALS on Larger Instances in terms of Cardinality and Distribution Spacing for ($F_{m}|n w t| \sum T_{i}, T E C$)

When Population Size is 30 .

Instance Set	$\|\boldsymbol{X}\|$	$\|\boldsymbol{Y}\|$	$\|\boldsymbol{Z}\|$	$\boldsymbol{D S}_{\boldsymbol{X}}$	$\boldsymbol{D S}_{\boldsymbol{Y}}$	$\boldsymbol{D S}_{\boldsymbol{Z}}$
$\mathbf{2 0 x 5}$	109.50	53.30	103.30	1.121	1.176	1.254
$\mathbf{2 0 x 1 0}$	94.90	43.00	80.40	1.239	1.394	1.343
$\mathbf{2 0 x} \mathbf{2 0}$	73.90	27.20	59.90	1.194	1.399	1.267
$\mathbf{5 0 x 5}$	144.30	44.60	118.80	1.545	0.984	1.859
$\mathbf{5 0 x 1 0}$	130.50	24.80	122.90	1.573	1.124	1.905
$\mathbf{5 0 x 2 0}$	120.80	12.40	104.40	1.547	1.389	1.258
$\mathbf{1 0 0 x 5}$	114.60	40.10	91.10	2.814	1.082	2.595
$\mathbf{1 0 0 x 1 0}$	104.00	21.60	67.00	1.768	1.141	2.719
$\mathbf{1 0 0 x} \mathbf{2 0}$	94.10	12.10	66.80	1.763	1.670	1.934
$\mathbf{2 0 0 x 1 0}$	126.60	12.20	99.00	1.856	1.085	3.274
$\mathbf{2 0 0 x} \mathbf{2 0}$	116.30	12.80	90.40	1.766	1.223	2.288
Average	$\mathbf{1 1 1 . 8 0}$	$\mathbf{2 7 . 6 0}$	$\mathbf{9 1 . 3 0}$	$\mathbf{1 . 6 5 3}$	$\mathbf{1 . 2 4 2}$	$\mathbf{1 . 9 7 3}$

According to Table 6.12., MO-DABC finds nearly 4.05 and 1.22 times as many non-dominated solutions than MOGA and MOGALS, respectively. Furthermore, lower distribution spacing values indicates uniformly distributed set of solutions so that all algorithms perform good in terms of this metric.

Table 6.13. Comparison of MO-DABC, MO-GA and MO-GALS on Larger Instances in terms of Coverage for ($F_{m}|n w t| \sum T_{i}, T E C$) When Population Size is 30 .

Instance Set	$\boldsymbol{C}(\boldsymbol{X}, \boldsymbol{Y})$	$\boldsymbol{C}(\boldsymbol{Y}, \boldsymbol{X})$	$\boldsymbol{C}(\boldsymbol{X}, \boldsymbol{Z})$	$\boldsymbol{C}(\boldsymbol{Z}, \boldsymbol{X})$	$\boldsymbol{C}(\boldsymbol{Y}, \boldsymbol{Z})$	$\boldsymbol{C}(\boldsymbol{Z}, \boldsymbol{Y})$
$\mathbf{2 0 x 5}$	0.949	0.038	0.392	0.566	0.035	0.949
$\mathbf{2 0 x 1 0}$	0.953	0.035	0.343	0.652	0.024	0.976
$\mathbf{2 0 x 2 0}$	0.988	0.008	0.432	0.573	0.000	1.000
$\mathbf{5 0 x 5}$	0.957	0.035	0.525	0.387	0.074	0.894
$\mathbf{5 0 x 1 0}$	0.962	0.029	0.505	0.345	0.065	0.919
$\mathbf{5 0 x 2 0}$	0.959	0.021	0.467	0.437	0.041	0.943
$\mathbf{1 0 0 x 5}$	0.700	0.007	0.888	0.038	0.114	0.665
$\mathbf{1 0 0 x} \mathbf{x 1 0}$	0.625	0.012	0.729	0.102	0.121	0.585
$\mathbf{1 0 0 x} \mathbf{2 0}$	0.786	0.024	0.773	0.103	0.122	0.551
200x10	0.571	0.004	0.753	0.050	0.054	0.477
200x20	0.608	0.034	0.658	0.255	0.088	0.347
Average	$\mathbf{0 . 8 2 0}$	$\mathbf{0 . 0 2 0}$	$\mathbf{0 . 5 9 0}$	$\mathbf{0 . 3 2 0}$	$\mathbf{0 . 0 7 0}$	$\mathbf{0 . 7 6 0}$

It is significant to mention that the performance of MO-DABC is superior regarding the coverage metric since 82% of the solutions of MO-GA are weakly dominated by some solutions of MO-DABC. Also, some solutions of MO-DABC dominates the 59% of the solutions of MO-GALS. In brief, MO-DABC performs much better than two other algorithms in terms of both quality and cardinality of nondominated solutions sets.

Besides, to the effect of population size on the MO-DABC algorithm, population size is taken as 10 and the analyses are repeated, and the results are reported in Tables 6.14. and 6.15. All algorithms find the same pareto optimal set for small size instances with the situation when the population size is 30 . Then, the further analysis become meaningful.

Table 6.14. Comparison of MO-DABC, MO-GA and MO-GALS on Larger Instances in terms of Cardinality and Distribution Spacing for ($\left.F_{m}|n w t| \sum T_{i}, T E C\right)$ When Population Size is 10 .

Instance Set	$\|\boldsymbol{X}\|$	$\|\boldsymbol{Y}\|$	$\|\boldsymbol{Z}\|$	$\boldsymbol{D} \boldsymbol{S}_{\boldsymbol{X}}$	$\boldsymbol{D} \boldsymbol{S}_{\boldsymbol{Y}}$	$\boldsymbol{D} \boldsymbol{S}_{\boldsymbol{Z}}$
$\mathbf{2 0 x 5}$	126.80	54.80	109.50	1.130	0.871	1.361
$\mathbf{2 0 x 1 0}$	95.90	39.20	82.90	1.268	1.182	1.39
$\mathbf{2 0 x 2 0}$	70.40	23.30	70.00	1.236	1.598	1.500
$\mathbf{5 0 x 5}$	188.20	38.00	147.00	1.617	1.171	2.015
$\mathbf{5 0 x 1 0}$	190.90	23.50	158.70	1.333	1.156	1.532
$\mathbf{5 0 x 2 0}$	167.30	12.90	131.10	1.247	1.216	1.868
$\mathbf{1 0 0 x 5}$	122.70	37.00	139.90	2.215	1.367	2.428
$\mathbf{1 0 0 x} \mathbf{1 0}$	141.70	19.60	117.70	2.257	1.194	2.598
$\mathbf{1 0 0 x} \mathbf{2 0}$	116.20	12.70	105.70	1.532	1.357	1.619
$\mathbf{2 0 0 x} \mathbf{x 0}$	111.70	20.30	74.60	1.967	1.286	2.326
$\mathbf{2 0 0 x} \mathbf{2 0}$	88.20	14.50	67.00	2.231	1.195	2.429
Average	$\mathbf{1 2 9 . 1 0}$	$\mathbf{2 6 . 9 0}$	$\mathbf{1 0 9 . 5 0}$	$\mathbf{1 . 6 3 9}$	$\mathbf{1 . 2 3 6}$	$\mathbf{1 . 9 1 5}$

According to the Table 6.14., MO-DABC finds nearly 4.79 and 1.17 times as many non-dominated solutions than MO-GA and MO-GALS, respectively. Furthermore, lower distribution spacing values indicates uniformly distributed set of solutions so that all algorithms perform good in terms of this metric.

Table 6.15. Comparison of MO-DABC, MO-GA and MO-GALS on Larger Instances in terms of Coverage for $\left(F_{m}|n w t| \sum T_{i}, T E C\right)$ When Population Size is 10 .

Instance Set	$\boldsymbol{C}(\boldsymbol{X}, \boldsymbol{Y})$	$\boldsymbol{C}(\boldsymbol{Y}, \boldsymbol{X})$	$\boldsymbol{C}(\boldsymbol{X}, \boldsymbol{Z})$	$\boldsymbol{C}(\boldsymbol{Z}, \boldsymbol{X})$	$\boldsymbol{C}(\boldsymbol{Y}, \boldsymbol{Z})$	$\boldsymbol{C}(\boldsymbol{Z}, \boldsymbol{Y})$
$\mathbf{2 0 x 5}$	0.976	0.016	0.307	0.633	0.014	0.992
$\mathbf{2 0 x 1 0}$	0.997	0.001	0.480	0.482	0.003	0.995
$\mathbf{2 0 x 2 0}$	1.000	0.000	0.508	0.472	0.000	1.000
$\mathbf{5 0 x 5}$	0.976	0.031	0.490	0.384	0.063	0.914
$\mathbf{5 0 x 1 0}$	1.000	0.015	0.443	0.439	0.033	0.987
$\mathbf{5 0 x 2 0}$	1.000	0.008	0.564	0.389	0.026	0.992
$\mathbf{1 0 0 x 5}$	0.855	0.044	0.430	0.325	0.088	0.845
$\mathbf{1 0 0 x} \mathbf{x 1 0}$	0.703	0.028	0.511	0.285	0.062	0.753
$\mathbf{1 0 0 x} \mathbf{2 0}$	0.866	0.024	0.551	0.306	0.069	0.814
$\mathbf{2 0 0 x} \mathbf{1 0}$	0.543	0.008	0.792	0.086	0.104	0.464
$\mathbf{2 0 0 x} \mathbf{2 0}$	0.669	0.029	0.676	0.206	0.102	0.494
Average	$\mathbf{0 . 8 7 1}$	$\mathbf{0 . 0 1 9}$	$\mathbf{0 . 5 2 3}$	$\mathbf{0 . 3 6 4}$	$\mathbf{0 . 0 5 1}$	$\mathbf{0 . 8 4 1}$

Significantly, when population size becomes 10, MO-DABC again better with respect to the coverage metric because 87% of the solutions of MO-GA are weakly dominated by some solutions of MO-DABC. Also, 52% of the solutions of MO-GALS are weakly dominated by some solutions of MO-DABC. Therefore, there is a small increase in coverage of MO-GA, but there is a decrease in coverage of MO-GALS.

To conclude, when the population size is taken as 10 , the performance of MODABC algorithm gets better over MO-GA, while the coverage behavior over MOGALS decreases slightly. Also, from the cardinality perspective, MO-DABC is better when the population size is 10 .

6.4. A Summary of Computational Results for Bi-Objective No-Wait Permutation Flowshop Scheduling Problems

The findings of this thesis show that (when the population size is used as 10);

- For the ($\boldsymbol{F}_{\boldsymbol{m}}|\boldsymbol{n w t}| \boldsymbol{C}_{\max }$) problem:

The MO-DABC algorithm performs 3.66 times better than MOGA and 1.31 times better than MOGALS algorithm in terms of cardinality. Furthermore, lower distribution spacing values indicates uniformly distributed set of solutions therefore MO-DABC's performance is much better in terms of these metrices. More
significantly, MO-DABC performs better with respect to the coverage metric because some solutions of MO-DABC dominates 80% of the solutions of MO-GA. Also, 58% of the solutions of MOGALS are weakly dominated by some solutions of MO-DABC.

- For the ($F_{m}|n w t| \sum C_{i M}$) problem:

The MO-DABC algorithm performs 4.60 times better than MOGA and 1.92 times better than MOGALS algorithm in terms of cardinality. More significantly, MODABC performs better with respect to the coverage metric because some solutions of MO-DABC dominates 91.70% of the solutions of MO-GA. Also, 89.80% of the solutions of MOGALS are weakly dominated by some solutions of MO-DABC. However, distribution spacing indicates that MO-GA is distributed more uniformly than the solutions of MO-DABC and MO-GALS.

- For the ($F_{\boldsymbol{m}}|n w t| \sum T_{i}$) problem:

The MO-DABC algorithm performs 4.79 times better than MOGA and 1.17 times better than MOGALS algorithm in terms of cardinality. More significantly, MODABC performs better with respect to the coverage metric because some solutions of MO-DABC dominates 87% of the solutions of MO-GA. Also, 52% of the solutions of MOGALS are weakly dominated by some solutions of MO-DABC. However, distribution spacing indicates that MO-GA is distributed more uniformly than the solutions of MO-DABC and MO-GALS.

To sum up, MO-DABC finds more non-dominated solutions than MO-GA and MO-GALS in all objective functions, based on the cardinality and quality of the solution set. Namely, it is a novel multi-objective metaheuristic algorithm proposed for energy-efficient bi-objective NWPFSPs and it shows its superiority on other heuristics clearly.

CHAPTER 7

CONCLUSIONS AND FUTURE RESEARCH

In conclusion, the contribution of this thesis can be divided into three-fold: 1) single-objective NWPFSPs, 2) energy-efficient bi-objective NWPFSPs, and 3) the energy-efficient multi objective metaheuristics. After giving a brief introduction to the NWPFSPs and energy efficient scheduling methods, an extensive literature review is represented. After that, the gaps in the literature of NWPFSPs has been discussed and the resulting work is presented.

Firstly, this thesis aims to investigate a new fundamental mathematical modelling for three important single-objective NWPFSPs: $\left(F_{m}|n w t| C_{\max }\right)$ and ($F_{m}|n w t| \sum C_{i M}$) and ($F_{m}|n w t| \sum T_{i}$). To start with, MILP model formulations are proposed for all single objective problems and then CP model formulations are constructed. All the existing instances are executed, and the results are analyzed. Next, some valid inequalities are studied for $\left(F_{m}|n w t| C_{\max }\right)$ problem. At the end of this chapter, it is revealed that CP model formulation is good alternative way for the NWPFSPs. Also, it is seen that some valid inequalities are quite effective on the MILP model formulation, however, the MILP model formulation cannot be superior than CP model formulation even if it is executed with the valid inequalities for $\left(F_{m}|n w t| C_{\max }\right)$ problem

Secondly, the bi-objective NWPFSP has been studied with respect to three objectives: $\left(F_{m}|n w t| C_{\text {max }}, T E C\right),\left(F_{m}|n w t| \sum C_{i M}, T E C\right)$ and $\left(F_{m}|n w t| \sum T_{i}, T E C\right)$. The energy-efficiency concept is conducted at the operational planning level on machines means that speed scaling strategy is applied on the machines. Namely, machines can process at different speed levels such as slow, normal and fast. First, a MILP model is proposed where the Pareto optimal sets are obtained by augmented epsilon constraint method on Taillard's truncated small instances. Then, CP models are constructed which constitutes the same environment with the MILP model. CP models are also solved by augmented epsilon constraint method. In between, since the truncation is significant in tardiness criterion, an original instance truncation method for ($F_{m}|n w t| \sum T_{i}, T E C$) problem is proposed, and then those truncated instances are used in the ($F_{m}|n w t| \sum T_{i}, T E C$) problem. Hence, this thesis aims to investigate a
novel fundamental mathematical modelling for three important bi-objective NWPFSPs.

Finally, due to NP-hardness of the problems, three metaheuristics are proposed: MO-DABC, MO-GA, MO-GALS. The performance of the proposed metaheuristic algorithms is initially measured on the small sized instances to show the ability of heuristics to find non-dominated set of solutions. Three algorithms find 100% of the Pareto-optimal solutions which MILP and CP models found. Then, the larger instances are studied with only the MO-DABC, MO-GA, MO-GALS algorithms, since the problem is NP-Hard to run CPLEX on larger instances. The performance of the algorithms are measured in terms of both quality and cardinality. Hence, based on the comparative computational analyses, the proposed novel MO-DABC is a significantly a beneficial algorithm with respect to all objective function criterions.

For future research, speed scaling strategy can be studied in terms of matrix representation with the adaptation of MILP and CP models and heuristics. In that way the different speed level usage for jobs can be applicable. An important future research direction is to develop lower bounds for the objective functions. This is very critical to improve the efficiency of the proposed algorithms. Also, some other bi-objective metaheuristics might be performed to increase the performance of the algorithms. Furthermore, different performance metrics might be used to measure the quality of the solutions. The last but not the least, different objective functions such as maximum earliness, maximum lateness, number of tardy jobs, etc. can be employed within the framework of energy efficient scheduling.

REFERENCES

Akhshabi, M., Tavakkoli-Moghaddam, R., \& Rahnamay-Roodposhti, F. (2014). A hybrid particle swarm optimization algorithm for a no-wait flow shop scheduling problem with the total flow time. The International Journal of Advanced Manufacturing Technology, 70(5-8), 1181-1188. https://doi.org/10.1007/s00170-013-5351-9
Aldowaisan, T., \& Allahverdi, A. (2004). New heuristics for m-machine no-wait flowshop to minimize total completion time. Omega, 32(5), 345-352. https://doi.org/10.1016/J.OMEGA.2004.01.004
Aldowaisan, T., \& Allahverdi, A. (2012). Minimizing total tardiness in no-wait flowshops. Foundations of Computing and Decision Sciences, 37(3), 149-162. https://doi.org/10.2478/v10209-011-0009-6
Aldowaisan, T., \& Allahverdi, A. (2015). No-Wait Flowshops to Minimize Total Tardiness with Setup Times. Intelligent Control and Automation, 6, 38-44. https://doi.org/10.4236/ica.2015.61005
Allahverdi, A., \& Aldowaisan, T. (2004). No-wait flowshops with bicriteria of makespan and maximum lateness. European Journal of Operational Research, 152(1), 132-147. https://doi.org/10.1016/S0377-2217(02)00646-X
Chaudhry, I. A., Elbadawi, I. A., Usman, M., Chughtai, M. T., \& Chughtai, M. T. (2018). Minimising Total Flowtime in a No-Wait Flow Shop (NWFS) using Genetic Algorithms. Ingeniería e Investigación, 38(3), 68-79. https://doi.org/10.15446/ing.investig.v38n3.75281
Coello, C. A. C., Lamont, G. B., \& Van Veldhuizen, D. A. (2002). Second Edition Evolutionary Algorithms for Solving Multi-Objective Problems.
Dai, M.; Tang, D.; Giret Boggino, AS.; Salido Gregorio, MA.; Li, W. (2013). Energy-efficient scheduling for a flexible flow-shop using improved geneticsimulated annealing algorithm. https://doi.org/10.1016/j.rcim.2013.04.001
Deb, K. (2001). Multi-objective optimization using evolutionary algorithms. John Wiley \& Sons.
Deman, J. M. V., \& Baker, K. R. (1974). Minimizing Mean Flowtime in the Flow Shop with No Intermediate Queues. A I I E Transactions, 6(1), 28-34. https://doi.org/10.1080/05695557408974929
Ding, J.-Y., Song, S., Gupta, J. N. D., Zhang, R., Chiong, R., \& Wu, C. (2015). An improved iterated greedy algorithm with a Tabu-based reconstruction strategy for the no-wait flowshop scheduling problem. Applied Soft Computing, 30, 604613. https://doi.org/10.1016/J.ASOC.2015.02.006

Fang, K., Uhan, N., Zhao, F., \& Sutherland, J. W. (2011). A new approach to scheduling in manufacturing for power consumption and carbon footprint reduction. Journal of Manufacturing Systems, 30(4), 234-240. https://doi.org/10.1016/J.JMSY.2011.08.004
Farahmand Rad, S., Ruiz, R., \& Boroojerdian, N. (2009). New High Performing Heuristics for Minimizing Makespan in Permutation Flowshops. Omega, 37(2):331-45.
Fink, A., \& Voß, S. (2003). Solving the continuous flow-shop scheduling problem by metaheuristics. European Journal of Operational Research, 151(2), 400-414. https://doi.org/10.1016/S0377-2217(02)00834-2
Gahm, C., Denz, F., Dirr, M., \& Tuma, A. (2016). Energy-efficient scheduling in
manufacturing companies: A review and research framework. European Journal of Operational Research, 248(3), 744-757. https://doi.org/10.1016/j.ejor.2015.07.017
Gao, Kai-zhou, Pan, Q., \& Li, J. (2011). Discrete harmony search algorithm for the no-wait flow shop scheduling problem with total flow time criterion. The International Journal of Advanced Manufacturing Technology, 56(5-8), 683692. https://doi.org/10.1007/s00170-011-3197-6

Gao, K.-Z., Pan, Q.-K., Li, J.-Q., Wang, Y.-T., \& Liang, J. (2012). A Hybrid Harmony Search Algorithm for the No-Wait Flow-Shop Schdeuling Problems. Asia-Pacific Journal of Operational Research, 29(02), 1250012. https://doi.org/10.1142/S0217595912500121
Gao, Kaizhou, Pan, Q., Suganthan, P. N., \& Li, J. (2013). Effective heuristics for the no-wait flow shop scheduling problem with total flow time minimization. The International Journal of Advanced Manufacturing Technology, 66(9-12), 15631572. https://doi.org/10.1007/s00170-012-4440-5

Graham, R. L., Lawler, E. L., Lenstra, J. K., \& Kan, A. H. G. R. (1979). Optimization and Approximation in Deterministic Sequencing and Scheduling: a Survey (pp. 287-326). https://doi.org/10.1016/S0167-5060(08)70356-X
Hall, N. G., \& Sriskandarajah, C. (1996). A Survey of Machine Scheduling Problems with Blocking and No-Wait in Process. Operations Research, 44(3), 510-525. https://doi.org/10.1287/opre.44.3.510
Karaboga, D., \& Basturk, B. (2008). On the performance of artificial bee colony (ABC) algorithm. Applied Soft Computing, 687-697. https://doi.org/10.1016/j.asoc.2007.05.007
Lin, S.-W., \& Ying, K.-C. (2016). Optimization of makespan for no-wait flowshop scheduling problems using efficient matheuristics. Omega, 64, 115-125. https://doi.org/10.1016/J.OMEGA.2015.12.002
Lourenco, H. R., Martin, O., \& Stuetzle, T. (2003). Iterated Local Search. International Series in Operations Research \& Management Science. Kluwer Academic Publishers.
Lu, C., Gao, L., Li, X., Pan, Q., \& Wang, Q. (2017). Energy-efficient permutation flow shop scheduling problem using a hybrid multi-objective backtracking search algorithm. Journal of Cleaner Production, 144(144), 228-238. https://doi.org/10.1016/j.jclepro.2017.01.011
Manne, A. S. (1960). On the Job-Shop Scheduling Problem. Operations Research, 8(2), 219-223. https://doi.org/10.1287/opre.8.2.219
Mansouri, S. A., Aktas, E., \& Besikci, U. (2016). Green scheduling of a two-machine flowshop: Trade-off between makespan and energy consumption. European Journal of Operational Research, 248(3), 772-788. https://doi.org/10.1016/J.EJOR.2015.08.064
Mavrotas, G. (2009). Effective implementation of the ε-constraint method in MultiObjective Mathematical Programming problems. Applied Mathematics and Computation, 213(2), 455-465. https://doi.org/10.1016/J.AMC.2009.03.037
Minella, G., Ruiz, R., \& Ciavotta, M. (2008). A Review and Evaluation of Multiobjective Algorithms for the Flowshop Scheduling Problem. INFORMS Journal on Computing, 20(3), 451-471. https://doi.org/10.1287/ijoc.1070.0258
Mouzon, G., Yildirim, M. B., \& Twomey, J. (2007). Operational methods for minimization of energy consumption of manufacturing equipment. International Journal of Production Research, 45(18-19), 4247-4271. https://doi.org/10.1080/00207540701450013

Mouzon, G., \& Yildirim, M. B. (2008). A framework to minimise total energy consumption and total tardiness on a single machine. International Journal of Sustainable Engineering, 1(2), 105-116. https://doi.org/10.1080/19397030802257236
Nagano, M. S., \& Miyata, H. H. (2016). Review and classification of constructive heuristics mechanisms for no-wait flow shop problem. The International Journal of Advanced Manufacturing Technology, 86(5-8), 2161-2174. https://doi.org/10.1007/s00170-015-8209-5
Nawaz, M., Enscore, E. E., \& Ham, I. (1983). A heuristic algorithm for the mmachine, n-job flow-shop sequencing problem. Omega, 11(1), 91-95. https://doi.org/10.1016/0305-0483(83)90088-9
Öztop, H., Fatih Tasgetiren, M., Türsel Eliiyi, D., \& Pan, Q.-K. (2018). Green Permutation Flowshop Scheduling: A Trade- off- Between Energy Consumption and Total Flow Time (pp. 753-759). Springer, Cham. https://doi.org/10.1007/978-3-319-95957-3_79
Pan, Q.-K., Tasgetiren, M. F., \& Liang, Y.-C. (2008). A discrete particle swarm optimization algorithm for the no-wait flowshop scheduling problem. Computers \& Operations Research, 35(9), 2807-2839. https://doi.org/10.1016/J.COR.2006.12.030
Pan, Q.-K., Wang, L., \& Qian, B. (2009). A novel differential evolution algorithm for bi-criteria no-wait flow shop scheduling problems. Computers \& Operations Research, 36(8), 2498-2511. https://doi.org/10.1016/j.cor.2008.10.008
Pan, Q.-K., Tasgetiren, M. F., Suganthan, P. N., \& Chua, T. J. (2011). A discrete artificial bee colony algorithm for the lot-streaming flow shop scheduling problem. Information Sciences, 181(12), 2455-2468. https://doi.org/10.1016/j.ins.2009.12.025
Röck, H. (1984). The Three-Machine No-Wait Flow Shop is NP-Complete. Journal of the $A C M, 31(2), 336-345$. https://doi.org/10.1145/62.65
Ruiz, R., \& Stützle, T. (2006). A simple and effective iterated greedy algorithm for the permutation flowshop scheduling problem. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 177, 2033--2049.
Ruiz, R., \& Stützle, T. (2008). An Iterated Greedy heuristic for the sequence dependent setup times flowshop problem with makespan and weighted tardiness objectives. European Journal of Operational Research, 187(3), 1143-1159. https://doi.org/10.1016/J.EJOR.2006.07.029
Samarghandi, H. (2015). A particle swarm optimisation for the no-wait flow shop problem with due date constraints. International Journal of Production Research, 53(9), 2853-2870. https://doi.org/10.1080/00207543.2015.1007245
Samarghandi, H., \& Behroozi, M. (2017). On the exact solution of the no-wait flow shop problem with due date constraints. Computers \& Operations Research, 81, 141-159. https://doi.org/10.1016/J.COR.2016.12.013
Sapkal, S. U., \& Laha, D. (2013). A heuristic for no-wait flow shop scheduling. The International Journal of Advanced Manufacturing Technology, 68(5-8), 13271338. https://doi.org/10.1007/s00170-013-4924-y

Shafaei, R., Moradinasab, N., \& Rabiee, M. (2011). Efficient meta heuristic algorithms to minimize mean flow time in no-wait two stage flow shops with parallel and identical machines. International Journal of Management Science and Engineering Management (Vol. 6).
Taillard, E. (1993). Benchmarks for basic scheduling problems. European Journal of Operational Research, 64(2), 278-285. https://doi.org/10.1016/0377-

2217(93)90182-M
Tan, K. C., Goh, C. K., Yang, Y. J., \& Lee, T. H. (2006). Evolving Better Population Distribution and Exploration in Evolutionary Multi-Objective Optimization. European Journal of Operational Research (Vol. 171). North-Holland.
Tasgetiren, M. F., Pan, Q.-K., Suganthan, P. N., \& Liang, Y.-C. (2007). A Discrete Differential Evolution Algorithm for the No-Wait Flowshop Scheduling Problem with Total Flowtime Criterion. In 2007 IEEE Symposium on Computational Intelligence in Scheduling (pp. 251-258). IEEE. https://doi.org/10.1109/SCIS.2007.367698
Tasgetiren, M., Pan, Q.-K., Kizilay, D., \& Gao, K. (2016). A Variable Block Insertion Heuristic for the Blocking Flowshop Scheduling Problem with Total Flowtime Criterion. Algorithms, 9(4), 71. https://doi.org/10.3390/a9040071
Tasgetiren, M. F., Öztop, H., Eliiyi, U., Eliiyi, D. T., \& Pan, Q.-K. (2018). EnergyEfficient Single Machine Total Weighted Tardiness Problem with SequenceDependent Setup Times (pp. 746-758). Springer, Cham. https://doi.org/10.1007/978-3-319-95930-6_76
Tavakkoli-Moghaddam, R., Rahimi-Vahed, A. R., \& Mirzaei, A. H. (2008). Solving a multi-objective no-wait flow shop scheduling problem with an immune algorithm. The International Journal of Advanced Manufacturing Technology, 36(9-10), 969-981. https://doi.org/10.1007/s00170-006-0906-7
Vallada, E., Ruiz, R., \& Minella, G. (2008). Minimising total tardiness in the mmachine flowshop problem: A review and evaluation of heuristics and metaheuristics. Computers \& Operations Research, 35(4), 1350-1373. https://doi.org/10.1016/j.cor.2006.08.016
Vallada, E., Ruiz, R., \& Framinan, J. M. (2015). New hard benchmark for flowshop scheduling problems minimising makespan. European Journal of Operational Research, 240(3), 666-677. https://doi.org/10.1016/J.EJOR.2014.07.033
Wismer, D. A. (1972). Solution of the Flowshop-Scheduling Problem with No Intermediate Queues. Operations Research, 20(3), 689-697. https://doi.org/10.1287/opre.20.3.689
Ying, K.-C., Lin, S.-W., \& Wu, W.-J. (2016). Self-adaptive ruin-and-recreate algorithm for minimizing total flow time in no-wait flowshops. Computers \& Industrial Engineering, 101, 167-176. https://doi.org/10.1016/J.CIE.2016.08.014
Ying, K.-C., \& Lin, S.-W. (2018). Minimizing makespan for no-wait flowshop scheduling problems with setup times. Computers \& Industrial Engineering, 121, 73-81. https://doi.org/10.1016/J.CIE.2018.05.030
Zitzler, E., Technische, E., \& Zürich, H. (1999). Evolutionary Algorithms for Multiobjective Optimization: Methods and Applications.

APPENDIX A - Computational Results for $\left(F_{m}|n w t| C_{\max }\right)$

Table A.1. MILP and CP Comparison Table for 5 machines (VRF Instances)

Instance	Opt.	MILP	Time (Seconds)	Gap \%	CP	Time (Seconds)	Gap \%
10_5_01	760	760	0.719	0.00%	760	10.628	0.00%
10_5_02	759	759	0.531	0.00%	759	4.431	0.00%
10_5_03	823	823	0.485	0.00%	823	8.949	0.00%
10_5_04	776	776	0.297	0.00%	776	6.458	0.00%
10_5_05	798	798	0.313	0.00%	798	4.176	0.00%
10_5_06	849	849	0.281	0.00%	849	5.695	0.00%
10_5_07	843	843	0.610	0.00%	843	14.168	0.00%
10_5_08	768	768	0.406	0.00%	768	9.167	0.00%
10_5_09	841	841	0.250	0.00%	841	2.803	0.00%
10_5_10	719	719	0.375	0.00%	719	5.311	0.00%
10_5_Average	$\mathbf{7 9 3 . 6 0}$	$\mathbf{7 9 3 . 6 0}$	$\mathbf{0 . 4 2 7}$	$\mathbf{0 . 0 0 \%}$	$\mathbf{7 9 3 . 6 0}$	7.179	$\mathbf{0 . 0 0 \%}$
20_5_01	1414	1454	3600	43.19%	1414	3600	19.80%
20_5_02	1481	1489	3600	45.06%	1481	3600	13.44%
20_5_03	1588	1591	3600	45.82%	1588	3600	19.27%
20_5_04	1355	1385	3600	38.63%	1355	3600	19.70%
20_5_05	1520	1537	3600	43.40%	1520	3600	13.09%
20_5_06	1333	1338	3600	42.38%	1333	3600	21.91%
20_5_07	1388	1401	3600	37.19%	1388	3600	18.23%
20_5_08	1340	1341	3600	39.90%	1346	3600	19.99%
20_5_09	1499	1503	3600	38.12%	1505	3600	12.49%
20_5_10	1546	1564	3600	43.99%	1560	3600	21.35%
20_5_Average	$\mathbf{1 4 4 6 . 4 0}$	$\mathbf{1 4 6 0 . 3 0}$	$\mathbf{3 6 0 0}$	$\mathbf{4 1 . 7 7 \%}$	$\mathbf{1 4 4 9 . 0 0}$	$\mathbf{3 6 0 0}$	$\mathbf{1 7 . 9 3 \%}$
30_5_01	2072	2250	3600	69.39%	2083	3600	13.54%
30_5_02	1960	2073	3600	66.47%	1968	3600	21.34%
30_5_03	2029	2169	3600	68.93%	2044	3600	20.94%
30_5_04	2111	2307	3600	67.58%	2126	3600	16.32%
30_5_05	1967	2126	3600	68.67%	1979	3600	13.64%
30_5_06	2127	2275	3600	67.78%	2130	3600	13.43%
30_5_07	2036	2183	3600	66.41%	2041	3600	15.24%
30_5_08	2051	2141	3600	65.34%	2052	3600	17.79%
30_5_09	2046	2234	3600	68.89%	2057	3600	16.48%
30_5_10	1546	2197	3600	68.27%	2058	3600	20.46%
30_5_Average	$\mathbf{1 9 9 4 , 5 0}$	$\mathbf{2 1 9 5 . 5 0}$	$\mathbf{3 6 0 0}$	$\mathbf{6 7 . 7 7 \%}$	$\mathbf{2 0 5 3 . 8 0}$	$\mathbf{3 6 0 0}$	$\mathbf{1 6 . 9 2 \%}$

Table A1.1.(Cont'd.) MILP and CP Comparison Table for 5 machines
(VRF Instances)

Instance	Opt.	MILP	Time (Seconds)	Gap \%	CP	Time (Seconds)	Gap \%
40_5_01	2842	3034	3600	75.54%	2866	3600	17.48%
40_5_02	2875	3187	3600	79.48%	2910	3600	17.25%
40_5_03	2592	2847	3600	78.44%	2607	3600	16.46%
40_5_04	2637	2969	3600	78.71%	2661	3600	19.24%
40_5_05	2738	3116	3600	79.14%	2761	3600	19.09%
40_5_06	2598	2933	3600	77.22%	2617	3600	17.69%
40_5_07	2649	3043	3600	79.20%	2672	3600	18.45%
40_5_08	2829	3155	3600	77.97%	2865	3600	15.92%
40_5_09	2753	3164	3600	79.11%	2770	3600	16.97%
40_5_10	2797	3145	3600	77.62%	2817	3600	16.65%
40_5_Average	$\mathbf{2 7 3 1 . 0 0}$	$\mathbf{3 0 5 9 . 3 0}$	$\mathbf{3 6 0 0}$	$\mathbf{7 8 . 2 4 \%}$	$\mathbf{2 7 5 4 . 6 0}$	$\mathbf{3 6 0 0}$	$\mathbf{1 7 . 5 2 \%}$
50_5_01	3577	3991	3600	82.24%	3614	3600	16.02%
50_5_02	3303	3738	3600	82.00%	3324	3600	14.17%
50_5_03	3289	3867	3600	85.00%	3327	3600	17.43%
50_5_04	3391	3774	3600	82.94%	3404	3600	17.33%
50_5_05	3405	3853	3600	80.06%	3430	3600	16.44%
50_5_06	3302	3946	3600	83.86%	3325	3600	14.56%
50_5_07	3088	3630	3600	82.42%	3115	3600	16.53%
50_5_08	3238	3796	3600	81.88%	3315	3600	19.03%
50_5_09	3117	3793	3600	84.71%	3178	3600	17.62%
50_5_10	3372	3779	3600	80.89%	3398	3600	16.60%
$\mathbf{5 0 _ 5 _ A v e r a g e}$	$\mathbf{3 3 0 8 . 2 0}$	$\mathbf{3 8 1 6 . 7 0}$	$\mathbf{3 6 0 0}$	$\mathbf{8 2 . 6 0 \%}$	$\mathbf{3 3 4 3 . 0 0}$	$\mathbf{3 6 0 0}$	$\mathbf{1 6 . 5 7 \%}$
60_5_01	3906	4725	3600	85.95%	4004	3600	16.33%
60_5_02	3779	4471	3600	85.83%	3830	3600	20.73%
60_5_03	3858	4583	3600	87.56%	3904	3600	18.24%
60_5_04	3899	4683	3600	84.97%	3982	3600	17.98%
60_5_05	3941	4616	3600	84.29%	4014	3600	20.50%
60_5_06	3758	4319	3600	85.14%	3822	3600	18.60%
60_5_07	4001	4610	3600	85.55%	4048	3600	18.11%
60_5_08	4138	4863	3600	84.60%	4210	3600	18.86%
60_5_09	3784	4481	3600	85.11%	3825	3600	19.01%
60_5_10	3980	4647	3600	95.52%	4007	3600	8.58%
$\mathbf{6 0 _ 5 _ A v e r a g e}$	$\mathbf{3 9 0 4 . 4 0}$	$\mathbf{4 5 9 9 . 8 0}$	$\mathbf{3 6 0 0}$	$\mathbf{8 6 . 4 5 \%}$	$\mathbf{3 9 6 4 . 6 0}$	$\mathbf{3 6 0 0}$	$\mathbf{1 7 . 6 9 \%}$

Table A.2. MILP and CP Comparison Table for 10 machines (VRF Instances)

Instance	Opt.	MILP	$\begin{gathered} \text { Time } \\ \text { (Seconds) } \end{gathered}$	Gap \%	CP	Time (Seconds)	Gap \%
10_10_01	1253	1253	0.360	0.00\%	1253	16.310	0.00\%
10_10_02	1278	1278	0.641	0.00\%	1278	39.157	0.00\%
10_10_03	1171	1171	0.172	0.00\%	1171	7.034	0.00\%
10_10_04	1181	1181	0.297	0.00\%	1181	15.634	0.00\%
10_10_05	1294	1294	1.187	0.00\%	1294	43.662	0.00\%
10_10_06	1198	1198	0.313	0.00\%	1198	24.013	0.00\%
10_10_07	1256	1256	0.391	0.00\%	1256	31.632	0.00\%
10_10_08	1220	1220	0.250	0.00\%	1220	18.071	0.00\%
10_10_09	1243	1243	0.359	0.00\%	1243	25.590	0.00\%
10_10_10	1317	1317	0.797	0.00\%	1317	26.374	0.00\%
10_10_Average	1241.10	1241.10	0.477	0.00\%	1241.10	24.748	0.00\%
20_10_01	2017	2036	3600	35.71\%	2017	3600	31.98\%
20_10_02	1998	2022	3600	36.10\%	1998	3600	28.13\%
20_10_03	2036	2036	3600	33.79\%	2045	3600	28.02\%
20_10_04	1932	1965	3600	38.07\%	1952	3600	32.94\%
20_10_05	2032	2051	3600	35.15\%	2032	3600	29.08\%
20_10_06	2059	2133	3600	41.91\%	2059	3600	30.45\%
20_10_07	2051	2069	3600	35.86\%	2051	3600	30.47\%
20_10_08	2018	2023	3600	37.47\%	2018	3600	28.59\%
20_10_09	1979	1996	3600	32.62\%	1990	3600	30.05\%
20_10_10	1963	1984	3600	35.33\%	1965	3600	27.84\%
20_10_Average	2008.50	2031.50	3600	36.20\%	2012.70	3600	29,76\%
30_10_01	2653	2918	3600	63.91\%	2689	3600	32.21\%
30_10_02	2861	2971	3600	60.85\%	2897	3600	32.72\%
30_10_03	2796	3031	3600	64.09\%	2801	3600	29.74\%
30_10_04	2762	2995	3600	60.43\%	2801	3600	35.34\%
30_10_05	2773	3026	3600	64.67\%	2786	3600	29.61\%
30_10_06	2808	3179	3600	63.16\%	2822	3600	30.62\%
30_10_07	2683	2937	3600	63.36\%	2708	3600	32.64\%
30_10_08	2532	2643	3600	62.32\%	2569	3600	30.40\%
30_10_09	2693	2804	3600	59.52\%	2705	3600	33.42\%
30-10_10	2647	2821	3600	61.60\%	2670	3600	31.39\%
30_10_Average	2720.80	2932.50	3600	$\mathbf{6 2 . 3 9 \%}$	2744.80	3600	31.81\%

Table A.2.(Cont'd.) MILP and CP Comparison Table for 10 machines
(VRF Instances)

Instance	Opt.	MILP	Time (Seconds)	Gap \%	CP	Time (Seconds)	Gap \%
40_10_01	3550	4292	3600	75.33\%	3563	3600	34.24\%
40_10_02	3416	3881	3600	70.94\%	3416	3600	31.70\%
40_10_03	3408	3944	3600	76.17\%	3494	3600	33.60\%
40_10_04	3622	4184	3600	74.09\%	3704	3600	35.39\%
40_10_05	3488	4045	3600	75.87\%	3549	3600	33.90\%
40_10_06	3565	4014	3600	74.56\%	3599	3600	31.95\%
40_10_07	3496	4028	3600	76.48\%	3519	3600	31.77\%
40_10_08	3427	4004	3600	75.75\%	3467	3600	31.04\%
40_10_09	3501	3894	3600	73.47\%	3567	3600	35.13\%
40_10_10	3447	3937	3600	74.02\%	3451	3600	29.67\%
40_10_Average	3492.00	4022.30	3600	74.67\%	3532.90	3600	32.84\%
50_10_01	4121	4723	3600	79.32\%	4179	3600	32.40\%
50_10_02	4261	5067	3600	79.18\%	4388	3600	33.20\%
50_10_03	4227	5014	3600	78.40\%	4299	3600	31.71\%
50_10_04	4320	4873	3600	78.49\%	4360	3600	33.12\%
50_10_05	4356	5093	3600	78.55\%	4423	3600	27.65\%
50_10_06	4205	4912	3600	80.34\%	4248	3600	27.00\%
50_10_07	4096	4715	3600	80.78\%	4215	3600	33.45\%
50_10_08	4322	5015	3600	79.30\%	4365	3600	31.59\%
50_10_09	4289	5103	3600	80.23\%	4367	3600	32.06\%
50_10_10	4268	4819	3600	80.22\%	4376	3600	32.52\%
50_10_Average	4246.50	4933.40	3600	79.48\%	4322.00	3600	31.47\%
60_10_01	5067	5980	3600	83.34\%	5175	3600	35.03\%
60_10_02	5185	6547	3600	82.89\%	5271	3600	31.89\%
60_10_03	4953	6101	3600	82.54\%	5095	3600	33.72\%
60_10_04	5006	6049	3600	83.20\%	5054	3600	32.63\%
60_10_05	5140	6241	3600	82.10\%	5260	3600	34.24\%
60_10_06	5146	6222	3600	84.58\%	5226	3600	32.24\%
60_10_07	5130	6354	3600	82.67\%	5218	3600	32.06\%
60_10_08	4976	6083	3600	83.45\%	5065	3600	30.52\%
60_10_09	5001	6129	3600	84.29\%	5129	3600	29.48\%
60_10_10	5040	6059	3600	82.14\%	5111	3600	32.03\%
60_10_Average	5064.40	6176.50	3600	83.12\%	5160.40	3600	32.38\%

Table A.3. MILP and CP Comparison Table for 15 machines (VRF Instances)

Instance	Opt.	MILP	Time (Seconds)	Gap \%	CP	Time (Seconds)	Gap \%
10_15_01	1516	1516	0.312	0.00%	1516	45.260	0.00%
10_15_-2	1596	1596	0.281	0.00%	1596	32.278	0.00%
10_15_03	1611	1611	0.297	0.00%	1611	46.715	0.00%
10_15_04	1649	1649	0.406	0.00%	1649	65.833	0.00%
10_15_05	1602	1602	0.578	0.00%	1602	49.938	0.00%
10_15_06	1529	1529	0.234	0.00%	1529	48.409	0.00%
10_15_07	1702	1702	0.500	0.00%	1702	65.594	0.00%
10_15_08	1720	1720	0.265	0.00%	1720	54.795	0.00%
10_15_09	1683	1683	0.422	0.00%	1683	62.265	0.00%
10_15_10	1687	1687	0.500	0.00%	1687	50.821	0.00%
10_15_Average	$\mathbf{1 6 2 9 . 5 0}$	$\mathbf{1 6 2 9 . 5 0}$	$\mathbf{0 . 3 8 0}$	$\mathbf{0 . 0 0 \%}$	$\mathbf{1 6 2 9 . 5 0}$	$\mathbf{5 2 , 1 9}$	$\mathbf{0 . 0 0 \%} \%$
20_15_01	2663	2703	3600	33.26%	2663	3600	36.99%
20_15_02	2523	2553	3600	30.36%	2523	3600	35.71%
20_15_03	2392	2392	3600	32.48%	2392	3600	34.91%
20_15_04	2392	2417	3600	36.08%	2392	3600	33.90%
20_15_05	2502	2509	3600	34.32%	2503	3600	31.48%
20_15_06	2634	2634	3600	35.80%	2634	3600	36.18%
20_15_07	2580	2642	3600	31.26%	2580	3600	33.29%
20_15_08	2521	2545	3600	34.03%	2531	3600	37.97%
20_15_09	2511	2513	3600	31.24%	2520	3600	31.31%
20_15_10	2519	2561	3600	37.80%	2519	3600	33.78%
20_15_Average	$\mathbf{2 5 2 3 . 7 0}$	$\mathbf{2 5 4 6 . 9 0}$	$\mathbf{3 6 0 0}$	$\mathbf{3 3 . 6 6 \%}$	$\mathbf{2 5 2 5 . 7 0}$	$\mathbf{3 6 0 0}$	$\mathbf{3 4 . 5 5 \%}$
30_15_01	3347	3634	3600	62.33%	3374	3600	36.93%
30_15_02	3243	3671	3600	58.91%	3243	3600	35.71%
30_15_03	3301	3520	3600	58.52%	3302	3600	37.49%
30_15_04	3406	3619	3600	60.49%	3441	3600	34.90%
30_15_05	3463	3765	3600	60.13%	3502	3600	36.89%
30_15_06	3478	3765	3600	60.13%	3502	3600	36.89%
30_15_07	3416	3719	3600	58.78%	3543	3600	41.77%
30_15_08	3444	3605	3600	59.81%	3461	3600	38.40%
30_15_09	3314	3761	3600	61.85%	3470	3600	38.65%
30_15_10	3390	3557	3600	58.20%	3360	3600	39.94%
30_15_Average	$\mathbf{3 3 8 0 . 2 0}$	$\mathbf{3 6 6 1 . 6 0}$	$\mathbf{3 6 0 0}$	$\mathbf{5 9 . 9 1 \%}$	$\mathbf{3 4 1 9 . 8 0}$	$\mathbf{3 6 0 0}$	$\mathbf{3 7 . 7 6 \%}$

Table A.3.(Cont'd.) MILP and CP Comparison Table for 15 machines
(VRF Instances)

Instance	Opt.	MILP	Time (Seconds)	Gap \%	CP	Time (Seconds)	Gap \%
40_15_01	4370	5038	3600	72.77\%	4388	3600	37.08\%
40_15_02	4214	4828	3600	71.06\%	4311	3600	39.20\%
40_15_03	4251	5019	3600	73.58\%	4271	3600	36.29\%
40_15_04	4249	4845	3600	73.13\%	4358	3600	39.08\%
40_15_05	4353	4682	3600	70.61\%	4458	3600	39.26\%
40_15_06	4120	4626	3600	69.93\%	4132	3600	37.66\%
40_15_07	4299	4946	3600	71.96\%	4374	3600	39.32\%
40_15_08	4279	4923	3600	70.81\%	4346	3600	38.33\%
40_15_09	4116	4628	3600	70.46\%	4139	3600	39.07\%
40-15_10	4301	4783	3600	71.94\%	4341	3600	38.10\%
40_15_Average	4255.20	4831.80	3600	71.63\%	4311.80	3600	38.34\%
50_15_01	4972	5768	3600	78.54\%	5042	3600	39.79\%
50_15_02	5079	5822	3600	75.95\%	5160	3600	38.41\%
50_15_03	5136	5993	3600	77.79\%	5255	3600	40.67\%
50_15_04	5248	6176	3600	76.89\%	5434	3600	38.35\%
50_15_05	5092	6097	3600	78.22\%	5212	3600	39.87\%
50_15_06	5194	6078	3600	77.26\%	5280	3600	39.87\%
50_15_07	5297	6069	3600	76.57\%	5360	3600	38.45\%
50_15_08	5174	6188	3600	77.84\%	5312	3600	38.99\%
50_15_09	5096	6205	3600	78.69\%	5132	3600	41.11\%
50_15_10	5173	6018	3600	78.58\%	5223	3600	38.75\%
50_15_Average	5146.10	6041.40	3600	77.63\%	5241.00	3600	39.43\%
60_15_01	5972	7080	3600	81.69\%	6192	3600	39.11\%
60_15_02	5965	7252	3600	81.54\%	6061	3600	39.50\%
60_15_03	6070	7163	3600	80.09\%	6260	3600	41.34\%
60_15_04	5974	7233	3600	80.15\%	6081	3600	41.82\%
60_15_05	6004	7306	3600	82.53\%	6096	3600	40.16\%
60_15_06	6149	7614	3600	81.89\%	6321	3600	41.53\%
60_15_07	6059	7131	3600	81.24\%	6226	3600	42.27\%
60_15_08	5974	7236	3600	81.41\%	6053	3600	41.20\%
60_15_09	5760	6929	3600	81.28\%	5939	3600	39.20\%
60_15_10	6092	7636	3600	81.05\%	6206	3600	40.06\%
60_15_Average	6001.90	7258.00	3600	81.29\%	6143.50	3600	40.62\%

Table A.4. MILP and CP Comparison Table for 20 machines (VRF

Instances)

Instance	Opt.	MILP	Time (Seconds)	Gap \%	CP	Time (Seconds)	Gap \%
10_20_01	1913	1913	0.282	0.00%	1913	119.638	0.00%
10_20_02	1973	1973	0.156	0.00%	1973	78.135	0.00%
10_20_03	1989	1989	0.594	0.00%	1989	118.302	0.00%
10_20_04	1971	1971	0.594	0.00%	1971	99.448	0.00%
10_20_05	1979	1979	0.657	0.00%	1979	242.102	0.00%
10_20_06	2152	2152	0.297	0.00%	2152	94.656	0.00%
10_20_07	1893	1893	0.187	0.00%	1893	60.239	0.00%
10_20_08	1933	1933	0.485	0.00%	1933	139.517	0.00%
10_20_09	1941	1941	0.203	0.00%	1941	74.479	0.00%
10_20_10	1876	1876	0.343	0.00%	1876	70.311	0.00%
10_20_Average	$\mathbf{1 9 6 2 . 0 0}$	$\mathbf{1 9 6 2 . 0 0}$	$\mathbf{0 . 3 8 0}$	$\mathbf{0 . 0 0 \%}$	$\mathbf{1 9 6 2 . 0 0}$	$\mathbf{1 0 9 . 6 8 3}$	$\mathbf{0 . 0 0 \%}$
20_20_01	3082	3085	3600	28.07%	3104	3600	$39,66 \%$
20_20_02	2872	2896	3600	30.52%	2872	3600	$35,52 \%$
20_20_03	2935	2997	3600	28.09%	2935	3600	$36,08 \%$
20_20_04	2828	2900	3600	30.93%	2828	3600	$37,02 \%$
20_20_05	3078	3145	3600	28.20%	3078	3600	$39,90 \%$
20_20_06	3172	3202	3600	31.61%	3174	3600	$39,79 \%$
20_20_07	2999	3029	3600	22.15%	2999	3600	$37,75 \%$
20_20_08	2837	2853	3600	32.46%	2837	3600	$32,92 \%$
20_20_09	3094	3166	3600	31.14%	3094	3600	$34,91 \%$
20_20_10	2884	2912	3600	29.29%	2884	3600	$36,17 \%$
$\mathbf{2 0 _ 2 0 _ A v e r a g e}$	$\mathbf{2 9 7 8 . 1 0}$	$\mathbf{3 0 1 8 . 5 0}$	$\mathbf{3 6 0 0}$	$\mathbf{2 9 . 2 5 \%}$	$\mathbf{2 9 8 0 . 5 0}$	$\mathbf{3 6 0 0}$	$\mathbf{3 7 . 2 9 \%}$
30_20_01	3894	4214	3600	56.12%	3950	3600	43.59%
30_20_02	4017	4320	3600	57.22%	4112	3600	41.25%
30_20_03	4022	4317	3600	59.44%	4061	3600	40.09%
30_20_04	3786	4174	3600	55.74%	3823	3600	39.34%
30_20_05	3781	4016	3600	56.05%	3785	3600	39.00%
30_20_06	3971	4143	3600	58.39%	3991	3600	40.62%
30_20_07	3999	4324	3600	56.68%	4083	3600	41.07%
30_20_08	4016	4322	3600	57.33%	4079	3600	39.25%
30_20_09	4019	4312	3600	56.98%	4049	3600	39.89%
30_20_10	4113	4273	3600	55.51%	4145	3600	41.64%
$\mathbf{3 0 _ 2 0 _ A v e r a g e}$	$\mathbf{3 9 6 1 . 8 0}$	$\mathbf{4 2 4 1 . 5 0}$	$\mathbf{3 6 0 0}$	$\mathbf{5 6 . 9 5 \%}$	$\mathbf{4 0 0 7 . 8 0}$	$\mathbf{3 6 0 0}$	$\mathbf{4 0 . 5 7 \%}$

Table A.4.(Cont'd.) MILP and CP Comparison Table for 20 machines
(VRF Instances)

Instance	Opt.	MILP	Time (Seconds)	Gap \%	CP	Time (Seconds)	Gap \%
40_20_01	4935	5519	3600	69.14%	5029	3600	39.13%
40_20_02	4854	5605	3600	68.22%	4932	3600	42.98%
40_20_03	5103	5753	3600	69.42%	5198	3600	46.11%
40_20_04	4837	5847	3600	70.40%	4905	3600	41.33%
40_20_05	4712	5489	3600	68.76%	4837	3600	43.83%
40_20_06	4936	5478	3600	68.18%	4969	3600	43.87%
40_20_07	5092	5665	3600	67.84%	5107	3600	44.25%
40_20_08	4999	5334	3600	66.65%	5067	3600	43.02%
40_20_09	5041	5664	3600	67.80%	5154	3600	43.07%
40_20_10	4726	5127	3600	69.09%	4732	3600	40.87%
40_20_Average	$\mathbf{4 9 2 3 . 5 0}$	$\mathbf{5 5 4 8 . 1 0}$	$\mathbf{3 6 0 0}$	$\mathbf{6 8 . 5 5 \%}$	$\mathbf{4 9 9 3 . 0 0}$	$\mathbf{3 6 0 0}$	$\mathbf{4 2 . 8 5 \%}$
50_20_01	5854	6869	3600	74.76%	6084	3600	46.01%
50_20_02	5825	6633	3600	74.36%	5973	3600	43.85%
50_20_03	5952	7024	3600	74.75%	6077	3600	43.11%
50_20_04	5960	6954	3600	73.35%	6000	3600	44.57%
50_20_05	5893	6957	3600	74.72%	5988	3600	44.66%
50_20_06	6042	7067	3600	74.13%	6175	3600	44.87%
50_20_07	5984	7146	3600	77.18%	6112	3600	44.70%
50_20_08	5906	7000	3600	75.91%	6011	3600	43.19%
50_20_09	5977	6859	3600	76.02%	6134	3600	43.95%
50_20_10	5926	7241	3600	76.85%	6048	3600	43.70%
$\mathbf{5 0 _ 2 0 _ A v e r a g e}$	$\mathbf{5 9 3 1 . 9 0}$	$\mathbf{6 9 7 5 . 0 0}$	$\mathbf{3 6 0 0}$	$\mathbf{7 5 . 2 0 \%}$	$\mathbf{6 0 6 0 . 2 0}$	$\mathbf{3 6 0 0}$	$\mathbf{4 4 . 2 6 \%}$
60_20_01	6925	8615	3600	79.34%	7090	3600	45.37%
60_20_02	6928	8369	3600	79.01%	7011	3600	44.49%
60_20_03	7151	8791	3600	80.29%	7409	3600	46.19%
60_20_04	7077	8867	3600	80.62%	7222	3600	45.04%
60_20_05	6699	8014	3600	78.77%	6848	3600	43.93%
60_20_06	6781	8166	3600	78.32%	6973	3600	44.07%
60_20_07	6909	8355	3600	78.90%	7061	3600	43.76%
60_20_08	6871	8234	3600	78.36%	7071	3600	45.28%
60_20_09	6833	8152	3600	78.69%	7035	3600	44.36%
60_20_10	6724	8262	3600	79.33%	6962	3600	44.30%
$\mathbf{6 0 _ 2 0 _ A v e r a g e}$	$\mathbf{6 8 8 9 . 8 0}$	$\mathbf{8 3 8 2 . 5 0}$	$\mathbf{3 6 0 0}$	$\mathbf{7 9 . 1 6 \%}$	$\mathbf{7 0 6 8 . 2 0}$	$\mathbf{3 6 0 0}$	$\mathbf{4 4 . 6 8 \%}$

Table A.5. MILP-Prime and CP-Prime Comparison Table with Lower and Upper Bounds for 5 machines (VRF Instances)

Instance	LB	MILP- Prime	Time (Seconds)	Gap \%	CP- Prime	Time (Seconds)	Gap $\mathbf{\%}$	UB
10_5_01	442	760	1,281	0.00%	760	10.493	0.00%	2052
10_5_02	458	759	0,438	0.00%	759	4.502	0.00%	2158
10_5_03	351	823	0,437	0.00%	823	7.742	0.00%	2296
10_5_04	468	776	0,313	0.00%	776	6.524	0.00%	2243
10_5_05	493	798	0,422	0.00%	798	3.933	0.00%	2371
10_5_06	496	849	0,656	0.00%	849	6.396	0.00%	2466
10_5_07	482	843	1,141	0.00%	843	14.193	0.00%	2380
10_5_08	415	768	0,484	0.00%	768	10.551	0.00%	2132
10_5_09	546	841	0,375	0.00%	841	2.419	0.00%	2678
10_5_10	442	719	0,735	0.00%	719	8.889	0.00%	2015
$\mathbf{1 0 _ 5 _ A v e r a g e ~}$	$\mathbf{4 5 9 . 3 0}$	$\mathbf{7 9 3 . 6 0}$	$\mathbf{0 . 6 2 8}$	$\mathbf{0 . 0 0 \%}$	$\mathbf{7 9 3 . 6 0}$	$\mathbf{7 . 5 6 4}$	$\mathbf{0 . 0 0 \%}$	$\mathbf{2 2 7 9 . 1 0}$
20_5_01	1022	1417	3600	$22,79 \%$	1414	3600	19.80%	483
20_5_02	1074	1527	3600	$26,26 \%$	1481	3600	13.44%	5262
20_5_03	967	1611	3600	$35,44 \%$	1588	3600	19.27%	5298
20_5_04	937	1373	3600	$26,58 \%$	1355	3600	19.70%	4713
20_5_05	1094	1523	3600	$22,78 \%$	1524	3600	13.32%	5394
20_5_06	926	1346	3600	$27,34 \%$	1336	3600	22.08%	4647
20_5_07	987	1391	3600	$23,79 \%$	1393	3600	18.52%	4897
20_5_08	887	1340	3600	$29,70 \%$	1343	3600	19.81%	4732
20_5_09	1025	1536	3600	$28,90 \%$	1505	3600	12.49%	5109
20_5_10	1038	1603	3600	$30,63 \%$	1546	3600	20.63%	5294
$\mathbf{2 0 _ 5 _ A v e r a g e}$	$\mathbf{9 9 5 . 7 0}$	$\mathbf{1 4 6 6 . 7 0}$	$\mathbf{3 6 0 0}$	$\mathbf{2 7 . 4 2 \%}$	$\mathbf{1 4 4 8 , 5 0}$	$\mathbf{3 6 0 0}$	$\mathbf{1 7 . 9 1 \%}$	$\mathbf{5 0 1 9}$
30_5_01	1281	2329	3600	40.31%	2082	3600	13.50%	7695
30_5_02	1434	2117	3600	28.86%	1974	3600	21.58%	6913
30_5_03	1515	2180	3600	28.21%	2058	3600	21.48%	7466
30_5_04	1373	2305	3600	37.22%	2127	3600	16.36%	7631
30_5_05	1408	2181	3600	32.18%	1984	3600	13.86%	7298
30_5_06	1743	2307	3600	21.75%	2127	3600	13.31%	7434
30_5_07	1249	2185	3600	41.05%	2041	3600	15.24%	7085
30_5_08	1463	2169	3600	28.44%	2062	3600	18.19%	7737
30_5_09	1592	2215	3600	24.96%	2046	3600	16.03%	7475
30_5_10	1447	2267	3600	32.68%	2056	3600	20.38%	7325
30_5_Average	$\mathbf{1 4 5 0 . 5 0}$	$\mathbf{2 2 2 5 . 5 0}$	$\mathbf{3 6 0 0}$	$\mathbf{3 1 . 5 7 \%}$	$\mathbf{2 0 5 5 . 7 0}$	$\mathbf{3 6 0 0}$	$\mathbf{1 6 . 9 9 \%}$	$\mathbf{7 4 0 5 . 9 0}$

Table A.5.(Cont'd.) MILP-Prime and CP-Prime Comparison Table with Lower and Upper Bounds for 5 machines (VRF Instances)

Instance	LB	MILP- Prime	Time (Seconds)	Gap \%	CP- Prime	Time (Seconds)	Gap \%	UB
40_5_01	1868	3139	3600	38.22%	2890	3600	18.17%	10510
40_5_02	2111	3284	3600	33.55%	2903	3600	17.05%	10730
40_5_03	2022	2925	3600	30.32%	2605	3600	16.39%	9855
40_5_04	1966	3011	3600	33.94%	2658	3600	19.15%	9723
40_5_05	1991	3067	3600	33.64%	2750	3600	18.76%	10342
40_5_06	1862	2939	3600	35.62%	2635	3600	18.25%	9584
40_5_07	1976	2933	3600	29.86%	2665	3600	18.24%	10076
40_5_08	2114	3143	3600	30.86%	2867	3600	15.97%	10705
40_5_09	2168	3051	3600	26.71%	2784	3600	17.39%	10330
40_5_10	2050	3198	3600	35.39%	2810	3600	16.44%	10477
40_5_Average	$\mathbf{2 0 1 2 . 8 0}$	$\mathbf{3 0 6 9 . 0 0}$	$\mathbf{3 6 0 0}$	$\mathbf{3 2 . 8 1 \%}$	$\mathbf{2 7 5 6 . 7 0}$	$\mathbf{3 6 0 0}$	$\mathbf{1 7 . 5 8 \%}$	$\mathbf{1 0 2 3 3 . 2 0}$
50_5_01	2596	4128	3600	35.82%	3632	3600	16.44%	13656
50_5_02	2547	3746	3600	30.80%	3334	3600	14.43%	12549
50_5_03	2347	3868	3600	36.78%	3342	3600	17.80%	12343
50_5_04	2652	3968	3600	31.42%	3424	3600	17.82%	13017
50_5_05	2318	3974	3600	40.18%	3439	3600	16.66%	12751
50_5_06	2363	3927	3600	38.17%	3343	3600	15.02%	12349
50_5_07	2417	3692	3600	33.04%	3127	3600	16.85%	11847
50_5_08	2526	3822	3600	32.75%	3287	3600	18.34%	12202
50_5_09	2383	3599	3600	31.98%	3136	3600	16.52%	11801
50_5_10	2648	3968	3600	31.65%	3423	3600	17.21%	12983
$\mathbf{5 0 _ 5 _ A v e r a g e}$	$\mathbf{2 4 7 9 . 7 0}$	$\mathbf{3 8 6 9 . 2 0}$	$\mathbf{3 6 0 0}$	$\mathbf{3 4 . 2 6 \%}$	$\mathbf{3 3 4 8 . 7 0}$	$\mathbf{3 6 0 0}$	$\mathbf{1 6 . 7 1 \%}$	$\mathbf{1 2 5 4 9 . 8 0}$
60_5_01	3114	4835	3600	34.76%	3986	3600	15.96%	15417
60_5_02	2863	4403	3600	34.11%	3871	3600	21.57%	14362
60_5_03	2780	4516	3600	36.91%	3944	3600	19.07%	14970
60_5_04	3114	4770	3600	33.48%	3970	3600	17.73%	15396
60_5_05	2960	4780	3600	37.44%	3983	3600	19.88%	14900
60_5_06	3005	4336	3600	29.61%	3848	3600	19.15%	14555
60_5_07	3127	4664	3600	32.26%	4049	3600	18.13%	15508
60_5_08	3311	4890	3600	30.92%	4215	3600	18.96%	15752
60_5_09	2964	4626	3600	34.71%	3860	3600	19.74%	14679
60_5_10	2572	4859	3600	46.07%	4009	3600	8.63%	15082
60_5_Average	$\mathbf{2 9 8 1 . 0 0}$	$\mathbf{4 6 6 7 . 9 0}$	$\mathbf{3 6 0 0}$	$\mathbf{3 5 . 0 3 \%}$	$\mathbf{3 9 7 3 . 5 0}$	$\mathbf{3 6 0 0}$	$\mathbf{1 7 . 8 8 \%}$	$\mathbf{1 5 0 6 2 . 1 0}$

Table A.6. MILP-Prime and CP-Prime Comparison Table with Lower and Upper Bounds for 10 machines (VRF Instances)

Instance	LB	MILP- Prime	Time (Seconds)	Gap \%	CP- Prime	Time (Seconds)	Gap \%	UB
10_10_01	501	1253	0.578	0.00%	1253	18.045	0.00%	4776
10_10_02	535	1278	0.875	0.00%	1278	38.839	0.00%	4710
10_10_03	533	1171	0.485	0.00%	1171	5.848	0.00%	4791
10_10_04	433	1181	0.594	0.00%	1181	13.020	0.00%	4529
10_10_05	528	1294	2.781	0.00%	1294	36.939	0.00%	4899
10_10_06	522	1198	0.906	0.00%	1198	21.141	0.00%	4624
10_10_07	512	1256	0.843	0.00%	1256	35.876	0.00%	4733
10_10_08	530	1220	0.531	0.00%	1220	16.817	0.00%	4851
10_10_09	456	1243	0.469	0.00%	1243	20.644	0.00%	4675
10_10_10	353	1317	1.953	0.00%	1317	30.815	0.00%	4677
$\mathbf{1 0 _ 1 0 _ A v e r a g e}$	$\mathbf{4 9 0 . 3 0}$	$\mathbf{1 2 4 1 . 1 0}$	$\mathbf{1 . 0 0 2}$	$\mathbf{0 . 0 0 \%}$	$\mathbf{1 2 4 1 . 1 0}$	$\mathbf{2 3 . 7 9 8}$	$\mathbf{0 . 0 0 \%} \%$	$\mathbf{4 7 2 6 . 5 0}$
20_10_01	1037	2017	3600	36.77%	2029	3600	32.38%	9299
20_10_02	972	2017	3600	38.52%	1998	3600	28.13%	9811
20_10_03	1072	2046	3600	36.55%	2045	3600	28.02%	10207
20_10_04	926	1934	3600	36.29%	1932	3600	32.25%	9590
20_10_05	911	2045	3600	34.71%	2032	3600	29.08%	10285
20_10_06	1004	2127	3600	37.18%	2059	3600	30.35%	10193
20_10_07	1025	2089	3600	38.39%	2051	3600	30.47%	10293
20_10_08	848	2046	3600	41.30%	2018	3600	28.59%	9850
20_10_09	1054	1982	3600	34.35%	1980	3600	29.70%	10037
20_10_10	820	1975	3600	36.20%	1965	3600	27.84%	9856
$\mathbf{2 0 _ 1 0 _ A v e r a g e}$	$\mathbf{9 6 6 . 9 0}$	$\mathbf{2 0 2 7 . 8 0}$	$\mathbf{3 6 0 0}$	$\mathbf{3 7 . 0 3 \%}$	$\mathbf{2 0 1 0 . 9 0}$	$\mathbf{3 6 0 0}$	$\mathbf{2 9 . 6 8 \%}$	$\mathbf{9 9 4 2 . 1 0}$
30_10_01	1499	2879	3600	40.36%	2682	3600	32.03%	14132
30_10_02	1568	3091	3600	41.96%	2867	3600	32.02%	15465
30_10_03	1527	3009	3600	42.63%	2839	3600	30.68%	15153
30_10_04	1512	3053	3600	42.77%	2762	3600	34.43%	14527
30_10_05	1428	2998	3600	45.36%	2793	3600	29.79%	15314
30_10_06	1548	3092	3600	40.84%	2828	3600	30.76%	15039
30_10_07	1476	2899	3600	39.94%	2704	3600	32.54%	14651
30_10_08	1430	2720	3600	39.96%	2572	3600	30.48%	13910
30_10_09	1449	2899	3600	43.18%	2703	3600	33.37%	14196
30_10_10	1136	2826	3600	54.17%	2661	3600	31.15%	14058
$\mathbf{3 0 _ 1 0 _ A v e r a g e}$	$\mathbf{1 4 5 7 . 3 0}$	$\mathbf{2 9 4 6 . 6 0}$	$\mathbf{3 6 0 0}$	$\mathbf{4 3 . 1 2 \%}$	$\mathbf{2 7 4 1 . 1 0}$	$\mathbf{3 6 0 0}$	$\mathbf{3 1 . 7 3 \%}$	$\mathbf{1 4 6 4 4 . 5 0}$

Table A.6.(Cont'd.) MILP-Prime and CP-Prime Comparison Table with Lower and Upper Bounds for 10 machines (VRF Instances)

Instance	LB	MILP- Prime	Time (Seconds)	Gap \%	$\underset{\text { Prime }}{\text { CP- }}$	Time (Seconds)	Gap \%	UB
40_10_01	1929	4069	3600	47.84\%	3609	3600	35.08\%	19757
40_10_02	1894	3945	3600	46.86\%	3416	3600	31.70\%	19179
40_10_03	1893	3868	3600	44.62\%	3440	3600	32.56\%	19020
40_10_04	1979	4162	3600	46.66\%	3704	3600	35.39\%	19820
40_10_05	1724	3950	3600	51.29\%	3510	3600	33.16\%	19814
40_10_06	1935	4039	3600	46.44\%	3598	3600	31.93\%	20110
40_10_07	2044	4161	3600	44.89\%	3506	3600	31.52\%	20042
40_10_08	2054	4034	3600	42.95\%	3454	3600	30.78\%	19329
40_10_09	2016	4035	3600	43.91\%	3591	3600	35.56\%	19442
$40 _10$-10	2014	4139	3600	46.46\%	3507	3600	30.80\%	19656
40 10 Average	1948.20	4040.20	3600	46.19\%	3533.50	3600	32.85\%	19616.90
50_10_01	2460	5106	3600	46.96\%	4195	3600	32.66\%	24410
50_10_02	2555	5012	3600	45.49\%	4326	3600	32.25\%	24205
50_10_03	2537	4921	3600	44.54\%	4366	3600	32.75\%	24466
50_10_04	2442	5189	3600	49.56\%	4414	3600	33.94\%	25278
50_10_05	2333	5094	3600	49.17\%	4420	3600	27.60\%	26021
50_10_06	2496	5170	3600	48.54\%	4265	3600	27.29\%	24782
50_10_07	2194	4911	3600	50.49\%	4118	3600	31.88\%	23647
50_10_08	2402	5124	3600	48.26\%	4385	3600	31.90\%	25678
50_10_09	2580	5118	3600	44.31\%	4402	3600	32.60\%	24720
50_10_10	2647	4976	3600	42.40\%	4343	3600	32.01\%	25042
50_10_Average	2464.60	5062.10	3600	46.97%	4323.40	3600	31.49%	24824.90
60_10_01	3040	6025	3600	47.10\%	5104	3600	34.13\%	29905
60_10_02	3267	6622	3600	48.24\%	5286	3600	32.08\%	30594
60_10_03	2998	6062	3600	48.13\%	5023	3600	32.77\%	29285
60_10_04	2733	6079	3600	51.81\%	5136	3600	33.70\%	29346
60_10_05	3100	6165	3600	46.06\%	5277	3600	34.45\%	30651
60_10_06	3106	6317	3600	47.17\%	5258	3600	32.66\%	30831
60_10_07	3211	6127	3600	44.03\%	5207	3600	31.92\%	31148
60_10_08	2943	6218	3600	49.53\%	5052	3600	30.34\%	29460
60_10_09	3304	6072	3600	42.09\%	5107	3600	29.18\%	29805
60_10_10	2803	6297	3600	53.32\%	5115	3600	32.08\%	30036
60_10_Average	3050.50	6198.40	3600	47.75\%	5156.50	3600	32.33\%	30106.10

Table A.7. MILP-Prime and CP-Prime Comparison Table with Lower and Upper Bounds for 15 machines (VRF Instances)

Instance	LB	MILP- Prime	Time (Seconds)	Gap \%	CP- Prime	Time (Seconds)	Gap \%	UB
10_15_01	383	1516	0.984	0.00%	1516	42.976	0.00%	6562
10_15_02	492	1596	1.047	0.00%	1596	29.139	0.00%	7200
10_15_03	449	1611	1.141	0.00%	1611	41.875	0.00%	7079
10_15_04	455	1649	1.234	0.00%	1649	67.427	0.00%	7201
10_15_05	515	1602	2.687	0.00%	1602	43.724	0.00%	7151
10_15_06	450	1529	1.063	0.00%	1529	44.335	0.00%	7008
10_15_07	538	1702	3.343	0.00%	1702	59.613	0.00%	7006
10_15_08	541	1720	1.516	0.00%	1720	45.920	0.00%	7185
10_15_09	393	1683	1.875	0.00%	1683	63.983	0.00%	7395
10_15_10	432	1687	2437	0.00%	1687	56.364	0.00%	7684
$\mathbf{1 0 _ 1 5 _ A v e r a g e}$	$\mathbf{4 6 4 . 8 0}$	$\mathbf{1 6 2 9 . 5 0}$	$\mathbf{1 . 7 3 0}$	$\mathbf{0 . 0 0 \%}$	$\mathbf{1 6 2 9 . 5 0}$	$\mathbf{4 9 . 5 4 0}$	$\mathbf{0 . 0 0 \%}$	$\mathbf{7 1 4 7 . 1 0}$
20_15_01	1102	2663	3600	34.73%	2663	3600	36.99%	15332
20_15_02	970	2558	3600	33.73%	2523	3600	35.71%	14990
20_15_03	970	2405	3600	36.83%	2392	3600	34.91%	14418
20_15_04	873	2394	3600	36.17%	2392	3600	33.90%	14399
20_15_05	947	2523	3600	38.84%	2503	3600	31.48%	15289
20_15_06	1083	2634	3600	37.16%	2634	3600	36.18%	15114
20_15_07	888	2580	3600	32.59%	2603	3600	33.88%	14959
20_15_08	1015	2526	3600	35.27%	2523	3600	37.77%	14679
20_15_09	1100	2525	3600	29.38%	2513	3600	31.12%	14511
20_15_10	831	2553	3600	39.67%	2519	3600	33.78%	14860
$\mathbf{2 0 _ 1 5 _ A v e r a g e}$	$\mathbf{9 7 7 . 9 0}$	$\mathbf{2 5 3 6 . 1 0}$	$\mathbf{3 6 0 0}$	$\mathbf{3 5 . 4 4 \%}$	$\mathbf{2 5 2 6 . 5 0}$	$\mathbf{3 6 0 0}$	$\mathbf{3 4 . 5 7 \%}$	$\mathbf{1 4 8 5 5 . 1 0}$
30_15_01	1541	3761	3600	47.32%	3360	3600	36.67%	22112
30_15_02	1563	3662	3600	48.11%	3258	3600	36.00%	21353
30_15_03	1337	3549	3600	50.71%	3324	3600	37.91%	21587
30_15_04	1553	3736	3600	47.85%	3406	3600	34.23%	22827
30_15_05	1524	3807	3600	51.32%	3520	3600	37.22%	22650
30_15_06	1506	3796	3600	49.26%	3482	3600	40.75%	21928
30_15_07	1272	3555	3600	52.43%	3447	3600	38.15%	21889
30_15_08	1408	3672	3600	48.12%	3479	3600	38.80%	22705
30_15_09	1430	3553	3600	50.04%	3329	3600	39.38%	21002
30_15_10	1407	3618	3600	48.09%	3431	3600	38.33%	22381
30_15_Average	$\mathbf{1 4 5 4 . 1 0}$	$\mathbf{3 6 7 0 . 9 0}$	$\mathbf{3 6 0 0}$	$\mathbf{4 9 . 3 3 \%}$	$\mathbf{3 4 0 3 . 6 0}$	$\mathbf{3 6 0 0}$	$\mathbf{3 7 . 7 4 \%}$	$\mathbf{2 2 0 4 3 . 4 0}$

Table A.7.(Cont'd.) MILP-Prime and CP-Prime Comparison Table with
Lower and Upper Bounds for 15 machines (VRF Instances)

Instance	LB	MILP- Prime	Time (Seconds)	Gap \%	CP- Prime	Time (Seconds)	Gap \%	UB
40_15_01	2106	4899	3600	47.76%	4414	3600	37.54%	31290
40_15_02	1983	4784	3600	49.08%	4317	3600	39.29%	29496
40_15_03	1635	4972	3600	58.76%	4296	3600	36.66%	30471
40_15_04	2071	4931	3600	48.52%	4299	3600	38.24%	29786
40_15_05	2163	4987	3600	47.56%	4416	3600	38.68%	30503
40_15_06	1996	4628	3600	48.59%	4130	3600	37.63%	29159
40_15_07	1706	4895	3600	55.13%	4389	3600	39.53%	29793
40_15_08	1849	4763	3600	51.60%	4330	3600	38.11%	30608
40_15_09	1812	4641	3600	52.79%	4215	3600	40.17%	29059
40_15_10	2094	4947	3600	48.35%	4396	3600	38.88%	29866
40_15_Average	$\mathbf{1 9 4 1 . 5 0}$	$\mathbf{4 8 4 4 . 7 0}$	$\mathbf{3 6 0 0}$	$\mathbf{5 0 . 8 1 \%}$	$\mathbf{4 3 2 0 . 2 0}$	$\mathbf{3 6 0 0}$	$\mathbf{3 8 . 4 7 \%}$	$\mathbf{3 0 0 0 3 . 1 0}$
50_15_01	2523	5922	3600	49.54%	5061	3600	40.01%	36632
50_15_02	2367	6290	3600	55.93%	5184	3600	38.70%	36862
50_15_03	2347	6221	3600	55.48%	5220	3600	40.27%	37090
50_15_04	2624	6313	3600	51.29%	5310	3600	36.91%	39575
50_15_05	2177	6020	3600	56.96%	5197	3600	39.70%	37372
50_15_06	2404	6283	3600	54.75%	5284	3600	39.91%	37845
50_15_07	2287	6160	3600	54.95%	5338	3600	38.20%	38921
50_15_08	2607	6158	3600	51.62%	5251	3600	38.28%	38477
50_15_09	2504	5930	3600	50.67%	5236	3600	42.28%	35680
50_15_10	2628	6374	3600	51.50%	5202	3600	38.50%	37789
$\mathbf{5 0 _ 1 5 _ A v e r a g e}$	$\mathbf{2 4 4 6 . 8 0}$	$\mathbf{6 1 6 7 . 1 0}$	$\mathbf{3 6 0 0}$	$\mathbf{5 3 . 2 7 \%}$	$\mathbf{5 2 2 8 . 3 0}$	$\mathbf{3 6 0 0}$	$\mathbf{3 9 . 2 8 \%}$	$\mathbf{3 7 6 2 4 . 3 0}$
60_15_01	3152	7240	3600	51.68%	6134	3600	38.54%	45669
60_15_02	3066	7145	3600	51.84%	6108	3600	39.96%	44756
60_15_03	2808	7430	3600	55.85%	6227	3600	41.03%	45850
60_15_04	2837	7569	3600	57.99%	6131	3600	42.29%	43025
60_15_05	3170	7294	3600	50.49%	6225	3600	41.40%	45293
60_15_06	2955	7748	3600	55.31%	6345	3600	41.75%	46562
60_15_07	2898	7373	3600	54.94%	6227	3600	42.28%	44575
60_15_08	2905	7192	3600	54.25%	6150	3600	42.13%	43740
60_15_Average	$\mathbf{2 9 8 5 . 1 0}$	$\mathbf{7 3 7 5 . 4 0}$	$\mathbf{3 6 0 0}$	$\mathbf{5 3 . 9 1 \%}$	$\mathbf{6 1 5 5 . 9 0}$	$\mathbf{3 6 0 0}$	$\mathbf{4 0 . 7 3 \%}$	$\mathbf{4 4 9 0 6 . 0 0}$
60_15_10	3015	7128	3600	51.34%	5829	3600	38.05%	44032
6045								

Table A.8. MILP-Prime and CP-Prime Comparison Table with Lower and Upper Bounds for 20 machines (VRF Instances)

Instance	LB	MILP- Prime	Time (Seconds)	Gap \%	$\mathbf{C P}-$ Prime	Time (Seconds)	Gap \%	UB
10_20_01	343	1913	1.812	0.00\%	1913	97.145	0.00\%	9382
10_20_02	523	1973	1.109	0.00\%	1973	55.923	0.00\%	9746
10_20_03	534	1989	2.109	0.00\%	1989	114.932	0.00\%	9475
10_20_04	363	1971	3.578	0.00\%	1971	78.640	0.00\%	9469
10_20_05	430	1979	1.938	0.00\%	1979	189.822	0.00\%	9411
10_20_06	627	2152	2.203	0.00\%	2152	78.785	0.00\%	10279
10_20_07	373	1893	1.094	0.00\%	1893	43.360	0.00\%	9790
10_20_08	373	1933	2.078	0.00\%	1933	131.791	0.00\%	9390
10_20_09	517	1941	1.641	0.00\%	1941	62.719	0.00\%	9943
10 20 10	460	1876	1.188	0.00\%	1876	60.680	0.00\%	9568
10_20_Average	454.30	1962.00	1.875	0.00\%	1962.00	91.380	0.00\%	9645.30
20_20_01	985	3128	3600	32.73\%	3082	3600	39.23\%	19780
20_20_02	1025	2894	3600	32.57\%	2964	3600	37.31\%	19573
20_20_03	1091	2935	3600	32.16\%	2935	3600	36.08\%	19864
20_20_04	1004	2863	3600	31.99\%	2852	3600	37.55\%	19380
20_20_05	1036	3116	3600	28.46\%	3078	3600	39.90\%	19893
20_20_06	957	3184	3600	37.84\%	3174	3600	39.79\%	19439
20_20_07	1078	2999	3600	25.24\%	2999	3600	37.75\%	20114
20_20_08	1057	2859	3600	36.47\%	2849	3600	33.20\%	19215
20_20_09	1142	3121	3600	35.75\%	3141	3600	35.88\%	20983
20_20_10	799	2885	3600	31.02\%	2884	3600	36.17\%	19302
20_20_Average	1017.40	2998.40	3600	$\mathbf{3 2 . 4 2 \%}$	2995.80	3600	37.29\%	19754.30
30_20_01	1424	4046	3600	50.00\%	3969	3600	43.86\%	28320
30_20_02	1600	4258	3600	48.30\%	4094	3600	40.99\%	29242
30_20_03	1363	4383	3600	53.52%	4071	3600	40.24\%	30648
30_20_04	1354	4130	3600	53.17\%	3819	3600	39.28\%	28902
30_20_05	1482	4108	3600	50.85\%	3782	3600	38.95\%	28861
30_20_06	1491	4261	3600	48.39\%	3993	3600	40.65\%	29591
30_20_07	1368	4322	3600	53.03\%	4068	3600	40.86\%	28946
30_20_08	1451	4455	3600	52.39\%	4108	3600	39.68\%	29963
30_20_09	1548	4348	3600	49.12\%	4039	3600	39.74\%	30835
30_20_10	1493	4513	3600	51.16\%	4145	3600	41.64\%	29908
30_20_Average	1457.40	4282.40	3600	$\mathbf{5 0 . 9 9 \%}$	4008.80	3600	40.59\%	29521.60

Table A.8.(Cont'd). MILP-Prime and CP-Prime Comparison Table with Lower and Upper Bounds for 20 machines (VRF Instances)

Instance	LB	MILP- Prime	Time (Seconds)	Gap \%	$\begin{gathered} \text { CP- } \\ \text { Prime } \end{gathered}$	Time (Seconds)	Gap \%	UB
40_20_01	1991	5645	3600	56.91\%	5004	3600	38.83\%	39749
40_20_02	1933	5547	3600	55.07\%	4936	3600	43.03\%	39611
40_20_03	2033	5899	3600	54.70\%	5156	3600	45.67\%	39992
40_20_04	1636	5760	3600	60.43\%	4872	3600	40.93\%	40243
40_20_05	1933	5216	3600	54.67\%	4807	3600	43.48\%	38028
40_20_06	1964	5789	3600	55.43\%	5018	3600	44.42\%	38446
40_20_07	1859	5833	3600	58.32\%	5113	3600	44.32\%	39827
40_20_08	1928	5729	3600	54.66\%	5051	3600	42.84\%	39740
40_20_09	1996	5816	3600	53.76\%	5108	3600	42.56\%	40530
40_20_10	1855	5580	3600	55.64\%	4814	3600	41.88\%	38544
40_20_Average	1912.80	5681.40	3600	$\mathbf{5 5 . 9 6 \%}$	4987.90	3600	42.80\%	39471.00
50_20_01	2406	7359	3600	59.30\%	5914	3600	44.45\%	49263
50_20_02	2368	7229	3600	58.91\%	5982	3600	43.93\%	49291
50_20_03	2532	7164	3600	55.59\%	6036	3600	42.73\%	50327
50_20_04	2370	6950	3600	58.18\%	6092	3600	45.40\%	49819
50_20_05	2449	6994	3600	57.54\%	6115	3600	45.79\%	47908
50_20_06	2509	7465	3600	57.69\%	6140	3600	44.56\%	50932
50_20_07	2256	7076	3600	60.33\%	6043	3600	44.07\%	49551
50_20_08	2380	7090	3600	57.32\%	5998	3600	43.06\%	49620
50_20_09	2575	7281	3600	54.99\%	6180	3600	44.37\%	50936
50_20_10	2692	7181	3600	54.69\%	6091	3600	44.10\%	50468
50_20_Average	2453.70	7178.90	3600	57.45\%	6059.10	3600	44.25\%	49811.50
60_20_01	2926	8229	3600	57.13\%	7220	3600	46.36\%	59752
60_20_02	3101	8319	3600	54.87\%	7168	3600	45.70\%	60474
60_20_03	3236	8589	3600	55.65\%	7376	3600	45.95\%	61159
60_20_04	2914	8744	3600	61.12\%	7178	3600	44.71\%	59734
60_20_05	2998	8094	3600	55.97\%	6932	3600	44.60\%	59396
60_20_06	2904	8692	3600	59.42\%	6853	3600	43.09\%	59555
60_20_07	3024	8118	3600	55.42\%	7040	3600	43.59\%	60390
60_20_08	2922	8762	3600	59.95\%	7030	3600	44.96\%	59314
60_20_09	3090	8544	3600	56.89\%	7036	3600	44.37\%	59483
60_20_10	2701	8726	3600	62.74\%	6865	3600	43.51\%	59365
60_20_Average	2981.60	8481.70	3600	57.92\%	7069.80	3600	44.68\%	59862.20

Table A.9. MILP and CP Comparison Table for 20 jobs (Taillard Instances)

Instance	Opt.	MILP Result	Time (Seconds)	Gap \%	CP Result	Time (Seconds)	Gap \%
20_5_01	1486	1497	3600	42.28\%	1486	3600	14.00\%
20_5_02	1528	1559	3600	50.67\%	1528	3600	11.13\%
20_5_03	1460	1485	3600	42.28\%	1462	3600	25.99\%
20_5_04	1588	1619	3600	44.71\%	1589	3600	18.19\%
20_5_05	1449	1465	3600	39.11\%	1449	3600	16.01\%
20_5_06	1481	1541	3600	43.34\%	1484	3600	19.20\%
20_5_07	1483	1513	3600	44.34\%	1485	3600	16.43\%
20_5_08	1482	1494	3600	38.95\%	1482	3600	18.62\%
20_5_09	1469	1498	3600	44.25\%	1469	3600	16.68\%
20_5_10	1377	1412	3600	44.75\%	1379	3600	19.94\%
20_5_Average	1480.30	1508.30	3600	43.47\%	1481.30	3600	17.62\%
20_10_01	2044	2069	3600	38.23\%	2055	3600	26.96\%
20_10_02	2166	2229	3600	41.18\%	2178	3600	27.46\%
20_10_03	1940	1963	3600	38.15\%	1951	3600	25.01\%
20_10_04	1811	1834	3600	38.05\%	1835	3600	27.08\%
20_10_05	1933	1949	3600	33.81\%	1933	3600	28.35\%
20_10_06	1892	1911	3600	39.03\%	1901	3600	28.67\%
20_10_07	1963	2029	3600	35.48\%	1963	3600	28.68\%
20_10_08	2057	2108	3600	41.46\%	2065	3600	30.61\%
20_10_09	1973	2021	3600	37.80\%	2017	3600	23.95\%
20_10_10	2051	2081	3600	37.53\%	2051	3600	27.25\%
20_10_Average	1983.00	2019.40	3600	38.07\%	1994.90	3600	27.40\%
20_20_01	2973	2984	3600	35.28\%	2976	3600	32.46\%
20_20_02	2852	2874	3600	33.57\%	2859	3600	36.24\%
20_20_03	3013	3068	3600	34.32\%	3044	3600	36.10\%
20_20_04	3001	3013	3600	34.11\%	3010	3600	35.78\%
20_20_05	3003	3003	3600	33.39\%	3032	3600	32.92\%
20_20_06	2998	3016	3600	31.26\%	2998	3600	34.39\%
20_20_07	3052	3082	3600	33.16\%	3078	3600	35.80\%
20_20_08	2839	2856	3600	31.96\%	2865	3600	32.43\%
20_20_09	3009	3049	3600	34.56\%	3101	3600	37.92\%
20_20_10	2979	3015	3600	33.88\%	2995	3600	34.76\%
20_20_Average	2971.90	2996.00	3600	33.55\%	2995.80	3600	34.88\%

Table A.10. MILP and CP Comparison Table for 50 jobs (Taillard
Instances)

Instance	Opt.	MILP Result	Time (Seconds)	Gap \%	CP Result	Time (Seconds)	Gap \%
50_5_01	3160	3758	3600	81.98%	3212	3600	15.07%
50_5_02	3432	3861	3600	82.02%	3469	3600	18.25%
50_5_03	3210	3719	3600	84.16%	3251	3600	19.59%
50_5_04	3338	3938	3600	83.74%	3380	3600	18.11%
50_5_05	3356	3762	3600	81.15%	3408	3600	15.87%
50_5_06	3346	3961	3600	81.84%	3365	3600	15.84%
50_5_07	3231	3749	3600	81.51%	3256	3600	16.49%
50_5_08	3235	3832	3600	83.22%	3298	3600	18.28%
50_5_09	3070	3722	3600	81.70%	3107	3600	17.83%
50_5_10	3317	3841	3600	83.24%	3362	3600	17.19%
50_5_Average	$\mathbf{3 2 6 9 . 5 0}$	$\mathbf{3 8 4 4 . 2 9}$	$\mathbf{3 6 0 0}$	$\mathbf{8 2 . 8 9 \%}$	$\mathbf{3 3 1 0 . 8 0}$	$\mathbf{3 6 0 0}$	$\mathbf{1 7 . 2 5 \%}$
50_10_01	4274	4923	3600	79.97%	4353	3600	31.75%
50_10_02	4177	4812	3600	79.77%	4245	3600	33.22%
50_10_03	4099	5025	3600	81.73%	4182	3600	32.28%
50_10_04	4399	5075	3600	77.10%	4450	3600	31.17%
50_10_05	4322	4999	3600	80.82%	4374	3600	32.83%
50_10_06	4289	5108	3600	82.57%	4321	3600	30.87%
50_10_07	4420	5279	3600	79.80%	4454	3600	31.19%
50_10_08	4318	5100	3600	78.70%	4369	3600	31.17%
50_10_09	4155	4985	3600	79.65%	4232	3600	31.88%
50_10_10	4283	5066	3600	79.49%	4308	3600	29.29%
$\mathbf{5 0 _ 1 0 _ A v e r a g e}$	$\mathbf{4 2 7 3 . 6 0}$	$\mathbf{5 0 3 7 . 2 0}$	$\mathbf{3 6 0 0}$	$\mathbf{7 9 . 9 6 \%}$	$\mathbf{4 3 2 8 . 8 0}$	$\mathbf{3 6 0 0}$	$\mathbf{3 1 . 5 7 \%}$
50_20_01	6129	7192	3600	73.90%	6255	3600	42.59%
50_20_02	5725	6825	3600	74.56%	5782	3600	38.86%
50_20_03	5862	7065	3600	74.30%	6029	3600	43.14%
50_20_04	5788	6751	3600	75.97%	5838	3600	40.85%
50_20_05	5886	7129	3600	76.98%	6018	3600	43.69%
50_20_06	5863	6843	3600	74.13%	6056	3600	41.55%
50_20_07	5962	6827	3600	75.80%	6094	3600	42.65%
50_20_08	5926	7306	3600	76.93%	6037	3600	42.97%
50_20_Average	$\mathbf{5 8 9 7 . 4 0}$	$\mathbf{6 9 8 0 . 0 0}$	$\mathbf{3 6 0 0}$	$\mathbf{7 5 . 3 2 \%}$	$\mathbf{6 0 1 3 . 5 0}$	$\mathbf{3 6 0 0}$	$\mathbf{4 1 . 9 4 \%}$
50_20_10	5957	7024	3600	76.90%	6087	3600	41.88%

Table A.11. MILP and CP Comparison Table for 100 jobs (Taillard Instances)

Instance	Opt.	MILP Result	Time (Seconds)	Gap \%	CP Result	Time (Seconds)	Gap
100_5_01	6361	8019	3600	92.61%	6582	3600	1655%
100_5_02	6212	8110	3600	92.14%	6386	3600	17.82%
100_5_03	6104	8003	3600	91.75%	6250	3600	17.25%
100_5_04	5999	7791	3600	91.61%	6134	3600	18.50%
100_5_05	6179	7945	3600	92.22%	6351	3600	17.38%
100_5_06	6056	8037	3600	92.09%	6206	3600	17.29%
100_5_07	6221	7769	3600	92.07%	6399	3600	18.30%
100_5_08	6109	7912	3600	92.46%	6326	3600	19.65%
100_5_09	6355	8370	3600	93.02%	6514	3600	16.41%
100_5_10	6365	8293	3600	93.60%	6516	3600	18.49%
100_5_Average	$\mathbf{6 1 9 6 . 1 0}$	$\mathbf{8 0 2 4 . 9 0}$	$\mathbf{3 6 0 0}$	$\mathbf{9 2 . 4 7 \%}$	$\mathbf{6 3 6 6 . 4 0}$	$\mathbf{3 6 0 0}$	$\mathbf{1 7 . 7 6 \%}$
100_10_01	8055	no solution	3600	-	8316	3600	30.53%
100_10_02	7853	no solution	3600	-	8129	3600	34.11%
100_10_03	8016	no solution	3600	-	8251	3600	31.40%
100_10_04	8328	no solution	3600	-	8570	3600	32.54%
100_10_05	7936	no solution	3600	-	8267	3600	33.82%
100_10_06	7773	no solution	3600	-	8074	3600	34.37%
100_10_07	7846	no solution	3600	-	8170	3600	31.85%
100_10_08	7880	no solution	3600	-	8160	3600	31.54%
100_10_09	8131	no solution	3600	-	8422	3600	30.34%
100_10_10	8092	no solution	3600	-	8306	3600	29.73%
$\mathbf{1 0 0 _ 1 0 _ A v e r a g e ~}$	$\mathbf{7 9 9 1 . 0 0}$	no solution	$\mathbf{3 6 0 0}$	-	$\mathbf{8 2 6 6 . 5 0}$	$\mathbf{3 6 0 0}$	$\mathbf{3 2 . 0 2 \%}$
100_20_01	10675	no solution	3600	-	11101	3600	46.53%
100_20_02	10562	no solution	3600	-	11095	3600	44.82%
100_20_03	10587	no solution	3600	-	10962	3600	43.79%
100_20_04	10588	no solution	3600	-	10916	3600	43.54%
100_20_05	10506	no solution	3600	-	11021	3600	44.10%
100_20_06	10623	no solution	3600	-	11113	3600	44.18%
100_20_07	10793	no solution	3600	-	11153	3600	45.42%
100_20_08	10801	no solution	3600	-	11312	3600	45.28%
100_20_09	10703	no solution	3600	-	11226	3600	45.98%
100_20_10	10747	no solution	3600	-	11035	3600	42.17%

Table A.12. MILP and CP Comparison Table for 200 jobs (Taillard
Instances)

Instance	Opt.	MILP Result	Time (Seconds)	Gap \%	CP Result	Time (Seconds)	Gap \%
200_10_01	15225	no solution	3600	-	16144	3600	32.72%
200_10_02	14990	no solution	3600	-	15963	3600	34.50%
200_10_03	15257	no solution	3600	-	16261	3600	32.85%
200_10_04	15103	no solution	3600	-	16171	3600	32.93%
200_10_05	15088	no solution	3600	-	16078	3600	34.73%
200_10_06	14976	no solution	3600	-	15883	3600	34.99%
200_10_07	15277	no solution	3600	-	16300	3600	33.42%
200_10_08	15133	no solution	3600	-	16208	3600	33.89%
200_10_09	14985	no solution	3600	-	15956	3600	34.64%
200_10_10	15213	no solution	3600	-	16239	3600	34.32%
200_10_Average	$\mathbf{1 5 1 2 4 . 7 0}$	no solution	$\mathbf{3 6 0 0}$	-	$\mathbf{1 6 1 2 0 . 3 0}$	$\mathbf{3 6 0 0}$	$\mathbf{3 4 . 0 3 \%}$
200_20_01	19531	no solution	3600	-	21051	3600	47.51%
200_20_02	19942	no solution	3600	-	21565	3600	48.95%
200_20_03	19759	no solution	3600	-	21255	3600	47.17%
200_20_04	19759	no solution	3600	-	21227	3600	47.34%
200_20_05	19697	no solution	3600	-	21278	3600	47.45%
200_20_06	19826	no solution	3600	-	21589	3600	48.31%
200_20_07	19946	no solution	3600	-	21824	3600	48.33%
200_20_08	19872	no solution	3600	-	21488	3600	47.80%
200_20_09	19784	no solution	3600	-	21358	3600	48.24%
200_20_10	19768	no solution	3600	-	21351	3600	47.32%
$\mathbf{2 0 0 _ 2 0 _ A v e r a g e ~}$	$\mathbf{1 9 7 8 8 . 4 0}$	no solution	$\mathbf{3 6 0 0}$	-	$\mathbf{2 1 3 9 8 . 6 0}$	$\mathbf{3 6 0 0}$	$\mathbf{4 7 . 8 4 \%}$

APPENDIX B - Computational Results for ($\boldsymbol{F}_{\boldsymbol{m}}|\boldsymbol{n w t}| \sum \boldsymbol{C}_{\boldsymbol{i m}}$)

Table B.1. MILP and CP Comparison Table for 5 machines (VRF

Instances)

Instance	MILP Result	Time (Seconds)	Gap \%	CP Result	Time (Seconds)	Gap \%
10_5_01	4117	1.516	0.00\%	4117	12.703	0.00\%
10_5_02	4045	0.688	0.00\%	4045	5.232	0.00\%
10_5_03	4380	0.875	0.00\%	4380	10.211	0.00\%
10_5_04	4199	0.641	0.00\%	4199	6.189	0.00\%
10_5_05	4666	0.875	0.00\%	4666	6.886	0.00\%
10_5_06	5524	2.484	0.00\%	5524	23.437	0.00\%
10_5_07	4798	1.719	0.00\%	4798	15.215	0.00\%
10_5_08	4080	1.000	0.00\%	4080	8.290	0.00\%
10_5_09	5118	1.118	0.00\%	5118	7.215	0.00\%
10_5_10	4136	1.703	0.00\%	4136	13.828	0.00\%
10_5_Average	4506.30	1.262	0.00\%	4506.30	10.921	0.00\%
20_5_01	15038	3600	45.64\%	15020	3600	27.05\%
20_5_02	16310	3600	48.72\%	16054	3600	24.41\%
20_5_03	17314	3600	48.54\%	17314	3600	24.97\%
20_5_04	14078	3600	43.94\%	14078	3600	23.63\%
20_5_05	17139	3600	48.63\%	17098	3600	19.28\%
20_5_06	14576	3600	46.54\%	14567	3600	31.43\%
20_5_07	14309	3600	42.28\%	14294	3600	27.17\%
20_5_08	14249	3600	43.51\%	14249	3600	23.65\%
20_5_09	16479	3600	48.77\%	16197	3600	17.04\%
20_5_10	17063	3600	49.86\%	17043	3600	27.95\%
20_5_Average	15655.50	3600	46.64\%	15591.40	3600	24.66\%
30_5_01	34786	3600	69.07\%	34095	3600	31.81\%
30_5_02	31540	3600	69.33\%	28816	3600	30.42\%
30_5_03	30827	3600	66.33\%	30479	3600	28.65\%
30_5_04	34950	3600	69.98\%	32834	3600	23.64\%
30_5_05	32664	3600	66.18\%	31415	3600	29.92\%
30_5_06	33738	3600	68.40\%	33211	3600	32.76\%
30_5_07	31528	3600	68.21\%	30651	3600	21.46\%
30_5_08	33068	3600	67.51\%	32466	3600	28.17\%
30_5_09	34061	3600	68.86\%	31822	3600	32.02\%
30_5_10	33146	3600	68.73\%	32280	3600	35.78\%
30_5_Average	33030.80	3600	68.26\%	31806.90	3600	29.46\%

Table B.1.(Cont'd.) MILP and CP Comparison Table for 5 machines (VRF Instances)

Instance	MILP Result	Time (Seconds)	Gap \%	CP Result	Time (Seconds)	Gap \%
40_5_01	57083	3600	75.84\%	54385	3600	23.88\%
40_5_02	62153	3600	73.68\%	57918	3600	27.43\%
40_5_03	53951	3600	75.83\%	51229	3600	27.77\%
40_5_04	58685	3600	77.75\%	53447	3600	31.70\%
40_5_05	61597	3600	77.37\%	55761	3600	30.76\%
40_5_06	58087	3600	77.70\%	51668	3600	27.80\%
40_5_07	57573	3600	76.85\%	52269	3600	27.82\%
40_5_08	65180	3600	78.05\%	58177	3600	28.24\%
40_5_09	61246	3600	77.41\%	55669	3600	29.72\%
40_5_10	58935	3600	76.01\%	54916	3600	25.40\%
40_5_Average	59449.00	3600	76.65\%	54543.90	3600	28.05\%
50_5_01	94488	3600	79.19\%	87966	3600	26.16\%
50_5_02	92657	3600	82.22\%	82880	3600	29.00\%
50_5_03	93318	3600	82.66\%	84893	3600	36.12\%
50_5_04	96914	3600	77.66\%	82391	3600	27.66\%
50_5_05	94661	3600	82.29\%	84389	3600	30.32\%
50_5_06	96009	3600	83.07\%	82772	3600	26.70\%
50_5_07	86259	3600	82.26\%	76369	3600	30.90\%
50_5_08	84286	3600	80.89\%	80534	3600	33.48\%
50_5_09	84316	3600	79.46\%	77903	3600	33.10\%
50_5_10	91841	3600	81.36\%	83864	3600	28.49\%
50_5_Average	91474.90	3600	81.11\%	82396.10	3600	30.19\%
60_5_01	131383	3600	84.72\%	116575	3600	2989\%
60_5_02	121169	3600	83.71\%	112053	3600	37.19\%
60_5_03	126360	3600	81.52\%	113745	3600	34.18\%
60_5_04	132960	3600	83.13\%	116630	3600	35.00\%
60_5_05	133941	3600	85.52\%	115036	3600	33.39\%
60_5_06	127392	3600	85.20\%	110802	3600	36.01\%
60_5_07	144766	3600	86.17\%	116420	3600	29.83\%
60_5_08	142678	3600	85.63\%	122113	3600	28.73\%
60_5_09	126528	3600	85.10\%	111726	3600	32.45\%
60_5_10	131600	3600	84.65\%	116138	3600	17.99\%
60_5_Average	131877.70	3600	84.54\%	115123.80	3600	31.47\%

Table B.2. MILP and CP Comparison Table for 10 machines (VRF Instances)

Instance	MILP Result	Time (Seconds)	Gap \%	CP Result	Time (Seconds)	Gap \%
10_10_01	7994	1.109	0.00%	7994	25.365	0.00%
10_10_02	7936	1.235	0.00%	7936	40.060	0.00%
10_10_03	7719	0.703	0.00%	7719	22.434	0.00%
10_10_04	7236	0.687	0.00%	7236	18.481	0.00%
10_10_05	8394	1.609	0.00%	8394	51.397	0.00%
10_10_06	7553	1.266	0.00%	7553	39.634	0.00%
10_10_07	7441	0.625	0.00%	7441	21.928	0.00%
10_10_08	7776	0.656	0.00%	7776	23.520	0.00%
$10 _10 _09$	7840	0.750	0.00%	7840	32.240	0.00%
10_10_10	8015	1.156	0.00%	8015	36.536	0.00%
10_10_Average	$\mathbf{7 7 9 0 . 4 0}$	$\mathbf{0 . 9 8 0}$	$\mathbf{0 . 0 0 \%}$	7790.40	$\mathbf{3 1 . 1 6 0}$	$\mathbf{0 . 0 0 \%}$
20_10_01	23788	3600	44.06%	23565	3600	27.11%
20_10_02	23293	3600	40.20%	23091	3600	25.21%
20_10_03	23897	3600	37.72%	23751	3600	29.20%
20_10_04	23006	3600	41.29%	22529	3600	31.25%
20_10_05	24367	3600	40.73%	24367	3600	26.86%
20_10_06	25687	3600	44.36%	24928	3600	32.53%
20_10_07	24132	3600	40.49%	24132	3600	30.03%
20_10_08	23078	3600	39.80%	23015	3600	24.41%
20_10_09	23662	3600	40.33%	23363	3600	31.39%
20_10_10	23333	3600	40.02%	23337	3600	31.01%
$\mathbf{2 0 _ 1 0 _ A v e r a g e}$	$\mathbf{2 3 8 2 4 . 3 0}$	$\mathbf{3 6 0 0}$	$\mathbf{4 0 . 9 0 \%}$	$\mathbf{2 3 6 0 7 . 8 0}$	$\mathbf{3 6 0 0}$	$\mathbf{2 8 . 9 0 \%}$
30_10_01	48415	3600	62.54%	44934	3600	34.03%
30_10_02	50114	3600	61.06%	47390	3600	32.47%
30_10_03	49065	3600	60.84%	47725	3600	32.93%
30_10_04	48345	3600	62.11%	45973	3600	38.65%
30_10_05	49899	3600	61.34%	48373	3600	36.04%
30_10_06	49160	3600	59.88%	47229	3600	34.43%
30_10_07	45753	3600	54.57%	45569	3600	34.51%
30_10_08	44529	3600	60.63%	43038	3600	35.39%
30_10_09	46231	3600	60.94%	44671	3600	37.12%
30_10_10	44229	3600	59.21%	43173	3600	38.63%
30_10_Average	$\mathbf{4 7 5 7 4 . 0 0}$	$\mathbf{3 6 0 0}$	$\mathbf{6 0 . 3 1 \%}$	$\mathbf{4 5 8 0 7 . 5 0}$	$\mathbf{3 6 0 0}$	$\mathbf{3 5 . 4 2 \%}$

Table B.2.(Cont'd.) MILP and CP Comparison Table for 10 machines
(VRF Instances)

Instance	MILP Result	Time (Seconds)	Gap \%	CP Result	Time (Seconds)	Gap \%
40_10_01	78846	3600	69.48%	76417	3600	37.61%
40_10_02	83339	3600	7144%	74534	3600	37.33%
40_10_03	80989	3600	71.31%	74206	3600	37.49%
40_10_04	86420	3600	71.51%	78784	3600	40.86%
40_10_05	88325	3600	67.22%	76434	3600	39.59%
40_10_06	84022	3600	70.96%	79540	3600	37.03%
40_10_07	84013	3600	71.29%	77928	3600	38.02%
40_10_08	79387	3600	67.15%	74595	3600	38.56%
40_10_09	79686	3600	69.90%	74597	3600	40.47%
40_10_10	81645	3600	70.49%	75962	3600	39.19%
$\mathbf{4 0 _ 1 0 _ A v e r a g e ~}$	$\mathbf{8 2 6 6 7 . 2 0}$	$\mathbf{3 6 0 0}$	$\mathbf{7 0 . 0 8 \%}$	$\mathbf{7 6 2 9 9 . 7 0}$	$\mathbf{3 6 0 0}$	$\mathbf{3 8 . 6 2 \%}$
50_10_01	120036	3600	75.57%	112242	3600	41.48%
50_10_02	127181	3600	76.69%	114210	3600	38.71%
50_10_03	124736	3600	75.72%	113219	3600	39.39%
50_10_04	127514	3600	76.21%	119059	3600	41.13%
50_10_05	124697	3600	64.88%	118704	3600	34.92%
50_10_06	122750	3600	68.58%	109833	3600	32.20%
50_10_07	123951	3600	74.87%	110347	3600	41.10%
50_10_08	130818	3600	76.37%	118392	3600	41.18%
50_10_09	133077	3600	77.42%	117628	3600	43.26%
50_10_10	131778	3600	69.65%	115446	3600	37.64%
$\mathbf{5 0 _ 1 0 _ \text { Average }}$	$\mathbf{1 2 6 6 5 3 . 8 0}$	$\mathbf{3 6 0 0}$	$\mathbf{7 3 . 6 0 \%}$	$\mathbf{1 1 4 9 0 8 . 0 0}$	$\mathbf{3 6 0 0}$	$\mathbf{3 9 . 1 0 \%}$
60_10_01	180093	3600	80.14%	159559	3600	44.66%
60_10_02	188791	3600	80.37%	162564	3600	37.28%
60_10_03	187931	3600	81.08%	156946	3600	41.77%
60_10_04	185298	3600	80.92%	161533	3600	44.41%
60_10_05	188368	3600	80.22%	165545	3600	44.27%
60_10_06	189026	3600	80.57%	166416	3600	44.19%
60_10_07	182751	3600	79.38%	163330	3600	39.86%
60_10_08	174641	3600	79.76%	156487	3600	42.10%
60_10_09	178934	3600	80.10%	159501	3600	38.84%
60_10_10	182960	3600	80.23%	159669	3600	43.78%
$\mathbf{6 0 _ 1 0 _ \text { Average }}$	$\mathbf{1 8 3 8 7 9 . 3 0}$	$\mathbf{3 6 0 0}$	$\mathbf{8 0 . 2 8 \%}$	$\mathbf{1 6 1 1 5 5 . 0 0}$	$\mathbf{3 6 0 0}$	$\mathbf{4 2 . 1 2 \%}$

Table B.3. MILP and CP Comparison Table for 15 machines (VRF Instances)

Instance	MILP Result	Time (Seconds)	Gap \%	$\underset{\text { Result }}{\mathbf{C P}}$	Time (Seconds)	Gap \%
10_15_01	10089	0.922	0.00\%	10089	58.739	0.00\%
10_15_02	11178	1.219	0.00\%	11178	75.550	0.00\%
10_15_03	11272	1.312	0.00\%	11272	100.877	0.00\%
10_15_04	10799	1.031	0.00\%	10799	60.795	0.00\%
10_15_05	11110	1.250	0.00\%	11110	70.873	0.00\%
10_15_06	10431	0.859	0.00\%	10431	58.791	0.00\%
10_15_07	10972	1.484	0.00\%	10972	79.354	0.00\%
10_15_08	11125	1.219	0.00\%	11125	60.905	0.00\%
10_15_09	11121	0.953	0.00\%	11121	65.490	0.00\%
10_15_10	11613	1.422	0.00\%	11613	98.221	0.00\%
10_15_Average	10971.00	1.167	0.00\%	10971.00	72.960	0.00\%
20_15_01	32430	3600	37.16\%	32430	3600	32.18\%
20_15_02	32469	3600	38.31\%	32195	3600	30.51\%
20_15_03	31293	3600	38.92\%	31301	3600	34.46\%
20_15_04	30802	3600	35.96\%	30904	3600	35.20\%
20_15_05	30979	3600	35.23\%	30619	3600	26.92\%
20_15_06	32184	3600	36.45\%	31998	3600	32.51\%
20_15_07	31856	3600	36.54\%	31527	3600	30.62\%
20_15_08	31085	3600	36.38\%	30877	3600	34.20\%
20_15_09	29978	3600	32.08\%	29978	3600	24.01\%
20_15_10	31951	3600	37.25\%	31617	3600	32.82\%
20_15_Average	31502.70	3600	36.43\%	31344.60	3600	31.34\%
30_15_01	65120	3600	59.04\%	60543	3600	38.33\%
30_15_02	62996	3600	58.10\%	56992	3600	35.77\%
30_15_03	61114	3600	57.16\%	57640	3600	38.56\%
30_15_04	66561	3600	58.53\%	60522	3600	35.71\%
30_15_05	61364	3600	55.73\%	59937	3600	36.19\%
30_15_06	63221	3600	57.58\%	61263	3600	40.84\%
30_15_07	64671	3600	58.45\%	60288	3600	36.78\%
30_15_08	65066	3600	57.63\%	62295	3600	40.95\%
30_15_09	60183	3600	57.14\%	58185	3600	35.81\%
30_15_10	63033	3600	53.79\%	60234	3600	38.71\%
30_15_Average	63332.90	3600	57.32\%	59789.90	3600	37.77\%

Table B.3.(Cont'd.) MILP and CP Comparison Table for 15 machines (VRF Instances)

Instance	MILP Result	Time (Seconds)	Gap \%	$\begin{gathered} \text { CP } \\ \text { Result } \end{gathered}$	Time (Seconds)	Gap \%
40_15_01	110688	3600	65.39\%	103869	3600	41.78\%
40_15_02	101090	3600	65.36\%	97620	3600	41.70\%
40_15_03	109249	3600	66.99\%	99282	3600	40.81\%
40_15_04	104618	3600	66.58\%	98218	3600	42.89\%
40_15_05	106457	3600	66.27\%	100130	3600	42.71\%
40_15_06	98429	3600	65.18\%	93959	3600	41.44\%
40_15_07	106620	3600	66.89\%	99241	3600	42.06\%
40_15_08	103602	3600	64.97\%	97891	3600	41.12\%
40_15_09	96189	3600	64.20\%	92764	3600	40.29\%
40_15_10	105002	3600	66.53\%	98336	3600	39.65\%
40_15_Average	104194.40	3600	65.84\%	98131.00	3600	41.45\%
50_15_01	147187	3600	71.31\%	136074	3600	44.14\%
50_15_02	163146	3600	73.63\%	146125	3600	42.33\%
50_15_03	157116	3600	72.50\%	145073	3600	45.15\%
50_15_04	167239	3600	72.44\%	149217	3600	41.48\%
50_15_05	158126	3600	72.52\%	140097	3600	43.46\%
50_15_06	153500	3600	71.30\%	146440	3600	44.70\%
50_15_07	164343	3600	72.48\%	149659	3600	42.66\%
50_15_08	162446	3600	72.33\%	147661	3600	44.11\%
50_15_09	160378	3600	73.81\%	143908	3600	45.94\%
50_15_10	154426	3600	71.96\%	140941	3600	43.99\%
50_15_Average	158790.70	3600	72.43\%	144519.50	3600	43.80\%
60_15_01	229822	3600	76.92\%	200477	3600	43.13\%
60_15_02	221518	3600	76.72\%	199486	3600	45.22\%
60_15_03	231894	3600	77.37\%	200729	3600	46.21\%
60_15_04	216310	3600	75.50\%	193267	3600	45.29\%
60_15_05	230155	3600	77.53\%	198195	3600	46.60\%
60_15_06	235768	3600	77.28\%	209383	3600	48.74\%
60_15_07	227100	3600	77.12\%	200456	3600	46.51\%
60_15_08	216370	3600	74.67\%	193986	3600	47.12\%
60_15_09	216465	3600	76.41\%	197097	3600	46.89\%
60_15_10	227747	3600	76.79\%	199175	3600	44.48\%
60_15_Average	225314.90	3600	76.63\%	199225.10	3600	46.02\%

Table B.4. MILP and CP Comparison Table for 20 machines (VRF Instances)

Instance	MILP Result	Time (Seconds)	Gap \%	$\begin{gathered} \text { CP } \\ \text { Result } \end{gathered}$	Time (Seconds)	Gap \%
10_20_01	13418	0.953	0.00\%	13418	112.112	0.00\%
10_20_02	14098	0.953	0.00\%	14098	150.869	0.00\%
10_20_03	13523	0.922	0.00\%	13523	130.233	0.00\%
10_20_04	14150	1.687	0.00\%	14150	193.526	0.00\%
10_20_05	13766	1.437	0.00\%	13766	177.039	0.00\%
10_20_06	15574	1.062	0.00\%	15574	193.254	0.00\%
10_20_07	14474	1.875	0.00\%	14474	205.521	0.00\%
10_20_08	14046	2.031	0.00\%	14046	197.313	0.00\%
10_20_09	14417	1.391	0.00\%	14417	173.098	0.00\%
10_20_10	13728	1.297	0.00\%	13728	152.416	0.00\%
10_20_Average	14119.40	1.361	0.00\%	14119.40	168.538	0.00\%
20_20_01	38550	3600	33.60\%	38789	3600	33.59\%
20_20_02	36529	3600	31.63\%	36529	3600	30.28\%
20_20_03	37628	3600	31.79\%	38009	3600	29.88\%
20_20_04	38924	3600	35.66\%	37348	3600	32.45\%
20_20_05	39422	3600	32.76\%	39279	3600	32.97\%
20_20_06	39631	3600	35.70\%	39641	3600	33.46\%
20_20_07	37854	3600	30.46\%	37702	3600	29.18\%
20_20_08	36759	3600	32.40\%	36646	3600	27.59\%
20_20_09	41404	3600	35.71\%	40347	3600	31.33\%
20_20_10	38098	3600	34.17\%	37207	3600	27.08\%
20_20_Average	38479.90	3600	33.39\%	38149.70	3600	30.78\%
30_20_01	71779	3600	52.84\%	68325	3600	38.22\%
30_20_02	73917	3600	53.37\%	71282	3600	35.36\%
30_20_03	78216	3600	53.54\%	74964	3600	39.67\%
30_20_04	73022	3600	53.40\%	68823	3600	33.25\%
30_20_05	72818	3600	52.61\%	69348	3600	35.38\%
30_20_06	74333	3600	52.82\%	72178	3600	38.22\%
30_20_07	76332	3600	55.03\%	72027	3600	38.37\%
30_20_08	76960	3600	54.08\%	73393	3600	37.41\%
30_20_09	78937	3600	54.10\%	75099	3600	38.86\%
30_20_10	75328	3600	52.80\%	73585	3600	36.22\%
30_20_Average	75164,20	3600	53.46\%	71902.40	3600	37.10\%

Table B.4.(Cont'd.) MILP and CP Comparison Table for 20 machines (VRF Instances)

Instance	MILP Result	Time (Seconds)	Gap \%	$\begin{gathered} \text { CP } \\ \text { Result } \end{gathered}$	Time (Seconds)	Gap \%
40_20_01	119352	3600	61.65\%	111832	3600	34.89\%
40_20_02	118070	3600	61.34\%	112999	3600	40.51\%
40_20_03	126812	3600	63.44\%	117738	3600	43.36\%
40_20_04	122914	3600	62.48\%	114795	3600	41.65\%
40_20_05	114661	3600	61.78\%	108700	3600	42.31\%
40_20_06	118647	3600	62.63\%	113060	3600	42.25\%
40_20_07	129603	3600	64.16\%	118708	3600	41.74\%
40_20_08	125133	3600	63.43\%	115644	3600	41.47\%
40_20_09	124553	3600	61.62\%	120029	3600	42.82\%
40_20_10	122453	3600	63.64\%	112120	3600	41.35\%
40_20_Average	122219.80	3600	62.62\%	114562.50	3600	41.24\%
50_20_01	181084	3600	68.98\%	168138	3600	45.68\%
50_20_02	186786	3600	69.81\%	168182	3600	45.94\%
50_20_03	189326	3600	66.46\%	172722	3600	46.01\%
50_20_04	192111	3600	69.96\%	168541	3600	45.09\%
50_20_05	177003	3600	68.80\%	164533	3600	46.39\%
50_20_06	187298	3600	69.08\%	170986	3600	44.83\%
50_20_07	185242	3600	69.15\%	173809	3600	47.81\%
50_20_08	188369	3600	70.09\%	164240	3600	43.96\%
50_20_09	187632	3600	68.93\%	174257	3600	45.59\%
50_20_10	182296	3600	68.27\%	167737	3600	44.33\%
50_20_Average	185714.70	3600	68.95\%	169314.50	3600	45.56\%
60_20_01	262874	3600	73.98\%	234288	3600	48.25\%
60_20_02	252294	3600	72.65\%	231177	3600	46.85\%
60_20_03	262336	3600	73.41\%	240352	3600	47.67\%
60_20_04	264779	3600	74.14\%	238675	3600	47.13\%
60_20_05	245218	3600	72.39\%	225762	3600	46.63\%
60_20_06	259639	3600	74.08\%	229040	3600	47.40\%
60_20_07	256533	3600	73.28\%	239125	3600	47.02\%
60_20_08	261945	3600	74.23\%	232828	3600	48.01\%
60_20_09	258469	3600	73.84\%	229811	3600	47.59\%
60_20_10	257208	3600	73.59\%	228803	3600	46.78\%
60_20_Average	$\mathbf{2 5 8 1 2 9 . 5 0}$	3600	73.56\%	232986.10	3600	47.33\%

Table B.5. MILP and CP Comparison Table for 20 jobs (Taillard Instances)

Instance	MILP Result	Time (Seconds)	Gap \%	CP Result	Time (Seconds)	Gap \%
20_5_01	15698	3600	46.27%	15674	3600	19.19%
20_5_02	17503	3600	52.01%	17270	3600	23.72%
20_5_03	16035	3600	49.26%	15821	3600	30.86%
20_5_04	17976	3600	48.52%	17970	3600	26.24%
20_5_05	15331	3600	46.61%	15317	3600	17.41%
20_5_06	15501	3600	45.39%	15501	3600	27.21%
20_5_07	15712	3600	48.41%	15706	3600	28.96%
20_5_08	15959	3600	47.92%	16023	3600	23.32%
20_5_09	16634	3600	48.61%	16385	3600	27.53%
20_5_10	15347	3600	49.60%	15371	3600	29.03%
$\mathbf{2 0 _ 5 _ A v e r a g e ~}$	$\mathbf{1 6 1 6 9 . 6 0}$	$\mathbf{3 6 0 0}$	$\mathbf{4 8 . 2 6 \%}$	$\mathbf{1 6 1 0 3 . 8 0}$	$\mathbf{3 6 0 0}$	$\mathbf{2 5 . 3 5 \%}$
20_10_01	25397	3600	42.92%	25205	3600	32.07%
20_10_02	26663	3600	42.29%	26371	3600	29.58%
20_10_03	22910	3600	39.10%	22910	3600	27.49%
20_10_04	22762	3600	44.49%	22243	3600	33.05%
20_10_05	23482	3600	41.51%	23269	3600	35.76%
20_10_06	22199	3600	41.38%	22011	3600	31.17%
20_10_07	22210	3600	40.20%	21939	3600	30.02%
20_10_08	24427	3600	42.35%	24205	3600	32.49%
20_10_09	23967	3600	40.78%	23501	3600	28.56%
20_10_10	24721	3600	38.94%	24715	3600	27.80%
$\mathbf{2 0 _ 1 0 _ \text { Average }}$	$\mathbf{2 3 8 7 3 . 8 0}$	$\mathbf{3 6 0 0}$	$\mathbf{4 1 . 4 0 \%}$	$\mathbf{2 3 6 3 6 . 9 0}$	$\mathbf{3 6 0 0}$	$\mathbf{3 0 . 8 0 \%}$
20_20_01	39142	3600	34.17%	38728	3600	25.89%
20_20_02	37643	3600	34.42%	37571	3600	34.17%
20_20_03	38574	3600	33.38%	38382	3600	29.40%
20_20_04	39341	3600	35.60%	38802	3600	31.18%
20_20_05	39167	3600	33.22%	39012	3600	25.93%
20_20_06	39182	3600	35.10%	38618	3600	32.51%
20_20_07	39855	3600	36.17%	39663	3600	31.57%
20_20_08	37027	3600	32.82%	37000	3600	28.27%
20_20_09	39267	3600	33.91%	39228	3600	32.93%
20_20_10	37977	3600	35.00%	37931	3600	30.12%
$\mathbf{2 0 _ 2 0 _ \text { Average }}$	$\mathbf{3 8 7 1 7 . 5 0}$	$\mathbf{3 6 0 0}$	$\mathbf{3 4 . 3 8 \%}$	$\mathbf{3 8 4 9 3 . 5 0}$	$\mathbf{3 6 0 0}$	$\mathbf{3 0 . 2 0 \%}$

Table B.6. MILP and CP Comparison Table for 50 jobs (Taillard Instances)

Instance	MILP Result	Time (Seconds)	Gap \%	CP Result	Time (Seconds)	Gap \%
50_5_01	87996	3600	81.93%	76530	3600	28.99%
50_5_02	95874	3600	82.11%	85619	3600	32.47%
50_5_03	87715	3600	81.77%	78440	3600	33.53%
50_5_04	93070	3600	82.02%	83296	3600	32.23%
50_5_05	99298	3600	83.16%	84746	3600	31.55%
50_5_06	93416	3600	81.91%	81127	3600	29.05%
50_5_07	91346	3600	82.25%	79299	3600	27.19%
50_5_08	90865	3600	82.07%	79772	3600	31.47%
50_5_09	81988	3600	79.46%	76122	3600	32.34%
50_5_10	93507	3600	81.93%	85986	3600	32.80%
$\mathbf{5 0 _ 5 _ A v e r a g e ~}$	$\mathbf{9 1 5 0 7 . 5 0}$	$\mathbf{3 6 0 0}$	$\mathbf{8 1 . 8 6 \%}$	$\mathbf{8 1 0 9 3 . 7 0}$	$\mathbf{3 6 0 0}$	$\mathbf{3 1 . 1 6 \%}$
50_10_01	129431	3600	76.72%	115198	3600	43.19%
50_10_02	125020	3600	76.66%	113511	3600	42.33%
50_10_03	125711	3600	76.80%	107260	3600	41.09%
50_10_04	125382	3600	71.36%	116509	3600	41.78%
50_10_05	132574	3600	76.72%	117023	3600	43.34%
50_10_06	125256	3600	75.99%	114474	3600	37.71%
50_10_07	124452	3600	75.31%	119119	3600	37.18%
50_10_08	127132	3600	73.00%	116537	3600	40.64%
50_10_09	124187	3600	76.07%	111266	3600	40.09%
50_10_10	122804	3600	74.69%	114622	3600	36.05%
$\mathbf{5 0 _ 1 0 _ A v e r a g e}$	$\mathbf{1 2 6 1 9 4 . 9 0}$	$\mathbf{3 6 0 0}$	$\mathbf{7 5 . 3 3 \%}$	$\mathbf{1 1 4 5 5 1 . 9 0}$	$\mathbf{3 6 0 0}$	$\mathbf{4 0 . 3 4 \%}$
50_20_01	186314	3600	68.14%	174557	3600	44.95%
50_20_02	182986	3600	69.36%	162979	3600	42.50%
50_20_03	178097	3600	68.77%	164065	3600	46.60%
50_20_04	186633	3600	69.41%	165958	3600	43.26%
50_20_05	184516	3600	69.37%	169117	3600	47.42%
50_20_06	179826	3600	68.15%	163859	3600	43.43%
50_20_07	182040	3600	68.85%	168343	3600	44.82%
50_20_08	189041	3600	70.26%	171248	3600	46.23%
50_20_09	179280	3600	65.16%	169472	3600	42.84%
50_20_10	182768	3600	68.58%	173979	3600	44.42%
$\mathbf{5 0 _ 2 0 _ A v e r a g e}$	$\mathbf{1 8 3 1 5 0 . 1 0}$	$\mathbf{3 6 0 0}$	$\mathbf{6 8 . 6 1 \%}$	$\mathbf{1 6 8 3 5 7 . 7 0}$	$\mathbf{3 6 0 0}$	$\mathbf{4 4 . 6 5 \%}$

Table B.7. MILP and CP Comparison Table for 100 jobs (Taillard Instances)

Instance	MILP Result	Time (Seconds)	Gap \%	$\begin{gathered} \text { CP } \\ \text { Result } \end{gathered}$	Time (Seconds)	Gap
100_5_01	385065	3600	91.57\%	313165	3600	32.19\%
100_5_02	352042	3600	87.89\%	304434	3600	34.38\%
100_5_03	383576	3600	91.96\%	300643	3600	35.07\%
100_5_04	314768	3600	86.06\%	283011	3600	33.96\%
100_5_05	356990	3600	90.32\%	302073	3600	33.60\%
100_5_06	353622	3600	88.66\%	294999	3600	37.32\%
100_5_07	387178	3600	91.95\%	306007	3600	36.56\%
100_5_08	377355	3600	91.94\%	295676	3600	39.08\%
100_5_09	389823	3600	91.69\%	312497	3600	35.91\%
100_5_10	390391	3600	91.71\%	310077	3600	35.59\%
100_5_Average	369081.00	3600	90.38\%	302258.20	3600	35.37\%
100_10_01	no solution	3600		426032	3600	43.89\%
100_10_02	no solution	3600		408264	3600	49.07\%
100_10_03	no solution	3600		419751	3600	45.31\%
100_10_04	no solution	3600		431381	3600	46.01\%
100_10_05	no solution	3600		409270	3600	46.63\%
100_10_06	no solution	3600		400684	3600	48.47\%
100_10_07	no solution	3600		401456	3600	43.54\%
100_10_08	no solution	3600		413451	3600	43.95\%
100_10_09	no solution	3600	-	431039	3600	42.24\%
100_10_10	no solution	3600	-	428113	3600	45.98\%
100_10_Average	no solution	3600	-	416944.10	3600	45.51\%
100_20_01	no solution	3600	-	593720	3600	53.57\%
100_20_02	no solution	3600	-	590592	3600	53.44\%
100_20_03	no solution	3600	-	586146	3600	50.36\%
100_20_04	no solution	3600	-	597415	3600	51.59\%
100_20_05	no solution	3600	-	580374	3600	49.66\%
100_20_06	no solution	3600	-	591962	3600	53.67\%
100_20_07	no solution	3600	-	611832	3600	55.49\%
100_20_08	no solution	3600	-	601038	3600	51.43\%
100_20_09	no solution	3600	-	589340	3600	53.36\%
100_20_10	no solution	3600	-	596446	3600	48.15\%
100_20_Average	no solution	3600	-	593886.50	3600	52.07\%

Table B.8. MILP and CP Comparison Table for 200 jobs (Taillard Instances)

Instance	MILP Result	Time (Seconds)	Gap \%	CP Result	Time (Seconds)	Gap \%
200_10_01	no solution	3600	-	1614812	3600	47.95%
200_10_02	no solution	3600	-	1667646	3600	53.13%
200_10_03	no solution	3600	-	1653710	3600	48.77%
200_10_04	no solution	3600	-	1591963	3600	50.35%
200_10_05	no solution	3600	-	1634213	3600	51.31%
200_10_06	no solution	3600	-	1577967	3600	51.55%
200_10_07	no solution	3600	-	1633800	3600	51.83%
200_10_08	no solution	3600	-	1631609	3600	50.42%
200_10_09	no solution	3600	-	1601298	3600	51.53%
200_10_10	no solution	3600	-	1616365	3600	50.41%
$\mathbf{2 0 0 _ 1 0 _ A v e r a g e ~}$	no solution	$\mathbf{3 6 0 0}$	-	$\mathbf{1 6 2 2 3 3 8 . 3 0}$	$\mathbf{3 6 0 0}$	$\mathbf{5 0 . 7 3 \%}$
200_20_01	no solution	3600	-	2197865	3600	5913%
200_20_02	no solution	3600	-	2237183	3600	59.58%
200_20_03	no solution	3600	-	2205949	3600	58.32%
200_20_04	no solution	3600	-	2270101	3600	60.24%
200_20_05	no solution	3600	-	2260614	3600	60.15%
200_20_06	no solution	3600	-	2243069	3600	59.96%
200_20_07	no solution	3600	-	2225255	3600	58.08%
200_20_08	no solution	3600	-	2237216	3600	59.33%
200_20_09	no solution	3600	-	2187614	3600	58.79%
200_20_10	no solution	3600	-	2211536	3600	58.88%
$\mathbf{2 0 0 _ 2 0 _ A v e r a g e ~}$	no solution	$\mathbf{3 6 0 0}$	-	$\mathbf{2 2 2 7 6 4 0 . 2 0}$	$\mathbf{3 6 0 0}$	$\mathbf{5 9 . 2 5 \%}$

APPENDIX C - Computational Results for ($\boldsymbol{F}_{\boldsymbol{m}}|\boldsymbol{n w} \boldsymbol{t}| \sum T_{i}$)

Table C.1. MILP and CP Comparison Table for $\mathbf{2 0}$ jobs (Taillard Instances)

Instance	MILP Result	Time (Seconds)	Gap \%	CP Result	Time (Seconds)	Gap \%
20_5_01	4005	3600	90.98%	3874	3600	88.36%
20_5_02	4167	3600	76.69%	4167	3600	93.52%
20_5_03	5830	3600	79.18%	5648	3600	93.66%
20_5_04	4660	3600	76.25%	4408	3600	94.94%
20_5_05	3292	3600	70.04%	3292	3600	92.77%
20_5_06	5523	3600	78.55%	5395	3600	92.96%
20_5_07	3469	3600	82.69%	3365	3600	94.00%
20_5_08	5237	3600	78.44%	5224	3600	81.34%
20_5_09	4056	3600	85.92%	3974	3600	92.63%
20_5_10	4886	3600	86.19%	4795	3600	91.89%
20_5_Average	$\mathbf{4 5 1 2 . 5 0}$	$\mathbf{3 6 0 0}$	$\mathbf{8 0 . 4 9 \%}$	$\mathbf{4 4 1 4 . 2 0}$	$\mathbf{3 6 0 0}$	$\mathbf{9 1 . 6 1 \%}$
20_10_01	757	3600	94.84%	716	3600	100.00%
20_10_02	2269	3600	$47,59 \%$	2258	3600	99.16%
20_10_03	1551	3600	62.66%	1518	3600	100.00%
20_10_04	1338	1795	0.00%	1338	3600	98.73%
20_10_05	1359	3600	81.89%	1270	3600	100.00%
20_10_06	2760	3600	39.38%	2940	3600	90.99%
20_10_07	1752	3600	87.83%	1752	3600	100.00%
20_10_08	124	2892	0.00%	124	3600	100.00%
20_10_09	2996	3600	43.89%	2891	3600	97.82%
20_10_10	3145	3600	31.09%	3145	3600	95.64%
$\mathbf{2 0 _ 1 0 _ A v e r a g e}$	$\mathbf{1 8 0 5 . 1 0}$	$\mathbf{3 3 4 8 . 7 0}$	$\mathbf{4 8 . 9 2 \%}$	$\mathbf{1 7 9 5 . 2 0}$	$\mathbf{3 6 0 0}$	$\mathbf{9 8 . 2 3 \%}$
20_20_01	0	3.484	0.00%	0	8.700	0.00%
20_20_02	216	2.078	0.00%	216	90.659	0.00%
20_20_03	0	2.969	0.00%	0	7.531	0.00%
20_20_04	0	10.515	0.00%	0	35.382	0.00%
20_20_05	3934	400.719	0.00%	4022	3600.000	95.57%
20_20_06	2541	28.578	0.00%	2541	887.407	0.00%
20_20_07	364	57.047	0.00%	364	572.882	0.00%
20_20_08	844	2.328	0.00%	844	158.326	0.00%
20_20_09	258	259.579	0.00%	258	574.038	0.00%
20_20_10	0	1.110	0.00%	0	0.614	0.00%
20_20_Average	$\mathbf{8 1 5 . 7 0}$	$\mathbf{7 6 . 8 4 0}$	$\mathbf{0 . 0 0 \%}$	$\mathbf{8 2 4 . 5 0}$	$\mathbf{5 9 3 . 5 5}$	$\mathbf{9 . 5 6 \%}$

Table C.2. MILP and CP Comparison Table for 50 jobs (Taillard
Instances)

Instance	MILP Result	Time (Seconds)	Gap \%	$\mathbf{C P}$ Result	Time (Seconds)	Gap \%
50_5_01	58311	3600	9894\%	49587	3600	47.78\%
50_5_02	64752	3600	99.36\%	51522	3600	53.43\%
50_5_03	55886	3600	98.96\%	49998	3600	58.80\%
50_5_04	60802	3600	98.59\%	55199	3600	52.37\%
50_5_05	63260	3600	99.22\%	55109	3600	51.15\%
50_5_06	55011	3600	99.18\%	48688	3600	51.01\%
50_5_07	56771	3600	99.36\%	50723	3600	44.97\%
50_5_08	56477	3600	99.20\%	48953	3600	53.05\%
50_5_09	57092	3600	99.66\%	47075	3600	56.07\%
50_5_10	61747	3600	98.64\%	55906	3600	50.52\%
50_5_Average	59010.90	3600	$\mathbf{9 9 . 1 1 \%}$	51276.00	3600	$\mathbf{5 1 . 9 2 \%}$
50_10_01	62282	3600	9945\%	54132	3600	98.30\%
50_10_02	63309	3600	99.26\%	55523	3600	91.50\%
50_10_03	62432	3600	99.28\%	52531	3600	89.71\%
50_10_04	63571	3600	99.57\%	50409	3600	97.80\%
50_10_05	66647	3600	98.79\%	57375	3600	95.63\%
50_10_06	64629	3600	99.72\%	53513	3600	84.29\%
50_10_07	71458	3600	99.10\%	58342	3600	78.22\%
50_10_08	66788	3600	99.60\%	58678	3600	84.16\%
50_10_09	73544	3600	98.64\%	60616	3600	81.36\%
50_10_10	65992	3600	99.02\%	54591	3600	83.61\%
50_10_Average	66065.20	3600	99.24\%	55571.00	3600	88.46\%
50_20_01	67509	3600	9914\%	57719	3600	99.44\%
50_20_02	57540	3600	99.13\%	51268	3600	99.73\%
50_20_03	72294	3600	99.40\%	58871	3600	99.60\%
50_20_04	71022	3600	9833\%	53738	3600	99.36\%
50_20_05	77549	3600	98.71\%	59081	3600	99.69\%
50_20_06	67632	3600	99.64\%	49353	3600	99.86\%
50_20_07	70883	3600	99.26\%	59037	3600	99.63\%
50_20_08	71641	3600	99.69\%	53200	3600	99.89\%
50_20_09	65027	3600	99.16\%	54899	3600	99.85\%
50_20_10	77607	3600	99.24\%	69084	3600	99.10\%
50_20_Average	69870.40	3600	99.17\%	56625.00	3600	99.62\%

Table C.3. MILP and CP Comparison Table for 100 jobs (Taillard Instances)

Instance	MILP Result	Time (Seconds)	Gap \%	$\begin{gathered} \mathbf{C P} \\ \text { Result } \end{gathered}$	Time (Seconds)	Gap
100_5_01	298416	3600	99.82\%	244835	3600	40.97\%
100_5_02	302432	3600	99.08\%	244738	3600	44.66\%
100_5_03	300131	3600	99.66\%	240511	3600	43.67\%
100_5_04	276616	3600	99.58\%	231855	3600	43.68\%
100_5_05	302965	3600	99.72\%	237423	3600	42.98\%
100_5_06	310924	3600	99.85\%	231990	3600	47.44\%
100_5_07	296315	3600	99.72\%	249601	3600	46.80\%
100_5_08	306647	3600	99.73\%	239252	3600	49.56\%
100_5_09	304255	3600	99.80\%	245070	3600	46.02\%
100_5_10	309836	3600	99.73\%	243843	3600	43.54\%
100_5_Average	300853.70	3600	99.67\%	240911.80	3600	44.93\%
100_10_01	no solution	3600		298584	3600	64.93\%
100_10_02	no solution	3600		285989	3600	69.76\%
100_10_03	no solution	3600		292524	3600	63.22\%
100_10_04	no solution	3600		308846	3600	67.05\%
100_10_05	no solution	3600		290366	3600	67.88\%
100_10_06	no solution	3600		283485	3600	70.34\%
100_10_07	no solution	3600		289199	3600	64.75\%
100_10_08	no solution	3600	-	301357	3600	65.07\%
100_10_09	no solution	3600	-	296423	3600	58.96\%
100_10_10	no solution	3600	-	296844	3600	67.89\%
100_10_Average	no solution	3600	-	294361.70	3600	65.99\%
100_20_01	no solution	3600	-	356508	3600	95.07\%
100_20_02	no solution	3600	-	346425	3600	98.51\%
100_20_03	no solution	3600	-	355974	3600	87.04\%
100_20_04	no solution	3600	-	367858	3600	87.35\%
100_20_05	no solution	3600	-	362186	3600	83.02\%
100_20_06	no solution	3600	-	348878	3600	95.01\%
100_20_07	no solution	3600	-	354352	3600	95.94\%
100_20_08	no solution	3600	-	369639	3600	92.69\%
100_20_09	no solution	3600	-	359996	3600	89.98\%
100 20_10	no solution	3600	-	356731	3600	83.40\%
100_20_Average	no solution	3600	-	357854.70	3600	90.80\%

Table C.4. MILP and CP Comparison Table for 200 jobs (Taillard Instances)

Instance	MILP Result	Time (Seconds)	Gap \%	CP Result	Time (Seconds)	Gap \%
200_10_01	no solution	3600	-	1381304	3600	57.80%
200_10_02	no solution	3600	-	1360948	3600	61.10%
200_10_03	no solution	3600	-	1401695	3600	57.62%
200_10_04	no solution	3600	-	1370115	3600	60.33%
200_10_05	no solution	3600	-	1368269	3600	59.93%
200_10_06	no solution	3600	-	1406425	3600	63.65%
200_10_07	no solution	3600	-	1430629	3600	62.35%
200_10_08	no solution	3600	-	1398493	3600	60.67%
200_10_09	no solution	3600	-	1386090	3600	61.78%
200_10_10	no solution	3600	-	1374473	3600	59.93%
200_10_Average	no solution	$\mathbf{3 6 0 0}$	-	$\mathbf{1 3 8 7 8 4 4 . 1 0}$	$\mathbf{3 6 0 0}$	$\mathbf{6 0 . 5 2 \%}$
200_20_01	no solution	3600	-	1767739	3600	75.70%
200_20_02	no solution	3600	-	1806047	3600	76.63%
200_20_03	no solution	3600	-	1721282	3600	76.34%
200_20_04	no solution	3600	-	1783066	3600	77.73%
$200 _20 _05$	no solution	3600	-	1705869	3600	77.32%
200_20_06	no solution	3600	-	1825765	3600	77.76%
200_20_07	no solution	3600	-	1837149	3600	76.13%
$200 _20 _08$	no solution	3600	-	1762582	3600	76.84%
$200 _20 _09$	no solution	3600	-	1815825	3600	76.82%
200_20_10	no solution	3600	-	1777477	3600	76.95%
$\mathbf{2 0 0 _ 2 0 _ A v e r a g e ~}$	no solution	$\mathbf{3 6 0 0}$	-	$\mathbf{1 7 8 0 2 8 0 . 1 0}$	$\mathbf{3 6 0 0}$	$\mathbf{7 6 . 8 2 \%}$

APPENDIX D -Small Sized Instances for ($F_{m}|n w t| \sum T_{i}, T E C$)

Table D.1. Truncated Instances with a sets of $\mathbf{5 x 5}, \mathbf{5 x 1 0}$, and $\mathbf{5 x 2 0}$

```
jobs = 5;
machines = 5;
//Taillard_5_5_1
PTime = [[77,56,89,78,53] [36,70,45,91,35] [91,61,1,9,72][77,14,47,40,87]
[94, 77,40, 31, 28]];
DueDate = [314, 326,336,179, 341];
//Taillard_5_5_2
PTime = [[88,10,49, 83, 35] [23,54,36, 92,77] [43, 92, 87,48,78]
[43, 91, 11, 13, 80] [50, 37, 5, 98, 72]];
DueDate = [302, 289, 223,329, 391];
//Taillard_5_5_3
PTime = [[7\overline{7},5\overline{8},46,10,33] [25,79,44,43,32] [38,17,1,75,7] [22,8,76,70,30]
[27, 26, 59, 84,75]];
DueDate = [88,55,75,113,0];
//Taillard_5_5_4
PTime = [[53,93,90,65,64] [39,62,54,73,90] [79,77,67, 21,63]
[29, 14, 98, 51, 67] [48, 25, 20,44, 18]];
DueDate = [153, 305, 212, 264, 297];
//Taillard_5_5_5
PTime = [[86,92,93,47,48] [46,2,95,57,62] [78, 85,74,62, 10] [72, 14,4, 90, 99]
[34, 48, 97, 37, 62]];
DueDate = [347, 296,353,114,400];
//Taillard_5_5_6
PTime = [[11, 27, 89,58, 20] [18,33,75,59,69] [42,57,60,85,45]
[41, 23, 37, 51, 85] [75, 99, 65, 97, 8]];
DueDate = [74, 208,44,78, 105];
//Taillard_5_5_7
PTime = [[9, 1, 81, 90, 54] [27,77,98,3,39] [42,52,12,99,33] [11, 28, 84,73,86]
[50, 65, 11, 87, 37]];
DueDate = [113, 291, 336, 232, 278];
//Taillard_5_5_8
PTime = [[34,5, 86, 28, 8] [20,48,35,39,91] [47,43,93,21,55] [74, 87, 40, 59, 59]
[62, 84, 6, 18, 89]];
DueDate = [35, 113, 102, 89, 5];
//Taillard_5_5_9
PTime = [[37,59,65,70,94] [36,16,94,3,98][64,15,57,30,97] [98,69,8,1,61]
[89, 9, 13, 46, 37]];
DueDate = [217, 272, 228, 248, 279];
//Taillard_5_5_10
PTime = [[\overline{27},7\overline{9},22, 93, 38] [41,51, 34, 97, 93] [20,40,77, 91,40]
[39, 32,47, 32,49] [91, 16, 39, 26, 90]];
DueDate = [188,175,155, 36,165];
```


Table D.1.(Cont'd.) Truncated Instances with a sets of $\mathbf{5 x 5}$, 5x10, and

5x20

```
jobs = 5;
machines = 10;
//Taillard_5_10_1
PTime = [[21,3,52, 88,66,11,8,18,15,84] [21,34,7,76,70,57,27,95,56,95]
[83, 87, 98,47, 84,77,2,18,70, 91] [94,43,36,78,58,86,13,5,64, 91]
[6,79, 85, 90, 5, 56, 11, 4, 14, 3]];
DueDate = [747, 890,663,981,353];
//Taillard_5_10_2
PTime = [[80,59, 59, 31, 30,53, 93, 90,65,64] [13,83,70,64, 88, 19,79, 92, 97, 38]
[77, 85,10,9, 22,62,77,13,25,46] [43,71,66,1,39,72,48,38,96,69]
[14, 59, 70, 73, 11, 57, 98,15, 56, 81]];
DueDate = [618,899,945,781,705];
//Taillard_5_10_3
PTime = [[15,59, 15,46,60,47,41, 38,34, 22] [18,7, 26, 17, 87, 32, 9, 26, 33,34]
[37,40,53,89,59,80,42,37, 85, 30] [93,54,13,55,15,31,63,38,61, 90]
[64,83,17, 3, 94, 38,10,62,70, 17]];
DueDate = [483,289,718,608,449];
//Taillard_5_10_4
PTime = [[94,3,39,1,63,86,44,19,55,67] [6,43,28,83,50,19, 85,12,68,66]
[31,52,77, 38,4,40,50, 29, 88,13] [31, 87, 21, 89,61, 22,13, 2, 36, 27]
[32, 21, 26, 29, 51, 57, 74, 22,46,50]];
DueDate = [506,656,548,703,408];
//Taillard_5_10_5
PTime=[[13, 34,52, 84,66, 2, 40, 20,7, 54] [17, 12, 32, 87, 90, 93, 29, 61,6, 31]
[26,16,87,99,15, 92,57,93, 39, 37] [39,73,13,14,5,77,65,31, 58, 59]
[5, 93, 2, 18, 90, 73, 21, 81, 89, 32]];
DueDate = [799,554,745,434,891];
//Taillard_5_10_6
PTime = [[77,46,79, 22, 20, 96,75,1,37,14] [77,85,18, 72,67,44,56,1, 90, 14]
[11,67,2,2,40,56,77,47,60,64] [36,39,46,58,36,46,14, 23, 65,30]
[92, 25,12,46,60, 83, 3, 21, 12, 33]];
DueDate = [488,587,484,393,520];
//Taillard_5_10_7
PTime = [[64,43,9,38,2,79,16, 85, 89,69] [95,46, 20, 21, 20, 12, 25, 28,77,43]
[65,66,7,15,81,56,8,51,55,81] [31,45,82,58,27,9,82,9,30, 98]
[84,49,49, 36,52,6,5, 94, 89, 92]];
DueDate = [779,830,699,471,618];
//Taillard_5_10_8
PTime = [[9,91,96,73,37, 28,32, 27,4,83] [71,13,80,53,9, 21,34,97,68,14]
[12, 27,17,10, 89,49,47,57,28,67] [85, 88,54,97,93,60,73,1,6,31]
[33,5,83, 84, 95,52,17,18,67,69]];
DueDate = [627,666,403,736,541];
//Taillard_5_10_9Cropped
PTime = [[37,4, 43, 28, 17, 18,99,97, 21, 29] [37,92,18,94,47,47, 34, 10, 98, 20]
[24,26,66,10,84,74, 28,51,74, 29] [74, 80, 60, 91, 16,65,50, 98,70, 98]
[36, 24, 26, 38,48, 91, 58, 33, 95, 68]];
```


Table D.1.(Cont'd.) Truncated Instances with a sets of $5 \times 5,5 \times 10$, and

5x20

```
DueDate = [700,441,513,759,545];
//Taillard_5_10_10
PTime = [[26,92, 20,61,91,58,70, 20, 86,36] [90,34, 86, 84,90, 91, 50, 19, 88,67]
[63,80,97,56,82,81,64,74,26,84] [37,71,12,38,84,31, 99, 87,33,80]
[30,75, 32,47,5,74,11,52,61,60]];
DueDate = [560,630,721,730,648];
jobs = 5;
machines = 20;
//Taillard_5_20_1
PTime = [[81, 73,48, 99, 8,41,51, 82, 25, 25,55,58,16,16,48,69,94,62,7,55]
[48, 38, 70, 21, 15, 33, 92, 98, 73, 95, 79, 55, 59, 94, 88,1, 65, 38, 10, 8]
[43,65, 87, 80, 93, 36, 89, 61, 26,3, 85, 22, 2, 67,41,66,7,50,4, 74]
[1, 93, 85,4, 39, 80,46, 28,73, 2, 64, 83, 17, 3, 94, 38,10,62,70,17]
[87,1,72, 19, 88, 74, 88, 22, 18, 41, 35,44,41,71, 71, 72, 38, 97, 49, 19]];
DueDate = [1013,1599,1343,1269,1188];
//Taillard_5_20_2
PTime = [[45, 83, 86,3,15,8,73,6,55,8,22,44,17,1,77, 23,42,79,30, 22]
[51, 62, 19, 3, 11,77, 58,64,74, 30,72, 54, 29,75,78,64, 95,40, 86, 8]
[31, 52, 77, 38,4,40, 50, 29, 88, 13,46,3,17,48, 21, 20, 26, 25, 6, 25]
[36,1, 81, 66,7, 82,55,77,67, 29, 12, 23, 25,60,15,92, 26,78,10, 83]
[5,72,77,42, 94,52,98,13,47, 86,1,70,46,67,61,94,86,64, 29, 87]];
DueDate = [739,1151,1176,1508,1433];
//Taillard_5_20_3
PTime = [[52, 2, 2, 2, 99,1, 87, 28,91, 29, 16,91,3, 28,62, 87, 3, 11, 74, 30]
[79, 85,44,16, 37,58, 88, 88, 11, 2, 42, 38,58,78, 25, 38, 94,7, 26, 92]
[44, 19, 85, 81, 22, 58, 25,3, 36,77, 94,66,44, 91,73, 23,4, 85, 11, 3]
[85,12,32, 85,67,64, 90,41,57,15,72, 86, 24,6,16, 97, 82, 87, 72, 41]
[13,42, 90, 94, 36,11, 9, 51,43, 87, 97, 59, 39, 35, 62, 71, 92, 82, 24, 38]];
DueDate = [1441,1411,1250,1241,1075];
//Taillard_5_20_4
PTime = [[25,53,50, 32, 95,64,16,66,55,62,1, 24, 6, 27,60, 51, 88, 63, 97, 70]
[55, 86,49, 56, 94, 85, 38, 85, 49, 90, 54, 87, 33, 87, 40, 5, 40, 50, 7, 49]
[70,77,19,8,58, 92, 91, 79, 81, 65, 86,10,33,87, 38, 32, 40, 68, 18, 27]
[3,17,5,95, 26, 36, 72, 34, 32,19, 39,73,13,14,5,77,65, 31, 58, 59]
[82, 91, 98, 91,5, 72, 64, 29, 52, 6, 18, 68, 9, 17, 28, 47, 24, 5, 50, 34]];
DueDate = [1008,1167,1300,773,1357];
//Taillard_5_20_5
PTime = [[40,94,46, 90,69,69,3,18, 98,12, 25, 20, 34,43,2,47,6, 56,69, 85]
[86, 28, 89,63,61,7,79, 27, 98, 97, 50, 72, 23,13, 60, 44,17,13,41,14]
[29, 7, 51, 26, 99, 90, 96, 46, 99, 54,16, 10, 97, 71, 70, 52,4, 74, 20, 76]
[36,46,18,48,76, 31, 24, 58, 55, 95, 82, 42, 25, 22, 35, 3,10, 27, 70, 58]
[61,46,75, 20,61, 22, 5, 80, 22, 86,43,19, 98, 72, 14, 70, 94,46, 61, 25]];
DueDate = [1063,1166, 1098,1061, 1020];
//Taillard_5_20_6
PTime = [[66,21,45,56,49, 39,13,34, 22,53,40,17,72,50,99,50, 26, 99,61,1]
[20,63,48, 24, 87, 13, 69, 25, 22, 8, 25,7,69,7,62, 59,46,79, 37, 91]
[1,16,71, 71,45,49, 83, 18, 14, 92,10, 19, 18, 37,10, 7, 82, 50, 43, 20]
```


Table D.1.(Cont'd.) Truncated Instances with a sets of $5 \times 5,5 \times 10$, and

5x20

```
[99, 34, 82, 53,45, 20, 70, 80, 8, 11, 76, 74, 77, 29, 37, 90, 34, 70, 12, 5]
```

[99, 34, 82, 53,45, 20, 70, 80, 8, 11, 76, 74, 77, 29, 37, 90, 34, 70, 12, 5]
[97, 75, 35, 22, 9, 1, 59, 15, 13, 98, 70, 70, 50, 4, 96, 56, 23, 94, 31, 4]];
[97, 75, 35, 22, 9, 1, 59, 15, 13, 98, 70, 70, 50, 4, 96, 56, 23, 94, 31, 4]];
DueDate = [1188,1132,756,1109,934];
DueDate = [1188,1132,756,1109,934];
//Taillard_5_20_7
PTime = [[92, 2, 2, 73, 38, 28, 77, 6, 51, 15,1, 23, 99, 21, 26, 21, 51, 91,4, 88]
[39, 20, 36, 65, 34, 25,44, 29, 20, 91, 95, 57, 39, 1, 81, 40, 63, 99, 97, 45]
[93, 64, 12, 19, 22, 41, 55, 11, 4, 1, 39, 3, 30, 57, 68, 28, 45, 54, 98, 96]
[37, 92, 15, 12, 58, 34, 49, 36, 90, 4, 90, 66, 2, 4, 14, 93, 51, 10, 61, 45]
[77, 29, 95, 39, 67, 52, 72, 10, 50, 31, 53, 80, 75, 94, 69, 82, 39, 96, 95, 27]];
DueDate = [1598,1151,1505,863,1343];
//Taillard_5_20_8
PTime = [[21, 8, 61, 62, 67, 28, 30, 70, 92, 31, 26, 65, 13,6, 24, 49, 73, 68, 31, 25]
[83, 14, 55, 23, 86, 68, 70, 76, 34, 12, 45, 58, 60, 28, 55, 97, 92, 30, 32, 62]
[42, 64, 47, 35, 75, 29, 29, 4, 85, 48, 24, 33, 72, 20, 60, 15, 53, 12, 14, 30]
[92, 66, 28, 62, 57, 53, 46, 58, 69, 26, 86, 10, 64, 37, 83, 8, 41, 13, 53, 36]
[45, 68, 33, 43, 34, 53, 25, 53, 86, 55, 56, 80, 83, 58, 3, 63, 33, 58, 4, 41]];
DueDate = [1242,1267,791,1217, 1066];
//Taillard_5_20_9
PTime = [[96, 36, 65, 13, 34,75, 38, 32,10,70,74, 98, 30, 12, 93,73,45,69, 98, 96]
[72, 37, 50, 17, 3, 88, 29, 3, 43, 50, 12, 17, 18, 14, 92, 61, 43, 90, 41, 38]
[80, 68, 75, 89, 55, 28, 93, 33, 28, 43, 88, 25, 94, 27, 35, 38,7, 5, 63, 73]
[99, 74, 28, 14, 95, 65, 99, 36, 39, 28, 91, 36, 41, 51, 97, 46, 15, 25, 56, 99]
[80, 39, 74, 40, 65, 65, 39, 18, 91, 48, 40, 73, 27, 98, 37, 65, 80, 38, 85, 1]];
DueDate = [1157,1195,1268,1559,1405];
//Taillard_5_20_10
PTime = [[56,41, 82, 67, 33, 35,43, 8,4,78,44,71, 87, 5, 21, 24, 39, 35, 85, 52]
[21, 10, 14, 16, 71, 25, 68, 15, 45, 58, 93, 27, 66, 59,4, 88, 38, 97, 7, 21]
[11, 21, 16, 43, 68, 42, 17, 29, 3, 92, 60, 20, 43, 3, 17, 45, 83, 94, 50, 80]
[9, 97, 9, 3, 94, 44, 89, 13, 14, 5, 61, 43, 31, 13, 12, 52, 28, 51, 13, 92]
[27, 88, 29, 26, 24, 91, 27, 42, 80, 75, 12, 28, 8, 14, 90, 32, 84, 98, 83, 70]];
DueDate = [1314,1170,837, 929,1131];

```
```

