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ABSTRACT  

UNIVARIATE AND MULTIVARIATE STATISTICAL PROCESS 

CONTROL CHARTS: AN APPLICATION IN A CHEMICAL INDUSTRY 

 

ÇAKIR, Merve 

Msc, Industrial Engineering Programme 

Advisor: Asst. Prof. Dr. Erdinç ÖNER 

 

May 2019, 70 pages 

 

One of the tools to control quality of industrial process is the Statistical Process Control 

(SPC) by improving quality of the process and reducing the variablity of the process 

from target value for quality to control characteristics. This study aims to develop 

control charts as univariate and multivariate, which control auto-correlated processes 

and to compare the univariate and multivariate control charts for the same process. 

Univariate and multivariate control charts are investigated individually to review the 

related literature. This thesis investigates how to compare univariate control charts and 

multivariate control charts. 

 

Key Words: Auto-Correlated Data, Chemical Industry, Multivariate Control Charts, 

Statistical Process Control, Time-series Models, Univariate Control Charts. 
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ÖZ  

 

TEK DEĞİŞKENLİ VE ÇOK DEĞİŞKENLİ İSTATİSTİKSEL SÜREÇ 

KONTROL GRAFİKLERİ: KİMYA ENDÜSTRİSİNDE BİR UYGULAMA 

 

ÇAKIR, Merve 

Yüksek Lisans Tezi, Endüstri Mühendisliği 

Danışman: Dr. Öğr. Üyesi Erdinç ÖNER 

Mayıs 2019, 76 sayfa 

 

İstatistiksel Süreç Kontrolü, sürecin kalitesini arttırarak ve hedef kalite kontrol 

karakteristiklerinin hedef değerden değişkenliğini düşürerek endüstriyel süreç 

kontrolünün kalitesini izlemek için kullanılan bir araçtır. Çalışmada, oto korelasyonlu 

süreçleri izlemek için tek değişkenli ve çok değişkenli kontrol çizelgeleri geliştirmek 

ve aynı süreç için tek değişkenli ve çok değişkenli kontrol çizelgelerini karşılaştırmak 

amaçlanmıştır. İlgili literatürde tek değişkenli ve çok değişkenli kontrol tabloları ayrı 

ayrı incelenmiştir. Bu tezde tek değişkenli kontrol çizelgeleri ile çok değişkenli kontrol 

çizelgelerinin karşılaştırılması incelenmiştir. 

 

Anahtar Kelimeler: istatistiksel süreç kontrol, tek değişkenli kontrol kartları, çok 

değişkenli kontrol kartları, oto korelasyonlu veri, zaman çizelgesi modeli, kimya 

endüstrisi 
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CHAPTER 1 

INTRODUCTION 

One of the biggest progress of the recent years is Statistical Process Control (SPC) 

(Montgomery, 2005), which is used to control and enhance quality, by reducing 

variability. There is a set of tools in SPC, which can be used to solve issues easily, 

underlying statistical principles can be implemented in every process and leave a 

impact on preventing the quality problems, controlling and improving quality. All 

individuals can improve the quality continuously using SPC with the support of the 

top management. Therefore, SPC is an essential part in the proper deployment of a 

Quality Management Program.   

It is also essential to deploy the “magnificent seven” tools to implement SPC properly 

and understand and better manage a process. One of the most technically sophisticated 

and commonly used tools of SPC is the traditional Shewhart Control Charts (SCC), 

which was initially proposed by Walter A. Shewhart in 1920s. SCCs are predominantly 

used as an online tool, to monitor and control the behavior of a process, especially in 

phase I implementation of SPC, where processes are influenced by assignable causes 

and out of control situations occur, because of large shifts in the parameters which are 

monitored. Typical examples of SCCs are the X̅ and R and X̅ and S control charts in 

the cases where rational subgrouping and sampling can take place, or the Individual 

Measurements and Moving Range Control Charts (I-MRCCs) for the case of 

individual observations. 

Two main assumptions for applying the control charts are; data observations are 

normally and independently distributed. Shewhart process model indicates that the 

data, which has been produced with a process in the control state are normally and 

independently distributed with a mean of μ and a standard deviation of σ (NID (μ, σ)). 

The sensitivity and the effectiveness of the Shewhart control charts will be affected if 

these assumptions are violated. 
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In phase II of SPC implementation, if the processes tend to operate more under an in 

control state, there are smaller shifts in the process parameters. SCCs are not so 

sensitive to the smaller shifts in the process parameters and therefore it is harder to 

detect. In this case, the time-weighted control charts offer an excellent alternative. The 

process monitoring can be solved using the CUmulative SUM Control Chart 

(CUSUMCC) and the Exponentially Weighted Moving Average Control Chart 

(EWMACC). In case of small shifts in the process, the information contained in the 

entire sequence of observations should be taken into account. This last advantage of 

the time-weighted control charts is applied when the individual observations control 

charts are used very commonly in the chemical and process industries, where sampling 

has no rationale. Moreover, the EWMACC, which can be considered as a weighted 

average of the old and current observations, is not sensitive to the normality theory 

and therefore, it will be applied appropriately in the individual views, where violations 

of the normality assumption are also common. Therefore the EWMACC is considered 

to be easier to set up, operate, and interpret. 

Individual measurement data occur frequently for the chemical and process industries, 

so the I-MRCC is regarded as the most appropriate control chart. Unfortunately, the 

performance of these charts is dramatically influenced by even moderate violations of 

the normality assumption. Also, it is known that in chemical process industries, the 

data are usually auto-correlated and sometimes not normally distributed. 

Especially, if the independence of the observations assumption is violated in the I-

MRCC, the number of out of control points exhibiting a situation of an out-of- control 

process will increase, though this is not true. In reality, these out-of-control points are 

called false alarm. Due to the nature of the processes and the frequency of the sampling 

procedure, the autocorrelation is expected to exist in the data in the chemical industry. 

However, one of the disadvantages of SCC characteristic is that it can monitor only 

one critical to quality characteristic (CTQC) at a time.  

The complexity of the chemical process industry has increased over time and more 

than one parameter affects it. Since the chemical industry processes are getting 

complex, monitoring the CTQCs separately causes to miss the correlation or 

interaction between these variables. Therefore, by using the traditional control charts, 

it is not possible to identify these problems. 
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The use of Multivariate Control Charts (MVCCs) is an alternative approach which can 

be useful in the chemical industry and can cover more than one CTQC in the same 

control chart. One of the generally used MVCC is Hotelling T2 which was first 

introduced by Harold Hotelling in 1947. More than one variable can be monitored 

through Hotelling T2 method at a moment, considering the correlation between the 

quality characteristics, as the most important advantage of the approach. 

In our study, the case of a chemical industry producing pharmaceutical glycerin is 

examined. In our chemical production process, to control and improve quality of 

process, final product has four CTQs that we want to monitor. These CTQs are density, 

ester content, glycerin content, and humidity. Historical data should be used to design 

Phase I of the control charts. In our study, observations from a three month period are 

used. 105 data points of daily measurements of the quality characteristics are used to 

analyze the behavior of the data and to decide upon the appropriate control charts 

needed. To design the control charts, control limits and center lines are determined, 

based on past data, and stability of process is evaluated. In case there are out- of -

control points, relevant investigation is performed and the control limits and center 

lines are recalculated, accordingly to decide about the control limits used for Phase II 

implementation. 

In the following chapters, we present the Theoretical Background starting with general 

information about SPC, the “magnificent seven” tools and the statistical process 

control techniques applied. Furthermore, the theory of the SCCs and MVCCs, the basic 

assumptions behind them and interpreting control charts guidelines are addressed.  In 

addition, the Methodology Section gives the details of the design of the appropriate 

control charts, based on the results of the data analysis. The results that are obtained 

from the application of the methodology are given in detail and discussed in the Results 

and Discussion Section. Finally, the Conclusions of the study and proposed Future 

Works are presented.  The concluding Section of this chapter introduces 

fundamentalainformation of the research. 

1.1. Statistical Process Control 

Statistical process control (SPC) is a great tool which can be used to enhance the 

stability of the process and capability by decreasing the variability (Montgomery, 

2009). In order to estimate and control the quality of products during the process, the 
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SPC is used as a methodology which monitors the process behavior. The seven main 

tools which are also named “the magnificent seven” tools of SPC are as follows 

(Montgomery, 2009): 

1. Histogram or stem-and-leaf plot 

2. Check sheet 

3. Pareto chart 

4. Cause-and-effect diagram 

5. Defect concentration diagram 

6. Scatter diagram 

7. Control chart 

For statistical process control; first data is gathered and evaluated to monitor and 

control process which is an important method to provide continuous improvement. Dr. 

Walter Shewhart from Bell Laboratories in the 1920's was the first person who 

developed SPC and Dr. W. Edwards Deming expanded it to introduce SPC to Japanese 

industry after WWII. 

One of the seven major tools of SPC is Control Chart, which is the topic of this thesis 

and explained below briefly.  

 

Control charts were introduced by Walter A. Shewhart in 1924. A typical control chart 

is a tool for the graphical representation of the quality aspect versus sample number or 

time, which points to control and monitor process behavior. Control chart contains the 

Center Line (CL), Upper Control Limit (UCL), and Lower Control Limit (LCL). While 

the process is under control, the points will be plotted within the control limits.  

A source of variation can be detected with the CC (Montgomery, 2009). The detailed 

information on the CCs is presented in Section 1.2. 

1.2. Shewhart Control Charts 

Statistical Process Control (SPC) is used to monitor and control the processes for 

measuring and controlling the quality. Traditional SCC is used as a basic tool for SPC. 
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Control charts rely on a fundamental hypothesis, that the observation is individually 

and identically dispersed (Montgomery, 1991) (Montgomery, 2009). The SCC 

consists of a CL and UCL and LCL. The UCL and LCL are symmetric according to 

the center line. The measurements are planned on the control charts versus time or 

sample number. Each point shows a brief statistic which is calculated from a sample 

quality characteristic measures. The control limits are typically measured as three 

sigma limits above and below the CL. A point which is plotted outside of the control 

limits shows the existence of a particular cause of variation. Furthermore, specific 

causes test can show an out-of-control situation if there is an observation regarding a 

statistically unique design of points in the control chart. Even the process is in 

statistical control, and a point may occur outside the control limits by chance, which 

results in a false out-of-control signal. Nonetheless, while the existence of a particular 

cause is correctly signaled by the Shewhart chart, in order to determine and eliminate 

the nature of the problem, additional action is needed (Mitra, 1998). In the meantime, 

according to Alwan (Alwan, 1992); control charts are so sensitive towards the 

presumption of uncorrelated data. The existance of an autocorrelated data in the 

monitored process results in quite many out of control points, exhibiting a situation of 

an out of control process, although that is not the case. These out of control points are 

false alarms in reality. In the case of chemical and process industries, the classical 

SCCs are not always useful. Because the SCCs are based on two basic assumptions of 

statistically independent data and normality. However, in the chemical industry, the 

data are related since there is continuous production, and the sampling is consecutive 

(Mastrangelo & Montgomery, 1995). 

The variability is a part of all theprocesses.  Two main causes of variation are special 

causes and common causes. If the variability is not caused due to the inherent 

characteristics in the process, it is called as special or assignable cause. However, if 

the variability is caused due to the inherent characteristics of the process, it is called 

as common or chance cause (Mitra, 1998). 

There are two kinds of control charts based on the type of data available for analysis, 

which are: Control Charts for Variables and Control Charts for Attributes. 
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1.2.1. Control Charts for Variables 

 

Most of the quality characteristics are expressed to see numerical measurements. 

Based on the continuous distribution, variable control charts are applied to data. 

Variable including dimension, length, temperature, etc. means a quality characteristic 

that is estimated at a numerical range. The mean and variance of the quality 

characteristic should be monitored when dealing with the variable type of quality 

characteristic. (Montgomery, 2009). 

 

1.2.1.1.  X̅  Control Charts 

 

The control chart is used to control an average of process. The control charts can be 

used to monitor the standard deviation (s) of the process and the R chart (range chart) 

can be used to monitor the range of the process. X̅ and R charts are used to discover 

tiny shifts in the process and mostly used with small sample sizes.  X̅ and s charts are 

essentially used when the sample sizes are variable or larger. Of the most important 

techniques used to monitor and control processes are the charts mentioned above 

(Montgomery, 2009). 

The assumption of the normality of quality characteristic is very common in SPC. 

However, the sample size n is quite important if the quality characteristic is not 

normally distributed. According to the probability theory, Central Limit Theorem 

implies that the sum of the n independently distributed random variables is 

approximately normal, even the distribution of the individual variables are not 

normally distributed. It is very important that the variables must be identically 

distributed. The approximation improves as sample size; n goes to infinity (Hogg, 

McKean and Craig, 2013). 
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1.2.1.2. Individuals Control Chart 

 

When the sample size (n) equals 1, individuals control chart will be used and it will be 

impractical to use rational subgroups (NIST/Sematech, 2009). According to 

Montgomery, individuals control charts can be used when: 

• There is no benefit of using subgroup because of automated inspections and 

measurements.  

• There are long intervals between observations because of slow production 

which cause delays for enough data. 

• Chemical processes’s repeating measurements cause dependent data. 

• Taking multiple measurements on the same unit of product. 

• Measurements may vary very small and produce very small standard deviation 

to control it in process plants. 

Individuals control charts can be used with moving range chart in order to be able to 

display the difference between two adjacent observations. For individuals control 

charts, the normal distribution assumption is not required in order to calculate control 

limits (Wheeler, 2010). The individuals control chart is very efficient to detect large 

shifts in the mean of the process. 

 

1.2.1.3. The Cumulative Sum Control Chart 

 

The major disadvantage of the SCC is that the chart does not contain the information 

which come from the entire sequence of observations. It only uses the information of 

the previous observation. So, this property makes SCCs insensitive to detect small 

process shifts (Montgomery, 2009). 

CUSUMCC is developed by E. S. Page in 1954 and is used to plot observations, which 

are cumulative sums of observations from target value, versus time (Grigg et al., 2003). 

CUSUMCCs are very effective to detect small shifts in the process mean; especially 

when the magnitude of the shift is 1.5 sigma to 2.0 sigma. CUSUMCC can be 

constructed to monitor the mean of the process both for individual observations and 

for the averages of the rational subgroups. One of the most important characteristics 

of the CUSUMCC is that it includes all the information sequence by plotting the 
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cumulative sums of deviations of sample data from the target value (Montgomery, 

2009). 

 

1.2.1.4. The Exponentially Weighted Moving Average Control Chart 

 

In order to explore the small changes in the process, the exponentially weighted 

moving average (EWMA) control chart can be used as an alternative to SCC.  The 

EWMACC is introduced by Roberts (1959) and is similar to CUSUMCC. EWMACC 

is usually used with individual observations like CUSUMCC and it uses the 

information of both the past and the present observations (Montgomery, 2009). In 

addition, EWMACCs performance for non-normal data is good unlike SCC 

(Montgomery, 2009). 

In chemical process industry, generally individual measurements and observations are 

obtained from the process. Therefore, it is reasonable to implement EWMACCs for 

individual observations (Mastrangelo & Montgomery, 1995). 

 

1.2.2. Control Charts for Attributes 

 

Most of the critical to quality characteristics are expressed in terms of numerical 

measurements. However, sometimes, it is impossible to numerically measure or 

express the quality characteristics; they can be classified as conforming and non-

conforming units. Also, there are different quality characteristic classifications as 

defective and non-defective. These type of quality characteristics called attributes. 

Attribute charts are very practical to use in service industries and in non-manufacturing 

quality improvement efforts (Montgomery, 2009). Various types of attribute control 

charts are explained below. 

 

1.2.2.1. Control Charts for Fraction Nonconforming (P-Chart) 

 

Fraction non-conforming control chart, which is also known as P-chart is used to 

control the proportion of nonconforming matters in a group to the entire amount of 

parts in that population. Moreover, P-chart is used to observe the portion of defective 
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items’ consistency over time.  P-chart follows the binomial distribution and its 

assumptions (Montgomery, 2009). 

 

1.2.2.2. Number Nonconforming Control Chart (NP-Chart) 

 

The NP-chart is one type of number nonconforming control charts, which is used to 

monitor number of defectives rather than proportion of defectives’ consistency over time. 

However; for each sample, the subgroup size must be the same. NP-chart is also based on 

the binomial distribution like P-chart (Montgomery, 2009). 

 

1.2.2.3. Control Charts for Nonconformities  

 

There are two kinds of control charts for nonconformities. The first one is C-chart, which 

is used to determine the variation in counting type attribute data over time. The sample size 

must be constant. It is based on Poisson distribution and its assumptions. C-chart is 

practical to use when large number of products are inspected. The second type of chart for 

non-conformities is U-chart, which is for sample sizes equal to one inspection unit. 

However; in this case, the sample size is higher than one, and usually, the average number 

of nonconformities per unit is used (Montgomery, 2009). 

 

1.2.3. Interpreting Control Charts 

 

Control charts are graphical displays of measured or calculated critical quality 

characteristics versus observation numbers or time. Control charts contain UCL, LCL and 

CL. If the process is in control, almost all observations fall between UCL and LCL. 

However, if the observations fall outside of the control limits, the process is stated as out 

of control. In out of control situation, the reason for this behavior should be examined and 

the action should be exercised in order to eliminate the assignable cause.  (Montgomery, 

2009) 
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Besides these basic principles to interpret control charts, The Western Electric Rules 

(1956) with sensitizing rules for Shewhart control charts are used to detect nonrandom 

patterns.  The process is stated as out of control if either one of the following conditions 

is presented as Western Electric Rules (Montgomery, 2009). While interpreting the 

Control Charts, these rules are taken as a basis in this study. 

According to these zone rules, it can be concluded that the pattern is nonrandom and 

the process is out of control (Montgomery, 2009). An example of an out of control 

situation can be seen in Figure 1.1. 

 

 

 

 

 

 

 

 

 

 

 

 

1.3. Basic Assumptions in Statistical Process Control 

 

In statistical analysis and in constructing SCC, normality, independence, stability, 

random samples and equal variance are the most common and important data 

assumptions.  

The first and the most important assumption is that the data must be independent and 

identically distributed (IID). The second assumption is that the data must have normal 

distribution. In order to understand whether the data is normally distributed or not, 

statistical tools such as probability plot or histogram can be used. The last assumption 

is that the data must not be auto-correlated. These assumptions have great importance 

on constructing appropriate control charts and interpreting them correctly. 

Figure 1.1. Instance of an Out of Control Situation for a Control Chart 

(Montgomery, 2009) 
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Furthermore, stationarity of the process is another important assumption 

(NITS/Sematech, 2009).  

The probability distribution of one of the random variables is not affected by the 

realization of other means that these random variables are independent. If each random 

variable have the same distribution and are mutually independent, the random 

variables can be called as IID (Hogg & Craig, 1978). 

When mean, variance and unconditional joint probability distribution of the stochastic 

process do not change over time, the process is a stationary process. Stationarity 

assumption become more important for time series analysis. If there is a trend in the 

mean of the process, the stationarity assumption is violated (Gagniuc, 2017). The 

process mean level and changes in the amount of variation in the process are the most 

common changes in process performance over time (Devor, Chang and Sutherland, 

2007). In order to be able to understand the behavior of the process or in other words 

stationarity of the process, time series plot can be used. 

 

1.4. Auto-Correlated Data and the Use of Times Series Models 

 

1.4.1. Time Series Models 

 

Time Series Analysis (TSA) is a statistical technique which deal with TS data 

measured over successive periods (Hipel and McLeod, 1994). TS models are useful 

methods for prediction and forecasting. TS modeling is used for working on time based 

data. Mostly in chemical and process industry, there is continuous production and with 

continuous production, time becomes an important factor that affects data. Time series 

can be continuous or discrete. Past observations of the quality characteristic variables 

are collected and analyzed in order to be able to perform time series forecasting and 

develop a model which defines the essential relationship  (Granger & Anderson, 1978). 

It can be said that the time series forecasting is the act of prediction of future by 

understanding past. An appropriate model fitting is the most important part of time 

series forecasting (Hipel & McLeod, 1994). There are two main approaches for time 

series modeling. Moving average, exponential smoothing and autoregressive 

integrated moving average are traditional statistical models for linear models. Linear 
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models are commonly used because of their simplicity in understanding and 

implementation. However, in real life, also non-linear problems appear (Granger & 

Anderson, 1978). Bilinear model, threshold autoregressive (TAR) model and the 

autoregressive conditional heteroscedastic (ARCH) model are some examples of non-

linear models (Tong, 1983; Kandananond 2013; Jensen, Jones-Farmer and Champand, 

2000). 

Autoregressive Integrated Moving Average (ARIMA) is the most common and 

popular time series model as a stochastic model as mentioned previously. Linear and 

having a known statistical distribution are the basic assumptions in order to implement 

ARIMA model to the data. (Zhang, 2003) The idea of stationarity of a stochastic model 

are envisioned as style of statistical equilibrium. The statistical parameters like mean 

and variance of stationary process do not rely on time. Stationarity is a necessary 

condition in order to construct a time series model for forecasting (Engle, 1982). 

 

1.4.2. Auto-Correlated Data 

 

Individual measurements in a chemical industry arrive consecutively and sampling 

happens in short time intervals, therefore auto-correlation is something that is 

expected. Furthermore, distribution of data can be non-normal. However, Shewhart 

control charts can only be used under two assumptions as normally distributed data 

and non- auto correlated data (Johnson, 1949). 

Control charts are used in chemical industry to monitor the process and its variability. 

Construction of the control charts are based on IID data. However, assumption of 

independent observation is violated because of the periodic sampling in a continuous 

system of chemical industry which causes auto-correlation (AC) (Elevli, Uzgören and 

Savas, 2008). There are two types of auto-correlation: positive auto correlation which 

occurs between successive similar observations and negative auto-correlation which 

occurs between successive non similar observations. Furthermore, if the data have 

positive autocorrelation, too many false alarms are observed in control charts resulting 

misleading conclusions (Alwan, 1992). 
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Although, the level of AC can be measured analytically (Harris & Ross, 1991). One 

of the analytical methods is measuring autocorrelation over a series of time-oriented 

samples (Montgomery & Mastrangelo, 1991). An example of an auto-correlation 

function which shows correlated data can be seen in Figure 1.2. 

 

 

 

Other analytical method in order to detect autocorrelation at first lag in the residuals 

from a regression analysis is Durbin-Watson statistic (Durbin & Watson, 1971). 

According to the literature survey conducted, the proposed approach when data are 

auto-correlated, is to fit an appropriate time series model (ARIMA) to the original 

observations and then use the residuals of this ARIMA model to plot the control charts. 

ARIMA (0,1,1) is used for nonstationary data while ARIMA (1,0,1) is used for 

stationary data (Alwan & Roberts, 1988). If the residuals are normally distributed and 

independent, with constant variance, the control charts will present process 

disturbances caused by any assignable causes as the same way they would be presented 

in a control chart monitoring the original data (Noskievicova, 2016). An example of 

auto-correlated process variable can be seen in Figure 1.3. 

Figure 1.2. Example of Autocorrelation Function (Montgomery, 2009) 
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1.4.3. Control Charts for Non-Normal Data 

 

An important assumption to construct SCC is normality. Individuals control charts 

are not robust to non-normal data. However, EWMACC is insensitive to non-

normal data (Montgomery, 2009). In chemical industry, mostly Individuals control 

chart is used to monitor the quality characteristics which are not always normally 

distributed. If data is not normally distributed, the conclusions which are drawn 

from the control charts on process behavior can be misleading. (Box & Cox, 1964) 

In order to understand whether the data is normally distributed or not; statistical 

process control tools like histogram and probability plot can be used.  

Johnson Transformation or Box-Cox Transformation can be used, if the data is not 

normally distributed, to construct Individuals control chart. After transforming the 

data, Individuals control chart can be constructed. Johnson distribution can be used 

to normalize the data via transformation when data are not normally distributed. 

Most of the standard continuous distributions are able to be approximated via 

Johnson’s approach (Bersimis, Psarakis and Panaretos, 2007). Furthermore, Box-

Cox transformation for normalization is efficient tool in order to be able to construct 

robust control charts (Mason & Young, 2002). 

 

Figure 1.3. A Process Variable with Autocorrelation (Montgomery, 2009) 
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1.5. Multivariate Statistical Process Control 

 

One type of the variables control charts is MVariable Control Charts (MVCC). MVCC 

display correlation or dependence of variables that jointly affects process parameters 

(Montgomery, 2009). 

Previously, process monitoring and control regarding to  the  univariate  perspective  

are mentioned.It is assumed that there is only one process output variable or quality 

characteristic of interest. In practice, most of the data are MV. Furthermore, most of 

the situations in industry for controlling and monitoring more than one quality 

characteristics is necessary. These quality characteristics might be related. However, 

monitoring these related quality characteristics independently might be quite 

misleading. If the data include correlated variables, creating separate control charts for 

each variable will be misleading because that the process is affected jointly by the 

variables. And also if univariate control charts are used as separately in MV situation; 

type I error probability and the probability of a point falling within the control limits 

are not going to be equal to their expected values. In order to deal with this situation, 

MV SPC Charts are used (Hogg and Craig, 1978). There are two phases while 

constructing the MV control charts. Phase I is used to determine the control limits with 

sample data and phase II is used to monitor the process with future data (Gagniuc, 

2017). 

In chemical industry, it is very often that the quality characteristics are not independent 

and they might affect each other. For example while one quality characteristic is 

increasing, other one might also be increasing, which is positive relation between these 

two characteristics. Also, while one quality characteristic is increasing, other might 

decrease which is a negative relation. When this relation is ignored by the analysts, the 

chance of detecting out-of-control situations will decrease. MV process control can be 

applied to all kinds of univariate control charts such as MV Shewhart control charts, 

MV CUSUMCCs and MV EWMACC (Montgomery, 2009). 
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1.5.1. The Multivariate Process Data 

 

When more than one continuous variable are collected from the same process, the data 

can be called as MV process data. The multiple variables can be monitored by using 

one MV control chart if the data are correlated. (Montgomery, 2009) 

Creating a correlation matrix of variables are used to decide whether to use univariate 

or MV control chart. Applying a MV control chart can be considered if the variables 

are correlated. 

The advantages of the MV control charts if the data is MV process data are: (Mitra, 

1998) 

• The true control region for variables can be presented 

• Rate of type I error can be maintained 

• All the correlated variables can be monitored on a single chart with a single 

control limit 

 

1.5.2. The Hotelling’s T2 Control Chart 

 

The Hotelling T2 control chart is the most common MV process-monitoring and 

control procedure in order to monitor the mean vector of the process. Hotelling’s T2 

combines the dispersion and mean of more than one variable. There are two different 

application areas of Hotelling T2: one for sub-grouped data and another for individual 

observations (Montgomery, 2009; Costa, Corolino and Oliveria, 2014). 

The procedure which is used to monitor the process may be represented graphically as 

in Figure 1.4.  
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There are two cases for MV analysis. First case is; there are two arbitrary variables as 

x1 and x2, which are independent; that is 𝜎12 is equal to 0. According to the first case, 

the general equation represents an ellipse centered at (µ1, µ2) with principal axes 

parallel to x̅1, x̅2 The second case is; there are again two quality characteristics which 

are dependent, then σ12 is not equal to 0. So the related graphical display is different 

as follows. When two quality characteristics are dependent, the principal axes of the 

ellipse are no longer parallel to x̅1, x̅2 axes (Montgomery, 2009). However, in real life, 

mostly µ and σ are not known so x̅ and s estimations can be used with n observations.  

With the observation of p-variables, as an example X' = (x1, x2,...,xp), is given as T2 = 

(X - x̅)'S-1 (X - x̅) where the measure of the process center is represented by sample 

mean x̅. The sample covariance matrix S gives information about individual variables 

and also shows the relationship within the elements of the observation vector (Mason 

& Young, 2001). 

However, estimate S should not contain redundancies among the process variable. In 

order to meet this requirement, two quality characteristics must be perfectly correlated. 

Figure 1.4. Control Region Using Independent Control Limits (Montgomery, 2009) 
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To deal with redundancy, one of the variables can be deleted from the study. 

Furthermore, the observations must be independent to be able to use T2 statistic. 

However, in industrial applications especially in chemical industry, data is auto-

correlated. However, as mentioned previously, time series models can be used to deal 

with auto-correlation. (Mason & Young, 2001) 

The procedure which is used to monitor the process with independent and dependent 

variables may be represented graphically as in Figure 1.5.  

 

 

 

The disadvantages of the MV SPC charts are as follows according to Montgomery: 

(Montgomery, 2009) 

 The time order of the plotted points is missed  

 With more than two quality characteristics, it is very challenging to build the 

ellipse 

 When more than two variables exist and the outaofacontrolasituation appears; 

it is hard to understand which variable cause the out of control situation.  

 MV control charts are more complicated to explain than standard SCCs 

 The advantages of the multivariate SPC charts are as follows (Mason & Young, 

2001): 

Figure 1.5. Control Ellipse for Two Independent Variables and Dependent Variables  

(Montgomery, 2009) 
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 The most obvious advantage of the MV control charts is that it minimizes the 

number of control charts to manage.  

 Most of the parameters are related to each other especially in chemical industry 

(ex. Solubility increases with the temperature increase). Because of these 

related parameters, considering them together is useful to understand the 

process correctly. 
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CHAPTER 2 

LITERATURE REVIEW 

There are several studies in the literature on various aspects of SPC Charts for 

Chemical and Process Industry by using univariate and MV control charts. 

Elevli et al. (2009), conducted research to determine the effect of auto-correlation to 

determine process stability of colemanite concentrators. Individuals Control chart and 

Special Cause Control chart are compared in order to monitor the process while data 

is auto-correlated. When the data is auto-correlated, control charts which are extremely 

sensitive to the assumption of independence give a higher false alarm rate. They use 

ACF and PACF plots in order to monitor auto-correlation in data and then, the control 

chart is constructed with residuals obtained after fitting the process to an ARIMA 

model.  

Mastrangelo and Montgomery (1995), mentioned in their study that auto-correlated 

data required alterations or changes to traditional control chart techniques. Violation 

of the fundamental theory of independent or autocorrelated data results in poor 

statistical performance and increasedanumberaofafalseaalarms. 

Alwan and Roberts (1988), introduce and explain statistical modeling and fitting of 

time series impacts and the purpose of standard control chart procedures to the 

residuals from the time series model fits when the process is not independent and 

identically distributed. They observe that ARIMA (0,1,1) model is appropriate for 

nonstationary processes and ARIMA (1,0,1) model is appropriate for stationary 

processes. 

Rodriguez (1996), conducted a study which shows the application of software for 

statistical modeling in link with the Shewhart procedure. In the study, SAS is used to 

analyze data like diagnosing autocorrelation with autocorrelation plot, fitting ARIMA 

model, and histogram. He suggested that one of the most important assumptions 

normality is checked with graphical displays. 

Bisgaard and Kulahci (2005), demonstrated with an industrial example, which is 

Temperature Control of a Ceramic Furnace. The study shows how to identify 

autocorrelation, explained its outcomes for standard control graphs, and described 
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current software packages as MINITAB which makes simple to execute the 

computations required while dealing AC and using ARIMA time series models. 

Lestander et al. (2012), mentioned that when there is more variables to monitor and 

control, SPC becomes more complex because of overloading information for process 

operators. However, MSPC can easily defeat the mentioned difficulty. They conducted 

a study which simulates MSPC, using principal component  analysis  and  partial  least  

squares regression, based on wood pallet production process data; which are used to 

mark changes in the monitored variables over time; and to forecast pallet drought to 

determine the potential of using multivariate statistical process control for monitoring 

and controlling in the wood pallet business. 

Rao et al. (2013), propose that classical SPC methods are not optimal to control and 

monitor multiple variables.  Because the impact of a variable may be related to the 

impacts of another correlated variable. Furthermore, when there is a large number of 

control charts of each process variable, univariate control charts are hard to control 

and interpret. They suggested an alternative approach to build a singular MV T2 

control chart which helps to minimize the occurrence of false alarms. In their study, 

they demonstrated a study which shows the use of MSPC charts to control production 

process and also, T2 diagnosis is applied to analyze the critical to quality process 

variables. 

In the relevant literature, univariate and MV control charts are investigated 

individually. The difference of this study from previous ones, and in turn its 

contribution, a comparison of univariate and MV control charts for the same process 

is introduced. 
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CHAPTER 3 

PROBLEM DEFINITION 

Applying SPC correctly is one of the necessary tools to produce high-quality products. 

An important advantage of the SPC is that it can be used for any process. One of the 

important assumptions in traditional SCC is independent observations of the method. 

However, in some industries like chemical processes, food industries and refinery 

productions, there is correlated data because of consecutive measurements.  

The goal of the master thesis is to construct control charts as univariate and 

multivariate for monitoring auto-correlated processes and to compare the univariate 

and MV control charts for the same process. In the relevant literature, univariate and 

MVCCs are investigated individually. However, in this study, univariate control charts 

and MV control charts are compared. 

In the case of chemical and process industries, where individual measurements occur 

frequently, the most appropriate control chart to be used is the Individual 

Measurements and Moving Range (I-MR) control chart. Unfortunately, the 

performance of these charts is dramatically influenced by even moderate violations of 

the normality assumption. 

It is known that in chemical process industries, the data is usually auto-correlated and 

sometimes not normally distributed.  

The real case of glycerin production is studied in this research. Glycerin is produced 

by hydrolysis treatment of fats and oils. The crude glycerin is used as a raw material 

which contains some amount of water and impurities. The existing amount of water 

and impurities are removed by sending it to the reactor tank with water and 

hydrochloric acid. Calcium Hydroxide (CaOH₂) and Caustic (NaOH) are added to 

glycerin. Most of the impurities in the glycerin are separated with a high–efficiency 

pressure filter. Moreover, after filtration, glycerin water is collected by vacuum 

concentrator usage in order to eliminate excess water. The removing excess water 

process includes burning the liquid glycerin below pressure by Evaporating Colons 

and afterward spraying the glycerin into a vacuum chamber which helps to evaporate 

the water as steam and by this process glycerin remains as a liquid. Furthermore, the 

glycerin is clarified by distillation by using fine activated charcoal. Charcoal treatment 
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is repeated in order to be sure about the removal of impurities in the glycerin. Glycerin 

at this stage is micro-filtered and the glycerin must be perfectly transparent. The 

filtration is applied to reduce all remaining contaminants that may be started and to 

remove the smell and color. At the end of this step, the final product, which is pure 

glycerin, is obtained with excellent color stability upon heating. In the following figure 

the process flow chart can be seen: 

 

 

 

 

 

 

Figure 3.1. Model of Production of Glycerin 



25 

 

CHAPTER 4 

METHODOLOGY 

In this study, there are four quality characteristics of pharmaceutical glycerin (the final 

product of our chemical production process), that we want to monitor and control. 

These critical to quality characteristics are: density, ester content, glycerin content and 

humidity.  

For all these four quality characteristics, the methodological approach followed was 

the same. An initial data analysis is conducted to understand if the data is auto-

correlated and whether they are normally distributed. Our final goal is to prepare 

appropriate Control Charts, based on the historical data given to us by the company, 

for the monitoring and control of the production process in the future. It is worth 

mentioning that Control Charts are an on-line tool for quality control.  

The guidelines for univariate control chart selection diagram is shown in Figure 4.1. 

 

 

 

 

 

Figure 4.1. Guidelines for Univariate Control Chart Selection (Montgomery, 2009) 
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In order to be able to apply SPC for our study, there is a path to follow. There are two 

cases to check for data, auto-correlation and normality of the data. 

Firstly, it has to be decided whether the data is auto-correlated or not by using Auto-

Correlation Function (ACF) graph. If the data is auto-correlated, then data must be 

fitted to appropriate TSM (ARIMA). After fitting the data, the residuals obtained from 

the process should be checked for assumptions, which are independency and 

normality. After providing all assumptions, I-MR and EWMACCs can be plotted by 

using residuals.  

Secondly, if the data is not auto-correlated, data must be checked whether the data is 

normally distributed or not. If the data is not auto-correlated and is normally 

distributed, I-MR and EWMACCs can be plotted directly. If the data is non-normal, 

the data must be transformed by using the Box-Cox transformation or Johnson 

transformation. After the transformation of data, I-MR and EWMACCs can be plotted. 

However, if data is not normally distributed, EWMACC still can be used to monitor 

critical to quality characteristics (Montgomery, 2009). 

For analysis, an amount of at least 100 observations has to be selected. Therefore, from 

the data available we selected 105 observations for each characteristic that 

corresponded to the period starting from the 25th of February until the 2nd of August 

2016. However, the data are not continuous, there are large gaps between them. For 

instance, data is missing between 7th March and 4th April and between 30th June and 

19th July.  

In general, we can summarize the procedure after the initial data analysis as follows: 

• As anticipated, after the initial analysis of the data, we observed that the data 

are auto-correlated for all four-quality characteristics. Since individual 

measurements in a chemical industry arrive consecutively and sampling is 

happening in short time intervals auto-correlation was something that was 

expected. 

• One of the quality characteristics (humidity) investigated is also not normally 

distributed. 

According to the literature survey conducted by Alwan and Roberts, 1988, the 

approach proposed when data are auto-correlated, is to fit an appropriate TSM 
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(ARIMA) to the original data observations and then use the residuals of this ARIMA 

model to plot the control charts. If the residuals are normally distributed and 

independent, with constant variance, the control charts that will be applied will present 

process disturbances, caused by any assignable causes, the same way they would be 

presented in a control chart monitoring the original data (Noskievicova, 2016). 

In addition, in order to deal with the non-normality of the data, Johnson 

Transformation is used. After eliminating the non-normality and auto-correlation, I-

MR Control Charts and EWMACCs are constructed in order to monitor the process. 

I-MR Control Charts are used because they are more capable in detecting large shifts 

in theaprocessamean and EWMACCs are used to capture smallashifts.  

At first, the data is analyzed by constructing a time series plot, a histogram, a 

probability plot and the ACF graph in order to see whether the data is normal and non-

auto-correlated. After that, if they are auto-correlated, the appropriate time series 

model (ARIMA) is fitted to the original observations and the normality and 

independence of the residuals of the model is tested. Finally, the EWMACC and I-MR 

Charts are developed.  

If the data was not auto-correlated and normally distributed, the appropriate 

EWMACC and I-MR Control Charts would be applied directly, using the original 

observations. 

 

4.1. Data Analysis of Quality Characteristics 

 

For all these four quality characteristics, data are analyzed for behavior of process, 

normality of observations and auto-correlation of data: 

Glycerin Content 

For the initial analysis of the data, time series plot, histogram, probability plot and 

auto-correlation function graphs are constructed. 
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From the time series plot given in Figure 4.2, the behavior of the process can be 

understood. The behavior of the process looks stationary (data which are quite stable 

and vary around a target mean) however a shift towards a lower level can be observed 

after observation 57. Also the variability of the data is higher after that point in time.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2. Time Series Plot of Glycerin Content 

Figure 4.3. Histogram of Glycerin Figure 

Figure 4.4. Probability Plot of Glycerin 
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By the help of the probability plot and histogram shown in Figure 4.3 and Figure 4.4 

respectively, it can be seen that the data are not normal. From the histogram above, we 

can see that the data are not symmetrical and appear to be left skewed. 

 

 

 

 

 

 

 

 

 

 

Furthermore, according to the auto-correlation function graph given in Figure 4.5, it is 

seen that the data are highly auto-correlated especially at the first 3 lags.  

Ester Content 

Time series plot, histogram, probability plot and auto-correlation function graphs are 

constructed for ester content data. 

 

 

 

 

 

 

 

 

 

As can be seen from the time series plot given in Figure 4.6, the behavior of the process 

is non-stationary. This type of behavior occurs frequently in the chemical and process 

Figure 4.5. Autocorrelation Function for Glycerin Content 

Figure 4.6. Time Series Plot of Ester Content 
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industries. The process appears to be quite unstable because of the driftsawithoutaany 

senseaof a stableaorafixed mean. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

According to the probability plot given in Figure 4.7 and histogram given in Figure 

4.8, it can be seen that the data are normally distributed. 

 

 

 

 

 

 

 

 

Figure 4.7. Histogram of Ester Content 

Figure 4.8. Probability Plot of Ester Content 

Figure 4.9. Autocorrelation Function of Ester Content 
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However, as it is seen from the auto-correlation function graph shown in Figure 3.10, 

that the data are highly auto-correlated. 

Density  

Time series plot, histogram, probability plot and ACF graphs are constructed for 

density data. 

 

 

 

 

 

 

 

 

 

From the time series plot in Figure 4.10, the behavior of the process is stationary. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.10. Time Series Plot of Density 

Figure 4.11. Histogram of Density 
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According to the probability plot and histogram given in Figures 4.11 and 4.12 

respectively, it can be seen that the data are not normal. 

 

 

 

 

 

 

 

 

 

 

From the ACF graph shown in Figure 4.13, the data are slightly auto-correlated. 

Humidity 

Time series plot, histogram, probability plot and ACF graphs are constructed for 

humidity data.  

 

 

Figure 4.12. Probability Plot of Density 

Figure 4.13. Autocorrelation Function of Density 
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According to the time series plot in Figure 4.14, the behavior of the process is in 

general stationary, however as it is seen from the graph above, there is a shift  towards 

a lower mean value, starting from the 20/07 as the last part of the data show. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.14. Time Series Plot of Humidity 

Figure 4.15. Histogram of Humidity 
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According to the probability plot seen in Figure 4.15 and histogram in Figure 4.16, it 

can be seen that the data are not normal. As it can be seen in the probability plot, there 

are fluctuations of points around the line and quite a few outliers. 

 

 

 

 

 

 

 

 

 

From the ACF graph shown in Figure 4.17, the data are auto-correlated at the first lag. 

 

4.2. Application of Control Charts 

 

Case Demonstration A: Univariate Control Charts 

 

According to the data analysis of the quality characteristic shown in Data Analysis 

section, all four quality characteristics data are correlated. Time series approach is used 

Figure 4.16. Probability Plot of Humidity 

Figure 4.17. Autocorrelation Function of Humidity 
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to deal with the auto-correlated data. TSM helps to remove the auto-correlation from 

the data. After fitting the data to the appropriate TSM, control chart is constructed by 

using the residuals.  

Modeling the quality characteristic 𝑥𝑡 as 

 

xt = ξ + øxt-1 + Ɛt                                                (1) 

 

Where ξ and ø (-1<ø<1) are unknown constants and Ɛ𝑡 is normally and independently 

distributed with mean zero and standard deviation σ.  

The residuals are approximately normally and independently distributed with mean 

zero and constant variance, shown as 

 

et = xt - x̂t                                                             (2) 

 

The conventional control charts are constructed with the sequence of residuals. It is 

pointed out that the residual control charts are not sensitive to detect small shifts in the 

process mean. In order to be able to improve the sensitivity of the residual control 

charts, it is recommended to use CUSUMCC or EWMACCs on residuals. 

Furthermore, Montgomery is stated that EWMACC based procedure is effective to 

control performance and shift detection. (Stoumbus & Reynolds, 200) 

 

CUSUM CONTROL CHART 

 

The Cumulative Sum control chart is used to monitor the process mean which is based 

on the samples; the samples are taken time basely such as hours, shifts, days, weeks 

etc. from the related process. The cumulative sum control chart indicates accumulation 

of current and previous information of data. Because of that, cumulative sum control 

chart is better for detecting the small shift in the mean of the process.  

The tabular CUSUMCC works by using the accumulating derivations from µ0 which 

are above the target with one statistic C+ and accumulating derivations from µ0 which 
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are below target with another statistic C-. The statistic C+ and C- are called as one-

sided UC and LC, respectively (Montgomery, 2009). 

 

The Tabular CUSUM: 

 

      𝐶𝑖
+=max[0, 𝑥𝑖-(µ0+K)+𝐶𝑖−1

+ ] 

𝐶𝑖
−=max[0, (µ0-K)-𝑥𝑖+𝐶𝑖−1

− ]                                         (3) 

 

where the starting values are 𝐶0
+=𝐶0

−=0 

K is he reference value and it is usually taken as halfway between the target µ0 and the 

out of control value of mean µ1 for detecting quickly (Montgomery, 2009). 

 

K=
δ

2
σ=

|μ
1
-μ

0
|

2
                                                                        (4) 

 

The EWMACC is an alternative to the CUSUMCC. The EWMACC has similar 

properties as CUSUMCC and also which is useful for detecting smallerashifts in the 

process mean.  

 

EWMA CONTROL CHART 

The EWMACC is useful to detect smallashiftsainatheaprocessamean as cumulative 

sum control chart but it is easier to perform and also it is a good alternative to the 

Shewhart control chart. The samples are taken based on time such as hours, shifts, 

days, weeks etc. from the related process. The measurements of the sample data at a 

given time sequence generates a subgroup. The EWMACC lean on the target value 

and the standard deviation which can be known or estimated. Because of this reason, 

it is better to use cumulative sum control chart after establishing process control. 

The definition of the EWMA is as follows: 
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zi=λxi+(1-λ)zi-1                                                      (5) 

 

where 0 < λ ≤ 1 is a constant and the starting value is the process target; 

 

𝑧0 = 𝜇0                                                                 (6) 

 

In some cases as a starting value can be used as the average of the preliminary data 

z0=x̅ . 

EWMACC equation can be demonstrated as 

 

zi=λxi+(1-λ)[λxi-1+(1-λ)zi-2] 

=λxi+λ(1-λ)xi-1+(1-λ)
2
zi-2                                          (7) 

 

In order to continue substitute repetitively for zi-j = 2,3,….,t, the following equation is 

obtained 

 

zi= ∑ (1-λ)
j

i-1

j=0

xi-j+(1-λ)
i
z0                                                (8) 

 

So, the weights sum to unity 

 

λ ∑ (1-λ)
j

i-1

j=0

=λ [
1-(1-λ)

i

1-(1-λ)
] =1-(1-λ)i                                       (9) 

 

When λ is equal to 0.2, then 0.2 is assigned to the sample mean as a weight. Using 

EWMACCs in time series modeling is very common (Mastrangelo & Montgomery, 

1995) (Box, Jenkins and Reinsel, 1994). 
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All past and current information of the process are used in EWMACCs as weighted, 

because of that EWMACCs are insensitive to the normality assumption. With 

insensitiveness to the normality assumption, individual observation can be used.  

If the observations are independent random variables with the variance σ2, the variance 

of zi is as follows 

 

σzi

2 =σ2 (
λ

2-λ
) [1-(1-λ)

2i]                                             (10) 

 

EWMACC is constructed by plotting zi versus the sample number i (or time). The CL, 

UCL and LCL are calculated as 

The EWMACC: 

 

UCL=μ
0
+Lσ√

λ

(2-λ)
[1-(1-λ)

2i]                                      (11) 

Center Line=μ
0
 

LCL=μ
0
-Lσ√

λ

(2-λ)
[1-(1-λ)

2i]                                      (12) 

 

CONSTRUCTING SHEWHART CONTROL CHARTS 

 

Glycerin Content 

As mentioned at section 4.1, data analysis of quality characteristics part of glycerin 

content, if data do not satisfy the assumption of normality and are not independent, the 

SPC charts would not be reliable. If the control chart is constructed with the individual 
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observations which are not normally distributed and especially not independent, the 

control chart would be misleading as shown in Figure 4.18: 

 

 

 

According to the I-MR control chart, there are 2 different types of out of control 

situations: 

For individuals control chart; 12, 27-37, 51, 59, 60, 62-65, 74-77, 81, 92-94, 104 points 

are plotted outside the control limits and 31-42, 56-68, 82-84 points show that there is 

a shift in the process mean. For moving range control chart, 12, 13, 92, 93 points are 

plotted outside the control limits. Since the data is auto-correlated, and the 

independency rule is violated, these out of control points are anticipated as false 

alarms. 

  

Figure 4.18. Individual and Moving Average Control Chart of Glycerin 
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As it is seen from the EWMACC, there are too many out of control points.  

In order to deal with the auto-correlation, a time series model ARIMA is applied. The 

most suitable model for the glycerin content data is identified as the ARIMA (1,0,0). 

After the appropriate TSM is fitted to data, normality and independence of the 

residuals of the model is tested. According to figure 4.20, the residuals of the model 

are normal and independent. Furthermore, it is understood from the graphs below that 

the time series model ARIMA (1,0,0) nicely fits the data. 

 

 

Figure 4.19. EWMACC of Glycerin 

Figure 4.20. Testing Residuals of Time Series Model 
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Afterwards, the I-MR Control Chart and EWMACC are constructed in order to detect 

the large and small shifts in the processamean respectively. 

 

Figure 4.21. I-MR Chart of Residuals of Glycerin Content 

 

Figure 4.21. According to the I-MR Chart, there is an outaofacontrol situation because 

of the consecutive data points very close to the center-line between 28 and 41 and also 

an out of control situation at 92, which is the first data point after a break between 91 

until 92. 
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According to the EWMACC in Figure 4.22, there are no smallashifts detected in the 

processamean (the process looks in control), but the out of control point at the 92th 

sample can be also noted. 

 

Ester Content 

As mentioned at section 4.1, data analysis of quality characteristics part of ester 

content, as it is seen from the auto-correlation function graph, that the data are highly 

auto-correlated. 

In order to deal with the auto-correlation, the time series model ARIMA is applied. 

The most suitable model for ester content data is identified as the ARIMA (0,1,1). 

After the appropriate TSM is fitted to the data, normality and independence of the 

residuals of the model is tested. According to figure 4.23, the residuals of the model 

are normal and independent. Furthermore it is understood that the time series model 

ARIMA (0,1,1) nicely fits the data. 

  

Figure 4.22. EWMACC Residuals of Glycerin Content 
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Then the I-MR Control Chart is constructed in order to be able to detect large shifts 

and EWMACC is constructed in order to detectasmallashiftsainatheaprocessamean 

which are shown in Figure 4.23. 

 

 

 

Figure 4.23. Testing Residuals of Time Series Model 

Figure 4.24. I-MR Chart of Residuals of Ester Content 
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According to the I-MR in Figure 4.24 and EWMACCs in Figure 4.25, theaprocess 

looks in control except of two out of control situations, which are on the 13 and the 92 

for I-MR and 92 for EWMACC. 

 

Density 

As mentioned at section 4.1, data analysis of quality characteristics part of density, the 

data are slightly auto-correlated. 

Although there is a slight auto-correlation in data, in order to deal with the auto-

correlation and the non-normality of the data, a time series model ARIMA is applied. 

The most suitable model for the density data is identified as the ARIMA (1,0,0). After 

the appropriate TSM is fitted to the data, normality and independence of the residuals 

of the model is tested. According to figure 4.26, the residuals of the model are normal 

and independent. Furthermore it is understood that the time series model ARIMA 

(1,0,0) nicely fits the data. 

 

 

Figure 4.25. EWMACC of Residuals of Ester Content 
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Then, the I-MR Control Chart in Figure 4.27 and EWMACC in Figure 4.28 are 

constructed below in order to detect the large and smallashiftsainatheaprocessamean, 

respectively. 

 

 

 

Figure 4.26. Testing Residuals of Time Series Model 

Figure 4.27. I-MR Chart of Residuals of Density 
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According to I-MR in Figure 4.27 and EWMACCs in Figure 4.28, the processaappears 

to be in control. 

 

Humidity 

As mentioned at section 3.1, data analysis of quality characteristics part of humidity, 

the data are auto-correlated at the first lag. 

In order to deal with the non-normality of the data, Johnson Transformation is applied. 

After eliminating the non-normality, auto-correlation is eliminated by applying the 

time series model ARIMA. The most suitable model for glycerin content data is 

identified as the ARIMA (1,0,0). After the appropriate TSM is fitted to the data, the 

normality and independence of the residuals of the model is tested. According to figure 

4.5, the residuals of the model are normal and independent. Furthermore it is 

understood that the time series model ARIMA (1,0,0) nicely fits the data. 

  

Figure 4.28. EWMACC Chart of Residuals of Density 
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Then, I-MR and EWMACCs are constructed in order to detectathealarge and small 

shifts in the process mean, respectively. 

 

 

 

Figure 4.29. Testing Residuals of Time Series Model 

Figure 4.30. I-MR Chart of Residuals of Humidity 
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According to I-MR Chart in Figure 4.30, there are three out-of-control situations:  

• on the 50 because of the out of control point above the upper limit  

• on the 91, because of the out of control point below the lower limit and also, 

• between the 100 and the 105, where a few out of control points exist because  

of their consecutive appearance on the same side and close to the CL which means 

there is a shift in process mean. 

 

 

However, according to EWMACC in Figure 4.31, the process appears to be in control 

(no small shifts in the mean are indicated). 

 

Case Demonstration B: Multivariate Control Charts 

Since implementation of the SCC is easy, application of the Shewhart control charts is 

very common in chemical industry. However, when the data is correlated, monitoring 

the quality characteristics of the process variable separately does not display the 

process situation in a correct way. Especially in the chemical process industry, data 

are mostly correlated such as temperature and pressure. Assuming gas production, 

Figure 4.31. EWMACC Chart of Residuals of Humidity 
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there are two critical to quality variables where there is positive correlation between 

them which are temperature and pressure parameters. In these cases, constructing 

Shewhart charts becomes insufficient, and also it is hard to manage high number of 

control charts with all quality characteristic variables. 

Most of the time in chemical industry, the process parameters are not independent. 

There are two possibilities; one is positive relation and another is negative relation. If 

there is positive relation between the variables, one variable increases while other 

variable increases. Or if there is negative relation between them, while one of the 

variables decrease, other increase. However, anaoutaofacontrolasituation cannot be 

detected with correlated data if SCCs are constructed. 

 

Hotelling’s T2 Statistic 

Harold Hotelling is the one that realizes constructing MV control charts if correlation 

exists between the quality characteristic variables. T test with one variable is extended 

by Hotelling to MV t test with two or more dependent variables. (Hotelling, 1931) 

While constructing the Hotelling T2 statistic, following assumptions must be 

considered: 

• No subpopulations with different population means 

• Common variance-covariance matrix 

• Independent data 

• MV normally distributed data 

The Hotelling T2 MV t test does not have a table of critical t-test values with degrees 

of freedom values. However, statistical significance can be tested by using an F test. 

(Hotelling, 1931) 

According to the correlation matrix, diagonal values are variances of the terms. The 

off-diagonal values represent the covariance of only two random terms. The 

asymptotic variance-covariance matrix displays the variances and covariance of the 

random terms in the model (Hotelling, 1931). 

The correlation of the quality characteristic variables are checked and the results are 

calculated by using the method as Pearson Correlation via Minitab: 
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Correlation calculation, which is shown in Table 4.1, between quality characteristics 

via Minitab: Density, Ester, Glycerin and Humidity 

 

Table 4.1. Correlation Values of Samples 

 DENSITY ESTER GLYCERIN 

ESTER 0,003 - - 

GLYCERIN 0,067 0,854 - 

HUMIDITY 0,075 -0,099 -0,130 

 

If p value is less than the significance level of 0.05, the correlation is significant. 

According to the Pearson Correlation results, Ester and Glycerin content have large 

positive relationship with a p value as 0.854.  

The Hotelling T2 statistic follows The Chi-square distribution with two degrees of 

freedom: 

 

χ0
2=

1

s11s22-s12
2

[s11(x2-x̅2)
2
-2(x2-x̅2)(x1-x̅1)+s22(x1-x̅1)

2]           (13) 

 

The test statistic is plotted on the Chi-square control chart for each sample as follows: 

 

χ
0
2=n(x̅-µ)'Σ-1

(x̅-µ)                                               (14) 

 

 

Where µʹ = [µ1, µ2, …..,µp] is the vector of in control means for each quality 

characteristic and Σ is the covariance matrix. Furthermore, the upper control limit of 

the control chart is 
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UCL=χ
α,p
2                                                        (15) 

 

It is assumed that the process is in control, data are independent and MV normally 

distributed with mean µ and covariance matrix Σ. In our case, µ and Σ are unknown. 

However, x̅ and estimated covariance of sample S are used by calculating from data 

set with n observations when process is assumed to be in control.  

Where sample mean is x̅=(x̅1,x̅2,…x̅p)  and covariance of sample is  

 

S= [

s11 ⋯ s1p

⋮ ⋱ ⋮
sp1 ⋯ spp

] 

 

If the µ is replaced with estimated mean and Σ is replaced with estimated covariance 

matrices in the Chi-square equation, the test statistic becomes 

 

T2=n(x̅-x̿)'S
-1

(x̅-x̿)                                               (16) 

 

The application of the Hotelling T2 statistic is categorized in two phases which are 

called as Phase I and Phase II. If the process is assumed to be in control, Phase I is 

constructed with in control data. With the help of Phase I, control limits are established 

for Phase II which is used to monitor future observations.    

The phase I control limits can be calculated by using the following equation for the T2 

control chart 

 

UCL=
p(m-1)(n-1)

mn-m-p+1
Fα,p,mn-m-p+1                                      (17) 

LCL=0                                                                                 (18) 
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CONSTRUCTING MULTIVARIATE CONTROL CHARTS 

 

The same data set is used as Case Demonstration A: Univariate Control Chart 

Application. In this case, data set is in control, so only phase I operation is performed 

and for future work phase II operation will be suggested. The MV control chart is 

constructed for residual from TSM fitted to the raw data. 

As mentioned at section 4.1, data analysis of quality characteristics part of glycerin 

content, if data do not satisfy the assumption of normality and are not independent, the 

SPC charts would not be reliable. In order to deal with the auto-correlation, a time 

series model ARIMA is applied. The most suitable model for the glycerin content data 

is identified as the ARIMA (1,0,0). After the appropriate TSM is fitted to data, 

normality and independence of the residuals of the model is tested. According to figure 

4.20., the residuals of the model are normal and independent. Furthermore, it is 

understood from the graphs below that the time series model ARIMA (1,0,0) nicely fit 

the data.  

Data analysis of quality characteristics part of ester content, as it is seen from the auto-

correlation function graph, that the data are highly auto-correlated. 

In order to deal with the auto-correlation, the time series model ARIMA is applied. 

The most suitable model for ester content data is identified as the ARIMA (0,1,1). 

After the appropriate TSM is fitted to the data, normality and independence of the 

residuals of the model is tested. According to figure 4.23., the residuals of the model 

are normal and independent. Furthermore, it is understood that the time series model 

ARIMA (0,1,1) nicely fits the data. 
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Furthermore, the correlation of the quality characteristic variables is checked and the 

results are calculated by using the method as Pearson Correlation via Minitab and the 

results are shown in Table 4.2: 

 

Table 4.2. Pearson Correlation Calculations 

 DENSITY ESTER GLYCERIN 

ESTER 0,003 

0,978 

  

GLYCERIN 0,067 

0,500 

0,854 

0,000 

 

HUMIDITY 0,075 

0,450 

-0,099 

0,314 

-0,130 

0,187 

 

If p value is less than the significance level of 0.05, the correlation is significant. 

According to the Pearson Correlation results, Ester and Glycerin content have large 

positive relationship with a p value as 0.854.  

According to the correlation results, only Glycerin content and ester are correlated in 

positive manner. So, only ester and glycerin content quality characteristic data are 

monitored via constructing MV Hotelling T2 control chart.   
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Figure 4.32. Hotelling T2 Control Chart of Residuals of Ester and Residuals of 

Glycerin 

Figure 4.33. Generalized Control Chart of Residuals of Ester and 

Residuals of Glycerin 
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According to the Hotelling T2 control chart in Figure 4.32, the process seems to be in 

control except observation 13 and observation 92. 

Then, MV EWMACC is constructed in order to detectasmallashiftsainathe process 

mean. The ARL is assumed to be 200 and weight is assumed to be 0,1. 

 

 

According to MEWMACC in Figure 4.34, there are eleven out-of-control situations:  

• On the 7, 33-36, 39-41, 95-97 because of the outaofacontrolapoint above the 

upper limit. 

  

Figure 4.34. Multivariate EWMACC of Residuals of Ester and Residuals of Glycerin 
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CHAPTER 5 

DISCUSSION OF RESULTS 

The SPC is the main topic of this research, various types of SCCs and their applications 

are mentioned. The univariate statistical process monitoring and control techniques 

and the MV process monitoring and control techniques are implemented.  

The aim of this study is to support chemical process industries and provide them with 

SPC tools, which help them to control and monitor the processes.  

In the case of chemical and process industries, process or product characteristics are 

often highly correlated because of the consecutive measurements, or automated test 

and inspection procedures. The most appropriate control chart to use is the Individual 

Measurements and Moving Range (I-MR) control chart because every quality 

characteristic is measured on every unit in time order of production.   Unfortunately, 

the performance of these charts is dramatically influenced by even moderate violations 

of the normality and independence assumptions. 

During the study and research, application of SPC on a chemical industry is performed. 

In our case study, the final product of the chemical production process is 

pharmaceutical glycerin. There are four quality characteristics which are monitored 

and controlled. These CTQCs are: glycerin content, ester content, density and 

humidity. While applying SPC, two different approaches are used. These two 

approaches are Univariate Control Charts and Multivariate Control Charts in order to 

monitor the process.  

The definition of the research question is as “What kind of control charts are applicable 

with different kind of data and how to monitor process parameters and interpret them?” 

Independence and normality are the basic assumptions behind traditional univariate 

and MV control charts. However, in many cases especially in chemical and process 

industry, data are auto-correlated (dependent) because of the process dynamics and 

consecutive sampling techniques. Furthermore, it is known that the false alarm rate 

and the shift detection ability of traditional control charts are affected by auto-

correlated data. The effect of auto-correlation in the data also influences MV control 

charts application as well. In this study, the approach followed to overcome auto-
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correlation is fitting a time series model to the data and then constructing control charts 

with the residuals of the fitted model.  

For all quality characteristics, the methodological approach followed is exactly the 

same. An initial analysis of the data is conducted in order to understand if the data are 

auto-correlated and whether they are normally distributed. The final goal is to prepare 

appropriate Control Charts, based on the historical data given to us by the company, 

for the monitoring and control of the production process in the future. It is worth 

mentioning that Control Charts are an on-line tool for quality control.  

In the Case Demonstration part A, Univariate control charts are constructed. At first, 

the data are analyzed by constructing a time series plot, a histogram, a probability plot 

and the ACF graph in order to see whether the data are normal and independent. After 

that, if auto-correlation exists, the appropriate time series model (ARIMA) is fitted to 

the original observations and the normality and independence of the residuals of the 

model is tested. And finally the EWMACC and I-MR Charts are applied. EWMACC 

generally detect assignable causes more quickly than the individual moving range 

chart (Montgomery, 2009).  

The revision of the UCL, LCL and CL is required in order to get effective use of 

control charts. Nevertheless, the same methodology for the analysis of the data can be 

easily repeated with the current data, in order to compute more appropriate control 

limits representing the current status of the process. 

Starting with the first CTQC, glycerin content, the data analysis shows that data are 

stationary, they are non-normally distributed and highly auto-correlated. If control 

charts are constructed with the individual observations which are non-normally 

distributed and especially not independent, the control chart would be misleading. 

Therefore, in order to deal with the auto-correlation, a TSM which is used for 

stationary and auto-correlated data, ARIMA (1,0,0), is applied. The time series model 

is fitted to the individual observations and then I-MR and EWMACC are constructed 

using the residuals, in order to be able to detect the large shifts and the smallashiftsain 

theaprocessamean, respectively. 
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As can be observed in the Individual control chart in Figure 4.21, the first out of control 

situation is starting with observation 28 till observation 41. This can be interpreted as 

a small shift in the mean. Furthermore, at the EWMACC in Figure 4.22, the same 

upwards shift can be also observed (points between 28 and 41). As it can be seen 

above, the ability of detection of the smallashiftain the mean on the I-MR control chart 

is weaker than the one of the EWMACC. An unexperienced eye could easily miss the 

small shift in the mean on the I-MR. However, the same shift on the EWMACC can 

be easily spotted by the graphical representation of upwards peak. Moreover, there is 

another out of control point at the individuals control chart which is observation 92 

that can be also observed as a point on the lower control limit at the EWMACC. 

For the second CTQC, ester content, the data analysis shows that the data are non-

stationary; a very common case in the chemical and process industries, they are 

normally distributed and highly auto-correlated. Therefore, in order to deal with the 

auto-correlation, a TSM which is used for non-stationary data, ARIMA (0,1,1), is 

applied. The TSM is fitted to the individual observations and then I-MR and 

EWMACCs are constructed using the residuals in order to be able to detect the large 

shift and the small shift in the process mean, respectively. 

As can be observed in the Individual control chart in Figure 4.24, the first out of control 

situation is at observation 13 which can be also observed as a point close to the lower 

control limit at EWMACC in Figure 4.25. Furthermore, there is another out of control 

point at the individuals control chart which is observation 92 that is also an out of 

control point at the EWMACC. In this case, the detection ability of an out of control 

situation of both control charts could be characterized equal. 

For the third of the CTQCs, density, the data analysis shows that the data are stationary, 

non-normally distributed and slightly auto-correlated. Therefore, in order to deal with 

the auto-correlation, a time series model that is used for stationary and auto-correlated 

data, ARIMA (1,0,0), is applied. The time series model is fitted to the individual 

observations and then I-MR and EWMACCs are constructed using the residuals in 

order to be able to detect the large shift and the small shift in the process mean, 

respectively.  

According to the individual control chart in Figure 4.27 and EWMACC in Figure 4.28, 

the process is in control. As can be observed in the EWMACC, there is an upwards 
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shift in the mean which is starting with observation 9 till observation 15. However, if 

we look carefully at the individual control chart, it can be seen that the small shift in 

the mean, starting at point 9, can be also spotted by an experienced eye, but not as 

easily as in the EWMACC. Moreover, there is another upwards shift in the mean at 

the EWMACC which is starting with observation 93 till observation 99. Same as 

previously, with a close check, it can be also spotted in the individual chart, with the 

same observations (93-99). As discussed also above, EWMACCs are more sensitive 

in detecting smaller shifts in the mean.  

For the last CTQC, humidity, the data analysis shows that the data are stationary, non-

normally distributed and auto-correlated at the first lag. In order to be able to deal with 

the auto-correlation, a time series model ARIMA (1,0,0) is applied which is used for 

stationary and auto-correlated data. The TS model is fitted to the individual 

observations and then I-MR and EWMACCs are constructed using the residuals in 

order to be able to detect the large shift and the small shift in the process mean, 

respectively. 

As can be observed in the individual control chart in Figure 4.30, observation 7 is very 

close to the UCL. There is a second outaofacontrol point also, which is observation 50 

and, there is a third out of control situation, starting with observation 92 till observation 

105. This can be interpreted as a small shiftainatheaprocessamean. The first and last 

out of control situations are also observed on the EWMACC in Figure 4.31. 

Observation 7 can be observed as a point close to the upper control limit, and the 

downwards shiftainatheamean can be observed between points 92 and 105. However, 

the out of control point, observation 50, could not be observed on EWMACC, leading 

us to believe that it could be a false alarm. 

In the Case Demonstration part B, MV control charts are constructed. The same 

methodology is followed: at first, the data are analyzed by constructing a time series 

plot, a histogram, a probability plot and the ACF graph in order to see whether the data 

are normal and independent. In case of auto-correlation, the appropriate time series 

model (ARIMA) is fitted to the original observations and the normality and 

independence of the residuals of the model is tested. 

In the MV control chart case, another analysis is necessary. The correlation of the 

quality characteristic variables has to be evaluated. In order to do so, correlation results 
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are calculated by using the Pearson Correlation method via Minitab. According to the 

Pearson Correlation results, Ester and Glycerin content have large positive correlation 

with a p value equal to 0.854. The rest of the CTQCs are not correlated to each other. 

Therefore, only ester and glycerin content quality characteristic data can be monitored 

via constructing a MV Hotelling T2 control chart. In order to be able to detect small 

shifts in the process mean, a multivariate EWMACC is constructed with the residuals 

of ester and glycerin content. 

According to the individual control chart of ester in Figure 4.24, observation 13 and 

observation 92 are outaofacontrolapoints. Moreover, according to the individual 

control chart of glycerin content in Figure 4.21, it is seen that observation 92 is an out 

of control point. Furthermore, it can be observed in the T2 control chart in Figure 4.32 

that the same points can also be observed as out of control points (observation 13 and 

92). As expected, the MV T2 control chart of glycerin and ester, is influenced by the 

individual charts of the two correlated variables. The assignable causes behind 

anaoutaofacontrol situation is understood by examining the univariate control charts if 

the MV control chart detects the cause.  
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CHAPTER 6 

CONCLUSIONS & FURTHER RESEARCH 

The objective of this research is to support chemical and process industries and provide 

them SPC tools, which help them to control and monitor the quality of the processes. 

Various types of SCCs and its applications are mentioned. The univariate and 

multivariate statistical process monitoring and control techniques are performed. 

In Chapter 2, the thesis starts with a definition of SPC which is very useful in obtaining 

process stability while reducing the variability. Moreover, the “magnificent seven” 

tools and techniques are mentioned, as they are used to analyze the process data in 

methodology part. Then the methodological background of SCC and MV-SPC is 

addressed. Control charts are graphical displays of measured or derived critical to 

quality characteristics versus observations or time. Interpreting control charts and the 

basic assumptions underlying SPC, such as normality and independence, are 

mentioned. The special case of chemicalaandaprocess industries, where auto-

correlated data exists and the usage of TSMs to handle the violation of the 

independence assumption, are examined.  

In Chapter 3, the methodology and a case study demonstration is presented. The case 

study is about the monitoring and control of critical to quality characteristics (CTQC) 

of glycerin production. At first the glycerin production process is explained and four 

quality characteristics are used to construct control charts for monitoring and 

controlling the process. The final goal is to design a SPC program, based on historical 

data, for future monitoring and continuous improvement of the process. The behavior 

of the process data is checked for normality and independence by using time series 

plot, histogram, probability plots and ACF graphs respectively. 

In Case Demonstration A, Shewhart control charts are elaborated. Analyzed data are 

examined and if data are correlated, the appropriate TSM is fitted to the data in order 

to eliminate the auto-correlation. Control charts are designed, starting with the simplest 

case of I-MR Shewhart control charts mostly appropriate for the chemical and process 

industries, and which are very useful in phase I implementation of SPC.  Then the 

design of more advanced control charts like EWMACCs is performed since they are 

more suitable for critical to quality characteristics of processes which are mature and 

have the need of control charts more sensitive to smaller process shifts.  
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In the case of the chemical industry, EWMACCs are very useful in implementation of 

phase II in SPC, since they cover the major disadvantage of a Shewhart control charts, 

which is containing the information about the last observation in process and ignoring 

any information given by the entire sequence of points. This feature makes the 

EWMACC more sensitive to detect the small shifts about 1.5s or less, in the process 

mean. In cases where the process seems to be in control, the process parameters can 

be estimated (such as the mean and standard deviation), and assignable causes do not 

commonly result in large process upsets or disturbances. 

In Case Demonstration B, MV control charts are elaborated. In the MV control chart 

case, the correlation of the quality characteristic variables are calculated by using 

Pearson Correlation method. As a result of correlation calculation, the quality 

characteristics of ester and glycerin content which have large positive correlation, are 

selected to show case the use of MV control charts in our case. At first Hotelling’s T2 

control chart is constructed for ester and glycerin content and then, MV EWMACC is 

constructed in order to detect the small shifts in the process mean. 

In Chapter 4, the results of case demonstration A and B are discussed. As a conclusion 

of Case Demonstration A, it is observed that the ability of detection of the small shift 

in the mean on the I-MR control chart is weaker than the one of the EWMACC. An 

unexperienced eye could easily miss the smallashiftsainatheamean on the I-MR 

control charts. However, the same shifts on the EWMACC can be easily spotted by 

the graphical representation of upwards peaks. As a conclusion of Case Demonstration 

B, the MV T2 control chart of glycerin and ester, is influenced by the individual charts 

of the two correlated variables. If the MV control chart detects an out of control 

situation, the assignable causes behind it, can be understood by examining the 

univariate control charts. 

The comparison between univariate and MV control charts indicates that these two 

different control charts acts as a compatible approach for monitoring the chemical and 

process industries processes. If the MV control chart detects an out of control situation, 

then the univariate control charts will be useful to determine the critical to quality 

characteristic, which caused this out of control situation. 
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Flow chart of the model is in Figure 6.1: 

 

 

 

Figure 6.1. Flow Chart of The Model 
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The following suggestions are made for the future research in this area: 

1. Design of experiments (DOE) approach can be used to determine which critical 

to quality characteristics have the greatest impact on the process quality and at 

which point during the process they should be monitored. Furthermore, new 

control charts can be designed for the identified characteristics and the SPC 

program can be extended throughout the whole process. 

2. Revision of the control limits for all designed control charts is necessary, in 

regular time intervals. Further research could specify the necessary time 

intervals and provide the methodology for implementing this. For example, in 

phase II implementation of SPC for T2 control charts, control limits should be 

calculated by using the following equation in order to be able to monitor future 

productions.  

 

UCL=
p(m+1)(n-1)

mn-m-p+1
Fα,p,mn-m-p+1                                      (19) 

 

LCL=0                                                                                 (20) 

 

3. CUSUMCCs application are appearing in the literature review. The 

performance comparison between EWMACCs and CUSUMCCs could be an 

extension of this study. Furthermore, MV CUSUMCC and MV-EWMACCs 

can be compared. 

For supporting the everyday work in an industrial environment, a software application 

could be developed on a later stage. Since in most of the cases, because of the violation 

of the independence assumption and existence of auto-correlation in data a fitted model 

is necessary, plotting and maintaining a control chart is not easy. A software 

application where the quality worker can input the original measured observation and 

automatically have as a result the appropriate fitted point plotted in the control chart is 

necessary. Control charts are useful when they can be used as on-line tools in process 

monitoring. In the case of the chemical industry, this cannot be achieved without a 

software application. 
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