
BORNOVA / İZMİR
AUGUST 2019

YAŞAR UNIVERSITY

GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

MASTER THESIS

EARLY DESIGN STAGE MULTI LEVEL

ARCHITECTURAL FLOOR PLAN ORGANIZATION

BY USING GENETIC ALGORITHMS

ERİNÇ YILDIRIM

THESIS ADVISOR: ASSOC. PROF. BAŞAK KUNDAKÇI KOYUNBABA

CO-ADVISOR: ASSOC. PROF.İPEK GÜRSEL DİNO

ARCHITECTURE

PRESENTATION DATE: 17.07.2019

v

ABSTRACT

EARLY DESIGN STAGE MULTI LEVEL ARCHITECTURAL FLOOR

PLAN ORGANIZATION BY USING GENETIC ALGORITHMS

Yıldırım, Erinç

Msc, Architecture

Advisor: Assoc. Prof. Başak Kundakçı Koyunbaba

Co-Advisor: Assoc. Prof. İpek Gürsel Dino

JULY 2019

Architectural layout design entails numerous decision variables, which interact in

complex ways, and as such it is defined by combinatorial complexity. To deal with

this complexity, computational optimization methods can be utilized. The aim of the

research is to find a feasible set of architectural layout design alternatives for three

objectives, which are minimization of the relations weighted circulation between

spaces and minimization of the total solar radiation of spatial organization, subject to

several constraints. The multi objective optimization problem is formulated where the

constraints are real parameters. Multi objective evolutionary algorithms are utilized in

order to gather a set of non-dominated solutions.

Key Words: architectural layout; multi-storey; circulation; multi-objective

optimization; evolutionary algorithms

vii

ÖZ

ERKEN TASARIM EVRESİ GENETİK ALGORİTMALAR

KULLANILARAK ÇOK KATLI MİMARİ KAT PLANI

ORGANİZASYONU

Yıldırım, Erinç

Yüksek Lisans, Mimarlık

Danışman: Doç. Dr. Başak Kundakçı Koyunbaba

Yardımcı Danışman: Doç. Dr. İpek Gürsel Dino

TEMMUZ 2019

Mimari plan tasarımı, karmaşık şekillerde etkileşime giren sayısız karar değişkenini

içerir ve bu şekilde birleşimsel karmaşıklıkla tanımlanır. Bu karmaşıklıkla başa

çıkmak için, hesaplama optimizasyon yöntemleri kullanılabilir. Araştırmanın amacı,

çeşitli kısıtlamalara tabi olarak, mekansal organizasyonun toplam güneş ışığının

azaltılması ve mekânlar arasındaki ilişkilerin ağırlıklı dolaşımının en aza indirilmesi

olan iki amaç için uygun bir mimari yerleşim tasarımı alternatifleri kümesi bulmaktır.

Çok amaçlı optimizasyon problemi, tam sayı parametreler olarak kurgulanmıştır.

Baskın olmayan bir dizi çözümü toplamak için çok amaçlı evrimsel algoritmalar

kullanılmıştır.

Anahtar Kelimeler: mimari plan, çok katlı, dolaşım, çok amaçlı optimizasyon,

evrimsel algoritmalar

ix

ACKNOWLEDGEMENTS

First of all, I would like to thank my advisor Assoc. Prof. Başak Kundakcı Koyunbaba

and my co-advisor Assoc. Prof. İpek Gürsel Dino for their guidance, patience and

support during this study. Also, I would like to expresse my deepest gratitude to Prof.

Dr. İ. Sevil Sarıyıldız and Prof. Dr. Mehmet Fatih Taşgtiren

I would like to express my enduring love to my family, my father Aydın Yıldırım and

my mother Ayşe Gün Yıldırım have always supported and loved me in my life. I

appreciate their endless trust with my decisions.

Additionally, my sincere thanks go to my companion Ayşegül Öykü Görgün and her

family because of their support and kindliness.

I thank my colleagues Berfin Yıldız, Cemre Çubukçuoğlu, Duhan Ölmez, Ece Buldan,

Feyza Durmuşlar, Fulya Özbey, İrem Deniz Akçam, Müge Sever, Selin Güngör, Selin

Karagözler Güleroğlu in Yaşar University also, for a year they have understand and

supported me

Last but not least, I would like to thank then my instructors, now my friends; Özlem

Akın and Gudjon Thor Erlendsson for guiding me through undergraduate education

and graduation project in which I started studying on this topic.

Erinç Yıldırım

İzmir, 2019

xi

TEXT OF OATH

I declare and honestly confirm that my study, titled “EARLY DESIGN STAGE

MULTI LEVEL ARCHITECTURAL FLOOR PLAN ORGANIZATION BY USING

GENETIC ALGORITHMS” and presented as a Master’s Thesis, has been written

without applying to any assistance inconsistent with scientific ethics and traditions. I

declare, to the best of my knowledge and belief, that all content and ideas drawn

directly or indirectly from external sources are indicated in the text and listed in the

list of references.

Erinç YILDIRIM

Signature

………………………………..

August 26, 2019

xiii

TABLE OF CONTENTS

ABSTRACT .. v

ÖZ .. vii

ACKNOWLEDGEMENTS ... ix

TEXT OF OATH .. xi

TABLE OF CONTENTS ... xiii

LIST OF FIGURES ... xvii

LIST OF TABLES .. xxi

SYMBOLS AND ABBREVIATIONS ... xxiii

CHAPTER 1 INTRODUCTION ... 1

1.1. MOTIVATION .. 1

1.2. BACKGROUND .. 2

1.3. PROBLEM STATEMENT .. 4

1.4. RESEARCH OUTLINE ... 4

CHAPTER 2 LITERATURE REVIEW .. 6

2.1. PHYSICALLY-BASED MODELLING TECHNIQUES .. 7

2.2. EVOLUTIONARY ALGORITHMS BASED LAYOUT PLANNING 8

2.2.1. EVOARCH: AN EVOLUTIONARY ALGORITHM FOR ARCHITECTURAL

LAYOUT DESIGN ... 9

2.2.2. ARCHITECTURAL LAYOUT DESIGN OPTIMIZATION 12

CHAPTER 3 METHODOLOGY .. 17

3.1. DATA INPUT .. 18

3.1.1. BUILDING PROGRAM.. 18

3.1.1.1. BUILDING PROGRAM CHART .. 18

3.1.1.2. RELATIONS MATRIX .. 19

3.1.2. SITE ... 20

3.1.2.1. BUILDING PLOT BOUNDARY ... 20

3.1.2.2. SITE OBJECTS .. 20

3.1.2.3. WEATHER DATA ... 20

 xiv

3.2. IMPORTING BUILDING PROGRAM DATA INTO GRASSHOPPER 20

3.3. SPACEXPOLER .. 20

3.4. SOLAR PERFORMANCE OF GENERATED SPATIAL ORGANIZATION 20

3.4.3. SOLAR RADIATION SIMULATION .. 21

3.4.4. SIMULATION TOOL .. 21

3.4.5. SIMULATION SETUP .. 21

3.4.5.1. TEST GEOMETRY... 21

3.4.5.2. GRID SIZE .. 21

3.4.5.3. CONTEXT ... 21

3.4.6. SIMULATION RESULTS ... 22

3.5. OPTIMIZATION TOOL .. 22

3.6. GENERATIVE MODEL PARAMETERS ... 23

3.7. TIME SAVING MEASURES .. 24

3.7.7. 3 OBJECTIVES DO NOT EVALUATE INVALID SOLUTIONS 24

CHAPTER 4 SPACEXPLORER ... 25

4.1. DATA VISUALIZATION .. 25

4.1.1. BUILDING PROGRAM DATA VISUALIZATION .. 25

4.1.2. RELATIONS DATA VISUALIZATION .. 26

4.2. CREATION OF 3D VOXELSPACE AND SELECTION POINTS 26

4.2.1. 3D VOXELSPACE .. 27

4.2.2. SELECTION POINTS.. 27

4.3. FLOOR AND LOCATION SELECTION .. 28

4.3.3. FLOOR SELECTION COMPONENT ... 28

4.3.4. LOCATION SELECTION COMPONENT ... 28

4.4. SPACEEXPLORER ... 29

4.4.5. SPACE ALLOCATION ... 29

4.4.6. FRAGMENTATION AND VALID COMBINATION CONSTRAINT 29

4.4.7. DOUBLE HEIGHT SPACES ... 30

4.4.8. CLOSENESS CALCULATION .. 31

4.4.8.1. CALCULATING EUCLIDIAN DISTANCE ... 31

4.4.8.2. CALCULATING RECTILINEAR DISTANCE ... 31

xv

4.4.9. VISUALIZATION ... 32

4.4.9.1. VISUALIZATION OF CONSTRAINT VIOLATIONS 32

4.4.9.2. VISUALIZATION OF RELATED SPACES ... 33

4.4.9.3. VISUALIZATION OF FINALIZED SPATIAL ORGANIZATION 33

CHAPTER 5 CASES ... 35

5.1. CASE1: SEVEN SPACES: CORE AND COURTYARD ... 35

5.2. CASE2: SEVEN SPACES: DOUBLE CORE ... 36

CHAPTER 6 RESULTS AND DISCUSSION .. 39

6.1. CASE1: SEVEN SPACES: CORE AND COURTYARD ... 39

6.2. CASE2: SEVEN SPACES: DOUBLE CORE ... 42

6.3. CASE1: SEVEN SPACES: CORE AND COURTYARD ... 46

6.4. CASE2: SEVEN SPACES: DOUBLE CORE ... 49

6.5. CASE1: SEVEN SPACES: CORE AND COURTYARD ... 53

6.6. CASE2: SEVEN SPACES: DOUBLE CORE ... 56

CHAPTER 7 CONCLUSIONS AND FUTURE RESEARCH ... 61

REFERENCES... 63

APPENDIX 1 – FLOOR SELECTION COMPONENT C# CODE 67

APPENDIX 2 – LOCATION SELECTION COMPONENT C# CODE 71

 xvii

LIST OF FIGURES

Figure 1 Building Life Cycle .. 6

Figure 2 Iterative Design Workflow ... 6

Figure 3 Genetic Algorithm Workflow ... 9

Figure 4 Adjacency Matrix(right) and Graph Representation of Given Matrix(left) 10

Figure 5 Adjacency Preference Matrix ... 11

Figure 6 Initial Organization by User (Top Left),... 12

Figure 7 Workflow of the Floor Layout Model .. 17

Figure 8 Building Program Data in Microsoft Excel .. 18

Figure 9 Portion of Building Program Data is Sent to Grasshopper 19

Figure 10 Relation Matrix in Microsoft Excel .. 19

Figure 11 Raw Data Output to Grasshopper ... 19

Figure 12 Building Program Visualization Pre-Optimization Process 25

Figure 13 Relations Matrix Visualization Pre-Optimization Process 26

Figure 14 Building Plot Boundary (Green), Selection Points (Purple), Voxel Centers (Pink)

 .. 27

Figure 15 Fragmentation Constraint Visualization with Valid and Invalid Combinations ... 30

Figure 16 Spatial Configuration with Double Height Spaces (Purple and Yellow) 31

Figure 17 Constraint Violation Visualization, Layout Organization without Violation (Left),

Layout Organization with Violation (Right) .. 32

Figure 18 Visualization of Related Spaces (Left), Relations Between Spaces (Right) 33

Figure 19 Visualization of Spaces with Corresponding Colors .. 33

Figure 20 Example Building Program for Seven Space Case ... 35

Figure 21 Example Relation Matrix for Seven Space Case .. 36

Figure 22 Example Building Program for Seven Space Case ... 36

Figure 23 Example Relations Matrix for Seven Space Case .. 37

Figure 24 Solution Cluster After 60 Generation with pareto-front (dark red), first front (red)

 xviii

and history (yellow) .. 39

Figure 25 Samples from Solution Cluster ... 40

Figure 26 Visualization of Relations Between spaces of The Selected Solution 41

Figure 27 Relation Matrices(left), Distances Between Spaces of the Selected Solution(right)

 .. 42

Figure 28 Solution Cluster After 80 Generation with pareto-front (dark red), first front (red)

and history (yellow) .. 42

Figure 29 Visualization of Relations Between spaces of The Selected Solution 44

Figure 30 Relation Matrices(left), Distances Between Spaces of the Selected Solution(right)

 .. 44

Figure 31 Visualization of Relations Between spaces of The Selected Solution 45

Figure 32 Relation Matrices(left), Distances Between Spaces of the Selected Solution(right)

 .. 45

Figure 33 Solution Cluster After 60 Generation with pareto-front (dark red), first front (red)

and history (yellow) .. 46

Figure 34 Samples from Solution Cluster ... 47

Figure 35 Visualization of Relations Between spaces of The Selected Solution 48

Figure 36 Relation Matrices(left), Distances Between Spaces of the Selected Solution(right)

 .. 49

Figure 37 Solution Cluster After 80 Generation with pareto-front (dark red), first front (red)

and history (yellow) .. 49

Figure 38 Visualization of Relations Between spaces of The Selected Solution 51

Figure 39 Relation Matrices(left), Distances Between Spaces of the Selected Solution(right)

 .. 51

Figure 40 Visualization of Relations Between spaces of The Selected Solution 52

Figure 41 Relation Matrices(left), Distances Between Spaces of the Selected Solution(right)

 .. 52

Figure 42 Solution Cluster After 60 Generation with pareto-front (dark red), first front (red)

and history (yellow) .. 53

Figure 43 Samples from Solution Cluster ... 54

 xix

Figure 44 Visualization of Relations Between spaces of The Selected Solution 55

Figure 45 Relation Matrices(left), Distances Between Spaces of the Selected Solution(right)

 .. 56

Figure 46 Solution Cluster After 80 Generation with pareto-front (dark red), first front (red)

and history (yellow) ... 56

Figure 47 Visualization of Relations Between spaces of The Selected Solution 58

Figure 48 Relation Matrices(left), Distances Between Spaces of the Selected Solution(right)

 .. 58

Figure 49 Visualization of Relations Between spaces of The Selected Solution 59

Figure 50 Relation Matrices(left), Distances Between Spaces of the Selected Solution(right)

 .. 59

 xx

 xxi

LIST OF TABLES

Table 1 Literature Review ... 14

Table 2 Genetic Algorithm Parameters ... 22

Table 3 Fixed Parameters of Generative Model .. 23

Table 4 Optimization Driven Parameters .. 23

Table 5 Optimization Strategy .. 24

Table 6 Fitness Function Values of Selected Solutions from The Cluster 40

Table 7 Fitness Function Values of Given Solution Cluster ... 43

Table 8 Fitness Function Values of Selected Solutions from The Cluster 43

Table 9 Fitness Function Values of Selected Solutions from The Cluster 47

Table 10 Fitness Function Values of Given Solution Cluster ... 50

Table 11 Fitness Function Values of Selected Solutions from The Cluster 50

Table 12 Fitness Function Values of Selected Solutions from The Cluster 54

Table 13 Fitness Function Values of Given Solution Cluster ... 57

Table 14 Fitness Function Values of Selected Solutions from The Cluster 57

 xxii

 xxiii

SYMBOLS AND ABBREVIATIONS

ABBREVIATIONS:

3D 3 Dimentional

MOO Multi Objective Optimization

EPW EnergyPlus Weather

HypE Hypervolume Estimation Algorithm

SPEA 2 Strength Pareto Evolutionary Algorithm

RGB Red Green Blue

GA Genetic Algorithms

CPU Central Processing Unit

m Meter

GHz Giga Hertz

GB Giga Byte

SYMBOLS:

h Height

l Length

 xxiv

1

CHAPTER 1

INTRODUCTION

1.1. MOTIVATION

Architectural design is in a constant change in the light of technological developments

of many sciences but especially computational sciences. Those developments first

implemented as computerization of drafting and rendering technics of architectural

design process and replaced how architects draft their ideas and documents the designs.

Soon enough they have become part of design environment with the speed and

precision they bring while drafting.

As the computer tools and technics advanced, their existence and effects are felt more

in architectural design process and shape the design process of architects (Nagy et al.,

2018). Such as architects not only utilized them to produce drawings but also as a

computational manner to create generative models of complex architectural design

problems in parametric design software (Menges & Ahlquist, 2011). In which,

architect can model all design process beside a final geometric solution. Even though

parametric model requires more effort at start than a conventional model of a single

solution, it reduces the time in long term, it takes to iterate the and make possible to

generate thousands of design alternatives since it includes the design procedures and

series of operations to output design solution, this approach is much more feasible to

change design as opposed to modelling each design by manual from scratch (Nagy et

al., 2018).

Not only generating design alternatives but also evaluating each design alternative and

calculating the performance value for each design alternative by utilizing computer

simulations and analysis, helps architects make better design decisions.(Hornby,

Globus, Linden, & Lohn, 2012; Preisinger & Heimrath, 2014; Stage, 2009)

 It is not a simple task to tackle and find feasible design alternatives due to having huge

search space that consists of all possible design alternatives. Therefore, choosing

deterministic approaches to find feasible designs can take some time and even makes

 2

it impossible to find as the complexity of the problem and count of decision variables

increase (Dino, 2016). To overcome this, heuristics approaches which was already well

implemented by many different disciplines such as industrial and electronics

engineering are implemented to solve complex architectural problems.

1.2. BACKGROUND

Architectural layout design is a complex task by entailing numerous decision variables

and criteria, which interact in complex ways, and as such it is defined by combinatorial

complexity with set of relations between each space. These decision variables and

criteria can be related with the sizes of spaces, views, accessibility, efficiency of

circulation, solar performance of the layout. The role of architect is to satisfy the

required criteria accordingly the case. Therefore, there are multiple architectural layout

options in a huge design space which contains every possible combination of decision

variable. architectural layout problems classed as NP-complete problems that cannot

be solve in a reasonable time by deterministic approach (Jo & Gero, 1998).

Due to this, exhaustive search of the design space is not possible by manual design

approaches through trial-error. Therefore, there are various researches is available

which questions the possibility of automation of this complex task throughout the years

(Michalek, Choudhary, & Papalambros, 2002; Nagy et al., 2018; Rodrigues, Gaspar,

& Gomes, 2013; Skandhakumar, Salim, Reid, Drogemuller, & Dawson, 2016; Yeh,

2006; Yi & Malkawi, 2009). These researches on methodologies of general layout

planning date back to 1950s and it aims to solve “Floor-plan design for industry”

problem.

Problem of architectural layout organization has some similarities with the ones of

other disciplines such as industrial and electronic engineering. For example, in

architectural layout organization some of the spaces need to be close to each other

while some of them need to be apart due to requirements based on user comforts and

behaviors. We can see this sort of requirements facility layout problem of industrial

engineering discipline and electronics component placement design on PCB(Ismail,

Yusof, & Khalid, 2012).

Facility layout problem of industrial engineering discipline as spaces are translated to

machines or production cells and the placement of those affects the workflow of

production or in other word how materials circulate(Hathhorn, Sisikoglu, & Sir, 2013;

3

Korde & Shahare, 2017; Saraswat, Venkatadri, & Castillo, 2015), flow inside the

facility therefore finding correct one plays a huge role of efficient production facilities

due to that there are many research on this topic (Drira, Pierreval, & Hajri-Gabouj,

2007).

The first research which brings those layout planning technics to architecture

discipline have been done by Mitchell and Dillion (Lobos & Donath, 2011). Many

others have followed with different methods technics to find optimum architectural

layout configurations automatically such as Expert Systems, Shape Grammar,

Generative, Constraint-Based. The result of past researches become apparent that four

major issues have aroused: how this complex problem is framed; how the

combinatorial nature of the generated solutions is regulated; and how the solutions are

evaluated according to multiple criteria related to the given requirement.

In recent years, in addition to these methods new ones are also implemented such as

physically based, agent based, evolutionary algorithms, artificial intelligence

A physically-Based Modelling techniques research of Arvin and House is an example

for utilizes “dynamic physics simulation” and the relations between spaces are defined

as spring forces that pulls related spaces together on 2-dimensional plane therefore it

can only solve single level floor plans. It calculates in real-time where architect can

step in and according to the changes model responds by satisfying relations and sizes.

This makes it a responsive design. This method does not aim to find the best solution

rather it aims to enable designs to emerge.

A gradient and evolutionary algorithms-based research conducted by Michalek et al.

grid based allocable spaces assigned to specific room activity. Due to having allocation

and grid-based spaces makes the decision variables discrete which controlled by

evolutionary algorithm.

As previous researches discussed before layout planning is a complex problem to solve

by utilizing the deterministic approaches. Instead, one may make use of either

heuristics, stochastic, or a combination of the two, in order to arrive at promising

solutions. Another difficulty of the architectural layout design is to have time

complexity that comes from the exponential function, in another words, finding the

ultimate solution is not possible in a reasonable time period. This nature of the problem

creates a necessity for a heuristic approach to find near optimal solutions. Evolutionary

 4

algorithms are not only capable to solve complex design problems but also it is very

possible that it may let design alternatives to emerge since the design solution space in

relation with many decision variables in relation.

1.3. PROBLEM STATEMENT

This study aims to solve problem of architectural multi level layout planning with the

use of evolutionary algorithms in grasshopper parametric design environment to guide

architect early design stage. The framework of the study consists of; data collection

about architectural building program defined by architect, generative model which is

capable of generating multi level core based design alternatives which contains

maximum of 50 different building functions including cores and courtyards, evaluation

of generated one in terms of solar performance and circulation distances between

related building functions, genetic algorithms based multi objective optimization.

1.4. RESEARCH OUTLINE

This research is organized in five chapters. Chapter 2 is devoted to a Literature Review.

The review presents both architectural and other disciples researches on topic of layout

organization in terms of their limitations, methods and benefits. Also, implementations

of genetic algorithms are given.

Chapter 3 is devoted to methodology in which in depth explanation of methodology

of of multi level layout planning with use of evolutionary algorithms step by step.

Translation of buildable plot to voxels, decision variables and constraints, fitness

functions, solar radiation analysis process and how architect interacts with framework

are presented in this chapter

Chapter 4 devoted custom-made grasshopper plugin named spacexplorer in which

explained its capabilities.

Chapter 5 devoted to cases are selected for this study

Chapter 6 devoted to results and discussion of Spacesearch in terms of how useful it

is as an early stage design guide to find design alternatives that can developed to

become architectural projects by examining how much they satisfy the requirements

5

Chapter 7 presents the Conclusion of this study. Limitations and the contribution to

architectural layout planning and computational architecture are discussed and future

studies can be found.

 6

CHAPTER 2

LITERATURE REVIEW

Layout planning is essential part of architectural design problem since its is the first

step of life cycle of building(Peckiene & Ustinovičius, 2017). Therefore, any decisions

are taken during this early design phase has a huge effect on how building will perform

accordingly user needs.

Figure 1 Building Life Cycle

Architects try to iterate as much as possible to come up with a suitable architectural

layout plan, but it is labor and time intensive task. In addition that, it is an impossible

task to conceptualize all possible architectural layout alternatives in search space by

utilizing manual methods due to combinatorial complexity.

Figure 2 Iterative Design Workflow

7

This problem is also applicable to many other disciples. For instance, in electronics

engineering discipline when populating printed circuit boards, Electronic components

that populate printed circuit boards have different thermal and power draw

characteristics therefore organization of the electronic components are important for

PCB design in terms of thermal performance of the PCB. On the other hand, in

industrial engineering discipline, problem of facility layout needs to be solved for

achieving efficient production lines by considering material handling and avoiding

bottleneck in production flow.

Researches on layout planning problem first come up in industrial engineering with

the aim to locate each component of factory layout in terms of efficiency and reduce

the cost of material handling. Later, systematic layout planning was developed and

accepted as go to method for this problem therefore research efforts were diminished.

Layout planning technics that developed from those researches find its way to

architecture discipline. The first research which brings those layout planning technics

to architecture discipline have been done by Mitchell and Dillion. Many others have

followed with different methods technics such as Expert Systems, Shape Grammar,

Generative, Constraint-Based.

In recent years, researches focus on layout generation and optimization aspects, in

addition to existing methods new ones are also implemented such as physically based,

agent based, evolutionary algorithms, artificial intelligence to solve this complex

problem. It is clear that most of the researches done on this topic depends on heuristic

approaches due to their proven success of solving NP-Hard problems.

2.1. PHYSICALLY-BASED MODELLING TECHNIQUES

A physically-Based Modelling techniques research of Arvin and House is an example

for utilizes “dynamic physics simulation” and the relations between spaces are defined

as spring forces that pulls related spaces together on 2-dimensional plane therefore it

can only solve single level floor plans. It calculates in real-time where architect can

step in and according to the changes model responds by satisfying relations and sizes.

This makes it a responsive design. This method does not aim to find the best solution

rather it aims to enable designs to emerge.

 8

2.2. EVOLUTIONARY ALGORITHMS BASED LAYOUT PLANNING

Architectural layout planning is non-deterministic polynomial-time hard (NP-hard)

problem. Chance to find a solution decrease exponentially as the problem size increase

therefore it not possible to solve by polynomial algorithm. Knowing the problem is

computationally intractable implies that we may use heuristic approaches and that we

also should aim to find nearly optimal solutions for which sometimes even

approximation guaranties cannot be given. (Žerovnik, 2015)

Evolutionary algorithms are classed under heuristic approaches There are various

Evolutionary algorithms even though they share basic principle: of the environmental

pressure affects the population makes survival of the fittest or in other words natural

selection. This increases the overall fitness value of population.

Based on the fitness values algorithm selects some of the individuals with better fitness

values from the population to apply variant operators which are recombine and

mutation to populate the next generation, rest of the individuals with weak fitness are

die off.

Recombining requires two or more individuals and those individuals are called the

parents to create one or more new individuals in other words the children.

Mutating is done to one or more individuals from the selected individuals to create

new individuals. This operator helps to sustain variety of the population.

All those selection and variant operators are stochastic. Even though it is a small

chance to select less fit one to survive become parent it is possible due to being random

Also this stochastic nature can be observed while recombining and mutation the

parents which pieces of the parents are transferred to the child, which pieces of selected

individual to mutate.

9

Figure 3 Genetic Algorithm Workflow

This process run until required generation count is reached. Size of the population, the

mutation probability and crossover rate affect population characteristics therefore they

affect the performance of the algorithm.

The premise of an evolutionary algorithm (to be further known as an EA) is quite

simple given that you are familiar with the process of natural selection. An EA contains

four overall steps: initialization, selection, genetic operators, and termination. These

steps each correspond, roughly, to a particular facet of natural selection, and provide

easy ways to modularize implementations of this algorithm category. Simply put, in

an EA, fitter members will survive and proliferate, while unfit members will die off

and not contribute to the gene pool of further generations, much like in natural

selection.

2.2.1. EVOARCH: AN EVOLUTIONARY ALGORITHM FOR

ARCHITECTURAL LAYOUT DESIGN

EvoArch utilizes evolutionary algorithm-based algorithm called genetic algorithm.

The aim of the research is to automate the architectural design by offering efficient

topological architectural organization based on the architectural building program.

Author of the research states that current studies on automated architectural space

planning which generates finalized layouts provide dull and predictable result and they

 10

make architect to lose his or her freedom of creativity. As outcome of this critic

framework of the study is developed in order to optimize locations of the spaces

relative to each other topological level and let architect develop one of the evolved

topologies and design spaces according to the topology.

EvoArch represents the building program as graph that consists of nodes and edges.

Nodes corresponds to the spaces while edges show adjacencies. Adjacency matrices

are converted from graphs and run genetic algorithm on them.

adjacency matrices hold data of nodes and edges, cells with 1 means edge will be

created and, 0 means there is no edge between two nodes.

Figure 4 Adjacency Matrix(right) and Graph Representation of Given Matrix(left)

Algorithm can add edges or remove edges and swap labels of nodes to generate new

graphs that represent architectural spatial topologies.

EvoArch is similar to the other evolutionary algorithms in terms of the algorithm step

to find optimal architectural spatial topologies and utilizes roulette wheel selection

11

scheme to select individual which reproduce or mutate. Reproduction of the individual

is based on steady state reproduction scheme.

The steady state scheme and generational reproduction are similar since the steady

state bases on generational one. It does not converge as fast as generational one due to

it only selects two parents to be crossed and produce two children, on the other hand

on generational one selects larger percentage of the population to be crossed

accordingly elitism value of the algorithm. The resulting children under goes to

mutation operation before inserting to population therefore they replace old

individuals.

Fitness function of evaluated graph is based on the adjacency preference matrix (fig).

It represents preferred adjacency between spaces on a scale of -2 to 2 in which -2

means adjacency condition of spaces is not highly unwanted, -1 means it is unwanted,

1 means it is wanted, 2 means it highly wanted. Algorithm tries to maximize the fitness

value by multiplying the preferred adjacency value with

Figure 5 Adjacency Preference Matrix

 12

2.2.2. ARCHITECTURAL LAYOUT DESIGN OPTIMIZATION

This study aims to solve single level architectural floor plan in two steps one is

topology optimization by considering energy performance such as heating, cooling and

lighting cost while considering space efficiency of the layout.

Figure 6 Initial Organization by User (Top Left),

Intermediate Feasible Iteration (Top Right), Completed Design (Bottom)

13

Designer provide initial layout organization then the first algorithm optimizes the

topology and if generated one is feasible the second algorithm which optimize the

geometry of layout where walls and doorways are placed. By not applying second

algorithm for the infeasible solutions computational time reduces.

Even though the results of this study provide some architectural layout design

alternatives, but it depends on the initial layout provided by the designer therefore it

can only help designer as a design exploration tool to find starting design ideas in the

conceptual phase of architectural project.

 14

Table 1 Literature Review

Date Title Method Author Case Level Simulation
2016 An evolutionary approach for 3D architectural space layout design

exploration
Evolutionary algorithm Ipek Gürsel Dino Multi

Level

2016 Irregular architectural layout synthesis with graphical inputs Simulated annealing algorithm Hao Hua House with 7 required functional spaces Single
Level

2016 Evolutionary approach for spatialarchitecture layout design enhancedby an
agent-based topologyfinding system

Agent Model, Evolutionary
algorithm

Zifeng Guo, Biao Li Three-level house that includes 17rooms and 1
staircase, three-level office building that includes1
staircase, 20 rooms, and 3 corridors

Multi
Level

2015 Architectural Layout Evolution through Similarity-Based Evaluation Evolutionary algorithm N. Onur Sönmez

2014 Performance Based Architectural Design Optimization: Automated 3d Space
Layout Using Simulated Annealing

Simulated annealing algorithm Hwang Yi, Yun Kyu Yi High-rise residential building Multi
Level

Yes
(ECOTECT)

2011 Evolution of Architectural Floor Plans Multi-objective genetic Algorithm Robert W. J. Flack, Brian J. Ross House Multi
Level

2011 Estimation of solar radiation for buildings with complex architectural layouts Stoyanka M. Ivanova Single
Level

Yes
(ArchiPLAN)

2010 Architectural layout planning using genetic algorithms Genetic Algorithm Manish K Thakur, Monika
Kumari, Madhabananda Das

Single flat having regular shaped spaces Single
Level

2010 Architectural Space Planning using Genetic Algorithms Genetic Algorithm Manisha Verma, Manish K Thakur single flat, arrangement of several flats on a single floor
and extend the design for each floor and find out
collective plan for a multi-storey apartment building

Multi
Level

2009 EvoArch: An evolutionary algorithm for architectural layout design Evolutionary algorithm Samuel S.Y.Wong, Keith C.C.Chan House with 9 required functional spaces Single
Level

2009 Architectural room planning support system using methods of generating
spatial layout plans and evolutionary multi-objective optimization

Multi objective evolutionary
algorithm

Makoto Inoue, Hideyuki Takagi Floorplan with four spaces Single
Level

2009 Spatial Layout Game-An Interactive Tool for Spatial Layout of Architectural
Design

 CHIEH-JEN LIN Single
Level

2007 Prototypes for Automated Architectural 3D-Layout

2005 Architectural layout optimization using annealed neural network Simulated annealing algorithm I-Cheng Yeh Hospital building with 28 facilitie Single
Level

2005 Optimizing Architectural Layout Design via Mixed Integer Programming Mixed integer programming Keatruangkamala Kamol,
Sinapiromsaran Krung

 Single
Level

2004 Optimization of architectural layout by the improved genetic algorithm Genetic Algorithm Romualdas Baušys &Ina
Pankrašovaite

House with 8 required functional spaces Single
Level

2002 Architectural layout design optimization Evolutionary algorithm Jeremy Michalek,
Ruchi Choudhary &Panos
Papalambros

Small apartment complex with three separate
apartments

Single
Level

15

Date Title Method Author Case Level Simulation
2002 Modeling architectural design objectives in physically based space planning Physically based modeling Scott A. Arvin, Donald H. House 9 spaces Single

Level

2002 Architectural Interpretation of Cellular Automata Robert J. Krawczyk

2001 A hybrid representation of architectural precedents

1997 Evolving design genes in space ayout planning problems Genetic Algorithm John S. Gero, Vladimir A. Kazakov Office Layout, Hospital Layout Single
Level

1995 Space layout planning using an evolutionary approach Genetic Algorithm Jun H.Jo, John S.Gero Single
Level

1992 Heuristic Generation of Layouts (HeGeL): Based on a Paradigm for Problem
Structuring

1995 A Genetic Search Approach to Space Layout Planning Multi-objective genetic Algorithm Jun H. Jo, John S. Gero Single
Level

2015 A 3-Dimensional Architectural Layout Generation Procedure for
Optimization Applications : DC-RVD

Multi-objective constrained
genetic algorithm

Ioannis Chatzikonstantinou House with 7 required functional spaces Multi
Level

 Architectural Layout Algorithm Based on Genetic Algorithm Genetic Algorithm GAO Liping, LIU Hong

 16

17

CHAPTER 3

METHODOLOGY

Spatial Explorer’s workflow consists of four main parts as data input, generative model,

and objective function evaluation and optimization.

Figure 7 Workflow of the Floor Layout Model

In addition to first chart, relationship matrix of building functions --- according to

relations between functions. Each relation gets a value in between -3 to 3. -3 means

two building functions are related negatively in other words, they are expected to be

far away from each other. 3 means they are related positively so they are expected to

be closer to each other.

 18

3.1. DATA INPUT

Data input step consists of collecting building program related data through Microsoft

Excel. Site related data is set in rhino 3d environment.

3.1.1. BUILDING PROGRAM

3.1.1.1. BUILDING PROGRAM CHART

In this chart, user sets how many different building functions are present. This chart

also has information of required floor area, being floor constrained, being double

height space, being courtyard or core and whether it is possible to passthrough for each

building function.

Figure 8 Building Program Data in Microsoft Excel

First column of the BPC contains the names of each building function as string also

according to this data, count of building functions is calculated, and these values are

sent to relations matrix chart.

Second column of the BPC contains desired floor areas for each building function in

integer values.

Third column of BPC contains binary values for each building function, if the building

function desired to be double height space true value is set, otherwise it is set to false.

Fourth and fifth columns of BPC contain the color data of each building function, user

set a color by changing the fill color of cell under Color Column, according to the fill

color, RGB value is calculated and written to the RGB Value Column.

Fifth column of BPC contains binary values for each building function, if the building

function is constraint to the ground level, then true value is set, otherwise it is set to

false.

Sixth column of BPC contains data for each building function whether it is core or

courtyard or normal space. If it functions as core, then it gets “1”. If it functions as

courtyard then it gets “2”.

Name Area Height Color RGB Value
Ground Level

Access Daylight
Core(1)

Courtyard(2) Pass-Through
Core1 50 0 TRUE 1 1
Core2 50 0 TRUE 1 1
Courtyard 100 0 TRUE 2 1
chemotherapy DPU 220 0 TRUE FALSE 0 0

19

Seventh column of BPC contains binary values for each building function, if the

building function is pass through space, then true value is set, otherwise it is set to

false.

After filling the data in BPC, data except the headers are sent to a new sheet to be
exported to Grasshopper. Data are sent to grasshopper as following figure.

Figure 9 Portion of Building Program Data is Sent to Grasshopper

3.1.1.2. RELATIONS MATRIX

Relations matrices of building functions form according to relations between functions.

Names of the elements of matrix in other words building functions are called from

spacenames column of BPC. User fills the matrix with values between -3 to 3

according to relations between building functions -3 means two building functions are

related negatively in other words, they are expected to be far away from each other. 3

means they are related positively so they are expected to be closer to each other.

Figure 10 Relation Matrix in Microsoft Excel

After filling the data in RMC, only relations representative integer values data are sent

without headers to Grasshopper. Data are sent to grasshopper as following figure

Figure 11 Raw Data Output to Grasshopper

Core1 50 0 0 TRUE 0 1 1
Core2 50 0 0 TRUE 0 1 1
Courtyard 100 0 0 TRUE 0 2 1
chemotherapy DPU 220 0 0 TRUE FALSE 0 0

Core1 Core2 Courtyard
chemotherap
y DPU

Core1 0 3 3 1

Core2 3 0 -3 1

Courtyard 3 -3 0 3

chemotherap
y DPU 1 1 3

0 3 3 1

3 0 -3 1

3 -3 0 3

1 1 3 0

 20

3.1.2. SITE

3.1.2.1. BUILDING PLOT BOUNDARY

Building plot boundary’s geometrical data is set in rhino as curve. This geometry is

not only limited by rectangular shapes, but it can be irregular shapes.

3.1.2.2. SITE OBJECTS

Site objects are modelled in rhino then imported in grasshopper as rhino referenced

Boundary represented (BREP) geometries.

3.1.2.3. WEATHER DATA

Weather data of the site location is downloaded in .epw format to be opened by

Ladybug GenCumulativeSkyMtx.

3.2. IMPORTING BUILDING PROGRAM DATA INTO

GRASSHOPPER

Importing data from Microsoft Excel is carried out by “Bumblebee: Grashopper +

Rhino”. It is an add-on that makes possible to exchange data between Microsoft Excel

and Grasshopper. This add-on is chosen due to its capability to dynamically read excel

data which makes whole process more user friendly.

3.3. SPACEXPOLER

Custom grasshopper component which is capable of visualization of building program

data; generating architectural layouts; evaluating generated layouts in terms of

compactness and proximity of the related spaces. The details of this custom

grasshopper component will be explained in chapter 4

3.4. SOLAR PERFORMANCE OF GENERATED SPATIAL

ORGANIZATION

The solar performance of generated spatial organization is evaluated in terms of solar

radiational analysis by using Ladybug. This implementation

21

3.4.3. SOLAR RADIATION SIMULATION

Solar radiation simulation is simple compared to more advanced simulation methods

such as single or multi zone energy simulations but due to being less computationally

heavy makes it more preferable one. Besides that, since the material decisions are not

present utilizing energy simulation is not possible at this stage of design.

3.4.4. SIMULATION TOOL

Ladybug is an open source grasshopper plugin which is capable importing “.epw”

weather files, visualization of weather data, analyze weather data and running

simulations. There are many examples of utilization of ladybug and honeybee as a

simulation tool for architectural studies.

3.4.5. SIMULATION SETUP

Simulation setup is a required step for running solar radiation simulation. During this

stage test geometry and grid size plays a huge role how much computational time

required for evaluating solar performance of each generated spatial organization.

3.4.5.1. TEST GEOMETRY

Only the outer surfaces of generated spatial organization geometry is set as a test

geometry for the solar radiation analysis instead of all surfaces. Therefore, it only

generates test points on outer surfaces and by having less test points it takes less time

to evaluate.

3.4.5.2. GRID SIZE

Grid size is set to one meter to generate test points. More test points provides more

defined results but also takes significant amount of time compared to less dense test

point based simulation

3.4.5.3. CONTEXT

Previously modelled and referenced rhino objects which represent the site objects near

building plot is as a context for the solar radiation analysis. Due to their casted shadows

on building plot affects the outcome of the simulation results.

 22

3.4.6. SIMULATION RESULTS

Simulation gives the amount of collected solar radiation of each test point on test

geometry in kWh and visualize the results in blue to red gradient where the surface

with the lowest value gets blue color and the surface with the highest value gets red

3.5. OPTIMIZATION TOOL

Octopus plugin is a optimization plugin which is developed for Grasshopper and it is

capable of finding cluster of near optimal solutions by two different genetic algorithms

and Non dominated sorting. One of genetic algorithms is SPEA-2 and the other one is

HypE. Also, there are many researches that utilize octopus for optimization of

architectural problems. Parameters of genetic algorithms are defined as follows

Table 2 Genetic Algorithm Parameters

Genetic Algorithm HypE

Mutation Operator HypE Mutation

Elitism Rate 0.5

Mutation Probability 0.3

Mutation Rate 0.5

Crossover Rate 0.8

Population Size 100

23

3.6. GENERATIVE MODEL PARAMETERS

Fixed parameters of generative model can be found table below.

Table 3 Fixed Parameters of Generative Model

Name Range Type

Floor Count 2 Independent

Voxel Count 158 Dependent

(Voxel Size, Site Boundary, Floor Count)

Voxel Size Independent

Selection Point Count 471 Dependent

(Voxel Count, Site Boundary,Floor Count)

Floor Selection

(Ground Constrained)

0 Dependent

Area Independent

Voxel Required Per Space Dependent (Area)

Table 4 Optimization Driven Parameters

Name Range Type

Selection Point Location [0,Selection

Point Count]

Impendent

Floor Selection [0, Floor Count]

 24

Combinatorial hardness can be seen according to the problem formulated for the given

parameters in the equation down below

C(SelPtCNT, SpaceCNT) =
SelPtCNT!

(SpaceCNT! (SelPtCNT − SpaceCNT)!)

C(972,7) =
972!

(7! (972 − 7)!)

C(972,7) = 1.277090615E + 17

3.7. TIME SAVING MEASURES

Spaceexplorer is capable of generating and evaluating a design alternative per second.

While evaluation process makes the large portion of the computational load. Average

computational time for solar radiation simulation is 750 ms whereas calculation

shortest paths between spaces changes in between 100 ms and 200 ms.

The four different approach has been tried to reduce the computational time by not

evaluating computational heavy objective functions of invalid solutions which

explained below.

3.7.7. 3 OBJECTIVES DO NOT EVALUATE INVALID SOLUTIONS

This approach takes in to account total solar radiation, relations weighted circulation

and compactness. Any solution violates fragmentation constraint is not evaluated in

terms of solar radiation and relations weighted circulation in order to reduce

computational time.

Table 5 Optimization Strategy

Objective Functions Evaluate for

invalid solutions

Constraints

Total Solar Radiation NO Fragmentation

Relations Weighted Circulation NO

Compactness YES

25

CHAPTER 4

SPACEXPLORER

4.1. DATA VISUALIZATION

After importing the building program data to grasshopper, two custom grasshopper

components create rhino grasshopper geometries in rhino viewport to visualize the

data.

4.1.1. BUILDING PROGRAM DATA VISUALIZATION

This custom grasshopper component visualizes the building program data. User inputs

Building Program data and relations data. According to the relation count, it colors the

spheres that represents building functions. Red to blue gradient is chosen, max value

set to be red. The size of the spheres represents areas of building functions.

Figure 12 Building Program Visualization Pre-Optimization Process

 26

4.1.2. RELATIONS DATA VISUALIZATION

This custom grasshopper component visualizes the relations between selected building

function and other building functions. User inputs Building Program data and relations

data and selects building function by the help of grasshopper’s parameter input

component named Control Knob. According to the relation value, it colors the

connecting curve between building functions. Red to blue gradient is chosen, red

corresponds to -3 and blue corresponds to 3.

Figure 13 Relations Matrix Visualization Pre-Optimization Process

4.2. CREATION OF 3D VOXELSPACE AND SELECTION POINTS

Custom component is compiled to create voxels inside irregular building plot

boundary and selection points. The inputs are site boundary, voxel count, floor height,

floor count, voxel size and desired areas of building function. It outputs selection

points, selection points count, voxel count, voxel centers, voxel sizes, floor count and

floor height.

27

Figure 14 Building Plot Boundary (Green), Selection Points (Purple), Voxel Centers
(Pink)

4.2.1. 3D VOXELSPACE

The component creates two dimensional grid with desired grid sizes then checks if

cells of the newly created grid, inside or not. The cells are outside the boundary

removed. Afterwards remainder cells are extruded to desired floor height and copied

on z axis to reach desired floor count. At the end of these steps.

4.2.2. SELECTION POINTS

Selection points creation procedure is as follows. Remained cells are joined then the

outer edge of the surface is used to find outer edge nodes and put them in a data list. It

finds nodes of each remained cell and creates second data list that contains many

duplicate ones. The second data list is cleaned by removing duplicate points and the

points that are on the outer edge.

XY coordinate planes are placed on the remained points and 1 meter by 1 meter

rectangles are created at the origin points of those XY coordinate planes. Corner points

of the rectangles and the mid points of each edges of rectangle. These points are copied

in Z direction floor count times and floor height apart.

 28

4.3. FLOOR AND LOCATION SELECTION

Selecting the location for building function among available selection points is a

complex task due to selection point count is not fix value and dependent to voxel sizes,

plot shape and size also the count of building functions is not a same for every case.

Utilizing generic list item component and fixed number slider component of

grasshopper is not possible therefore two c# component compiled to tackle this

limitation. They are similar to each other in terms of how they interact with the number

sliders to change bounds of the sliders and manage the data inside.

4.3.3. FLOOR SELECTION COMPONENT

Floor selection component instantiates named integer number slider or panel

component with the data “0” inside for each building function rankly. If building

function is constraint to ground level, component instantiates panel component with

the data “0” inside. If it is free to locate itself in upper floors, component instantiates

integer number slider component and sets its maximum accordingly floor count.

After first instantiation it interacts with the number sliders that connects to its input to

modify and set maximum and values of every slider, in case of floor count and ground

level constraints are changed.

Floor selection component outputs an integer value for each building function that

shows which floor building floor will be.

4.3.4. LOCATION SELECTION COMPONENT

Location selection component instantiates named integer number slider for each

building function rankly, maximum value of each slider is same and equal to the

selection point count per floor.

After first instantiation it interacts with the number sliders that connects to its input to

modify and set maximum and values of every slider in case of voxel count therefore

selection point count is changed.

Location selection slider value and floor selection slider value combine in to one value

as follows

29

𝑓𝑙𝑜𝑜𝑟𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛𝑠𝑙𝑖𝑑𝑒𝑟𝑉𝑎𝑙𝑢𝑒 ∗ 𝑝𝑜𝑖𝑛𝑡𝑐𝑜𝑢𝑛𝑡𝑝𝑒𝑟𝑓𝑙𝑜𝑜𝑟

+ 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛𝑠𝑙𝑖𝑑𝑒𝑟𝑉𝑎𝑙𝑢𝑒

Then, component selects that specific selection point for each building function from

array of selection points and outputs it.

4.4. SPACEEXPLORER

Space explorer component gets selection points and selects nearest available voxels

accordingly their required voxel count to satisfy desired area for each building function.

Not only that but also it calculates circulation between spaces and check if the

combination of selected voxels are valid. In addition to that it visualizes constraint

violations, relations between selected building function space and other spaces.

4.4.5. SPACE ALLOCATION

Space allocation process is a straightforward and sequentially process, it searches

among available voxels for nearest to building function location selection point and

selects some voxels to satisfy the desired area. Then those selected voxels removed

from list to prevent overlapping spaces by not selected the ones already selected. This

repeats for each building functions, therefore sort of building functions has a huge

impact on success of this process for that reason first core and courtyard spaces locate

themselves due to their location affect all floor levels then other spaces locates

themselves by locating larger ones first. After this process first allocation finalize.

4.4.6. FRAGMENTATION AND VALID COMBINATION

CONSTRAINT

Being this straightforward it has some limitations such as this process can produces

results with fragmented spaces due to selected voxel combination, therefore to identify

and constrain those invalid combination. The following constraint applied. The

constraint violation of each space is calculated according to the edge count of allocated

voxel and allowed edge count of voxel count. For example, if the space need to

allocates; two voxels, it needs to have six edges when voxels combined, three voxels,

it needs to have eight edges when voxels combined. Any other number of edges means

 30

that space allocated a combination of voxels that are apart therefore space is

fragmented.

Figure 15 Fragmentation Constraint Visualization with Valid and Invalid
Combinations

Not only this constraint prevents spaces to fragment but also it helps to avoid

generating whole but oddly shaped spaces.

4.4.7. DOUBLE HEIGHT SPACES

After first allocation process finalize, voxels of building functions that can be double

height space check if the above voxel is available if it is available it automatically

merges in to building function and allocation process finalize.

Due to how this procedure is constructed it is not certain that at the end of the process,

all spaces desired to be double height end up double height.

31

Figure 16 Spatial Configuration with Double Height Spaces (Purple and Yellow)

4.4.8. CLOSENESS CALCULATION

After allocation process is finalized, distances between building functions are

calculated. For this there are two different method for calculating the distances. One

calculates Euclidian and the other one calculates rectilinear distances.

4.4.8.1. CALCULATING EUCLIDIAN DISTANCE

Distances between spaces in relation both in terms of positive and negative calculated

by using Euclidian calculation. Center points of related building function spaces

connected by lines then lengths of those lines give distances.

Calculating by using this method is limited therefore not all the spatial combinations

that generated based on this method works but it takes less computing time than

rectilinear one.

4.4.8.2. CALCULATING RECTILINEAR DISTANCE

Calculating distances between related spaces by using “Shortest Walk GH” algorithm.

It utilizes A* search algorithm and much more certain then the calculating Euclidean

distances, but it takes much more computing time. It gets bottom faces of merged

spaces and find edge of the surfaces then explodes this edge curve in to smaller

segment. After this process curve list has multiple duplicates. After cleaning this list

by removing duplicates. After this step if there are spaces that can be part of circulation

 32

and marked as pass-through space in Excel file, their inner curves are also inserted in

to curve list. For the vertical circulation, vertical edges of building functions marked

as core are extracted and inserted in to curve list.

The curves inside this list are creates network of curves where “Shortest Walk” finds

shortest paths using this curve network and Euclidean distances between spaces. The

shortest paths between spaces exploded in small segments then duplicate segments are

removed to calculate total rectilinear distances.

4.4.9. VISUALIZATION

The Space explorer component can visualize some metrics of generated spatial

organization such as constraint violation, related spaces of selected building function,

and coloring finalized spatial organization with corresponding colors.

4.4.9.1. VISUALIZATION OF CONSTRAINT VIOLATIONS

After allocation process some of the spaces fragment or shaped undesired

combinations as discussed before, each building function space end up with a binary

value if it violates the constraint or not. Those binary values are checked. if binary

value is false in other words, building function space violates the constraint then the

space is colored with red color in spatial organization diagram. If binary value is true

in other words, building function space does not violate the constraint then the space

is colored with blue color in spatial organization diagram.

Figure 17 Constraint Violation Visualization, Layout Organization without Violation
(Left), Layout Organization with Violation (Right)

33

4.4.9.2. VISUALIZATION OF RELATED SPACES

Visualization of related spaces of selected building function is implemented to see how

building functions that are in relation are distributed. According to the relation value

of the selected building function space, it colors the connecting curve between building

functions. Red to blue gradient is chosen, red corresponds to -3 and blue corresponds

to 3.

Figure 18 Visualization of Related Spaces (Left), Relations Between Spaces (Right)

4.4.9.3. VISUALIZATION OF FINALIZED SPATIAL

ORGANIZATION

Visualization of finalized spatial organization process utilizes the colors user has

choose for each building function in Excel during data input. RGB materials composed

in grasshopper with values come from Excel data. Then those RGB materials are

assigned to corresponding building function space in spatial organization diagram.

Figure 19 Visualization of Spaces with Corresponding Colors

35

CHAPTER 5

CASES

In this chapter, results of spaceexplorer are discussed in terms of its limitations and

capabilities of providing different multi level architectural layout plans in two different

cases. First one consists of seven spaces consist of various types in terms of

relationship and geometry such as core, courtyard, single height space, double height

and pass through space to present its results in depth. The second one consists of seven

spaces with double cores.

5.1. CASE1: SEVEN SPACES: CORE AND COURTYARD

In this case following data is used in which spaces with different characteristics exists.

Space named C1 is a core where vertical circulation happens. CY1 is courtyard in other

words it is a void space in relation with other spaces. S1 is a double height space which

is constraint to the ground level. S2 and S3 is single height spaces which can be in

upper levels. S4 is double height space in addition to that circulation can passthrough

it. S5 is double height space.

Figure 20 Example Building Program for Seven Space Case

Name Area Height Color RGB Value
Ground

Level Access
Core(1)

Courtyard(2) Pass-Through

C1 100 0 54, 96, 146 TRUE 1 1

CY1 50 0 226, 107, 10 TRUE 2 1

S1 100 1 96, 73, 122 TRUE 0 0

S2 220 0 192, 0, 0 FALSE 0 0

S3 195 0 0, 213, 168 FALSE 0 0

S4 50 1 255, 241, 0 TRUE 0 1

S5 50 1 49, 134, 155 TRUE 0 0

 36

Relations between the seven spaces can be seen in the following figure. In this figure

spaces with -3 value are not desired to be in close vicinity whereas spaces with +3

value are desired to be close vicinity.

Figure 21 Example Relation Matrix for Seven Space Case

5.2. CASE2: SEVEN SPACES: DOUBLE CORE

In this case following data is used in which spaces with different characteristics exists.

Space named C1 and C2 are cores where vertical circulation happens. S1 is a double

height space which is constraint to the ground level. S2 and S3 is single height spaces

which can be in upper levels. S4 is double height space in addition to that circulation

can passthrough it. S5 is double height space.

Figure 22 Example Building Program for Seven Space Case

C1 CY
1

S1 S2 S3 S4 S5

C1 0 3 3 1 2 3 -3

CY1 3 0 3 3 3 1 -3

S1 3 3 0 -3 3 -3 -3

S2 1 3 -3 0 1 1 -3

S3 2 3 3 1 0 1 -3

S4 3 1 -3 1 1 0 -3

S5 -3 -3 -3 -3 -3 -3 0

Name Area Height Color RGB Value
Ground

Level Access
Core(1)

Courtyard(2) Pass-Through

C1 100 0 54, 96, 146 TRUE 1 1

C2 50 0 226, 107, 10 TRUE 1 1

S1 100 1 96, 73, 122 TRUE 0 0

S2 220 0 192, 0, 0 FALSE 0 0

S3 195 0 0, 213, 168 FALSE 0 0

S4 50 1 255, 241, 0 TRUE 0 1

S5 50 1 49, 134, 155 TRUE 0 0

37

Relations between the seven spaces can be seen in the following figure. In this figure

spaces with -3 value are not desired to be in close vicinity whereas spaces with +3

value are desired to be close vicinity.

Figure 23 Example Relations Matrix for Seven Space Case

C1 C2 S1 S2 S3 S4 S5

C1 0 -3 3 -3 1 3 3

C2 -3 0 3 3 3 -2 -3

S1 3 3 0 -3 3 -3 -3

S2 -3 3 -3 1 1 -3

S3 1 3 3 1 0 1 -3

S4 3 -2 -3 1 1 0 -3

S5 3 -3 -3 -3 -3 -3 0

39

CHAPTER 6

RESULTS AND DISCUSSION

In this chapter results of spaceexplorer are discussed in terms of its limitations and

capabilities of providing different multi level architectural layout plans in two different

cases. First one consists of seven spaces consist of various types in terms of

relationship and geometry such as core, courtyard, single height space, double height

and pass through space to present its results in depth. The second one consists of seven

spaces with double cores.

Results of each optimization approach compared against each others in terms of how

much they reduce the objective functions after 30 generations. Changes of objective

function values and constraint violation count can be seen

6.1. CASE1: SEVEN SPACES: CORE AND COURTYARD

Figure 24 Solution Cluster After 60 Generation with pareto-front (dark red), first
front (red) and history (yellow)

 40

After running the algorithm for 60 generation, in total 163 solutions are found 24 of

these solutions are non dominated solutions. The cluster of solutions provide deisgn

alternatives with different fitness function values. Range of the three fitness function

values can be found in the following table.

Table 6 Fitness Function Values of Selected Solutions from The Cluster

Fitness Function Min Value Max Value

RelationsWeightedCirculation -2936 3192

Total Solar Radiation 219.29 392

Floating Voxel Count 0 14

Some example solutions are selected from the cluster of 163 and can be found in the
following figure

Figure 25 Samples from Solution Cluster

41

Figure 26 Visualization of Relations Between spaces of The Selected Solution

In the following figure spaces are marked with green and the rest of the spaces marked

accordingly the relation to the marked space, red means the space desired to be apart

from the green space and if it gets blue color the space is desired to be near green space.

Shades of the colors represents the scale of desire. As a result of the relations matrices

its clearly shown that S5 is located apart from the main mass of the building since it is

not desired to be in near vicinity of none of the spaces. The distances between spaces

 42

shows also similar pattern as relation matrices of spaces to satisfy desired relations as

shown in figure 25

Figure 27 Relation Matrices(left), Distances Between Spaces of the Selected
Solution(right)

6.2. CASE2: SEVEN SPACES: DOUBLE CORE

Figure 28 Solution Cluster After 80 Generation with pareto-front (dark red), first
front (red) and history (yellow)

After running the algorithm for 80 generation, in total 154 solutions are found 65 of

these solutions are non dominated solutions. The cluster of solutions provide design

alternatives with different fitness function values. Range of the three fitness function

values can be found in the following table.

C1 CY
1

S1 S2 S3 S4 S5 C1 CY
1

S1 S2 S3 S4 S5

C1 0 3 3 1 2 3 -3 C1 0 1 24 20 1 8 96
CY1 3 0 3 3 3 1 -3 CY1 1 0 32 28 1 1 112
S1 3 3 0 -3 3 -3 -3 S1 24 32 0 84 1 40 48
S2 1 3 -3 0 1 1 -3 S2 20 28 84 0 52 32 48
S3 2 3 3 1 0 1 -3 S3 1 1 1 36 0 8 72
S4 3 1 -3 1 1 0 -3 S4 8 1 40 32 8 0 120
S5 -3 -3 -3 -3 -3 -3 0 S5 96 112 48 48 72 120 0

Relation Matrices Distances Between Spaces

43

Table 7 Fitness Function Values of Given Solution Cluster

Fitness Function Min Value Max Value

RelationsWeightedCirculation -3360 -70

Total Solar Radiation 63138 86410

Compactness 310 633

Two design solution is selected and compared against each other in terms of

compactness and relation weighted circulation value. Fitness function values of

selected design alternatives as follows

Table 8 Fitness Function Values of Selected Solutions from The Cluster

Designation Relations

Weighted

Circulation

Total Solar

Radiation

Compactness

Alt1 -1652 86058 330

Alt2 -222 66310 280

 In the following figure spaces are marked with green and the rest of the spaces marked

accordingly the relation to the marked space, red means the space desired to be apart

from the green space and if it gets blue color the space is desired to be near green space.

Shades of the colors represents the scale of desire. As a result of the relations matrix

its clearly shown that S5 is located apart from the main mass of the building since it is

not desired to be in near vicinity of none of the spaces. The distances between spaces

shows also similar pattern as relation matrices of spaces to satisfy desired relations as

shown in figure 30 and figure 32

 44

Figure 29 Visualization of Relations Between spaces of The Selected Solution

Figure 30 Relation Matrices(left), Distances Between Spaces of the Selected
Solution(right)

C1 C2 S1 S2 S3 S4 S5 C1 CY
1

S1 S2 S3 S4 S5

C1 0 -3 3 -3 1 3 3 C1 0 48 24 28 1 1 1
C2 -3 0 3 3 3 -2 -3 CY1 48 0 1 4 16 24 72
S1 3 3 0 -3 3 -3 -3 S1 24 1 0 4 1 24 40
S2 -3 3 -3 0 1 1 -3 S2 28 4 52 0 52 8 40
S3 1 3 3 1 0 1 -3 S3 1 16 1 36 0 1 16
S4 3 -2 -3 1 1 0 -3 S4 1 40 24 8 1 0 24
S5 3 -3 -3 -3 -3 -3 0 S5 1 72 40 40 16 24 0

Distances Between SpacesRelation Matrix

45

Figure 31 Visualization of Relations Between spaces of The Selected Solution

Figure 32 Relation Matrices(left), Distances Between Spaces of the Selected
Solution(right)

C1 C2 S1 S2 S3 S4 S5 C1 CY
1

S1 S2 S3 S4 S5

C1 0 -3 3 -3 1 3 3 C1 0 1 1 4 4 1 1
C2 -3 0 3 3 3 -2 -3 CY1 1 0 1 4 4 1 8
S1 3 3 0 -3 3 -3 -3 S1 1 1 0 12 4 1 16
S2 -3 3 -3 0 1 1 -3 S2 4 4 12 0 8 12 1
S3 1 3 3 1 0 1 -3 S3 4 4 20 8 0 20 16
S4 3 -2 -3 1 1 0 -3 S4 1 1 1 12 20 0 16
S5 3 -3 -3 -3 -3 -3 0 S5 1 8 16 1 16 16 0

Distances Between SpacesRelation Matrix

 46

In this chapter results of spaceexplorer are discussed in terms of its limitations and

capabilities of providing different multi level architectural layout plans in two different

cases. First one consists of seven spaces consist of various types in terms of

relationship and geometry such as core, courtyard, single height space, double height

and pass through space to present its results in depth. The second one consists of seven

spaces with double cores.

Results of each optimization approach compared against each others in terms of how

much they reduce the objective functions after 30 generations. Changes of objective

function values and constraint violation count can be seen

6.3. CASE1: SEVEN SPACES: CORE AND COURTYARD

Figure 33 Solution Cluster After 60 Generation with pareto-front (dark red), first
front (red) and history (yellow)

After running the algorithm for 60 generation, in total 163 solutions are found 24 of

these solutions are non dominated solutions. The cluster of solutions provide deisgn

alternatives with different fitness function values. Range of the three fitness function

values can be found in the following table.

47

Table 9 Fitness Function Values of Selected Solutions from The Cluster

Fitness Function Min Value Max Value

RelationsWeightedCirculation -2936 3192

Total Solar Radiation 219.29 392

Floating Voxel Count 0 14

Some example solutions are selected from the cluster of 163 and can be found in the
following figure

Figure 34 Samples from Solution Cluster

 48

Figure 35 Visualization of Relations Between spaces of The Selected Solution

In the following figure spaces are marked with green and the rest of the spaces marked

accordingly the relation to the marked space, red means the space desired to be apart

from the green space and if it gets blue color the space is desired to be near green space.

Shades of the colors represents the scale of desire. As a result of the relations matrices

its clearly shown that S5 is located apart from the main mass of the building since it is

not desired to be in near vicinity of none of the spaces. The distances between spaces

49

shows also similar pattern as relation matrices of spaces to satisfy desired relations as

shown in figure 36

Figure 36 Relation Matrices(left), Distances Between Spaces of the Selected
Solution(right)

6.4. CASE2: SEVEN SPACES: DOUBLE CORE

Figure 37 Solution Cluster After 80 Generation with pareto-front (dark red), first
front (red) and history (yellow)

After running the algorithm for 80 generation, in total 154 solutions are found 65 of

these solutions are non dominated solutions. The cluster of solutions provide design

alternatives with different fitness function values. Range of the three fitness function

values can be found in the following table.

C1 CY
1

S1 S2 S3 S4 S5 C1 CY
1

S1 S2 S3 S4 S5

C1 0 3 3 1 2 3 -3 C1 0 1 24 20 1 8 96
CY1 3 0 3 3 3 1 -3 CY1 1 0 32 28 1 1 112
S1 3 3 0 -3 3 -3 -3 S1 24 32 0 84 1 40 48
S2 1 3 -3 0 1 1 -3 S2 20 28 84 0 52 32 48
S3 2 3 3 1 0 1 -3 S3 1 1 1 36 0 8 72
S4 3 1 -3 1 1 0 -3 S4 8 1 40 32 8 0 120
S5 -3 -3 -3 -3 -3 -3 0 S5 96 112 48 48 72 120 0

Relation Matrices Distances Between Spaces

 50

Table 10 Fitness Function Values of Given Solution Cluster

Fitness Function Min Value Max Value

RelationsWeightedCirculation -3360 -70

Total Solar Radiation 63138 86410

Compactness 310 633

Two design solution is selected and compared against each other in terms of

compactness and relation weighted circulation value. Fitness function values of

selected design alternatives as follows

Table 11 Fitness Function Values of Selected Solutions from The Cluster

Designation Relations

Weighted

Circulation

Total Solar

Radiation

Compactness

Alt1 -1652 86058 330

Alt2 -222 66310 280

 In the following figure spaces are marked with green and the rest of the spaces marked

accordingly the relation to the marked space, red means the space desired to be apart

from the green space and if it gets blue color the space is desired to be near green space.

Shades of the colors represents the scale of desire. As a result of the relations matrix

its clearly shown that S5 is located apart from the main mass of the building since it is

not desired to be in near vicinity of none of the spaces. The distances between spaces

shows also similar pattern as relation matrices of spaces to satisfy desired relations as

shown in figure 39 and 41

51

Figure 38 Visualization of Relations Between spaces of The Selected Solution

Figure 39 Relation Matrices(left), Distances Between Spaces of the Selected
Solution(right)

C1 C2 S1 S2 S3 S4 S5 C1 CY
1

S1 S2 S3 S4 S5

C1 0 -3 3 -3 1 3 3 C1 0 48 24 28 1 1 1
C2 -3 0 3 3 3 -2 -3 CY1 48 0 1 4 16 24 72
S1 3 3 0 -3 3 -3 -3 S1 24 1 0 4 1 24 40
S2 -3 3 -3 0 1 1 -3 S2 28 4 52 0 52 8 40
S3 1 3 3 1 0 1 -3 S3 1 16 1 36 0 1 16
S4 3 -2 -3 1 1 0 -3 S4 1 40 24 8 1 0 24
S5 3 -3 -3 -3 -3 -3 0 S5 1 72 40 40 16 24 0

Distances Between SpacesRelation Matrix

 52

Figure 40 Visualization of Relations Between spaces of The Selected Solution

Figure 41 Relation Matrices(left), Distances Between Spaces of the Selected
Solution(right)

C1 C2 S1 S2 S3 S4 S5 C1 CY
1

S1 S2 S3 S4 S5

C1 0 -3 3 -3 1 3 3 C1 0 1 1 4 4 1 1
C2 -3 0 3 3 3 -2 -3 CY1 1 0 1 4 4 1 8
S1 3 3 0 -3 3 -3 -3 S1 1 1 0 12 4 1 16
S2 -3 3 -3 0 1 1 -3 S2 4 4 12 0 8 12 1
S3 1 3 3 1 0 1 -3 S3 4 4 20 8 0 20 16
S4 3 -2 -3 1 1 0 -3 S4 1 1 1 12 20 0 16
S5 3 -3 -3 -3 -3 -3 0 S5 1 8 16 1 16 16 0

Distances Between SpacesRelation Matrix

53

In this chapter results of spaceexplorer are discussed in terms of its limitations and

capabilities of providing different multi level architectural layout plans in two different

cases. First one consists of seven spaces consist of various types in terms of

relationship and geometry such as core, courtyard, single height space, double height

and pass through space to present its results in depth. The second one consists of seven

spaces with double cores.

Results of each optimization approach compared against each others in terms of how

much they reduce the objective functions after 30 generations. Changes of objective

function values and constraint violation count can be seen

6.5. CASE1: SEVEN SPACES: CORE AND COURTYARD

Figure 42 Solution Cluster After 60 Generation with pareto-front (dark red), first
front (red) and history (yellow)

After running the algorithm for 60 generation, in total 163 solutions are found 24 of

these solutions are non dominated solutions. The cluster of solutions provide deisgn

alternatives with different fitness function values. Range of the three fitness function

values can be found in the following table.

 54

Table 12 Fitness Function Values of Selected Solutions from The Cluster

Fitness Function Min Value Max Value

RelationsWeightedCirculation -2936 3192

Total Solar Radiation 219.29 392

Floating Voxel Count 0 14

Some example solutions are selected from the cluster of 163 and can be found in the
following figure

Figure 43 Samples from Solution Cluster

55

Figure 44 Visualization of Relations Between spaces of The Selected Solution

In the following figure spaces are marked with green and the rest of the spaces marked

accordingly the relation to the marked space, red means the space desired to be apart

from the green space and if it gets blue color the space is desired to be near green space.

Shades of the colors represents the scale of desire. As a result of the relations matrices

its clearly shown that S5 is located apart from the main mass of the building since it is

not desired to be in near vicinity of none of the spaces. The distances between spaces

 56

shows also similar pattern as relation matrices of spaces to satisfy desired relations as

shown in figure XX

Figure 45 Relation Matrices(left), Distances Between Spaces of the Selected
Solution(right)

6.6. CASE2: SEVEN SPACES: DOUBLE CORE

Figure 46 Solution Cluster After 80 Generation with pareto-front (dark red), first
front (red) and history (yellow)

After running the algorithm for 80 generation, in total 154 solutions are found 65 of

these solutions are non dominated solutions. The cluster of solutions provide design

alternatives with different fitness function values. Range of the three fitness function

values can be found in the following table.

C1 CY
1

S1 S2 S3 S4 S5 C1 CY
1

S1 S2 S3 S4 S5

C1 0 3 3 1 2 3 -3 C1 0 1 24 20 1 8 96
CY1 3 0 3 3 3 1 -3 CY1 1 0 32 28 1 1 112
S1 3 3 0 -3 3 -3 -3 S1 24 32 0 84 1 40 48
S2 1 3 -3 0 1 1 -3 S2 20 28 84 0 52 32 48
S3 2 3 3 1 0 1 -3 S3 1 1 1 36 0 8 72
S4 3 1 -3 1 1 0 -3 S4 8 1 40 32 8 0 120
S5 -3 -3 -3 -3 -3 -3 0 S5 96 112 48 48 72 120 0

Relation Matrices Distances Between Spaces

57

Table 13 Fitness Function Values of Given Solution Cluster

Fitness Function Min Value Max Value

RelationsWeightedCirculation -3360 -70

Total Solar Radiation 63138 86410

Compactness 310 633

Two design solution is selected and compared against each other in terms of

compactness and relation weighted circulation value. Fitness function values of

selected design alternatives as follows

Table 14 Fitness Function Values of Selected Solutions from The Cluster

Designation Relations

Weighted

Circulation

Total Solar

Radiation

Compactness

Alt1 -1652 86058 330

Alt2 -222 66310 280

 In the following figure spaces are marked with green and the rest of the spaces marked

accordingly the relation to the marked space, red means the space desired to be apart

from the green space and if it gets blue color the space is desired to be near green space.

Shades of the colors represents the scale of desire. As a result of the relations matrix

its clearly shown that S5 is located apart from the main mass of the building since it is

not desired to be in near vicinity of none of the spaces. The distances between spaces

shows also similar pattern as relation matrices of spaces to satisfy desired relations as

shown in figure 48 and figure 50

 58

Figure 47 Visualization of Relations Between spaces of The Selected Solution

Figure 48 Relation Matrices(left), Distances Between Spaces of the Selected
Solution(right)

C1 C2 S1 S2 S3 S4 S5 C1 CY
1

S1 S2 S3 S4 S5

C1 0 -3 3 -3 1 3 3 C1 0 48 24 28 1 1 1
C2 -3 0 3 3 3 -2 -3 CY1 48 0 1 4 16 24 72
S1 3 3 0 -3 3 -3 -3 S1 24 1 0 4 1 24 40
S2 -3 3 -3 0 1 1 -3 S2 28 4 52 0 52 8 40
S3 1 3 3 1 0 1 -3 S3 1 16 1 36 0 1 16
S4 3 -2 -3 1 1 0 -3 S4 1 40 24 8 1 0 24
S5 3 -3 -3 -3 -3 -3 0 S5 1 72 40 40 16 24 0

Distances Between SpacesRelation Matrix

59

Figure 49 Visualization of Relations Between spaces of The Selected Solution

Figure 50 Relation Matrices(left), Distances Between Spaces of the Selected
Solution(right)

C1 C2 S1 S2 S3 S4 S5 C1 CY
1

S1 S2 S3 S4 S5

C1 0 -3 3 -3 1 3 3 C1 0 1 1 4 4 1 1
C2 -3 0 3 3 3 -2 -3 CY1 1 0 1 4 4 1 8
S1 3 3 0 -3 3 -3 -3 S1 1 1 0 12 4 1 16
S2 -3 3 -3 0 1 1 -3 S2 4 4 12 0 8 12 1
S3 1 3 3 1 0 1 -3 S3 4 4 20 8 0 20 16
S4 3 -2 -3 1 1 0 -3 S4 1 1 1 12 20 0 16
S5 3 -3 -3 -3 -3 -3 0 S5 1 8 16 1 16 16 0

Distances Between SpacesRelation Matrix

61

CHAPTER 7

CONCLUSIONS AND FUTURE RESEARCH

According to the result of this study it is shown that genetic algorithm based multi-

level architectural layout planning can be achieved in Rhino Grasshopper parametric

design environment to guide architect to find design alternatives with in huge search

space in early design phase which may be developed fully by using spaceexplorer.

Due to complexity of layout design task it is not possible to configure an ultimate

generative model for all architectural layout problems. Therefore, configuring

generative model in modular fashion let the architect mix and match related modules

and only configure the lacking modules instead of modeling whole model from scratch

for specific architectural design problem.

It is shown that space explorer is capable of solving multi level architectural layout

design problems with irregular size for building functions, single or multiple cores and

courtyard.

Space explorer’s ability to generate and evaluate design alternatives in a reasonable

time may let architect explore and consider design alternatives which may not be for

seen with different spatial qualities. Such as producing separate building masses if the

relations matrix requires

While calculating distance between spaces, circulation-based metrics produce much

more reasonable results than Euclidian based distances since circulation-based metric

is calculated according to the possible circulation paths that spatial organization allows,

rather than calculating direct theoretical distances between center points of spaces.

Total solar gain objective helps to find optimum placement of spaces in building plot

in relation to the site object that may cast shadow and affect the thermal performance

of the building.

Having double height spaces also let more sophisticated architectural configurations

that may increase spatial quality.

 62

For the further studies as mentioned other aspect of architectural spatial qualities can

be objectified to be used as optimization goals. Site conditions can be defined such as

topography, which also affects how building masses can be placed and create

additional problems in terms of circulation, underground and semi underground spaces.

It is possible to utilize this approach while making spatial organization of a mix use

high rise building. By trying to minimize vertical circulation requirement by placing

related spaces close vicinity not only that but also it can guide architect in terms sizing

of circulation elements.

In addition to that, this approach can also be applied for adaptive reuse of an existing

building with small modifications to how voxel space is created by considering the

existing structural system of the building while creating voxels and selection points.

Therefore, generated adapted design has less conflicts with the existing conditions.

63

REFERENCES

Bahrehmand, A., Batard, T., Marques, R., Evans, A., & Blat, J. (2017). Optimizing layout
using spatial quality metrics and user preferences. Graphical Models, 93, 25–38.
https://doi.org/10.1016/j.gmod.2017.08.003

Baušys, R., & Pankrašovaité, I. (2005). Optimization of architectural layout by the improved
genetic algorithm. Journal of Civil Engineering and Management, 11(1), 13–21.

Baykan, C. (2003). Spatial Relations and Architectural Plans. E-Activities in Design and
Education. Retrieved from http://www.metu.edu.tr/~baykan/publications-pdf/baykan-
eia9.pdf

Bader, J., & Zitzler, E. (2010). HypE: An Algorithm for Fast Hypervolume-Based Many-
Objective Optimization. Evolutionary Computation, 19(1), 45–76.
https://doi.org/10.1162/EVCO_a_00009

Chatzikonstantinou, I. (2014). A 3-Dimensional Architectural Layout Generation Procedure
for Optimization Applications : DC-RVD. Proceedings of the 2014 ECAADe
Conference, 1, 287–296. Retrieved from http://cumincad.scix.net/cgi-
bin/works/Show?_id=ecaade2014_163&sort=DEFAULT&search=ioannis&hits=7

Choudhary, R., & Michalek, J. (2005). Design optimization in computer-aided architectural
design. CAADRIA 2005 - The Association for Computer-Aided Architectural Design
Research in Asia: Digital Opportunities, 149–159.

Dino, I. G. (2016). An evolutionary approach for 3D architectural space layout
design exploration. Automation in Construction, 69, 131–150.
https://doi.org/10.1016/j.autcon.2016.05.020

Drira, A., Pierreval, H., & Hajri-Gabouj, S. (2007). Facility layout problems: A
survey. Annual Reviews in Control, 31(2), 255–267.
https://doi.org/10.1016/j.arcontrol.2007.04.001

Du, T., Turrin, M., Jansen, S., Dobbelsteen, A. Van Den, & Biloria, N. (2018). A Review on
Automatic Generation of Architectural Space Layouts with Energy Performance
Optimization A Review on Automatic Generation of Architectural Space Layouts with
Energy Performance Optimization. International Conference On Building Energy,
Environment, (February), 856–861. Retrieved from
http://www.cobee2018.net/assets/pdf/p/283.pdf

Hathhorn, J., Sisikoglu, E., & Sir, M. Y. (2013). A multi-objective mixed-integer
programming model for a multi-floor facility layout. International Journal of
Production Research, 51(14), 4223–4239.
https://doi.org/10.1080/00207543.2012.753486

Hornby, G., Globus, A., Linden, D., & Lohn, J. (2012). Automated Antenna Design
with Evolutionary Algorithms. 5, 1–8. https://doi.org/10.2514/6.2006-7242

Ismail, F. S., Yusof, R., & Khalid, M. (2012). Optimization of electronics component
placement design on PCB using self organizing genetic algorithm (SOGA).
Journal of Intelligent Manufacturing, 23(3), 883–895.
https://doi.org/10.1007/s10845-010-0444-x

Jo, J. H., & Gero, J. S. (1998). Space layout planning using an evolutionary
approach. Artificial Intelligence in Engineering, 12(3), 149–162.
https://doi.org/10.1016/S0954-1810(97)00037-X

 64

Korde, M. R., & Shahare, A. (2017). Design and Development of Simulation Model
for Plant Layout. IJSTE - International Journal of Science Technology &
Engineering |, 3(09), 446–449.

Lin, C. J. (2005). Space Layout Game: An interactive game of space layout for teaching and
representing design knowledge. CAADRIA 2005 - The Association for Computer-Aided
Architectural Design Research in Asia: Digital Opportunities, 130–141.

Lobos, D., & Donath, D. (2011). The problem of space layout in architecture: A
survey and reflections. Arquitetura Revista, 6(2), 136–161.
https://doi.org/10.4013/arq.2010.62.05

Menges, A., & Ahlquist, S. (2011). Computational design thinking: computation
design thinking. John Wiley & Sons.

Michalek, J. J., Choudhary, R., & Papalambros, P. Y. (2002). Architectural layout
design optimization. Engineering Optimization, 34(5), 461–484.
https://doi.org/10.1080/03052150214016

Nagy, D., Lau, D., Locke, J., Stoddart, J., Villaggi, L., Wang, R., … Benjamin, D.
(2018). Project Discover: An Application of Generative Design for
Architectural Space Planning. 59–66.
https://doi.org/10.22360/simaud.2017.simaud.007

Peckiene, A., & Ustinovičius, L. (2017). Possibilities for Building Spatial Planning
using BIM Methodology. Procedia Engineering, 172, 851–858.
https://doi.org/10.1016/j.proeng.2017.02.085

Preisinger, C., & Heimrath, M. (2014). Karamba - A toolkit for parametric structural
design. Structural Engineering International: Journal of the International
Association for Bridge and Structural Engineering (IABSE).
https://doi.org/10.2749/101686614X13830790993483

Rodrigues, E., Gaspar, A. R., & Gomes, Á. (2013). An approach to the multi-level
space allocation problem in architecture using a hybrid evolutionary technique.
Automation in Construction, 35, 482–498.
https://doi.org/10.1016/j.autcon.2013.06.005

Sadeghipour Roudsari, M., Pak, M., & Smith, A. (2013). Ladybug: a Parametric
Environmental Plugin for Grasshopper To Help Designers Create an
Environmentally-Conscious Design. 13th Conference of International Building
Performance Simulation Association, 3129–3135.

Saraswat, A., Venkatadri, U., & Castillo, I. (2015). A framework for multi-objective
facility layout design. Computers and Industrial Engineering, 90, 167–176.
https://doi.org/10.1016/j.cie.2015.09.006

Sharma, D., Chattopadhyay, C., & Harit, G. (2016). A unified framework for semantic
matching of architectural floorplans. Proceedings - International Conference on
Pattern Recognition, 0, 2422–2427. https://doi.org/10.1109/ICPR.2016.7899999

Skandhakumar, N., Salim, F., Reid, J., Drogemuller, R., & Dawson, E. (2016). Graph
theory based representation of building information models for access control
applications. Automation in Construction, 68, 44–51.
https://doi.org/10.1016/J.AUTCON.2016.04.001

65

Stage, E. D. (2009). the Architect As Performer of Energy Simulation in the
Performance Based Design. Building Simulation 2009.

Sönmez, N. O. (2015). Architectural layout evolution through similarity-based evaluation.
International Journal of Architectural Computing, 13(3–4), 271–297.
https://doi.org/10.1260/1478-0771.13.3-

4.271

Verma, M., & Thakur, M. K. (2010). Architectural space planning using genetic algorithms.
2010 The 2nd International Conference on Computer and Automation Engineering,
ICCAE 2010, 2, 268–275. https://doi.org/10.1109/ICCAE.2010.5451497

Yeh, I. C. (2006). Architectural layout optimization using annealed neural network.
Automation in Construction, 15(4), 531–539.
https://doi.org/10.1016/j.autcon.2005.07.002

Yi, Y. K., & Malkawi, A. M. (2009). Optimizing building form for energy
performance based on hierarchical geometry relation. Automation in
Construction, 18(6), 825–833. https://doi.org/10.1016/j.autcon.2009.03.006

Yi, H., & Yi, Y. K. (2014). Performance based architectural design optimization: Automated
3D space layout using simulated annealing. 2014 ASHRAE/IBPSA-USA Building
Simulation Conference, (October), 292–299.

Žerovnik, J. (2015). Heuristics for NP-hard optimization problems - simpler is
better!? Logistics & Sustainable Transport, 6(1), 1–10.
https://doi.org/10.1515/jlst-2015-0006

Zitzler, E., Laumanns, M., & Thiele, L. (2014). SPEA2: Improving the Strength
Pareto Evolutionary Algorithm. Igarss 2014. https://doi.org/10.1007/s13398-014-
0173-7.2

67

APPENDIX 1 – FLOOR SELECTION COMPONENT C# CODE

using Rhino;
using Rhino.Geometry;
using Rhino.DocObjects;
using Rhino.Collections;

using GH_IO;
using GH_IO.Serialization;
using Grasshopper;
using Grasshopper.Kernel;
using Grasshopper.Kernel.Data;
using Grasshopper.Kernel.Types;

using System;
using System.IO;
using System.Xml;
using System.Xml.Linq;
using System.Linq;
using System.Data;
using System.Drawing;
using System.Reflection;
using System.Collections;
using System.Windows.Forms;
using System.Collections.Generic;
using System.Runtime.InteropServices;

/// <summary>
/// This class will be instantiated on demand by the Script
component.
/// </summary>
public class Script_Instance : GH_ScriptInstance
{
#region Utility functions
 /// <summary>Print a String to the [Out] Parameter of the Script
component.</summary>
 /// <param name="text">String to print.</param>
 private void Print(string text) { /* Implementation hidden. */ }
 /// <summary>Print a formatted String to the [Out] Parameter of
the Script component.</summary>
 /// <param name="format">String format.</param>
 /// <param name="args">Formatting parameters.</param>
 private void Print(string format, params object[] args) { /*
Implementation hidden. */ }
 /// <summary>Print useful information about an object instance to
the [Out] Parameter of the Script component. </summary>
 /// <param name="obj">Object instance to parse.</param>
 private void Reflect(object obj) { /* Implementation hidden. */ }
 /// <summary>Print the signatures of all the overloads of a
specific method to the [Out] Parameter of the Script component.
</summary>
 /// <param name="obj">Object instance to parse.</param>
 private void Reflect(object obj, string method_name) { /*
Implementation hidden. */ }
#endregion

 68

#region Members
 /// <summary>Gets the current Rhino document.</summary>
 private readonly RhinoDoc RhinoDocument;
 /// <summary>Gets the Grasshopper document that owns this
script.</summary>
 private readonly GH_Document GrasshopperDocument;
 /// <summary>Gets the Grasshopper script component that owns this
script.</summary>
 private readonly IGH_Component Component;
 /// <summary>
 /// Gets the current iteration count. The first call to
RunScript() is associated with Iteration==0.
 /// Any subsequent call within the same solution will increment
the Iteration count.
 /// </summary>
 private readonly int Iteration;
#endregion

 /// <summary>
 /// This procedure contains the user code. Input parameters are
provided as regular arguments,
 /// Output parameters as ref arguments. You don't have to assign
output parameters,
 /// they will have a default value.
 /// </summary>
 private void RunScript(bool create, bool modify, int min, int max,
int count, List<Point3d> data, List<int> floor, List<object>
spacenames, List<int> x, ref object A, ref object B)
 {

 Random rnd = new Random();

 if(modify)
 { var input = Component.Params.Input[8].Sources[0];

 List<System.Guid> guids = new List<System.Guid>();
 Grasshopper.Kernel.IGH_Param selSlidersInput =
Component.Params.Input[8];
 IList<Grasshopper.Kernel.IGH_Param> sources =
selSlidersInput.Sources;
 bool isMySlidersEmpty = !sources.Any();

 if (!isMySlidersEmpty) {
 foreach (var source in sources)
 {
 IGH_DocumentObject component =
source.Attributes.GetTopLevel.DocObject;
 Grasshopper.Kernel.Special.GH_NumberSlider mySlider =
component as Grasshopper.Kernel.Special.GH_NumberSlider;
 if (mySlider == null)
 continue;
 guids.Add(mySlider.InstanceGuid);
 }
 }
 // Find all sliders.
 List<Grasshopper.Kernel.Special.GH_NumberSlider> sliders = new
List<Grasshopper.Kernel.Special.GH_NumberSlider>();
 foreach (IGH_DocumentObject docObject in
GrasshopperDocument.Objects)
 {

69

 Grasshopper.Kernel.Special.GH_NumberSlider slider =
docObject as Grasshopper.Kernel.Special.GH_NumberSlider;
 if (slider != null)
 {
 // check if the slider is in the selected list
 if (!isMySlidersEmpty)
 {
 if (guids.Contains(slider.InstanceGuid))
sliders.Add(slider);
 }
 else
 {
 sliders.Add(slider);
 }
 }
 }
 if (sliders.Count == 0)
 {
 System.Windows.Forms.MessageBox.Show("No sliders could be
found, create sliders first!", "erinc<3oykü", MessageBoxButtons.OK);
 return;
 }
 foreach (Grasshopper.Kernel.Special.GH_NumberSlider slider in
sliders)
 slider.Slider.Minimum = min;

 foreach (Grasshopper.Kernel.Special.GH_NumberSlider slider in
sliders)
 slider.Slider.Maximum = max;

 foreach (Grasshopper.Kernel.Special.GH_NumberSlider slider in
sliders)
 slider.SetSliderValue(max);

 }

 if(create)
 {
 for (int i = 0; i < count; i++)
 {

 //instantiate new slider
 Grasshopper.Kernel.Special.GH_NumberSlider slid = new
Grasshopper.Kernel.Special.GH_NumberSlider();
 slid.CreateAttributes(); //sets up default values, and makes
sure your slider doesn't crash rhino

 //customise slider (position, ranges etc)
 int inputcount = this.Component.Params.Input[0].SourceCount;
 slid.Attributes.Pivot = new PointF((float)
this.Component.Attributes.DocObject.Attributes.Bounds.Left -
slid.Attributes.Bounds.Width - 30, (float)
this.Component.Params.Input[8].Attributes.Bounds.Y + 30 + i *
30);//inputcount * 30);
 slid.NickName = spacenames[i] + "_XY";
 slid.Slider.Maximum = max;

 70

 slid.Slider.Minimum = min;
 slid.Slider.DecimalPlaces = 0;
 slid.SetSliderValue((decimal) min);

 //Until now, the slider is a hypothetical object.
 // This command makes it 'real' and adds it to the canvas.
 GrasshopperDocument.AddObject(slid, false);

 //Connect the new slider to this component
 this.Component.Params.Input[8].AddSource(slid);
 }
 }

 List <int> spaceindexlist = new List<int>();

 for (int i = 0; i < count; i++)
 {

 int spaceindex = x[i];

 spaceindexlist.Add(spaceindex);

 // A = spaceindexlist;

 }

 List<Point3d> selectedpointslist = new List<Point3d>();
 int floorcount;

 for (int i = 0;i < count; i++)
 {
 floorcount = floor[i];
 Point3d selectedpoints = data[spaceindexlist[i] + ((max + 1) *
floorcount)];
 selectedpointslist.Add(selectedpoints);

 }
 // Point3d selectedpoints = data[23];
 //

 A = selectedpointslist;
 B = floor[2];

 }

 // <Custom additional code>

 // </Custom additional code>
}

71

APPENDIX 2 – LOCATION SELECTION COMPONENT C# CODE

using Rhino;
using Rhino.Geometry;
using Rhino.DocObjects;
using Rhino.Collections;

using GH_IO;
using GH_IO.Serialization;
using Grasshopper;
using Grasshopper.Kernel;
using Grasshopper.Kernel.Data;
using Grasshopper.Kernel.Types;

using System;
using System.IO;
using System.Xml;
using System.Xml.Linq;
using System.Linq;
using System.Data;
using System.Drawing;
using System.Reflection;
using System.Collections;
using System.Windows.Forms;
using System.Collections.Generic;
using System.Runtime.InteropServices;

/// <summary>
/// This class will be instantiated on demand by the Script
component.
/// </summary>
public class Script_Instance : GH_ScriptInstance
{
#region Utility functions
 /// <summary>Print a String to the [Out] Parameter of the Script
component.</summary>
 /// <param name="text">String to print.</param>
 private void Print(string text) { /* Implementation hidden. */ }
 /// <summary>Print a formatted String to the [Out] Parameter of
the Script component.</summary>
 /// <param name="format">String format.</param>
 /// <param name="args">Formatting parameters.</param>
 private void Print(string format, params object[] args) { /*
Implementation hidden. */ }
 /// <summary>Print useful information about an object instance to
the [Out] Parameter of the Script component. </summary>
 /// <param name="obj">Object instance to parse.</param>
 private void Reflect(object obj) { /* Implementation hidden. */ }
 /// <summary>Print the signatures of all the overloads of a
specific method to the [Out] Parameter of the Script component.
</summary>
 /// <param name="obj">Object instance to parse.</param>
 private void Reflect(object obj, string method_name) { /*
Implementation hidden. */ }
#endregion

 72

#region Members
 /// <summary>Gets the current Rhino document.</summary>
 private readonly RhinoDoc RhinoDocument;
 /// <summary>Gets the Grasshopper document that owns this
script.</summary>
 private readonly GH_Document GrasshopperDocument;
 /// <summary>Gets the Grasshopper script component that owns this
script.</summary>
 private readonly IGH_Component Component;
 /// <summary>
 /// Gets the current iteration count. The first call to
RunScript() is associated with Iteration==0.
 /// Any subsequent call within the same solution will increment
the Iteration count.
 /// </summary>
 private readonly int Iteration;
#endregion

 /// <summary>
 /// This procedure contains the user code. Input parameters are
provided as regular arguments,
 /// Output parameters as ref arguments. You don't have to assign
output parameters,
 /// they will have a default value.
 /// </summary>
 private void RunScript(bool create, bool modify, int min, int
floorcount, int count, List<Point3d> data, List<string> spacenames,
List<bool> groundconstraint, List<int> x, ref object A)
 {

 Random rnd = new Random();

 if(modify)
 { var input = Component.Params.Input[5].Sources[0];

 List<System.Guid> guids = new List<System.Guid>();
 Grasshopper.Kernel.IGH_Param selSlidersInput =
Component.Params.Input[5];
 IList<Grasshopper.Kernel.IGH_Param> sources =
selSlidersInput.Sources;
 bool isMySlidersEmpty = !sources.Any();

 if (!isMySlidersEmpty) {
 foreach (var source in sources)
 {
 IGH_DocumentObject component =
source.Attributes.GetTopLevel.DocObject;
 Grasshopper.Kernel.Special.GH_NumberSlider mySlider =
component as Grasshopper.Kernel.Special.GH_NumberSlider;
 if (mySlider == null)
 continue;
 guids.Add(mySlider.InstanceGuid);
 }
 }
 // Find all sliders.
 List<Grasshopper.Kernel.Special.GH_NumberSlider> sliders = new
List<Grasshopper.Kernel.Special.GH_NumberSlider>();
 foreach (IGH_DocumentObject docObject in
GrasshopperDocument.Objects)
 {
 Grasshopper.Kernel.Special.GH_NumberSlider slider =

73

docObject as Grasshopper.Kernel.Special.GH_NumberSlider;
 if (slider != null)
 {
 // check if the slider is in the selected list
 if (!isMySlidersEmpty)
 {
 if (guids.Contains(slider.InstanceGuid))
sliders.Add(slider);
 }
 else
 {
 sliders.Add(slider);
 }
 }
 }
 if (sliders.Count == 0)
 {
 System.Windows.Forms.MessageBox.Show("No sliders could be
found, create sliders first!", "erinc<3oykü", MessageBoxButtons.OK);
 return;
 }
 foreach (Grasshopper.Kernel.Special.GH_NumberSlider slider in
sliders)
 slider.Slider.Minimum = min;

 foreach (Grasshopper.Kernel.Special.GH_NumberSlider slider in
sliders)
 slider.Slider.Maximum = floorcount - 1;

 foreach (Grasshopper.Kernel.Special.GH_NumberSlider slider in
sliders)
 slider.SetSliderValue(floorcount - 1);

 }

 if(create)
 {
 for (int i = 0; i < count; i++)
 {

 //instantiate new slider

 //customise slider (position, ranges etc)

 //slid.Slider.GripWidth = 200;

 if(groundconstraint[i])
 {
 Grasshopper.Kernel.Special.GH_Panel pan = new
Grasshopper.Kernel.Special.GH_Panel();
 pan.CreateAttributes();
 pan.Attributes.Pivot = new PointF((float)
this.Component.Attributes.DocObject.Attributes.Bounds.Right +
pan.Attributes.Bounds.Width / 4, (float)
this.Component.Params.Input[7].Attributes.Bounds.Bottom + (i + 1) *

 74

20);//inputcount * 30);
 pan.NickName = spacenames[i] + "_Z";
 pan.SetUserText("0");

 //Grasshopper.Kernel.Parameters.Param_Number num = new
Grasshopper.Kernel.Parameters.Param_Number();
 //num.CreateAttributes();
 //num.Attributes.Pivot = new PointF((float)
this.Component.Attributes.DocObject.Attributes.Bounds.Left -
num.Attributes.Bounds.Width, (float)
this.Component.Params.Input[7].Attributes.Bounds.Bottom + (i + 1) *
20);//inputcount * 30);
 //num.NickName = "zemin";
 //num.Access.Equals(1);
 GrasshopperDocument.AddObject(pan, false);
 this.Component.Params.Input[8].AddSource(pan);

 }

 else{
 Grasshopper.Kernel.Special.GH_NumberSlider slid1 = new
Grasshopper.Kernel.Special.GH_NumberSlider();
 slid1.CreateAttributes(); //sets up default values, and
makes sure your slider doesn't crash rhino
 int inputcount =
this.Component.Params.Input[0].SourceCount;
 slid1.NickName = spacenames[i] + "_Z";
 slid1.Attributes.Pivot = new PointF((float)
this.Component.Attributes.DocObject.Attributes.Bounds.Left -
slid1.Attributes.Bounds.Width, (float)
this.Component.Params.Input[8].Attributes.Bounds.Bottom + (i + 1) *
20);//inputcount * 30);

 slid1.Slider.Maximum = floorcount - 1;
 slid1.Slider.Minimum = min;
 slid1.Slider.DecimalPlaces = 0;
 slid1.SetSliderValue((decimal) floorcount - 1);
 GrasshopperDocument.AddObject(slid1, false);
 this.Component.Params.Input[8].AddSource(slid1);
 }

 //Until now, the slider is a hypothetical object.
 // This command makes it 'real' and adds it to the canvas.
 // GrasshopperDocument.AddObject(slid, false);

 //Connect the new slider to this component
 // this.Component.Params.Input[5].AddSource(slid);

 }
 }

 List <int> spaceindexlist = new List<int>();

 for (int i = 0; i < count; i++)
 {

75

 if(groundconstraint[i])
 {
 spaceindexlist.Add(0);
 }

 else
 {
 int spaceindex = x[i];

 spaceindexlist.Add(spaceindex);
 }

 A = spaceindexlist;

 }

 // List<Point3d> selectedpointslist = new List<Point3d>();
 // for (int i = 0;i < count; i++)
 // {
 // Point3d selectedpoints = data[spaceindexlist[i]];
 // selectedpointslist.Add(selectedpoints);

 // }
 // Point3d selectedpoints = data[23];
 //

 // A = selectedpointslist;

 }

 // <Custom additional code>

 // </Custom additional code>

