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ABSTRACT 

EARLY DESIGN STAGE MULTI LEVEL ARCHITECTURAL FLOOR 

PLAN ORGANIZATION BY USING GENETIC ALGORITHMS 

Yıldırım, Erinç 

Msc, Architecture 

Advisor: Assoc. Prof. Başak Kundakçı Koyunbaba 

Co-Advisor: Assoc. Prof. İpek Gürsel Dino 

JULY 2019 

Architectural layout design entails numerous decision variables, which interact in 

complex ways, and as such it is defined by combinatorial complexity. To deal with 

this complexity, computational optimization methods can be utilized. The aim of the 

research is to find a feasible set of architectural layout design alternatives for three 

objectives, which are minimization of the relations weighted circulation between 

spaces and minimization of the total solar radiation of spatial organization, subject to 

several constraints. The multi objective optimization problem is formulated where the 

constraints are real parameters. Multi objective evolutionary algorithms are utilized in 

order to gather a set of non-dominated solutions. 

Key Words: architectural layout; multi-storey; circulation; multi-objective 

optimization; evolutionary algorithms
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ÖZ 

ERKEN TASARIM EVRESİ GENETİK ALGORİTMALAR 

KULLANILARAK ÇOK KATLI MİMARİ KAT PLANI 

ORGANİZASYONU 

Yıldırım, Erinç 

Yüksek Lisans, Mimarlık 

Danışman: Doç. Dr. Başak Kundakçı Koyunbaba 

Yardımcı Danışman: Doç. Dr. İpek Gürsel Dino 

TEMMUZ 2019 

Mimari plan tasarımı, karmaşık şekillerde etkileşime giren sayısız karar değişkenini 

içerir ve bu şekilde birleşimsel karmaşıklıkla tanımlanır. Bu karmaşıklıkla başa 

çıkmak için, hesaplama optimizasyon yöntemleri kullanılabilir. Araştırmanın amacı, 

çeşitli kısıtlamalara tabi olarak, mekansal organizasyonun toplam güneş ışığının 

azaltılması ve mekânlar arasındaki ilişkilerin ağırlıklı dolaşımının en aza indirilmesi 

olan iki amaç için uygun bir mimari yerleşim tasarımı alternatifleri kümesi bulmaktır. 

Çok amaçlı optimizasyon problemi, tam sayı parametreler olarak kurgulanmıştır. 

Baskın olmayan bir dizi çözümü toplamak için çok amaçlı evrimsel algoritmalar 

kullanılmıştır. 

Anahtar Kelimeler: mimari plan, çok katlı, dolaşım, çok amaçlı optimizasyon, 

evrimsel algoritmalar
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CHAPTER 1 

INTRODUCTION 

1.1.  MOTIVATION 

Architectural design is in a constant change in the light of technological developments 

of many sciences but especially computational sciences. Those developments first 

implemented as computerization of drafting and rendering technics of architectural 

design process and replaced how architects draft their ideas and documents the designs. 

Soon enough they have become part of design environment with the speed and 

precision they bring while drafting. 

As the computer tools and technics advanced, their existence and effects are felt more 

in architectural design process and shape the design process of architects (Nagy et al., 

2018). Such as architects not only utilized them to produce drawings but also as a 

computational manner to create generative models of complex architectural design 

problems in parametric design software (Menges & Ahlquist, 2011). In which, 

architect can model all design process beside a final geometric solution.  Even though 

parametric model requires more effort at start than a conventional model of a single 

solution, it reduces the time in long term, it takes to iterate the and make possible to 

generate thousands of design alternatives since it includes the design procedures and 

series of operations to output design solution, this approach is much more feasible to 

change design as opposed to modelling each design by manual from scratch (Nagy et 

al., 2018). 

Not only generating design alternatives but also evaluating each design alternative and 

calculating the performance value for each design alternative by utilizing computer 

simulations and analysis, helps architects make better design decisions.(Hornby, 

Globus, Linden, & Lohn, 2012; Preisinger & Heimrath, 2014; Stage, 2009) 

 It is not a simple task to tackle and find feasible design alternatives due to having huge 

search space that consists of all possible design alternatives. Therefore, choosing 

deterministic approaches to find feasible designs can take some time and even makes 
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it impossible to find as the complexity of the problem and count of decision variables 

increase (Dino, 2016). To overcome this, heuristics approaches which was already well 

implemented by many different disciplines such as industrial and electronics 

engineering are implemented to solve complex architectural problems.  

1.2. BACKGROUND 

Architectural layout design is a complex task by entailing numerous decision variables 

and criteria, which interact in complex ways, and as such it is defined by combinatorial 

complexity with set of relations between each space. These decision variables and 

criteria can be related with the sizes of spaces, views, accessibility, efficiency of 

circulation, solar performance of the layout. The role of architect is to satisfy the 

required criteria accordingly the case. Therefore, there are multiple architectural layout 

options in a huge design space which contains every possible combination of decision 

variable.  architectural layout problems classed as NP-complete problems that cannot 

be solve in a reasonable time by deterministic approach (Jo & Gero, 1998). 

Due to this, exhaustive search of the design space is not possible by manual design 

approaches through trial-error. Therefore, there are various researches is available 

which questions the possibility of automation of this complex task throughout the years 

(Michalek, Choudhary, & Papalambros, 2002; Nagy et al., 2018; Rodrigues, Gaspar, 

& Gomes, 2013; Skandhakumar, Salim, Reid, Drogemuller, & Dawson, 2016; Yeh, 

2006; Yi & Malkawi, 2009). These researches on methodologies of general layout 

planning date back to 1950s and it aims to solve “Floor-plan design for industry” 

problem. 

Problem of architectural layout organization has some similarities with the ones of 

other disciplines such as industrial and electronic engineering. For example, in 

architectural layout organization some of the spaces need to be close to each other 

while some of them need to be apart due to requirements based on user comforts and 

behaviors. We can see this sort of requirements facility layout problem of industrial 

engineering discipline and electronics component placement design on PCB(Ismail, 

Yusof, & Khalid, 2012). 

Facility layout problem of industrial engineering discipline as spaces are translated to 

machines or production cells and the placement of those affects the workflow of 

production or in other word how materials circulate(Hathhorn, Sisikoglu, & Sir, 2013; 
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Korde & Shahare, 2017; Saraswat, Venkatadri, & Castillo, 2015), flow inside the 

facility therefore finding correct one plays a huge role of efficient production facilities 

due to that there are many research on this topic (Drira, Pierreval, & Hajri-Gabouj, 

2007). 

The first research which brings those layout planning technics to architecture 

discipline have been done by Mitchell and Dillion (Lobos & Donath, 2011). Many 

others have followed with different methods technics to find optimum architectural 

layout configurations automatically such as Expert Systems, Shape Grammar, 

Generative, Constraint-Based. The result of past researches become apparent that four 

major issues have aroused: how this complex problem is framed; how the 

combinatorial nature of the generated solutions is regulated; and how the solutions are 

evaluated according to multiple criteria related to the given requirement. 

In recent years, in addition to these methods new ones are also implemented such as 

physically based, agent based, evolutionary algorithms, artificial intelligence 

A physically-Based Modelling techniques research of Arvin and House is an example 

for utilizes “dynamic physics simulation” and the relations between spaces are defined 

as spring forces that pulls related spaces together on 2-dimensional plane therefore it 

can only solve single level floor plans. It calculates in real-time where architect can 

step in and according to the changes model responds by satisfying relations and sizes. 

This makes it a responsive design. This method does not aim to find the best solution 

rather it aims to enable designs to emerge. 

A gradient and evolutionary algorithms-based research conducted by Michalek et al. 

grid based allocable spaces assigned to specific room activity. Due to having allocation 

and grid-based spaces makes the decision variables discrete which controlled by 

evolutionary algorithm.  

As previous researches discussed before layout planning is a complex problem to solve 

by utilizing the deterministic approaches. Instead, one may make use of either 

heuristics, stochastic, or a combination of the two, in order to arrive at promising 

solutions. Another difficulty of the architectural layout design is to have time 

complexity that comes from the exponential function, in another words, finding the 

ultimate solution is not possible in a reasonable time period. This nature of the problem 

creates a necessity for a heuristic approach to find near optimal solutions. Evolutionary 
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algorithms are not only capable to solve complex design problems but also it is very 

possible that it may let design alternatives to emerge since the design solution space in 

relation with many decision variables in relation. 

1.3. PROBLEM STATEMENT 

This study aims to solve problem of architectural multi level layout planning with the 

use of evolutionary algorithms in grasshopper parametric design environment to guide 

architect early design stage.  The framework of the study consists of; data collection 

about architectural building program defined by architect, generative model which is 

capable of generating multi level core based design alternatives which contains 

maximum of 50 different building functions including cores and courtyards, evaluation 

of generated one in terms of solar performance and circulation distances between 

related building functions, genetic algorithms based multi objective optimization. 

1.4. RESEARCH OUTLINE 

This research is organized in five chapters. Chapter 2 is devoted to a Literature Review.  

The review presents both architectural and other disciples researches on topic of layout 

organization in terms of their limitations, methods and benefits. Also, implementations 

of genetic algorithms are given. 

Chapter 3 is devoted to methodology in which in depth explanation of methodology 

of of multi level layout planning with use of evolutionary algorithms step by step. 

Translation of buildable plot to voxels, decision variables and constraints, fitness 

functions, solar radiation analysis process and how architect interacts with framework 

are presented in this chapter 

Chapter 4 devoted custom-made grasshopper plugin named spacexplorer in which 

explained its capabilities. 

Chapter 5 devoted to cases are selected for this study 

Chapter 6 devoted to results and discussion of Spacesearch in terms of how useful it 

is as an early stage design guide to find design alternatives that can developed to 

become architectural projects by examining how much they satisfy the requirements 
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Chapter 7 presents the Conclusion of this study. Limitations and the contribution to 

architectural layout planning and computational architecture are discussed and future 

studies can be found.  
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CHAPTER 2 

LITERATURE REVIEW 

Layout planning is essential part of architectural design problem since its is the first 

step of life cycle of building(Peckiene & Ustinovičius, 2017). Therefore, any decisions 

are taken during this early design phase has a huge effect on how building will perform 

accordingly user needs. 

 

Figure 1 Building Life Cycle 

 

Architects try to iterate as much as possible to come up with a suitable architectural 

layout plan, but it is labor and time intensive task. In addition that, it is an impossible 

task to conceptualize all possible architectural layout alternatives in search space by 

utilizing manual methods due to combinatorial complexity. 

 

Figure 2 Iterative Design Workflow 
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This problem is also applicable to many other disciples. For instance, in electronics 

engineering discipline when populating printed circuit boards, Electronic components 

that populate printed circuit boards have different thermal and power draw 

characteristics therefore organization of the electronic components are important for 

PCB design in terms of thermal performance of the PCB. On the other hand, in 

industrial engineering discipline, problem of facility layout needs to be solved for 

achieving efficient production lines by considering material handling and avoiding 

bottleneck in production flow.  

Researches on layout planning problem first come up in industrial engineering with 

the aim to locate each component of factory layout in terms of efficiency and reduce 

the cost of material handling. Later, systematic layout planning was developed and 

accepted as go to method for this problem therefore research efforts were diminished.  

Layout planning technics that developed from those researches find its way to 

architecture discipline. The first research which brings those layout planning technics 

to architecture discipline have been done by Mitchell and Dillion. Many others have 

followed with different methods technics such as Expert Systems, Shape Grammar, 

Generative, Constraint-Based. 

In recent years, researches focus on layout generation and optimization aspects, in 

addition to existing methods new ones are also implemented such as physically based, 

agent based, evolutionary algorithms, artificial intelligence to solve this complex 

problem. It is clear that most of the researches done on this topic depends on heuristic 

approaches due to their proven success of solving NP-Hard problems. 

2.1. PHYSICALLY-BASED MODELLING TECHNIQUES 

A physically-Based Modelling techniques research of Arvin and House is an example 

for utilizes “dynamic physics simulation” and the relations between spaces are defined 

as spring forces that pulls related spaces together on 2-dimensional plane therefore it 

can only solve single level floor plans. It calculates in real-time where architect can 

step in and according to the changes model responds by satisfying relations and sizes. 

This makes it a responsive design. This method does not aim to find the best solution 

rather it aims to enable designs to emerge. 
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2.2. EVOLUTIONARY ALGORITHMS BASED LAYOUT PLANNING 

Architectural layout planning is non-deterministic polynomial-time hard (NP-hard) 

problem. Chance to find a solution decrease exponentially as the problem size increase 

therefore it not possible to solve by polynomial algorithm. Knowing the problem is 

computationally intractable implies that we may use heuristic approaches and that we 

also should aim to find nearly optimal solutions for which sometimes even 

approximation guaranties cannot be given. (Žerovnik, 2015) 

Evolutionary algorithms are classed under heuristic approaches There are various 

Evolutionary algorithms even though they share basic principle: of the environmental 

pressure affects the population makes survival of the fittest or in other words natural 

selection. This increases the overall fitness value of population.  

Based on the fitness values algorithm selects some of the individuals with better fitness 

values from the population to apply variant operators which are recombine and 

mutation to populate the next generation, rest of the individuals with weak fitness are 

die off. 

Recombining requires two or more individuals and those individuals are called the 

parents to create one or more new individuals in other words the children. 

Mutating is done to one or more individuals from the selected individuals to create 

new individuals. This operator helps to sustain variety of the population. 

All those selection and variant operators are stochastic. Even though it is a small 

chance to select less fit one to survive become parent it is possible due to being random 

Also this stochastic nature can be observed while recombining and mutation the 

parents which pieces of the parents are transferred to the child, which pieces of selected 

individual to mutate.  
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Figure 3 Genetic Algorithm Workflow 

 

This process run until required generation count is reached. Size of the population, the 

mutation probability and crossover rate affect population characteristics therefore they 

affect the performance of the algorithm. 

The premise of an evolutionary algorithm (to be further known as an EA) is quite 

simple given that you are familiar with the process of natural selection. An EA contains 

four overall steps: initialization, selection, genetic operators, and termination. These 

steps each correspond, roughly, to a particular facet of natural selection, and provide 

easy ways to modularize implementations of this algorithm category. Simply put, in 

an EA, fitter members will survive and proliferate, while unfit members will die off 

and not contribute to the gene pool of further generations, much like in natural 

selection. 

2.2.1. EVOARCH: AN EVOLUTIONARY ALGORITHM FOR 

ARCHITECTURAL LAYOUT DESIGN 

EvoArch utilizes evolutionary algorithm-based algorithm called genetic algorithm. 

The aim of the research is to automate the architectural design by offering efficient 

topological architectural organization based on the architectural building program. 

Author of the research states that current studies on automated architectural space 

planning which generates finalized layouts provide dull and predictable result and they 
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make architect to lose his or her freedom of creativity. As outcome of this critic 

framework of the study is developed in order to optimize locations of the spaces 

relative to each other topological level and let architect develop one of the evolved 

topologies and design spaces according to the topology. 

EvoArch represents the building program as graph that consists of nodes and edges. 

Nodes corresponds to the spaces while edges show adjacencies. Adjacency matrices 

are converted from graphs and run genetic algorithm on them.  

adjacency matrices hold data of nodes and edges, cells with 1 means edge will be 

created and, 0 means there is no edge between two nodes.   

 

Figure 4 Adjacency Matrix(right) and Graph Representation of Given Matrix(left) 

 

Algorithm can add edges or remove edges and swap labels of nodes to generate new 

graphs that represent architectural spatial topologies. 

EvoArch is similar to the other evolutionary algorithms in terms of the algorithm step 

to find optimal architectural spatial topologies and utilizes roulette wheel selection 
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scheme to select individual which reproduce or mutate. Reproduction of the individual 

is based on steady state reproduction scheme. 

The steady state scheme and generational reproduction are similar since the steady 

state bases on generational one. It does not converge as fast as generational one due to 

it only selects two parents to be crossed and produce two children, on the other hand 

on generational one selects larger percentage of the population to be crossed 

accordingly elitism value of the algorithm. The resulting children under goes to 

mutation operation before inserting to population therefore they replace old 

individuals. 

Fitness function of evaluated graph is based on the adjacency preference matrix (fig). 

It represents preferred adjacency between spaces on a scale of -2 to 2 in which -2 

means adjacency condition of spaces is not highly unwanted, -1 means it is unwanted, 

1 means it is wanted, 2 means it highly wanted. Algorithm tries to maximize the fitness 

value by multiplying the preferred adjacency value with  

 

Figure 5 Adjacency Preference Matrix 
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2.2.2. ARCHITECTURAL LAYOUT DESIGN OPTIMIZATION 

This study aims to solve single level architectural floor plan in two steps one is 

topology optimization by considering energy performance such as heating, cooling and 

lighting cost while considering space efficiency of the layout.  

 

 

Figure 6 Initial Organization by User (Top Left), 

Intermediate Feasible Iteration (Top Right), Completed Design (Bottom) 
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Designer provide initial layout organization then the first algorithm optimizes the 

topology and if generated one is feasible the second algorithm which optimize the 

geometry of layout where walls and doorways are placed. By not applying second 

algorithm for the infeasible solutions computational time reduces. 

Even though the results of this study provide some architectural layout design 

alternatives, but it depends on the initial layout provided by the designer therefore it 

can only help designer as a design exploration tool to find starting design ideas in the 

conceptual phase of architectural project. 

 



 14

Table 1 Literature Review 

Date Title Method Author Case Level Simulation 
2016 An evolutionary approach for 3D architectural space layout design 

exploration 
Evolutionary algorithm Ipek Gürsel Dino   Multi 

Level 
  

2016 Irregular architectural layout synthesis with graphical inputs Simulated annealing algorithm Hao Hua House with 7 required functional spaces Single 
Level 

  

2016 Evolutionary approach for spatialarchitecture layout design enhancedby an 
agent-based topologyfinding system 

Agent Model, Evolutionary 
algorithm 

Zifeng Guo, Biao Li Three-level house that includes 17rooms and 1 
staircase,  three-level office building that includes1 
staircase, 20 rooms, and 3 corridors 

Multi 
Level 

  

2015 Architectural Layout Evolution through Similarity-Based Evaluation Evolutionary algorithm N. Onur Sönmez       

2014 Performance Based Architectural Design Optimization: Automated 3d Space 
Layout Using Simulated Annealing 

Simulated annealing algorithm Hwang Yi, Yun Kyu Yi High-rise residential building Multi 
Level 

Yes 
(ECOTECT) 

2011 Evolution of Architectural Floor Plans Multi-objective genetic Algorithm Robert W. J. Flack, Brian J. Ross House Multi 
Level 

  

2011 Estimation of solar radiation for buildings with complex architectural layouts   Stoyanka M. Ivanova   Single 
Level 

Yes 
(ArchiPLAN) 

2010 Architectural layout planning using genetic algorithms Genetic Algorithm Manish K Thakur, Monika 
Kumari, Madhabananda Das 

Single flat having regular shaped spaces Single 
Level 

  

2010 Architectural Space Planning using Genetic Algorithms Genetic Algorithm Manisha Verma, Manish K Thakur single flat, arrangement of several flats on a single floor 
and extend the design for each floor and find out 
collective plan for a multi-storey apartment building 

Multi 
Level 

  

2009 EvoArch: An evolutionary algorithm for architectural layout design Evolutionary algorithm Samuel S.Y.Wong, Keith C.C.Chan House with 9 required functional spaces Single 
Level 

  

2009 Architectural room planning support system using methods of generating 
spatial layout plans and evolutionary multi-objective optimization 

Multi objective evolutionary 
algorithm 

Makoto Inoue, Hideyuki Takagi Floorplan with four spaces Single 
Level 

  

2009 Spatial Layout Game-An Interactive Tool for Spatial Layout of Architectural 
Design 

  CHIEH-JEN LIN   Single 
Level 

  

2007 Prototypes for Automated Architectural 3D-Layout           

2005 Architectural layout optimization using annealed neural network Simulated annealing algorithm I-Cheng Yeh Hospital building with 28 facilitie Single 
Level 

  

2005 Optimizing Architectural Layout Design via Mixed Integer Programming Mixed integer programming Keatruangkamala Kamol, 
Sinapiromsaran Krung  

  Single 
Level 

  

2004 Optimization of architectural layout by the improved genetic algorithm Genetic Algorithm Romualdas Baušys &Ina 
Pankrašovaite 

House with 8 required functional spaces Single 
Level 

  

2002 Architectural layout design optimization Evolutionary algorithm Jeremy Michalek, 
Ruchi Choudhary &Panos 
Papalambros 

Small apartment complex with three separate 
apartments 

Single 
Level 
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Date Title Method Author Case Level Simulation 
2002 Modeling architectural design objectives in physically based space planning Physically based modeling Scott A. Arvin, Donald H. House 9 spaces Single 

Level 
  

2002 Architectural Interpretation of Cellular Automata   Robert J. Krawczyk       

2001 A hybrid representation of architectural precedents           

1997 Evolving design genes in space ayout planning problems  Genetic Algorithm John S. Gero, Vladimir A. Kazakov  Office Layout, Hospital Layout Single 
Level 

  

1995 Space layout planning using an evolutionary approach Genetic Algorithm Jun H.Jo, John S.Gero   Single 
Level 

  

1992 Heuristic Generation of Layouts (HeGeL): Based on a Paradigm for Problem 
Structuring 

          

1995 A Genetic Search Approach to Space Layout Planning Multi-objective genetic Algorithm Jun H. Jo, John S. Gero   Single 
Level 

  

2015 A 3-Dimensional Architectural Layout Generation Procedure for 
Optimization Applications : DC-RVD 

Multi-objective constrained 
genetic algorithm 

Ioannis Chatzikonstantinou House with 7 required functional spaces Multi 
Level 

  

  Architectural Layout Algorithm Based on Genetic Algorithm Genetic Algorithm GAO Liping, LIU Hong        
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CHAPTER 3 

METHODOLOGY 

Spatial Explorer’s workflow consists of four main parts as data input, generative model, 

and objective function evaluation and optimization. 

 

Figure 7 Workflow of the Floor Layout Model 

In addition to first chart, relationship matrix of building functions --- according to 

relations between functions. Each relation gets a value in between -3 to 3. -3 means 

two building functions are related negatively in other words, they are expected to be 

far away from each other. 3 means they are related positively so they are expected to 

be closer to each other. 
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3.1. DATA INPUT 

Data input step consists of collecting building program related data through Microsoft 

Excel. Site related data is set in rhino 3d environment. 

3.1.1. BUILDING PROGRAM 

3.1.1.1. BUILDING PROGRAM CHART 

In this chart, user sets how many different building functions are present. This chart 

also has information of required floor area, being floor constrained, being double 

height space, being courtyard or core and whether it is possible to passthrough for each 

building function. 

 

Figure 8 Building Program Data in Microsoft Excel 

First column of the BPC contains the names of each building function as string also 

according to this data, count of building functions is calculated, and these values are 

sent to relations matrix chart. 

Second column of the BPC contains desired floor areas for each building function in 

integer values. 

Third column of BPC contains binary values for each building function, if the building 

function desired to be double height space true value is set, otherwise it is set to false. 

Fourth and fifth columns of BPC contain the color data of each building function, user 

set a color by changing the fill color of cell under Color Column, according to the fill 

color, RGB value is calculated and written to the RGB Value Column. 

Fifth column of BPC contains binary values for each building function, if the building 

function is constraint to the ground level, then true value is set, otherwise it is set to 

false. 

Sixth column of BPC contains data for each building function whether it is core or 

courtyard or normal space. If it functions as core, then it gets “1”. If it functions as 

courtyard then it gets “2”. 

Name Area Height Color RGB Value
Ground Level 

Access Daylight
Core(1)

Courtyard(2) Pass-Through
Core1 50 0 TRUE 1 1
Core2 50 0 TRUE 1 1
Courtyard 100 0 TRUE 2 1
chemotherapy DPU 220 0 TRUE FALSE 0 0
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Seventh column of BPC contains binary values for each building function, if the 

building function is pass through space, then true value is set, otherwise it is set to 

false. 

After filling the data in BPC, data except the headers are sent to a new sheet to be 
exported to Grasshopper. Data are sent to grasshopper as following figure. 

 

Figure 9 Portion of Building Program Data is Sent to Grasshopper 

3.1.1.2. RELATIONS MATRIX 

Relations matrices of building functions form according to relations between functions. 

Names of the elements of matrix in other words building functions are called from 

spacenames column of BPC. User fills the matrix with values between -3 to 3 

according to relations between building functions -3 means two building functions are 

related negatively in other words, they are expected to be far away from each other. 3 

means they are related positively so they are expected to be closer to each other. 

 

Figure 10 Relation Matrix in Microsoft Excel 

After filling the data in RMC, only relations representative integer values data are sent 

without headers to Grasshopper. Data are sent to grasshopper as following figure 

 

Figure 11 Raw Data Output to Grasshopper 

 

Core1 50 0 0 TRUE 0 1 1
Core2 50 0 0 TRUE 0 1 1
Courtyard 100 0 0 TRUE 0 2 1
chemotherapy DPU 220 0 0 TRUE FALSE 0 0

Core1 Core2 Courtyard
chemotherap
y DPU

Core1 0 3 3 1

Core2 3 0 -3 1

Courtyard 3 -3 0 3

chemotherap
y DPU 1 1 3

0 3 3 1

3 0 -3 1

3 -3 0 3

1 1 3 0
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3.1.2. SITE 

3.1.2.1. BUILDING PLOT BOUNDARY 

Building plot boundary’s geometrical data is set in rhino as curve. This geometry is 

not only limited by rectangular shapes, but it can be irregular shapes. 

3.1.2.2. SITE OBJECTS 

Site objects are modelled in rhino then imported in grasshopper as rhino referenced 

Boundary represented (BREP) geometries. 

3.1.2.3. WEATHER DATA 

Weather data of the site location is downloaded in .epw format to be opened by 

Ladybug GenCumulativeSkyMtx. 

3.2. IMPORTING BUILDING PROGRAM DATA INTO 

GRASSHOPPER 

Importing data from Microsoft Excel is carried out by “Bumblebee: Grashopper + 

Rhino”. It is an add-on that makes possible to exchange data between Microsoft Excel 

and Grasshopper. This add-on is chosen due to its capability to dynamically read excel 

data which makes whole process more user friendly. 

3.3. SPACEXPOLER 

Custom grasshopper component which is capable of visualization of building program 

data; generating architectural layouts; evaluating generated layouts in terms of 

compactness and proximity of the related spaces. The details of this custom 

grasshopper component will be explained in chapter 4 

3.4. SOLAR PERFORMANCE OF GENERATED SPATIAL 

ORGANIZATION 

The solar performance of generated spatial organization is evaluated in terms of solar 

radiational analysis by using Ladybug. This implementation 
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3.4.3. SOLAR RADIATION SIMULATION 

Solar radiation simulation is simple compared to more advanced simulation methods 

such as single or multi zone energy simulations but due to being less computationally 

heavy makes it more preferable one. Besides that, since the material decisions are not 

present utilizing energy simulation is not possible at this stage of design. 

3.4.4. SIMULATION TOOL 

Ladybug is an open source grasshopper plugin which is capable importing “.epw” 

weather files, visualization of weather data, analyze weather data and running 

simulations. There are many examples of utilization of ladybug and honeybee as a 

simulation tool for architectural studies. 

3.4.5. SIMULATION SETUP 

Simulation setup is a required step for running solar radiation simulation. During this 

stage test geometry and grid size plays a huge role how much computational time 

required for evaluating solar performance of each generated spatial organization.  

3.4.5.1. TEST GEOMETRY 

Only the outer surfaces of generated spatial organization geometry is set as a test 

geometry for the solar radiation analysis instead of all surfaces. Therefore, it only 

generates test points on outer surfaces and by having less test points it takes less time 

to evaluate.   

3.4.5.2. GRID SIZE 

Grid size is set to one meter to generate test points. More test points provides more 

defined results but also takes significant amount of time compared to less dense test 

point based simulation 

3.4.5.3. CONTEXT 

Previously modelled and referenced rhino objects which represent the site objects near 

building plot is as a context for the solar radiation analysis. Due to their casted shadows 

on building plot affects the outcome of the simulation results. 
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3.4.6. SIMULATION RESULTS 

Simulation gives the amount of collected solar radiation of each test point on test 

geometry in kWh and visualize the results in blue to red gradient where the surface 

with the lowest value gets blue color and the surface with the highest value gets red 

3.5. OPTIMIZATION TOOL 

Octopus plugin is a optimization plugin which is developed for Grasshopper and it is 

capable of finding cluster of near optimal solutions by two different genetic algorithms 

and Non dominated sorting. One of genetic algorithms is SPEA-2 and the other one is 

HypE. Also, there are many researches that utilize octopus for optimization of 

architectural problems. Parameters of genetic algorithms are defined as follows 

Table 2 Genetic Algorithm Parameters 

Genetic Algorithm HypE 

Mutation Operator HypE Mutation 

Elitism Rate 0.5 

Mutation Probability 0.3 

Mutation Rate 0.5 

Crossover Rate 0.8 

Population Size 100 
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3.6. GENERATIVE MODEL PARAMETERS 

Fixed parameters of generative model can be found table below. 

Table 3 Fixed Parameters of Generative Model 

Name Range Type 

Floor Count 2 Independent 

Voxel Count 158 Dependent                                           

(Voxel Size, Site Boundary, Floor Count) 

Voxel Size  Independent 

Selection Point Count 471 Dependent                                          

(Voxel Count, Site Boundary,Floor Count) 

Floor Selection           

(Ground Constrained) 

0 Dependent 

Area  Independent 

Voxel Required Per Space  Dependent (Area) 

 

Table 4 Optimization Driven Parameters 

Name Range Type 

Selection Point Location [0,Selection 

Point Count] 

Impendent 

Floor Selection [0, Floor Count]  
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Combinatorial hardness can be seen according to  the problem formulated for the given 

parameters in the equation down below 

C(SelPtCNT, SpaceCNT) =
SelPtCNT!

(SpaceCNT! (SelPtCNT − SpaceCNT)!) 

C(972,7) =
972!

(7! (972 − 7)!) 

C(972,7) = 1.277090615E + 17 

3.7. TIME SAVING MEASURES 

Spaceexplorer is capable of generating and evaluating a design alternative per second. 

While evaluation process makes the large portion of the computational load. Average 

computational time for solar radiation simulation is 750 ms whereas calculation 

shortest paths between spaces changes in between 100 ms and 200 ms.  

The four different approach has been tried to reduce the computational time by not 

evaluating computational heavy objective functions of invalid solutions which 

explained below.  

3.7.7. 3 OBJECTIVES DO NOT EVALUATE INVALID SOLUTIONS 

This approach takes in to account total solar radiation, relations weighted circulation 

and compactness. Any solution violates fragmentation constraint is not evaluated in 

terms of solar radiation and relations weighted circulation in order to reduce 

computational time. 

Table 5 Optimization Strategy 

Objective Functions Evaluate for 

invalid solutions 

Constraints 

Total Solar Radiation NO Fragmentation 

Relations Weighted Circulation NO  

Compactness YES  
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CHAPTER 4 

SPACEXPLORER 

4.1. DATA VISUALIZATION 

After importing the building program data to grasshopper, two custom grasshopper 

components create rhino grasshopper geometries in rhino viewport to visualize the 

data. 

4.1.1. BUILDING PROGRAM DATA VISUALIZATION 

This custom grasshopper component visualizes the building program data. User inputs 

Building Program data and relations data. According to the relation count, it colors the 

spheres that represents building functions. Red to blue gradient is chosen, max value 

set to be red. The size of the spheres represents areas of building functions. 

 

Figure 12 Building Program Visualization Pre-Optimization Process 
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4.1.2. RELATIONS DATA VISUALIZATION 

This custom grasshopper component visualizes the relations between selected building 

function and other building functions. User inputs Building Program data and relations 

data and selects building function by the help of grasshopper’s parameter input 

component named Control Knob. According to the relation value, it colors the 

connecting curve between building functions. Red to blue gradient is chosen, red 

corresponds to -3 and blue corresponds to 3. 

 

Figure 13 Relations Matrix Visualization Pre-Optimization Process 

4.2. CREATION OF 3D VOXELSPACE AND SELECTION POINTS 

Custom component is compiled to create voxels inside irregular building plot 

boundary and selection points. The inputs are site boundary, voxel count, floor height, 

floor count, voxel size and desired areas of building function. It outputs selection 

points, selection points count, voxel count, voxel centers, voxel sizes, floor count and 

floor height. 



27 

  

Figure 14 Building Plot Boundary (Green), Selection Points (Purple), Voxel Centers 
(Pink) 

4.2.1.  3D VOXELSPACE 

The component creates two dimensional grid with desired grid sizes then checks if 

cells of the newly created grid, inside or not. The cells are outside the boundary 

removed. Afterwards remainder cells are extruded to desired floor height and copied 

on z axis to reach desired floor count. At the end of these steps. 

4.2.2.  SELECTION POINTS 

Selection points creation procedure is as follows. Remained cells are joined then the 

outer edge of the surface is used to find outer edge nodes and put them in a data list. It 

finds nodes of each remained cell and creates second data list that contains many 

duplicate ones. The second data list is cleaned by removing duplicate points and the 

points that are on the outer edge.  

XY coordinate planes are placed on the remained points and 1 meter by 1 meter 

rectangles are created at the origin points of those XY coordinate planes. Corner points 

of the rectangles and the mid points of each edges of rectangle. These points are copied 

in Z direction floor count times and floor height apart. 
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4.3. FLOOR AND LOCATION SELECTION 

Selecting the location for building function among available selection points is a 

complex task due to selection point count is not fix value and dependent to voxel sizes, 

plot shape and size also the count of building functions is not a same for every case. 

Utilizing generic list item component and fixed number slider component of 

grasshopper is not possible therefore two c# component compiled to tackle this 

limitation. They are similar to each other in terms of how they interact with the number 

sliders to change bounds of the sliders and manage the data inside. 

4.3.3. FLOOR SELECTION COMPONENT 

Floor selection component instantiates named integer number slider or panel 

component with the data “0” inside for each building function rankly. If building 

function is constraint to ground level, component instantiates panel component with 

the data “0” inside. If it is free to locate itself in upper floors, component instantiates 

integer number slider component and sets its maximum accordingly floor count.  

After first instantiation it interacts with the number sliders that connects to its input to 

modify and set maximum and values of every slider, in case of floor count and ground 

level constraints are changed. 

Floor selection component outputs an integer value for each building function that 

shows which floor building floor will be. 

 

4.3.4. LOCATION SELECTION COMPONENT 

Location selection component instantiates named integer number slider for each 

building function rankly, maximum value of each slider is same and equal to the 

selection point count per floor. 

After first instantiation it interacts with the number sliders that connects to its input to 

modify and set maximum and values of every slider in case of voxel count therefore 

selection point count is changed. 

Location selection slider value and floor selection slider value combine in to one value 

as follows 
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𝑓𝑙𝑜𝑜𝑟𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛𝑠𝑙𝑖𝑑𝑒𝑟𝑉𝑎𝑙𝑢𝑒 ∗ 𝑝𝑜𝑖𝑛𝑡𝑐𝑜𝑢𝑛𝑡𝑝𝑒𝑟𝑓𝑙𝑜𝑜𝑟

+ 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛𝑠𝑙𝑖𝑑𝑒𝑟𝑉𝑎𝑙𝑢𝑒 

Then, component selects that specific selection point for each building function from 

array of selection points and outputs it. 

 

4.4. SPACEEXPLORER 

Space explorer component gets selection points and selects nearest available voxels 

accordingly their required voxel count to satisfy desired area for each building function. 

Not only that but also it calculates circulation between spaces and check if the 

combination of selected voxels are valid. In addition to that it visualizes constraint 

violations, relations between selected building function space and other spaces. 

4.4.5. SPACE ALLOCATION 

Space allocation process is a straightforward and sequentially process, it searches 

among available voxels for nearest to building function location selection point and 

selects some voxels to satisfy the desired area. Then those selected voxels removed 

from list to prevent overlapping spaces by not selected the ones already selected. This 

repeats for each building functions, therefore sort of building functions has a huge 

impact on success of this process for that reason first core and courtyard spaces locate 

themselves due to their location affect all floor levels then other spaces locates 

themselves by locating larger ones first. After this process first allocation finalize. 

4.4.6.  FRAGMENTATION AND VALID COMBINATION 

CONSTRAINT  

Being this straightforward it has some limitations such as this process can produces 

results with fragmented spaces due to selected voxel combination, therefore to identify 

and constrain those invalid combination. The following constraint applied. The 

constraint violation of each space is calculated according to the edge count of allocated 

voxel and allowed edge count of voxel count. For example, if the space need to 

allocates; two voxels, it needs to have six edges when voxels combined, three voxels, 

it needs to have eight edges when voxels combined. Any other number of edges means 
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that space allocated a combination of voxels that are apart therefore space is 

fragmented. 

 

Figure 15 Fragmentation Constraint Visualization with Valid and Invalid 
Combinations 

Not only this constraint prevents spaces to fragment but also it helps to avoid 

generating whole but oddly shaped spaces. 

4.4.7. DOUBLE HEIGHT SPACES 

After first allocation process finalize, voxels of building functions that can be double 

height space check if the above voxel is available if it is available it automatically 

merges in to building function and allocation process finalize. 

Due to how this procedure is constructed it is not certain that at the end of the process, 

all spaces desired to be double height end up double height. 
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Figure 16 Spatial Configuration with Double Height Spaces (Purple and Yellow) 

4.4.8. CLOSENESS CALCULATION 

After allocation process is finalized, distances between building functions are 

calculated. For this there are two different method for calculating the distances. One 

calculates Euclidian and the other one calculates rectilinear distances.  

4.4.8.1.  CALCULATING EUCLIDIAN DISTANCE 

Distances between spaces in relation both in terms of positive and negative calculated 

by using Euclidian calculation. Center points of related building function spaces 

connected by lines then lengths of those lines give distances. 

Calculating by using this method is limited therefore not all the spatial combinations 

that generated based on this method works but it takes less computing time than 

rectilinear one. 

4.4.8.2. CALCULATING RECTILINEAR DISTANCE 

Calculating distances between related spaces by using “Shortest Walk GH” algorithm. 

It utilizes A* search algorithm and much more certain then the calculating Euclidean 

distances, but it takes much more computing time. It gets bottom faces of merged 

spaces and find edge of the surfaces then explodes this edge curve in to smaller 

segment. After this process curve list has multiple duplicates. After cleaning this list 

by removing duplicates. After this step if there are spaces that can be part of circulation 
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and marked as pass-through space in Excel file, their inner curves are also inserted in 

to curve list. For the vertical circulation, vertical edges of building functions marked 

as core are extracted and inserted in to curve list.  

The curves inside this list are creates network of curves where “Shortest Walk” finds 

shortest paths using this curve network and Euclidean distances between spaces. The 

shortest paths between spaces exploded in small segments then duplicate segments are 

removed to calculate total rectilinear distances.  

4.4.9.  VISUALIZATION 

The Space explorer component can visualize some metrics of generated spatial 

organization such as constraint violation, related spaces of selected building function, 

and coloring finalized spatial organization with corresponding colors. 

4.4.9.1.  VISUALIZATION OF CONSTRAINT VIOLATIONS 

After allocation process some of the spaces fragment or shaped undesired 

combinations as discussed before, each building function space end up with a binary 

value if it violates the constraint or not. Those binary values are checked. if binary 

value is false in other words, building function space violates the constraint then the 

space is colored with red color in spatial organization diagram. If binary value is true 

in other words, building function space does not violate the constraint then the space 

is colored with blue color in spatial organization diagram. 

 

Figure 17 Constraint Violation Visualization, Layout Organization without Violation 
(Left), Layout Organization with Violation (Right) 
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4.4.9.2. VISUALIZATION OF RELATED SPACES 

Visualization of related spaces of selected building function is implemented to see how 

building functions that are in relation are distributed. According to the relation value 

of the selected building function space, it colors the connecting curve between building 

functions. Red to blue gradient is chosen, red corresponds to -3 and blue corresponds 

to 3. 

 

Figure 18 Visualization of Related Spaces (Left), Relations Between Spaces (Right) 

4.4.9.3. VISUALIZATION OF FINALIZED SPATIAL 

ORGANIZATION 

Visualization of finalized spatial organization process utilizes the colors user has 

choose for each building function in Excel during data input. RGB materials composed 

in grasshopper with values come from Excel data. Then those RGB materials are 

assigned to corresponding building function space in spatial organization diagram. 

 

Figure 19 Visualization of Spaces with Corresponding Colors
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CHAPTER 5 

CASES 

In this chapter, results of spaceexplorer are discussed in terms of its limitations and 

capabilities of providing different multi level architectural layout plans in two different 

cases. First one consists of seven spaces consist of various types in terms of 

relationship and geometry such as core, courtyard, single height space, double height 

and pass through space to present its results in depth. The second one consists of seven 

spaces with double cores. 

5.1. CASE1: SEVEN SPACES: CORE AND COURTYARD 

In this case following data is used in which spaces with different characteristics exists. 

Space named C1 is a core where vertical circulation happens. CY1 is courtyard in other 

words it is a void space in relation with other spaces. S1 is a double height space which 

is constraint to the ground level. S2 and S3 is single height spaces which can be in 

upper levels. S4 is double height space in addition to that circulation can passthrough 

it. S5 is double height space. 

 

Figure 20 Example Building Program for Seven Space Case 

  

Name Area Height Color RGB Value
Ground 

Level Access
Core(1)

Courtyard(2) Pass-Through

C1 100 0  54,  96,  146 TRUE 1 1

CY1 50 0  226,  107,  10 TRUE 2 1

S1 100 1  96,  73,  122 TRUE 0 0

S2 220 0  192,  0,  0 FALSE 0 0

S3 195 0  0,  213,  168 FALSE 0 0

S4 50 1  255,  241,  0 TRUE 0 1

S5 50 1  49,  134,  155 TRUE 0 0
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Relations between the seven spaces can be seen in the following figure. In this figure 

spaces with -3 value are not desired to be in close vicinity whereas spaces with +3 

value are desired to be close vicinity. 

 

Figure 21 Example Relation Matrix for Seven Space Case 

 

5.2. CASE2: SEVEN SPACES: DOUBLE CORE 

In this case following data is used in which spaces with different characteristics exists. 

Space named C1 and C2 are cores where vertical circulation happens. S1 is a double 

height space which is constraint to the ground level. S2 and S3 is single height spaces 

which can be in upper levels. S4 is double height space in addition to that circulation 

can passthrough it. S5 is double height space. 

 

Figure 22 Example Building Program for Seven Space Case 

C1 CY
1

S1 S2 S3 S4 S5

C1 0 3 3 1 2 3 -3

CY1 3 0 3 3 3 1 -3

S1 3 3 0 -3 3 -3 -3

S2 1 3 -3 0 1 1 -3

S3 2 3 3 1 0 1 -3

S4 3 1 -3 1 1 0 -3

S5 -3 -3 -3 -3 -3 -3 0

Name Area Height Color RGB Value
Ground 

Level Access
Core(1)

Courtyard(2) Pass-Through

C1 100 0  54,  96,  146 TRUE 1 1

C2 50 0  226,  107,  10 TRUE 1 1

S1 100 1  96,  73,  122 TRUE 0 0

S2 220 0  192,  0,  0 FALSE 0 0

S3 195 0  0,  213,  168 FALSE 0 0

S4 50 1  255,  241,  0 TRUE 0 1

S5 50 1  49,  134,  155 TRUE 0 0



37 

Relations between the seven spaces can be seen in the following figure. In this figure 

spaces with -3 value are not desired to be in close vicinity whereas spaces with +3 

value are desired to be close vicinity. 

 

Figure 23 Example Relations Matrix for Seven Space Case 

C1 C2 S1 S2 S3 S4 S5

C1 0 -3 3 -3 1 3 3

C2 -3 0 3 3 3 -2 -3

S1 3 3 0 -3 3 -3 -3

S2 -3 3 -3 1 1 -3

S3 1 3 3 1 0 1 -3

S4 3 -2 -3 1 1 0 -3

S5 3 -3 -3 -3 -3 -3 0
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CHAPTER 6 

RESULTS AND DISCUSSION 

In this chapter results of spaceexplorer are discussed in terms of its limitations and 

capabilities of providing different multi level architectural layout plans in two different 

cases. First one consists of seven spaces consist of various types in terms of 

relationship and geometry such as core, courtyard, single height space, double height 

and pass through space to present its results in depth. The second one consists of seven 

spaces with double cores. 

Results of each optimization approach compared against each others in terms of how 

much they reduce the objective functions after 30 generations. Changes of objective 

function values and constraint violation count can be seen  

6.1. CASE1: SEVEN SPACES: CORE AND COURTYARD 

 

Figure 24 Solution Cluster After 60 Generation with pareto-front (dark red), first 
front (red) and history (yellow) 
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After running the algorithm for 60 generation, in total 163 solutions are found 24 of 

these solutions are non dominated solutions. The cluster of solutions provide deisgn 

alternatives with different fitness function values. Range of the three fitness function 

values can be found in the following table.  

Table 6 Fitness Function Values of Selected Solutions from The Cluster 

Fitness Function Min Value Max Value 

RelationsWeightedCirculation -2936 3192 

Total Solar Radiation 219.29 392 

Floating Voxel Count 0 14 

 
Some example solutions are selected from the cluster of 163 and can be found in the 
following figure 
 

 

Figure 25 Samples from Solution Cluster 
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Figure 26 Visualization of Relations Between spaces of The Selected Solution  

 

In the following figure spaces are marked with green and the rest of the spaces marked 

accordingly the relation to the marked space, red means the space desired to be apart 

from the green space and if it gets blue color the space is desired to be near green space. 

Shades of the colors represents the scale of desire. As a result of the relations matrices 

its clearly shown that S5 is located apart from the main mass of the building since it is 

not desired to be in near vicinity of none of the spaces. The distances between spaces 
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shows also similar pattern as relation matrices of spaces to satisfy desired relations as 

shown in figure 25 

 

Figure 27 Relation Matrices(left), Distances Between Spaces of the Selected 
Solution(right) 

6.2. CASE2: SEVEN SPACES: DOUBLE CORE 

 

Figure 28 Solution Cluster After 80 Generation with pareto-front (dark red), first 
front (red) and history (yellow) 

After running the algorithm for 80 generation, in total 154 solutions are found 65 of 

these solutions are non dominated solutions. The cluster of solutions provide design 

alternatives with different fitness function values. Range of the three fitness function 

values can be found in the following table.  

C1 CY
1

S1 S2 S3 S4 S5 C1 CY
1

S1 S2 S3 S4 S5

C1 0 3 3 1 2 3 -3 C1 0 1 24 20 1 8 96
CY1 3 0 3 3 3 1 -3 CY1 1 0 32 28 1 1 112
S1 3 3 0 -3 3 -3 -3 S1 24 32 0 84 1 40 48
S2 1 3 -3 0 1 1 -3 S2 20 28 84 0 52 32 48
S3 2 3 3 1 0 1 -3 S3 1 1 1 36 0 8 72
S4 3 1 -3 1 1 0 -3 S4 8 1 40 32 8 0 120
S5 -3 -3 -3 -3 -3 -3 0 S5 96 112 48 48 72 120 0

Relation Matrices Distances Between Spaces
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Table 7 Fitness Function Values of Given Solution Cluster 

Fitness Function Min Value Max Value 

RelationsWeightedCirculation -3360 -70 

Total Solar Radiation 63138 86410 

Compactness 310 633 

 

Two design solution is selected and compared against each other in terms of 

compactness and relation weighted circulation value. Fitness function values of 

selected design alternatives as follows 

Table 8 Fitness Function Values of Selected Solutions from The Cluster 

Designation Relations 

Weighted 

Circulation 

Total Solar 

Radiation 

Compactness 

Alt1 -1652 86058 330 

Alt2 -222 66310 280 

 

  In the following figure spaces are marked with green and the rest of the spaces marked 

accordingly the relation to the marked space, red means the space desired to be apart 

from the green space and if it gets blue color the space is desired to be near green space. 

Shades of the colors represents the scale of desire. As a result of the relations matrix 

its clearly shown that S5 is located apart from the main mass of the building since it is 

not desired to be in near vicinity of none of the spaces. The distances between spaces 

shows also similar pattern as relation matrices of spaces to satisfy desired relations as 

shown in figure 30 and figure 32 
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Figure 29 Visualization of Relations Between spaces of The Selected Solution 

 

Figure 30 Relation Matrices(left), Distances Between Spaces of the Selected 
Solution(right) 

C1 C2 S1 S2 S3 S4 S5 C1 CY
1

S1 S2 S3 S4 S5

C1 0 -3 3 -3 1 3 3 C1 0 48 24 28 1 1 1
C2 -3 0 3 3 3 -2 -3 CY1 48 0 1 4 16 24 72
S1 3 3 0 -3 3 -3 -3 S1 24 1 0 4 1 24 40
S2 -3 3 -3 0 1 1 -3 S2 28 4 52 0 52 8 40
S3 1 3 3 1 0 1 -3 S3 1 16 1 36 0 1 16
S4 3 -2 -3 1 1 0 -3 S4 1 40 24 8 1 0 24
S5 3 -3 -3 -3 -3 -3 0 S5 1 72 40 40 16 24 0

Distances Between SpacesRelation Matrix
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Figure 31 Visualization of Relations Between spaces of The Selected Solution 

 

Figure 32 Relation Matrices(left), Distances Between Spaces of the Selected 
Solution(right) 

C1 C2 S1 S2 S3 S4 S5 C1 CY
1

S1 S2 S3 S4 S5

C1 0 -3 3 -3 1 3 3 C1 0 1 1 4 4 1 1
C2 -3 0 3 3 3 -2 -3 CY1 1 0 1 4 4 1 8
S1 3 3 0 -3 3 -3 -3 S1 1 1 0 12 4 1 16
S2 -3 3 -3 0 1 1 -3 S2 4 4 12 0 8 12 1
S3 1 3 3 1 0 1 -3 S3 4 4 20 8 0 20 16
S4 3 -2 -3 1 1 0 -3 S4 1 1 1 12 20 0 16
S5 3 -3 -3 -3 -3 -3 0 S5 1 8 16 1 16 16 0

Distances Between SpacesRelation Matrix
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In this chapter results of spaceexplorer are discussed in terms of its limitations and 

capabilities of providing different multi level architectural layout plans in two different 

cases. First one consists of seven spaces consist of various types in terms of 

relationship and geometry such as core, courtyard, single height space, double height 

and pass through space to present its results in depth. The second one consists of seven 

spaces with double cores. 

Results of each optimization approach compared against each others in terms of how 

much they reduce the objective functions after 30 generations. Changes of objective 

function values and constraint violation count can be seen  

6.3. CASE1: SEVEN SPACES: CORE AND COURTYARD 

 

Figure 33 Solution Cluster After 60 Generation with pareto-front (dark red), first 
front (red) and history (yellow) 

After running the algorithm for 60 generation, in total 163 solutions are found 24 of 

these solutions are non dominated solutions. The cluster of solutions provide deisgn 

alternatives with different fitness function values. Range of the three fitness function 

values can be found in the following table.  
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Table 9 Fitness Function Values of Selected Solutions from The Cluster 

Fitness Function Min Value Max Value 

RelationsWeightedCirculation -2936 3192 

Total Solar Radiation 219.29 392 

Floating Voxel Count 0 14 

 
Some example solutions are selected from the cluster of 163 and can be found in the 
following figure 
 

 

Figure 34 Samples from Solution Cluster 
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Figure 35 Visualization of Relations Between spaces of The Selected Solution  

 

In the following figure spaces are marked with green and the rest of the spaces marked 

accordingly the relation to the marked space, red means the space desired to be apart 

from the green space and if it gets blue color the space is desired to be near green space. 

Shades of the colors represents the scale of desire. As a result of the relations matrices 

its clearly shown that S5 is located apart from the main mass of the building since it is 

not desired to be in near vicinity of none of the spaces. The distances between spaces 
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shows also similar pattern as relation matrices of spaces to satisfy desired relations as 

shown in figure 36 

 

Figure 36 Relation Matrices(left), Distances Between Spaces of the Selected 
Solution(right) 

6.4. CASE2: SEVEN SPACES: DOUBLE CORE 

 

Figure 37 Solution Cluster After 80 Generation with pareto-front (dark red), first 
front (red) and history (yellow) 

After running the algorithm for 80 generation, in total 154 solutions are found 65 of 

these solutions are non dominated solutions. The cluster of solutions provide design 

alternatives with different fitness function values. Range of the three fitness function 

values can be found in the following table.  

C1 CY
1

S1 S2 S3 S4 S5 C1 CY
1

S1 S2 S3 S4 S5

C1 0 3 3 1 2 3 -3 C1 0 1 24 20 1 8 96
CY1 3 0 3 3 3 1 -3 CY1 1 0 32 28 1 1 112
S1 3 3 0 -3 3 -3 -3 S1 24 32 0 84 1 40 48
S2 1 3 -3 0 1 1 -3 S2 20 28 84 0 52 32 48
S3 2 3 3 1 0 1 -3 S3 1 1 1 36 0 8 72
S4 3 1 -3 1 1 0 -3 S4 8 1 40 32 8 0 120
S5 -3 -3 -3 -3 -3 -3 0 S5 96 112 48 48 72 120 0

Relation Matrices Distances Between Spaces



 50

Table 10 Fitness Function Values of Given Solution Cluster 

Fitness Function Min Value Max Value 

RelationsWeightedCirculation -3360 -70 

Total Solar Radiation 63138 86410 

Compactness 310 633 

 

Two design solution is selected and compared against each other in terms of 

compactness and relation weighted circulation value. Fitness function values of 

selected design alternatives as follows 

Table 11 Fitness Function Values of Selected Solutions from The Cluster 

Designation Relations 

Weighted 

Circulation 

Total Solar 

Radiation 

Compactness 

Alt1 -1652 86058 330 

Alt2 -222 66310 280 

 

  In the following figure spaces are marked with green and the rest of the spaces marked 

accordingly the relation to the marked space, red means the space desired to be apart 

from the green space and if it gets blue color the space is desired to be near green space. 

Shades of the colors represents the scale of desire. As a result of the relations matrix 

its clearly shown that S5 is located apart from the main mass of the building since it is 

not desired to be in near vicinity of none of the spaces. The distances between spaces 

shows also similar pattern as relation matrices of spaces to satisfy desired relations as 

shown in figure 39 and 41 
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Figure 38 Visualization of Relations Between spaces of The Selected Solution 

 

Figure 39 Relation Matrices(left), Distances Between Spaces of the Selected 
Solution(right) 

C1 C2 S1 S2 S3 S4 S5 C1 CY
1

S1 S2 S3 S4 S5

C1 0 -3 3 -3 1 3 3 C1 0 48 24 28 1 1 1
C2 -3 0 3 3 3 -2 -3 CY1 48 0 1 4 16 24 72
S1 3 3 0 -3 3 -3 -3 S1 24 1 0 4 1 24 40
S2 -3 3 -3 0 1 1 -3 S2 28 4 52 0 52 8 40
S3 1 3 3 1 0 1 -3 S3 1 16 1 36 0 1 16
S4 3 -2 -3 1 1 0 -3 S4 1 40 24 8 1 0 24
S5 3 -3 -3 -3 -3 -3 0 S5 1 72 40 40 16 24 0

Distances Between SpacesRelation Matrix
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Figure 40 Visualization of Relations Between spaces of The Selected Solution 

 

Figure 41 Relation Matrices(left), Distances Between Spaces of the Selected 
Solution(right) 

C1 C2 S1 S2 S3 S4 S5 C1 CY
1

S1 S2 S3 S4 S5

C1 0 -3 3 -3 1 3 3 C1 0 1 1 4 4 1 1
C2 -3 0 3 3 3 -2 -3 CY1 1 0 1 4 4 1 8
S1 3 3 0 -3 3 -3 -3 S1 1 1 0 12 4 1 16
S2 -3 3 -3 0 1 1 -3 S2 4 4 12 0 8 12 1
S3 1 3 3 1 0 1 -3 S3 4 4 20 8 0 20 16
S4 3 -2 -3 1 1 0 -3 S4 1 1 1 12 20 0 16
S5 3 -3 -3 -3 -3 -3 0 S5 1 8 16 1 16 16 0

Distances Between SpacesRelation Matrix
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In this chapter results of spaceexplorer are discussed in terms of its limitations and 

capabilities of providing different multi level architectural layout plans in two different 

cases. First one consists of seven spaces consist of various types in terms of 

relationship and geometry such as core, courtyard, single height space, double height 

and pass through space to present its results in depth. The second one consists of seven 

spaces with double cores. 

Results of each optimization approach compared against each others in terms of how 

much they reduce the objective functions after 30 generations. Changes of objective 

function values and constraint violation count can be seen  

6.5. CASE1: SEVEN SPACES: CORE AND COURTYARD 

 

Figure 42 Solution Cluster After 60 Generation with pareto-front (dark red), first 
front (red) and history (yellow) 

After running the algorithm for 60 generation, in total 163 solutions are found 24 of 

these solutions are non dominated solutions. The cluster of solutions provide deisgn 

alternatives with different fitness function values. Range of the three fitness function 

values can be found in the following table.  
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Table 12 Fitness Function Values of Selected Solutions from The Cluster 

Fitness Function Min Value Max Value 

RelationsWeightedCirculation -2936 3192 

Total Solar Radiation 219.29 392 

Floating Voxel Count 0 14 

 
Some example solutions are selected from the cluster of 163 and can be found in the 
following figure 
 

 

Figure 43 Samples from Solution Cluster 
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Figure 44 Visualization of Relations Between spaces of The Selected Solution  

 

In the following figure spaces are marked with green and the rest of the spaces marked 

accordingly the relation to the marked space, red means the space desired to be apart 

from the green space and if it gets blue color the space is desired to be near green space. 

Shades of the colors represents the scale of desire. As a result of the relations matrices 

its clearly shown that S5 is located apart from the main mass of the building since it is 

not desired to be in near vicinity of none of the spaces. The distances between spaces 
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shows also similar pattern as relation matrices of spaces to satisfy desired relations as 

shown in figure XX 

 

Figure 45 Relation Matrices(left), Distances Between Spaces of the Selected 
Solution(right) 

6.6. CASE2: SEVEN SPACES: DOUBLE CORE 

 

Figure 46 Solution Cluster After 80 Generation with pareto-front (dark red), first 
front (red) and history (yellow) 

After running the algorithm for 80 generation, in total 154 solutions are found 65 of 

these solutions are non dominated solutions. The cluster of solutions provide design 

alternatives with different fitness function values. Range of the three fitness function 

values can be found in the following table.  

C1 CY
1

S1 S2 S3 S4 S5 C1 CY
1

S1 S2 S3 S4 S5

C1 0 3 3 1 2 3 -3 C1 0 1 24 20 1 8 96
CY1 3 0 3 3 3 1 -3 CY1 1 0 32 28 1 1 112
S1 3 3 0 -3 3 -3 -3 S1 24 32 0 84 1 40 48
S2 1 3 -3 0 1 1 -3 S2 20 28 84 0 52 32 48
S3 2 3 3 1 0 1 -3 S3 1 1 1 36 0 8 72
S4 3 1 -3 1 1 0 -3 S4 8 1 40 32 8 0 120
S5 -3 -3 -3 -3 -3 -3 0 S5 96 112 48 48 72 120 0

Relation Matrices Distances Between Spaces
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Table 13 Fitness Function Values of Given Solution Cluster 

Fitness Function Min Value Max Value 

RelationsWeightedCirculation -3360 -70 

Total Solar Radiation 63138 86410 

Compactness 310 633 

 

Two design solution is selected and compared against each other in terms of 

compactness and relation weighted circulation value. Fitness function values of 

selected design alternatives as follows 

Table 14 Fitness Function Values of Selected Solutions from The Cluster 

Designation Relations 

Weighted 

Circulation 

Total Solar 

Radiation 

Compactness 

Alt1 -1652 86058 330 

Alt2 -222 66310 280 

 

  In the following figure spaces are marked with green and the rest of the spaces marked 

accordingly the relation to the marked space, red means the space desired to be apart 

from the green space and if it gets blue color the space is desired to be near green space. 

Shades of the colors represents the scale of desire. As a result of the relations matrix 

its clearly shown that S5 is located apart from the main mass of the building since it is 

not desired to be in near vicinity of none of the spaces. The distances between spaces 

shows also similar pattern as relation matrices of spaces to satisfy desired relations as 

shown in figure 48 and figure 50 
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Figure 47 Visualization of Relations Between spaces of The Selected Solution 

 

Figure 48 Relation Matrices(left), Distances Between Spaces of the Selected 
Solution(right) 

C1 C2 S1 S2 S3 S4 S5 C1 CY
1

S1 S2 S3 S4 S5

C1 0 -3 3 -3 1 3 3 C1 0 48 24 28 1 1 1
C2 -3 0 3 3 3 -2 -3 CY1 48 0 1 4 16 24 72
S1 3 3 0 -3 3 -3 -3 S1 24 1 0 4 1 24 40
S2 -3 3 -3 0 1 1 -3 S2 28 4 52 0 52 8 40
S3 1 3 3 1 0 1 -3 S3 1 16 1 36 0 1 16
S4 3 -2 -3 1 1 0 -3 S4 1 40 24 8 1 0 24
S5 3 -3 -3 -3 -3 -3 0 S5 1 72 40 40 16 24 0

Distances Between SpacesRelation Matrix
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Figure 49 Visualization of Relations Between spaces of The Selected Solution 

 

Figure 50 Relation Matrices(left), Distances Between Spaces of the Selected 
Solution(right)

C1 C2 S1 S2 S3 S4 S5 C1 CY
1

S1 S2 S3 S4 S5

C1 0 -3 3 -3 1 3 3 C1 0 1 1 4 4 1 1
C2 -3 0 3 3 3 -2 -3 CY1 1 0 1 4 4 1 8
S1 3 3 0 -3 3 -3 -3 S1 1 1 0 12 4 1 16
S2 -3 3 -3 0 1 1 -3 S2 4 4 12 0 8 12 1
S3 1 3 3 1 0 1 -3 S3 4 4 20 8 0 20 16
S4 3 -2 -3 1 1 0 -3 S4 1 1 1 12 20 0 16
S5 3 -3 -3 -3 -3 -3 0 S5 1 8 16 1 16 16 0

Distances Between SpacesRelation Matrix
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CHAPTER 7 

CONCLUSIONS AND FUTURE RESEARCH 

According to the result of this study it is shown that genetic algorithm based multi-

level architectural layout planning can be achieved in Rhino Grasshopper parametric 

design environment to guide architect to find design alternatives with in huge search 

space in early design phase which may be developed fully by using spaceexplorer.  

Due to complexity of layout design task it is not possible to configure an ultimate 

generative model for all architectural layout problems. Therefore, configuring 

generative model in modular fashion let the architect mix and match related modules 

and only configure the lacking modules instead of modeling whole model from scratch 

for specific architectural design problem. 

It is shown that space explorer is capable of solving multi level architectural layout 

design problems with irregular size for building functions, single or multiple cores and 

courtyard. 

Space explorer’s ability to generate and evaluate design alternatives in a reasonable 

time may let architect explore and consider design alternatives which may not be for 

seen with different spatial qualities. Such as producing separate building masses if the 

relations matrix requires  

While calculating distance between spaces, circulation-based metrics produce much 

more reasonable results than Euclidian based distances since circulation-based metric 

is calculated according to the possible circulation paths that spatial organization allows, 

rather than calculating direct theoretical distances between center points of spaces. 

Total solar gain objective helps to find optimum placement of spaces in building plot 

in relation to the site object that may cast shadow and affect the thermal performance 

of the building. 

Having double height spaces also let more sophisticated architectural configurations 

that may increase spatial quality. 
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For the further studies as mentioned other aspect of architectural spatial qualities can 

be objectified to be used as optimization goals. Site conditions can be defined such as 

topography, which also affects how building masses can be placed and create 

additional problems in terms of circulation, underground and semi underground spaces. 

It is possible to utilize this approach while making spatial organization of a mix use 

high rise building. By trying to minimize vertical circulation requirement by placing 

related spaces close vicinity not only that but also it can guide architect in terms sizing 

of circulation elements. 

In addition to that, this approach can also be applied for adaptive reuse of an existing 

building with small modifications to how voxel space is created by considering the 

existing structural system of the building while creating voxels and selection points. 

Therefore, generated adapted design has less conflicts with the existing conditions. 
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APPENDIX 1 – FLOOR SELECTION COMPONENT C# CODE 

 

using Rhino; 
using Rhino.Geometry; 
using Rhino.DocObjects; 
using Rhino.Collections; 
 
using GH_IO; 
using GH_IO.Serialization; 
using Grasshopper; 
using Grasshopper.Kernel; 
using Grasshopper.Kernel.Data; 
using Grasshopper.Kernel.Types; 
 
using System; 
using System.IO; 
using System.Xml; 
using System.Xml.Linq; 
using System.Linq; 
using System.Data; 
using System.Drawing; 
using System.Reflection; 
using System.Collections; 
using System.Windows.Forms; 
using System.Collections.Generic; 
using System.Runtime.InteropServices; 
 
 
 
/// <summary> 
/// This class will be instantiated on demand by the Script 
component. 
/// </summary> 
public class Script_Instance : GH_ScriptInstance 
{ 
#region Utility functions 
  /// <summary>Print a String to the [Out] Parameter of the Script 
component.</summary> 
  /// <param name="text">String to print.</param> 
  private void Print(string text) { /* Implementation hidden. */ } 
  /// <summary>Print a formatted String to the [Out] Parameter of 
the Script component.</summary> 
  /// <param name="format">String format.</param> 
  /// <param name="args">Formatting parameters.</param> 
  private void Print(string format, params object[] args) { /* 
Implementation hidden. */ } 
  /// <summary>Print useful information about an object instance to 
the [Out] Parameter of the Script component. </summary> 
  /// <param name="obj">Object instance to parse.</param> 
  private void Reflect(object obj) { /* Implementation hidden. */ } 
  /// <summary>Print the signatures of all the overloads of a 
specific method to the [Out] Parameter of the Script component. 
</summary> 
  /// <param name="obj">Object instance to parse.</param> 
  private void Reflect(object obj, string method_name) { /* 
Implementation hidden. */ } 
#endregion 
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#region Members 
  /// <summary>Gets the current Rhino document.</summary> 
  private readonly RhinoDoc RhinoDocument; 
  /// <summary>Gets the Grasshopper document that owns this 
script.</summary> 
  private readonly GH_Document GrasshopperDocument; 
  /// <summary>Gets the Grasshopper script component that owns this 
script.</summary> 
  private readonly IGH_Component Component; 
  /// <summary> 
  /// Gets the current iteration count. The first call to 
RunScript() is associated with Iteration==0. 
  /// Any subsequent call within the same solution will increment 
the Iteration count. 
  /// </summary> 
  private readonly int Iteration; 
#endregion 
 
  /// <summary> 
  /// This procedure contains the user code. Input parameters are 
provided as regular arguments, 
  /// Output parameters as ref arguments. You don't have to assign 
output parameters, 
  /// they will have a default value. 
  /// </summary> 
  private void RunScript(bool create, bool modify, int min, int max, 
int count, List<Point3d> data, List<int> floor, List<object> 
spacenames, List<int> x, ref object A, ref object B) 
  { 
 
    Random rnd = new Random(); 
 
    if(modify) 
    { var input = Component.Params.Input[8].Sources[0]; 
 
      List<System.Guid> guids = new List<System.Guid>(); 
      Grasshopper.Kernel.IGH_Param selSlidersInput = 
Component.Params.Input[8]; 
      IList<Grasshopper.Kernel.IGH_Param> sources = 
selSlidersInput.Sources; 
      bool isMySlidersEmpty = !sources.Any(); 
 
      if (!isMySlidersEmpty) { 
        foreach (var source in sources) 
        { 
          IGH_DocumentObject component = 
source.Attributes.GetTopLevel.DocObject; 
          Grasshopper.Kernel.Special.GH_NumberSlider mySlider = 
component as Grasshopper.Kernel.Special.GH_NumberSlider; 
          if (mySlider == null) 
            continue; 
          guids.Add(mySlider.InstanceGuid); 
        } 
      } 
      // Find all sliders. 
      List<Grasshopper.Kernel.Special.GH_NumberSlider> sliders = new 
List<Grasshopper.Kernel.Special.GH_NumberSlider>(); 
      foreach (IGH_DocumentObject docObject in 
GrasshopperDocument.Objects) 
      { 
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        Grasshopper.Kernel.Special.GH_NumberSlider slider = 
docObject as Grasshopper.Kernel.Special.GH_NumberSlider; 
        if (slider != null) 
        { 
          // check if the slider is in the selected list 
          if (!isMySlidersEmpty) 
          { 
            if (guids.Contains(slider.InstanceGuid)) 
sliders.Add(slider); 
          } 
          else 
          { 
            sliders.Add(slider); 
          } 
        } 
      } 
      if (sliders.Count == 0) 
      { 
        System.Windows.Forms.MessageBox.Show("No sliders could be 
found, create sliders first!", "erinc<3oykü", MessageBoxButtons.OK); 
        return; 
      } 
      foreach (Grasshopper.Kernel.Special.GH_NumberSlider slider in 
sliders) 
        slider.Slider.Minimum = min; 
 
 
 
      foreach (Grasshopper.Kernel.Special.GH_NumberSlider slider in 
sliders) 
        slider.Slider.Maximum = max; 
 
      foreach (Grasshopper.Kernel.Special.GH_NumberSlider slider in 
sliders) 
        slider.SetSliderValue(max); 
 
 
 
 
    } 
 
    if(create) 
    { 
      for (int i = 0; i < count; i++) 
      { 
 
        //instantiate  new slider 
        Grasshopper.Kernel.Special.GH_NumberSlider slid = new 
Grasshopper.Kernel.Special.GH_NumberSlider(); 
        slid.CreateAttributes(); //sets up default values, and makes 
sure your slider doesn't crash rhino 
 
        //customise slider (position, ranges etc) 
        int inputcount = this.Component.Params.Input[0].SourceCount; 
        slid.Attributes.Pivot = new PointF((float) 
this.Component.Attributes.DocObject.Attributes.Bounds.Left - 
slid.Attributes.Bounds.Width - 30, (float) 
this.Component.Params.Input[8].Attributes.Bounds.Y + 30 + i * 
30);//inputcount * 30); 
        slid.NickName = spacenames[i] + "_XY"; 
        slid.Slider.Maximum = max; 



 70

        slid.Slider.Minimum = min; 
        slid.Slider.DecimalPlaces = 0; 
        slid.SetSliderValue((decimal) min); 
 
        //Until now, the slider is a hypothetical object. 
        // This command makes it 'real' and adds it to the canvas. 
        GrasshopperDocument.AddObject(slid, false); 
 
        //Connect the new slider to this component 
        this.Component.Params.Input[8].AddSource(slid); 
      } 
    } 
 
    List <int> spaceindexlist = new List<int>(); 
 
    for (int i = 0; i < count; i++) 
    { 
 
 
      int spaceindex = x[i]; 
 
      spaceindexlist.Add(spaceindex); 
 
      // A = spaceindexlist; 
 
    } 
 
 
 
    List<Point3d> selectedpointslist = new List<Point3d>(); 
    int floorcount; 
 
    for (int i = 0;i < count; i++) 
    { 
      floorcount = floor[i]; 
      Point3d selectedpoints = data[spaceindexlist[i] + ((max + 1) * 
floorcount)]; 
      selectedpointslist.Add(selectedpoints); 
 
    } 
    // Point3d selectedpoints = data[23]; 
    // 
 
 
    A = selectedpointslist; 
    B = floor[2]; 
 
 
  } 
 
  // <Custom additional code>  
 
  // </Custom additional code>  
}
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APPENDIX 2 – LOCATION SELECTION COMPONENT C# CODE 

 
using Rhino; 
using Rhino.Geometry; 
using Rhino.DocObjects; 
using Rhino.Collections; 
 
using GH_IO; 
using GH_IO.Serialization; 
using Grasshopper; 
using Grasshopper.Kernel; 
using Grasshopper.Kernel.Data; 
using Grasshopper.Kernel.Types; 
 
using System; 
using System.IO; 
using System.Xml; 
using System.Xml.Linq; 
using System.Linq; 
using System.Data; 
using System.Drawing; 
using System.Reflection; 
using System.Collections; 
using System.Windows.Forms; 
using System.Collections.Generic; 
using System.Runtime.InteropServices; 
 
 
 
/// <summary> 
/// This class will be instantiated on demand by the Script 
component. 
/// </summary> 
public class Script_Instance : GH_ScriptInstance 
{ 
#region Utility functions 
  /// <summary>Print a String to the [Out] Parameter of the Script 
component.</summary> 
  /// <param name="text">String to print.</param> 
  private void Print(string text) { /* Implementation hidden. */ } 
  /// <summary>Print a formatted String to the [Out] Parameter of 
the Script component.</summary> 
  /// <param name="format">String format.</param> 
  /// <param name="args">Formatting parameters.</param> 
  private void Print(string format, params object[] args) { /* 
Implementation hidden. */ } 
  /// <summary>Print useful information about an object instance to 
the [Out] Parameter of the Script component. </summary> 
  /// <param name="obj">Object instance to parse.</param> 
  private void Reflect(object obj) { /* Implementation hidden. */ } 
  /// <summary>Print the signatures of all the overloads of a 
specific method to the [Out] Parameter of the Script component. 
</summary> 
  /// <param name="obj">Object instance to parse.</param> 
  private void Reflect(object obj, string method_name) { /* 
Implementation hidden. */ } 
#endregion 
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#region Members 
  /// <summary>Gets the current Rhino document.</summary> 
  private readonly RhinoDoc RhinoDocument; 
  /// <summary>Gets the Grasshopper document that owns this 
script.</summary> 
  private readonly GH_Document GrasshopperDocument; 
  /// <summary>Gets the Grasshopper script component that owns this 
script.</summary> 
  private readonly IGH_Component Component; 
  /// <summary> 
  /// Gets the current iteration count. The first call to 
RunScript() is associated with Iteration==0. 
  /// Any subsequent call within the same solution will increment 
the Iteration count. 
  /// </summary> 
  private readonly int Iteration; 
#endregion 
 
  /// <summary> 
  /// This procedure contains the user code. Input parameters are 
provided as regular arguments, 
  /// Output parameters as ref arguments. You don't have to assign 
output parameters, 
  /// they will have a default value. 
  /// </summary> 
  private void RunScript(bool create, bool modify, int min, int 
floorcount, int count, List<Point3d> data, List<string> spacenames, 
List<bool> groundconstraint, List<int> x, ref object A) 
  { 
 
    Random rnd = new Random(); 
 
    if(modify) 
    { var input = Component.Params.Input[5].Sources[0]; 
 
      List<System.Guid> guids = new List<System.Guid>(); 
      Grasshopper.Kernel.IGH_Param selSlidersInput = 
Component.Params.Input[5]; 
      IList<Grasshopper.Kernel.IGH_Param> sources = 
selSlidersInput.Sources; 
      bool isMySlidersEmpty = !sources.Any(); 
 
      if (!isMySlidersEmpty) { 
        foreach (var source in sources) 
        { 
          IGH_DocumentObject component = 
source.Attributes.GetTopLevel.DocObject; 
          Grasshopper.Kernel.Special.GH_NumberSlider mySlider = 
component as Grasshopper.Kernel.Special.GH_NumberSlider; 
          if (mySlider == null) 
            continue; 
          guids.Add(mySlider.InstanceGuid); 
        } 
      } 
      // Find all sliders. 
      List<Grasshopper.Kernel.Special.GH_NumberSlider> sliders = new 
List<Grasshopper.Kernel.Special.GH_NumberSlider>(); 
      foreach (IGH_DocumentObject docObject in 
GrasshopperDocument.Objects) 
      { 
        Grasshopper.Kernel.Special.GH_NumberSlider slider = 
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docObject as Grasshopper.Kernel.Special.GH_NumberSlider; 
        if (slider != null) 
        { 
          // check if the slider is in the selected list 
          if (!isMySlidersEmpty) 
          { 
            if (guids.Contains(slider.InstanceGuid)) 
sliders.Add(slider); 
          } 
          else 
          { 
            sliders.Add(slider); 
          } 
        } 
      } 
      if (sliders.Count == 0) 
      { 
        System.Windows.Forms.MessageBox.Show("No sliders could be 
found, create sliders first!", "erinc<3oykü", MessageBoxButtons.OK); 
        return; 
      } 
      foreach (Grasshopper.Kernel.Special.GH_NumberSlider slider in 
sliders) 
        slider.Slider.Minimum = min; 
 
 
 
      foreach (Grasshopper.Kernel.Special.GH_NumberSlider slider in 
sliders) 
        slider.Slider.Maximum = floorcount - 1; 
 
      foreach (Grasshopper.Kernel.Special.GH_NumberSlider slider in 
sliders) 
        slider.SetSliderValue(floorcount - 1); 
 
 
 
 
    } 
 
    if(create) 
    { 
      for (int i = 0; i < count; i++) 
      { 
 
        //instantiate  new slider 
 
 
        //customise slider (position, ranges etc) 
 
        //slid.Slider.GripWidth = 200; 
 
        if(groundconstraint[i]) 
        { 
          Grasshopper.Kernel.Special.GH_Panel pan = new 
Grasshopper.Kernel.Special.GH_Panel(); 
          pan.CreateAttributes(); 
          pan.Attributes.Pivot = new PointF((float) 
this.Component.Attributes.DocObject.Attributes.Bounds.Right + 
pan.Attributes.Bounds.Width / 4, (float) 
this.Component.Params.Input[7].Attributes.Bounds.Bottom + (i + 1) * 
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20);//inputcount * 30); 
          pan.NickName = spacenames[i] + "_Z"; 
          pan.SetUserText("0"); 
 
 
 
 
          //Grasshopper.Kernel.Parameters.Param_Number num = new 
Grasshopper.Kernel.Parameters.Param_Number(); 
          //num.CreateAttributes(); 
          //num.Attributes.Pivot = new PointF((float) 
this.Component.Attributes.DocObject.Attributes.Bounds.Left - 
num.Attributes.Bounds.Width, (float) 
this.Component.Params.Input[7].Attributes.Bounds.Bottom + (i + 1) * 
20);//inputcount * 30); 
          //num.NickName = "zemin"; 
          //num.Access.Equals(1); 
          GrasshopperDocument.AddObject(pan, false); 
          this.Component.Params.Input[8].AddSource(pan); 
 
 
        } 
 
        else{ 
          Grasshopper.Kernel.Special.GH_NumberSlider slid1 = new 
Grasshopper.Kernel.Special.GH_NumberSlider(); 
          slid1.CreateAttributes(); //sets up default values, and 
makes sure your slider doesn't crash rhino 
          int inputcount = 
this.Component.Params.Input[0].SourceCount; 
          slid1.NickName = spacenames[i] + "_Z"; 
          slid1.Attributes.Pivot = new PointF((float) 
this.Component.Attributes.DocObject.Attributes.Bounds.Left - 
slid1.Attributes.Bounds.Width, (float) 
this.Component.Params.Input[8].Attributes.Bounds.Bottom + (i + 1) * 
20);//inputcount * 30); 
 
          slid1.Slider.Maximum = floorcount - 1; 
          slid1.Slider.Minimum = min; 
          slid1.Slider.DecimalPlaces = 0; 
          slid1.SetSliderValue((decimal) floorcount - 1); 
          GrasshopperDocument.AddObject(slid1, false); 
          this.Component.Params.Input[8].AddSource(slid1); 
        } 
 
        //Until now, the slider is a hypothetical object. 
        // This command makes it 'real' and adds it to the canvas. 
        // GrasshopperDocument.AddObject(slid, false); 
 
 
        //Connect the new slider to this component 
        // this.Component.Params.Input[5].AddSource(slid); 
 
      } 
    } 
 
    List <int> spaceindexlist = new List<int>(); 
 
    for (int i = 0; i < count; i++) 
    { 
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      if(groundconstraint[i]) 
      { 
        spaceindexlist.Add(0); 
      } 
 
      else 
      { 
        int spaceindex = x[i]; 
 
        spaceindexlist.Add(spaceindex); 
      } 
 
      A = spaceindexlist; 
 
    } 
 
    // List<Point3d> selectedpointslist = new List<Point3d>(); 
    // for (int i = 0;i < count; i++) 
    // { 
    // Point3d selectedpoints = data[spaceindexlist[i]]; 
    // selectedpointslist.Add(selectedpoints); 
 
    // } 
    // Point3d selectedpoints = data[23]; 
    // 
 
 
    //  A = selectedpointslist; 
 
 
  } 
 
  // <Custom additional code>  
 
 

  // </Custom additional code> 




