

BORNOVA/IZMIR

AUGUST 2019

YAŞAR UNIVERSITY

GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

PhD THESIS

IMAGING AND EVALUATING THE MEMORY

ACCESS FOR MALWARE

ÇAĞATAY YÜCEL

THESIS ADVISOR: ASSOC.PROF. AHMET HASAN KOLTUKSUZ, Ph.D.

DOCTOR OF PHILOSOPHY

IN

COMPUTER ENGINEERING

PRESENTATION DATE: 29.08.2019

v

ABSTRACT

IMAGING AND EVALUATING THE MEMORY ACCESS FOR

MALWARE

YÜCEL, Çağatay

Ph.D., Computer Engineering

Advisor: Assoc. Prof. Ahmet Hasan Koltuksuz

August 2019

Malware analysis is a forensic process. After infection and the damage represented

itself with the full scale, then the analysis of the attack, the structure of the executable

and the aim of the malware can be discovered. These discoveries are converted into

analysis reports and malware signatures and shared among antivirus databases and

threat intelligence exchange platforms. This highly valuable information is then

utilized in the detection mechanisms in order to prevent further dissemination and

infections of malware. The types of analysis of the malware sample in this process can

be grouped into two categories: static analysis and dynamic analysis. In static analysis,

the executable file is reverted to the source code through disassemblers and reverse

engineering software and analyzed whereas dynamic analysis includes running the

sample in an isolated environment and analyzing its behavior. Both static and dynamic

analysis have limitations such as packing, obfuscation, dead code insertion, sandbox

detection, and anti-debugging techniques. Memory operations, on the other hand, are

not possible to hide by these limitations and inevitable for any software since the

inventions of the computational models. Therefore, in this research, memory

operations and access patterns for the malicious acts are examined and a contribution

of a novel approach for extracting of memory access images is presented. In addition

to extraction, methods of how these images can be used for detection and comparison

is introduced through an image comparison technique.

Key Words: Malware Analysis, Malware Imaging, Memory Analysis, Dynamical

Binary Analysis, Memory Operations Analysis.

vii

ÖZ

ZARARLI YAZILIMLAR İÇİN BELLEK ERİŞİMLERİNİN

GÖRÜNTÜLENMESİ VE DEĞERLENDİRİLMESİ

YÜCEL, Çağatay

Doktora Tezi, Bilgisayar Mühendisliği Bölümü

Danışman: Doç. Dr. Ahmet Hasan Koltuksuz

Ağustos 2019

 Kötü amaçlı yazılım analizi adli bilişsel bir süreçtir. Zararlı yazılım; başarılı

bir şekilde hedef bilgisayara bulaştıktan, amaçladığı zarar hedef bilgisayarda

oluştuktan ve yazılım kendini tam ölçekte gösterdikten sonra ancak çalıştırılabilir

dosyanın hedefi ve yapısı gerçek anlamda anlaşılabilir. Zararlı yazılım analizi ile elde

edilen bu bulgular kötü amaçlı yazılım imzalarına dönüştürülmekte; antivirüs

veritabanları ve tehdit istihbarat değişim platformları arasında paylaşılmaktadır. Bu

çok değerli bilgiler daha sonra kötü amaçlı yazılımların daha fazla yayılmasını

önlemek amacıyla saptama/önleme mekanizmalarında kullanılır. Bu süreçte kötü

amaçlı yazılım örneğinin analizi iki kategoriye ayrılır: statik analiz ve dinamik analiz.

Statik analizde çalıştırılabilir dosya, tersine mühendislik yazılımları aracılığıyla

kaynak koduna geri döndürülüp analiz edilirken, dinamik analiz, çalıştırılabilir

dosyanın dışarıya kapalı bir ortamda çalıştırılmasını ve davranışlarının analizini içerir.

Hem statik hem de dinamik analiz, paketleme, perdeleme, ölü kod ekleme, sanal

makinenin algılanması ve hata ayıklama önleme teknikleri gibi analiz önleme

teknikleriyle sınırlıdır. Öte yandan bellek üzerinden gerçekleştirilen analiz işlemleri

bu sınırlamalarla gizlenemez ve bilgisayar sistemlerinin modellerinin icadından bu

yana herhangi bir yazılım için kaçınılmazdır. Bu nedenle, bu araştırmada, kötü niyetli

eylemler için bellek işlemleri ve bellek erişim örüntüleri incelenmiş, bellek erişim

görüntülerinin çıkarılması için yeni bir yaklaşımın katkısı litaretüre sunulmuştur. Bu

çıkarma yöntemine ek olarak, bu görüntülerin tespiti ve karşılaştırma için nasıl

kullanılabileceği görüntü karşılaştırma tekniği ile ortaya konulmuştur.

Anahtar Kelimeler: Zararlı Yazılım Analizi, Zararlı Yazılım Görüntüleme, Bellek

Analizi, Dinamik Çalıştırılabilir Dosya Analizi, Bellek Operasyonları Analizi.

ix

ACKNOWLEDGEMENTS

First and foremost, I want to thank my advisor, Prof. Ahmet Hasan

KOLTUKSUZ, not only for the valuable insights and vision of his, also for the

opportunity, support, patience, and guidance he has given me since I was an

undergraduate. Without his vision this work wouldn’t have been written, and his

enlightenment on many aspects had kept me on the right track many times.

This work is a product of the Cyber Security Research Laboratory of Yaşar

University. For this lab to exist, Prof. Koltuksuz had put years of knowledge and his

significant expertise. I want to express my sincere gratitude to him once more; since

throughout my computer security research career in this lab, not a single day went by

without excitement.

My thesis committee guided me through all these years. Very special thanks

for my thesis committee members, Prof. Tuğkan TUĞLULAR and Prof. Mutlu

BEYAZIT, for their valuable insights, guidance, and support throughout my thesis.

Prof. Tuğlular has always shown me the angles and perspectives, which makes this

work better in many ways, many thanks to him. Prof. Beyazıt had supported me not

only on the scientific merits of this thesis, but also he had provided me lots of support

as well throughout the writing and completion of this thesis.

I would like to thank Jury Members, Prof. Şaban EREN and Prof. Murat Osman

ÜNALIR. With the guidance and help of Prof. Eren, this work had sit on solid grounds

scientifically and statistically. My sincere gratitude to Prof. Ünalır for his advice on

Data Analytics and Big Data.

I want to thank Prof. Timur KÖSE on his help on Classification and Machine

Learning subjects. Special thanks to Prof. Hüseyin HIŞIL for his moral support and

guidance for all these years. I would also like to thank my lab mates Mr. Anas M’uaz

Kademi and Mr Murat ÖDEMİŞ. I also would like to thank my roommate Dr. Gökhan

DEMİRKIRAN and Dr. Mustafa BÜYÜKKEÇECİ for their support on MATLAB.

Many thanks to my student Mr. Armağan YILDIRAK for his support in coding and

automation.

 Very special thanks to my beloved wife, Mrs Özgün YÜCEL for her loving

support and extraordinary patience for all of these years. And finally, last but by no

means least, I would like to thank my mother Ms Muazzez YÜCEL and my brother

Mr. Çağan Selçuk YÜCEL for supporting me spiritually and patiently throughout

writing of this thesis.

Çağatay Yücel

İzmir, 2019

xiii

TABLE OF CONTENTS

ABSTRACT .. v

ÖZ .. vii

ACKNOWLEDGEMENTS ... ix

TEXT OF OATH .. xi

TABLE OF CONTENTS ... xiii

LIST OF FIGURES ... xvii

LIST OF TABLES .. xix

ABBREVIATIONS ... xxi

 CHAPTER 1 INTRODUCTION .. 1

1.1. HISTORY OF MALWARE ... 3

1.2. PROBLEM DEFINITION, MOTIVATION, AND AIM... 7

1.2.1. OBFUSCATION .. 8

1.2.2. OLIGOMORPHIC MALWARE ... 8

1.2.3. POLYMORPHIC MALWARE ... 8

1.2.4. METAMORPHIC MALWARE .. 8

1.2.5. DEAD CODE INSERTION ... 9

1.2.6. ANTI-VM AND VIRTUAL INTERFACE DETECTION 9

1.2.7. ANTI-DEBUGGING ... 9

1.2.8. EXECUTION STALLING .. 9

1.2.9. LOGIC BOMBS – EXTENDED SLEEPS .. 10

1.2.10. NATIVE DLL CODING ... 10

1.2.11. PROCESS INJECTION ... 10

1.3. THESIS OUTLINE .. 13

 CHAPTER 2 BACKGROUND: MALWARE STRUCTURE, FAMILIES AND

CONSTRUCTION... 14

xiv

2.1. GENERAL LAYOUT OF PE FILES ... 14

2.2. STRUCTURE OF A VIRUS .. 16

2.3. STRUCTURE OF A WORM ... 20

2.4. STRUCTURE FOR A TROJAN .. 22

2.5. MALWARE FAMILIES .. 23

2.6. CONCLUSION ... 25

 CHAPTER 3 STATIC ANALYSIS OF MALWARE .. 27

3.1. STATIC ANALYSIS TECHNIQUES .. 27

3.2. LITERATURE ON STATIC MALWARE ANALYSIS AND MACHINE LEARNING

METHODS .. 34

3.3. TOOL SUPPORT FOR STATIC MALWARE ANALYSIS AND

VISUALIZATIONS... 37

3.4. A GRAPH DATABASE APPROACH FOR STATIC ANALYSIS 37

3.5. VISUALIZATIONS OF STATIC ANALYSIS .. 39

3.6. LIMITATIONS OF STATIC ANALYSIS ... 41

3.7. CONVOLUTIONAL NEURAL NETWORKS (CNN) ON STATIC IMAGES 45

3.8. CONCLUSION OF CHAPTER 3 .. 45

 CHAPTER 4 DYNAMIC ANALYSIS OF MALWARE ... 47

4.1. DYNAMIC ANALYSIS TECHNIQUES ... 47

4.2. THE LITERATURE OF DYNAMIC MALWARE ANALYSIS 49

4.3. TOOL SUPPORT FOR DYNAMIC MALWARE ANALYSIS. 53

4.4. A SHOWCASE OF DYNAMIC ANALYSIS WITH INTEL PIN TOOL. 54

4.5. CONCLUSION AND DISCUSSION OF CHAPTER 4. ... 59

 CHAPTER 5 MALWARE MEMORY FORENSICS ... 61

5.1. MEMORY FORENSICS .. 61

5.2. MALWARE OPERATIONS ON MEMORY .. 63

5.2.1. PACKING AND COMPRESSION .. 63

5.2.2. CODE INJECTION .. 65

5.2.3. DLL INJECTION AND REFLECTIVE DLL INJECTİON 66

5.2.4. PROCESS HOLLOWING .. 67

5.3. MANUAL ANALYSIS DETECTION OF MEMORY OPERATIONS 69

5.4. THE LITERATURE ON AUTOMATED MALWARE DETECTION WITH

MEMORY ANALYSIS ... 70

5.5. CONCLUSION ... 71

 CHAPTER 6 MALWARE MEMORY IMAGING AND EVALUATION 73

xv

6.1. MOTIVATION .. 73

6.2. INSTRUMENTING THE MEMORY OPERATIONS ... 75

6.2.1. MEMORY LAYOUT .. 75

6.2.2. FLOWCHART OF THE METHODOLOGY .. 76

6.2.3. ALGORITHM FOR THE PIN TOOL ... 78

6.2.4. A MEMORY IMAGE EXTRACTION EXAMPLE ... 79

6.3. GRAPH DATABASE MODEL FOR MEMORY ACCESS AND A SHOWCASE ... 80

6.4. STRUCTURED SIMILARITY INDEX MEASURE (SSIM) 83

6.5. CONCLUSION OF CHAPTER 6 .. 84

 CHAPTER 7 TESTS AND RESULTS... 85

7.1. SOFTWARE SUPPORT .. 85

7.2. MALWARE DATASET .. 85

7.3. MALWARE MEMORY PATTERNS ... 86

7.4. MALWARE FAMILIES .. 95

7.5. DISCUSSION .. 95

 CHAPTER 8 CONCLUSION .. 99

8.1. PROBLEM DEFINITION RE-VISITED .. 99

8.2. CONTRIBUTIONS .. 99

8.3. DISCUSSIONS AND CHALLENGES ... 100

8.4. FUTURE WORK ... 101

REFERENCES... 103

xvii

LIST OF FIGURES

Figure 1.1- Problem Tree of Signature Generation with Malware Analysis. 11

Figure 2.1. Structure of PE file Format (Pietrek, 2011). .. 15

Figure 2.2. (a) The virus inserts itself into another executable. (b) The virus alters the entry

point in the header. (c) New entry point jumps to decryptor of the static encrypted

virus body. (d) The decrypted virus body executes.. 19

Figure 2.3. A Flow Chart of a Computer Trojan. .. 22

Figure 3.1 CFG of Virus Xpaj.C with hash ... 32

Figure 3.2 Graph Database Output of a CFG of the Virus Xpaj.C with hash 33

Figure 3.3 Function-Imported and API Functions illustrated Together of the same executable

in Figure 2. ... 33

Figure 3.4 - The schema of the Graph Database. ... 37

Figure 3.5- Insertion process of the Static Analysis Results. ... 39

Figure 3.6 - The visualization of the malware sample with Sha1

33e8e894297e0f94c5df36cb4e5b3ee68662ceff (a) An overview of the malware (b)

Hovering on a function node (c) Hovering on an API node (d) Hovering on an edge

between functions. .. 40

Figure 3.7 - 3d model of the same sample in Figure 6... 41

Figure 3.8 The visualization of the malware samples with Sha1

0f241d84aa44034c924197d3bce94faa07811f35,

f53e68832af99cf553471cf87cc5da332c695659,

ada9efdf8dee612599377f6ade3e78e06d4069f4,

a9accc4fe6cd45b9a54c25a1447ed74cc61d5675 respectively, showing (a) dead

code insertion (b) encryption engine (c) obfuscation (d) packing. 43

Figure 4.1 Architecture of Pin Tool ... 53

Figure 4.2. Static Analysis Graphs of the samples. ... 55

Figure 4.3. Function Hit Traces(a), (b) and Function Traces (c), (d) of Ramnit v1 and v2

respectively. ... 56

Figure 4.4. DLL Addresses and Sequence graphs of the Samples. (a) Ramnit v1 (b) Ramnit

v2. ... 58

xviii

Figure 4.5. Instruction Pointer Traces of the Samples. (a) Ramnit v1 (b) Ramnit v2. 59

Figure 5.1. Illustration of packing of an executable. .. 65

Figure 5.2. Illustration of Code Injection. .. 66

Figure 5.3. Remote DLL Injection using LoadLibrary method. ... 67

Figure 5.4. Illustration of Process Hollowing. .. 69

Figure 6.1. Memory Layout of a PE Format. ... 76

Figure 6.2. Flowchart of the Proposed Methodology. ... 77

Figure 6.3. The Extracted image of one of the images from the Keygen Trojan family. The

md5 of the malware is 5fe2aebb2fe4abe503d297c318a37a62. 80

Figure 6.4. Memory Accesses of a Sample connected with Euclidean Distances. 81

Figure 6.5. Consecutive writes of the malicious sample. ... 82

Figure 6.6. The nodes with Euclidean distances are smaller than 100 are merged in this

example. An apparent clustering of the memory access can be seen from this

figure. .. 83

Figure 7.1 UPX patterns for the samples respectively, (a), (b) portable benign executables,

(c), (d), (e) Trojans from Keygen Family, (f) a trojan from Sub7 family. The

average similarity ratio for these patterns is 0.6724712. .. 88

Figure 7.2. Observed Packing and Self-decrypting patterns. ... 90

Figure 7.3. Process Injection Indications on Various Patterns. .. 91

Figure 7.4 Ransomware Patterns with the pairwise similarity average of 0.822487. 93

Figure 7.5. Viruses and Infectors Fingerprints. For the family samples of Rex Virus given

above, the similarity rate is 0.999994, and for the Autorun samples, the same ratio

is 0.947181. ... 94

Figure 7.6. Pairwise Similarity ratio average values for all the families in our dataset. 95

Figure 7.7 - Heatmap of the Malware Dataset Similarities. ... 97

xix

LIST OF TABLES

Table 3.1 Suspicious strings of W32.eternalrocks creating and installing an onion network

node in the Microsoft updates folder. ... 29

Table 3.2 Suspicious strings of W32.carberp extracted possible signature filenames.

(sha256:4297ad0f5bb72616337d88f14c07a6c6d6e0c93d2a9bb5eaa7e09219556aaf

db) .. 30

Table 3.3 Imports table extracted from the symbol table of malware Win32.Emotet.

(sha256:6393fe8dd4721190f240e22feeb769675b6194a70cabd5a415c2364686a908

9c) ... 30

Table 3.4. Comparison of Researches that utilizes Static Analysis Techniques. 36

Table 3.5 - Properties of the Nodes of the Graph Database. .. 38

Table 4.1. Comparison of Researches that utilizes Dynamic Analysis Techniques. 52

Table 4.2. Sha1 hashes and compilation information of the malware samples 54

Table 6.1. Linked list of memory images of the malware Keygen .. 79

Table 6.2. Sample Details for Example Analysis. ... 80

Table 7.1. The distribution of the malware samples in our dataset. 86

xxi

ABBREVIATIONS

API Application Programming Interface

APT Advanced Persistent Threat

ASLR Address Space Layout Randomization

BBS Bulletin Board System

CERT Cyber Emergency Response Team

CFG Control Flow Graph

CNN Convolutional Neural Networks

COFF Common Object File Format

DBI Dynamic Binary Instrumentation

DLL Dynamically Loaded Library

DTA Dynamic Taint Analysis

EPO Entry Point Obscuring

FN False Negative

FP False Positive

FTP File Transfer Protocol

IDPS Intrusion Detection Prevention System

IP Internet Protocol

JIT Just-in-Time

KNN K Nearest Neighbor

xxii

NOP No Operation

OOA Objective Oriented Association

PDF Portable Document File

PE Portable Executable

PEB Process Environment Block

RAM Random Access Memory

ReLU Rectified Linear Unit

RF Random Forest

SSIM Structured Similarity Index Measure

SVM Support Vector Machine

TAN Tree Augmented Naive Bayes

TF-IDF Term Frequency - Inverse Document Frequency

TN True Negative

TP True Positive

UPX Ultimate Packer for Executables

VAD Virtual Address Descriptor

VCL Virus Creation Laboratory

VM Virtual Machine

1

CHAPTER 1

INTRODUCTION

 A malware, short for malicious software is a software to accomplish harmful,

unwanted, and illegal tasks on a computer system. There are many types of malware

as of today; viruses, worms, trojans, spyware, ransomware, botnets and so on. Malware

analysis is the forensics process performed to reveal the aim, structure, characteristics,

damages, and impacts of malicious software.

 The ever-evolving race between malware developers and cybersecurity

professionals is an arms race. Just as in any other regular software development

community, malware developing community evolves as well. There are newly

developed techniques, new anti-detection mechanisms and zero-day vulnerabilities

that have come to light every day. These improvements lead to trends between malware

developers and these crafts are shared on the market (usually on the darknet, which is

the common name for the hidden parts of the Internet that is not routed with the general

routing algorithms). Malware also evolves through a process called anonymization:

when a new feature for developing malware is present, it is shared with this community

of malware developers for utilizations and modifications. Hence, every malware

developer modifies the code for their selves. Within days, the same feature is integrated

into several other malware or altered versions of the same malware are accustomed to

harm other computer systems and networks. Therefore, this process of anonymization

provides a large domain for a malware to evolve, whilst keeping the original version

unknown (Ding, Fung, & Charland, 2016).

 Until now, anti-malware techniques that are based on signature matching have

been successful in known types of malware. A signature is a predefined pattern of the

malicious software extracted by the analysis and scanning of the machine code of the

software (Gandotra, Bansal, & Sofat, 2014). There are two types of malware analysis:

Static Analysis and Dynamic Analysis. Static analysis has the means to analyze the

binary of the malware through reverse-engineering and disassembling. Specific strings

and patterns are extracted from the reversed code and shared as signatures of the

2

sample. In dynamic analysis, the executable is run in a preset secure environment

(called sandbox), and the behavior of the malicious is observed through debugging and

hooking on the network communications, system calls, memory accesses, and disk

operations.

 Malware developers have integrated several countermeasures to their software

to evade from static analysis and signature detection. These are mainly; obfuscation,

packing, metamorphism, polymorphism, and encryption techniques. Obfuscation is a

process applied to the source code so that it is not readable by humans. Several

methods are involved in the process of obfuscation; dead code insertion, instruction

substitution, register substitution, function reordering (Farhadi et al., 2015). Dead code

insertion is to insert code blocks and random instructions to the original code that are

never going to be executed. This technique leads to loss of performance of the malware;

however, as the source code is modified, the signature detection can be evaded.

Another technique is the instruction substitution. In this technique, the instructions that

can be used interchangeably such as jump instructions are replaced. Register

substitution similarly substitutes data registers for the alteration of the source code.

The signature and function reordering is, as the name suggests, reorders all the

subroutines in the executable (You & Yim, 2010). A packer malware archives and

combines one or more malicious files and codes to modify its code structure. In

addition to the packing operation, a packer malware deletes its import address tables

to complicate the analysis (Cheng et al., 2018). In 2006, it is reported that 92% of the

malware used similar techniques to evade detection (Wei, Zheng, & Ansari, 2008). A

metamorphic malware contains a mutation engine that alters itself in each execution

via the packing, encryption, and obfuscation techniques. Although the structure and

the instructions of the code is altered in every different version, the aim and

functionality of the malware stay the same. In a polymorphic virus, a part of the code

that does encryption/decryption is visible in every alteration. Therefore, polymorphic

viruses are easier to detect compared with the other techniques.

 Dynamic analysis is running the malicious sample in an isolated, secure

laboratory environment while examining the behavioral analysis on the sample.

Dynamic analysis eliminates the anti-analysis measures of the static analysis, as the

dynamic analysis strips the malware out of any encryption, packing, and obfuscation

by running it on a sandbox and monitoring its behaviors. Therefore, in dynamic

3

analysis, the malware is analyzed and caught red-handed during the execution, and any

obfuscation, encryption, or alternation to the original code, therefore, becomes

meaningless at this stage. This is the main advantage compared to static analysis (Shijo

& Salim, 2015). However, dynamic analysis has its limitations. Dynamic malware

analysis at its core is accomplished in two significant techniques: binary

instrumentation and debugging. The binary instrumentation is a method of fooling the

malware by hooking the Application Programming Interface (API) calls and providing

the necessary responses to these requests to the malware. These hooks are then logged

and converted into behavioral signatures under the assumption that malicious behavior

is generally accomplished through utilizing the underlying operating system’s API

calls. This assumption holds for many cases unless the functions from APIs are

natively coded in the malware. The second technique, debugging, suffers from

detection by the malware authors since the debugging generally slows down the

execution of the steps even though the debugging scheme for detection is automated.

 Moreover, Dynamic analysis involves memory analysis techniques such as taint

analysis (Korczynski & Yin, 2017) and memory image differentiating (Teller & Hayon,

2014). Taint analysis includes marking some specific memory locations and tracing

them along the execution and memory image differentiating is taking snapshots of the

malicious process memory on an interval basis or with predefined triggers and

contrasting those memory images for maliciousness. These techniques and the

literature have been explained in detail in the following chapters in this thesis.

1.1. History of Malware

 John Von Neumann gives the first formal definition of a virus in the title of “Self-

reproducing automata” (Neumann, 1969). This definition of this kinematic machine is

assumed to be the first mention of a machine that is designed to reproduce itself, given

the parts and the algorithm. The algorithm in this definition is written on an infinite

tape which is considered to be analogous to the definition of the memory. In this tape,

a set of instructions which define the definition of the machine itself are stored. These

instructions include (i) creating another machinery just as it is from the infinite number

of parts that constructs the machine. (ii) creating a tape for the new machine and

copying the contents of its tape. (iii) Attaching the new tape to the new machine and

thus completing the self-reproduction. This kinematic machine had some physical,

4

mechanical, and logical limitations such as the infinite number of parts and an infinite

tape. With the suggestions of Stanislaw Ulam, one of the simultaneous inventors of the

Cellular Automata (Neumann, 1969), Neumann shifts his kinematic model to a

Cellular Automata, where the self-reproducing automaton is defined as a Cellular

Automata with a finite number of states. An implementation of this work is realized in

1972 by an Austrian computer scientist named Veith Risak (Risak, 1972). In his work,

he implemented a fully functional model of a self-replication program on SIEMENS

4004/35 computer system (Miles, 1986).

 In 1971, a computer program named “creeper” which was the first version of a

worm invented by Bob Thomas was spreading in the DARPANET. This program is

not considered to be malicious at all although it copies itself through the network on

Tenex Operating Systems on DEC PDP-10 computers and runs its copies on the

memory space of another process. This self-propagation property in malicious

executables leads to the definition of a computer worm. The name “worm” is

originated from the science fiction novel by John Brunner named “Shockwave Rider”

in 1975 describes a universe of networked phones and a shutdown software

propagating in this universe (Brunner, 1984). Moreover, an early version of anti-virus,

Reaper, a worm removal program is then written to remove the Creeper worm from

the network and infected computers.

 The Creeper and Reaper software both having the properties of a worm and

chasing one another inspired A. K. Dewdney to design a game called Core War. The

name comes from the early designs of the memories with ferromagnetic cores. The

game includes writing two computer programs in a language called Redcode and

letting them hunt each other in the memory until one of them dies and erased from the

memory completely (Dewdney, 1989).

 The first of the significant attacks to the Internet was in 1988. A worm named

“Morris Worm” is created and released by the computer graduate from Berkeley,

Robert Tappan Morris. The worm was released from a terminal in Massachusetts

Institute of Technology laboratories to cover his tracks, and it hits approximately 6000

of computers where an estimate of 60.000 computers was connected to the Internet.

This outbreak then leads to the creation of the first Cyber Emergency Response Team

(CERT) (FBI, 2018).

5

 In 1984, Kenneth Thompson in his work of “Reflections on Trusting Trust”, he

has shown how to modify a compiler to insert a backdoor on any computer program

that contains “login” command (Thompson, 1984). A Trojan is a computer program

that installs itself as a legit program on the host system. In the Thompson’s version of

a Trojan in this case, the compiler was being the Trojan itself because of inserting a

backdoor to a source code even though the source code does not have any

vulnerabilities in it. The first Trojan being reported was a game named “ANIMAL”

which was a self-replicating program disguised as an animal guessing game. The game

asks users questions to find out which animal the user was thinking of while in the

background; it copies itself to all the folders of the UNIVAC system which was

designed as a folder shared operating system (Miles, 1986).

 A critical improvement, self-mutation in virus programming was present in 1990.

In 1990, as a part of an analysis project of virus families, a polymorphic virus family

called Chameleon was invented by Mark Washburn. A polymorphic virus is a

combination of self-reproduction and a mutation engine. The mutation engine is

provided by a cipher in this family, and this research has proven that many of the

antivirus programs were useless against such a mutation engine (Kaspersky, 2019).

 The malicious programs are designed to harm the host systems by inserting

backdoors, spreading and attaching itself into files and operating systems or copying

themselves through the network and do harm on file systems and disks of the

computers. Thereafter, a new type of malware had been released in the early 2000s,

the spyware. Although the name “spyware” was invented to mock the business

strategies of Microsoft in a Usenet post in 1996, the term then used to define hardware

designed for espionage purposes and after that, a software that installs without

permission, collects user-related information secretively and transfers the data without

the consent of the user. The term is used in a press release in 2000 by Gregor Freund,

the founder of Zone Labs for the first time and widely used since then (Avoine,

Oechslin, & Junod, 2007). The spyware that is being used for advertisement purposes

only is called Adware. As of today, this type of spyware can be found in many

freeware/shareware software bundles and installed automatically at the installation of

another software.

 There were many epidemics in malware history. The first malware that spreads

out of the laboratory it was written (in the wild) was the ELK Cloner. It was a virus

6

for the Apple computers written in 1982 by Rich Skrenta for Apple DOS systems, and

the spread was through the floppy disks. Not much long after, in 1989, a hacker with

a nickname of “Dark Avenger” in Sofia, Bulgaria, had written a virus for MS-DOS

systems that spread globally. It was corrupting up the storage space, directories and

files with random codes and the sentence “Eddie lives… Somewhere in time”. The

spread was so big that it was all around Europe, even USA and Australia (BitDefender,

2010).

 Around December 1989, the first sample of the ransomware has been produced

by Joseph L. Popp. It was before crypto coins and even the internet. The virus was

spread through a floppy drive, disguised as an educational floppy diskette about AIDS

virus. After the infection, the virus was encrypting all the files and folders of the

computer and asked the user to send money to a post office box in Panama.

 The first virus exchange platform was set up in Bulgaria at the beginning of the

1990s as a Bulletin-Board System (BBS). The virus database was open to anyone who

uploads a new virus code. This system had led the malware writers to evolve and

improve while letting the malware to be anonymized. In 1992, these contributions to

the virus databases had resulted in the creation of tools and engines that generates

viruses such as Self-mutating engine (MtE) and Virus Creation Laboratory (VCL).

These engines contain prearranged payloads and scripts, with which, even script

kiddies could generate new viruses by mixing the viruses in their databases.

 One example of utilization of these databases was the Loveletter virus and its 90

variants in the 2000s. The virus also is known by the name “ILOVEYOU” or “The

Love Bug”. The malicious code was spread through emails disguised as love letters.

Within ten days of the first outbreak, %15 of all networked computers were infected

with one of the samples of Loveletter (BitDefender, 2010).

Malicious worldwide spreads have continued from the 2000s to the present day.

Conficker (or Downadup) Worm was first of the greatest hits in malware industry,

affecting 15 million systems worldwide in 2009s (Touchette, 2015). The Rebirth of

the ransomware: Cryptolocker affected 250.000 machines in 2013. The ransomware

families have grown a lot since then with the Locky, CryptoWall, CryptoDefense,

WannaCry and several other ransomware.

7

 In 2007, the malware had evolved into a new type of attack mechanism with the

Stuxnet worm. Malware has been used as a weapon by the governments with the

pronouncements of cyberspace as one of the war domains. This very sophisticated

worm had been tailored for a specific device, and a persistent campaign is followed

until the attack had reached its goals. This type of attack is called an Advanced

Persistent Threat (APT). Similar aimed malware had been developed after the Stuxnet:

Flame, Duqu, Duqu2. All of them were tailored and weaponized malware aimed at a

specific purpose and used in a campaign of a government or groups.

 Malicious outbreaks and infections are continuing today with the malicious code

databases, state-sponsored actors, ransomware and botnet developers, code exchange

platforms on unsolicited and unmapped domains of the Internet such as Darknet or

Deep web. As our security measures evolve, the malware and malware families are

evolving at a fast pace as well.

1.2. Problem Definition, Motivation, and Aim

 The purpose of malware is to hide from the infected host system and conduct

malicious acts using the functions, resources, and communications of the system when

triggered. Therefore, malware developers intend to find new solutions of hiding from

anti-virus systems day to day and integrate these solutions and evolve their malware

into new versions by these solutions.

 A signature of malware is a unique set of bytes that shows the existence of the

malware in a file or on memory. This set of bytes can also be the hash or checksum

value of a specific portion of the code, a particular file that the malware drops to host

system, or malware-specific indicators on memory when the malware runs.

 There are also behavioral signatures that show if a malicious binary is present

such as special registry keys that the malware creates and alters or a connection to a

malicious IP address which is generally the command and control (C2) server. These

signatures can also be an operating system kernel call to allocate some memory to

unpack and decipher itself on memory, or an attempt to shut down some a property of

an operating system or anti-virus to continue executing without detection.

 There are many ways of malware to alter itself and evade from the static

signature detection.

8

1.2.1. Obfuscation

 Obfuscation is a defense mechanism for static analysis. It is a technique to

transform the malicious code into identical but differently represented new code. A

signature generated by a signature analysis consists of a piece of codes represented in

their byte form and/or relationships between jumps and calls. For such signatures,

instruction-level obfuscations such as using redundancies in instruction sets, dead

variable and code insertions, obfuscating the imports table are generally used to evade

signature detection.

1.2.2. Oligomorphic Malware

 An oligomorphic malware is a type of polymorphic malware where there is a

simple decryptor engine for changing the malicious code with encryption. Usually a

simple, low-cost and, with a small key size encryption mechanism is used to change

the byte code of the malware, and since the number of possible alterations of the code

is low because of the small key size, it is possible to detect such malware by generating

signatures for all possible keys.

1.2.3. Polymorphic Malware

 A polymorphic malware changes its shape at every infection and execution

through encryption. This type of malware contains a mutation engine inside its code.

The mutation engine generates not only a new key, a new decryption routine as for

every execution as well. Therefore, polymorphic malware with a moderately complex

mutation engine typically can reshape itself into around a billion of different versions

of itself.

1.2.4. Metamorphic Malware

 A metamorphic malware changes its shape and form at every infection and

execution just as a polymorphic malware but to do so, it utilizes code renaming, adding

random codes to itself, changing used registers in the code and, changing the level of

optimization provided by compilers.

9

1.2.5. Dead Code Insertion

 Inserting codes and functions that are never going to be executed by the code is

called Dead Code Insertion. This technique aims to evade detection by the signatures

generated from file hashes. By adding random extra functions and codes to its file, the

hash value of the executable changes and the detection is tried to be avoided.

There are also problems in signatures that are extracted from dynamic analysis as well.

1.2.6. Anti-Vm And Virtual Interface Detection

 Sandboxing techniques for dynamic analysis involve creating a safe and isolated

environment for running the executables. Due to their ease at maintenance and

reproduction, Virtual Machines are selected for this task. However, Virtual Machines

and their interfaces such as Virtual Network Cards uses particular keys in the registry

and also leave particular imprints on the memory on the operating system of the Virtual

Machine. Malware writers analyze these imprints and use them to avoid sandboxes by

adding extra countermeasures such as not decrypting itself if an indication of Virtual

Machine is present.

1.2.7. Anti-Debugging

 There are conventional techniques among malware writers for understanding

debugging. The interrupt INT 3 is commonly used for debuggers to break execution at

each step and hand the control to the debuggers and malware writers generally check

these interrupt flag to avoid being analyzed. Another common technique is to check

the time interval between two instructions. If the wait is longer than a regular fetch-

decode-execute cycle, the malware does not reveal itself.

1.2.8. Execution Stalling

 The typical approach for running an executable on a sandbox is to pre-set a

duration for the analysis. This time duration is generally set by the analyst to automate

the analysis of the malware. For another anti-sandboxing measure, the malware writers

add a sleep cycle at the beginning of their code, so that if it is a sandbox, the malicious

activities will not be caught by the sandbox as the analysis time would be over.

10

1.2.9. Logic Bombs – Extended Sleeps

 Similar to the execution stalling, malware writers set a random date and time to

execute their malicious goals and let the code stay dormant and inactive until this time

comes. The malware won’t be caught by the sandbox as the analysis time would be

over. Another stalling technique to add extended sleeps to avoid being analyzed in the

timespan of sandbox analysis.

1.2.10. Native DLL Coding

 Most behavioral and dynamic analysis and signature extraction techniques are

based on the API calls of the malware. The decision of maliciousness, the aim of the

executable, the countermeasures being taken by the malware writer and, the

communications are generally detected by hooking API calls by the sandbox Operating

System or a particular DLL that is injected into the binary that is being analyzed.

Malware writers try to avoid these signatures by writing their native DLLs and system

calls. However, coding native system calls require expertise on operating systems and

hardware, and therefore, it is not common among malware to be written in such an

expert-level way.

1.2.11. Process Injection

 As mentioned above, the malware is being monitored and analyzed by the API

and system calls. In sandboxing, the malicious code and the child processes that it

starts are monitored. However, some malware tries to inject itself into address space

of another process and run their API and system calls from another process that is not

being monitored. This technique, of course, requires to integrate a module of

exploitation into the malicious code.

 The summary of these evasion techniques, both static and dynamic, and their

countermeasures are given in a problem tree in Figure 1.1. In Figure 1.1, the techniques

are given in rounded rectangles, and the countermeasures are given as rectangles.

11

Figure 1.1- Problem Tree of Signature Generation with Malware Analysis.

12

 Moreover, memory forensics had provided several ways to generate signatures

from the address space of the executable from memory. This kind of signature

generation involves capturing the address space either by taking the snapshot of the

process address space between time intervals (Interval Process Dump in Figure 1.1.)

or taking the snapshot of the memory space by some triggers such as suspicious API

calls. Considering the case of saving the regular snapshots, the problems within this

technique are (a) it produces gigabytes of memory data to analyze (b) the malicious

actions can slip between two intervals. When utilizing system calls to trigger taking

snapshots of the memory, with this evolving structure of malware, it is hard to decide

which system and API calls are suspicious.

 In this thesis, the primary motivation is to propose a novel approach to imaging

the malware through the artifacts from the memory operations, and the primary aim is

by utilizing these artifacts and patterns, to identify malicious acts visually and test a

software rapidly for maliciousness.

 So far, in the literature, Deep Learning and Machine Learning approaches have

been explored. Several metrics are constructed utilizing Call Function Graphs, and API

calls from the static and dynamic analysis. However, to the best of our knowledge,

there are no comprehensive comparison and classification technique that uses memory

patterns has been suggested to the literature. This thesis aims to accomplish this by

extracting unique runtime patterns of malware from memory. In the purpose of

comparison, the patterns are converted into 3d images, and a very well-known pattern

and image comparison technique that is widely used in the literature has been

integrated into this research.

 The results of this work generated a framework for the visual detection of

maliciousness with memory patterns. These patterns are inserted into a graph database

for having a structural and queryable platform. The 3d images are stored along with

the memory data. This implementation and collection of patterns will act as a visual

aid and a fingerprint database.

13

1.3. Thesis Outline

This thesis is outlined as follows:

• Chapter 2 – Defines the modularity and anonymity of malware, introduces the

malware families, and explains the spread of malware.

• Chapter 3 – Presents the static analysis methods and the literature along with

results of static analysis with their graph database representations.

• Chapter 4 – Surveys the literature of dynamic analysis.

• Chapter 5 – Identifies the memory layout of an executable, presents the memory

forensics literature and explains the idea used in this thesis.

• Chapter 6 – Reveals the methodology, the algorithms for binary instrumentation,

and the extraction of the memory patterns.

• Chapter 7 – Shows the results of a malware dataset that is constructed for this

research.

• Chapter 8 – Concludes this thesis with novelties, results, and future work.

14

CHAPTER 2

BACKGROUND: MALWARE STRUCTURE, FAMILIES AND

CONSTRUCTION

This section contains the general background information on the structure of the

malware, how the malware is designed and executed and, how they exploit the general

structure of executables on target hosts. Because of the extensive usage of the Portable

Executable (PE) Format among malware authors, this information is exampled in this

format throughout this chapter.

 In a highly abstract view, the structure of different malware characteristics can

be captured. While the syntactic features can be altered through evasion techniques

that are mentioned in Chapter 1, structural properties are not likely to change as easy.

In general, malware is designed to exploit a vulnerability of either an operating system

component or a user application to accomplish its tasks. No matter how much the code

itself modified, the target and the exploitation methodology stay the same or very

similar for malware. This chapter aims to reveal these characteristics in a general view.

Along with the general algorithms and methodologies of malware types and the

modular malware are presented in this Chapter.

2.1. General Layout of PE Files

 The PE format is the general data structures for the binary files compiled for

Windows applications in 32 and 64 bits. The format is used both on-disk and in-

memory representations. Because of the memory address alignments and dynamically

loaded modules of a binary, the memory layout is slightly different from the on-disk

representation.

 The general format of a PE file is depicted in Figure 2. The explanation of each

part of the header is as follows:

15

Figure 2.1. Structure of PE file Format (Pietrek, 2011).

• MS-DOS Header: This header contains the file signature of executables MZ

(initials for Mark Zbikowski) and an MS-DOS stub program that is left in

this header for backward compatibility. This MS-DOS stub only prints out a

message that states that the program can not be run under MS-DOS.

• PE Header: It contains two separate headers: image file header structure or

namely the COFF header and image optional header as stated in Figure 2.

• COFF Header: This header has seven fields in its data structure:

o Machine: It holds the information about the architecture of the target

machine.

o NumberOfSections: it defines the number of sections in the PE file.

o TimeDateStamp: holds the compilation time and date.

o NumberOfSymbols: Number of symbols in the Symbol Table.

o SizeOfOptionalHeader: Size of the optional header in bytes.

16

o Characteristics: contains information about the PE file.

• Image Optional Header: This optional header contains the critical

information about the executable file such as entry point, alignment of the

executable file sections and memory sections, beginning of the code section,

DLL characteristics and so on.

• Section Headers defines the size, location, and permissions of each section

in the PE file.

• In section images, there are several sub sections that contains data (.data),

uninitialized data (.bss), code (.text), resources (.rsrc), import address

information (.idata) and export address information (.edata).

 Malware authors try to hide their mal-intended codes inside the parts of this data

structure using obfuscations, encryptions, polymorphism techniques, etc. The

techniques for understanding this data structure, and the sections without executing the

code, therefore has limitations that are emerged from this structure itself. These

limitations are discussed and shown through 2-dimensional and 3-dimensional models

in this thesis in Chapter 3 and Chapter 6. Following parts of this Chapter concentrates

on the clean and stripped versions of the types of malware.

2.2. Structure of a Virus

 The definition of a virus is a piece of malicious code that copies itself on other

files and executes a payload to accomplish its malicious tasks. Thus, there are at least

two parts for a virus, which are the infection code and the payload (Sharp, 2007).

General pseudocode for a virus is presented in Listing 1.

17

Listing 1 – Pseudocode for a schematic virus (Sharp, 2007).

Begin Procedure:

if 𝑠𝑝𝑟𝑒𝑎𝑑_𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 ≔ 𝒕𝒓𝒖𝒆:

 for 𝑣 ∈ 𝑣𝑖𝑐𝑡𝑖𝑚_𝑓𝑖𝑙𝑒𝑠 :

 if not_infected(v):

 begin_code, end_code = get_placement_for_virus(v);

 copy_virus(begin_code_ end_code, v);

 modify_to_execute_inserted_virus(begin_code, v);

 endif;

 endfor;

endif;

execute_payload();

start_execution_of_infected_program();

End Procedure

 The procedure of a virus starts with checking the replication environment first.

In the execution of this part, malicious code might check whether the machine is an

actual machine or a known sandbox, how much ram does the host machine has, how

many users are registered to this computer, any known signature of antivirus is present

and so on. These are the critical decisions of malware regarding its purpose and aim.

There are some types of malware produced explicitly for particular machines as a part

of highly advanced campaigns in Advanced Persistent Threats (APT) (Bencsáth, Pék,

Buttyán, & Félegyház, 2012; Falliere, Murchu, & Chien, 2011).

 The virus then lists the potential targets in the host system and starts iterating

them for replication. If the file is not already infected (as every copy of this abstract

virus will work concurrently), it finds the suitable section in the file for replication and

drops itself inside the file. During this environment, if the target file is an executable

(generally preferred to be such), the structure of the executable is exploited, and the

entry point of the target executable is altered for the replicated virus to start. After all

the potential files are infected, the payload is executed. Execution of the payload is the

part where actual harm is done besides the illegal replication process. In general, after

18

the job of the virus is completed, the infected program is also run so that the virus itself

lives undetected in the infected program.

 As an example of this process, the virus code with the name of

Virus.W32.Virut.ce is presented and analyzed in this part. The technical analysis of

this virus is done by Kaspersky Laboratories and presented as a web page in 2010

(Zakorzhevsky, 2010). This sample is known as one of the fastest spreading types of

a virus, and it utilizes many evading techniques such as polymorphism, obfuscation,

anti-debugging, and anti-virtual machine.

 As for the spreading conditions, this sample checks the tick count of the host

machine by the instruction rdtsc and GetTickCount() function of Windows API.

Getting the tick count between instructions are aimed for determining if the virus is

being debugged or analyzed in a sandbox environment. If the tick count holds the virus

continues with the spreading.

 This virus tries to replicate itself through a Portable Document File (PDF)

plugins vulnerabilities of browsers. The virus copies a download link line for

the .htm, .php, .asp files of the target computer. Also, it attaches itself to small

executable files such as keygens and crack programs.

 The virus uses Entry Point Obscuring (EPO) methods to run its payload. It inserts

itself to the address space of Explorer.exe (or services.exe, iexplorer.exe) and it alters

the entry point line in the optional header of the PE structure so that the payload

executes. This strategy is illustrated in Figure 2; it contains injection into another

process address space, obscuring the entry point, decrypting the original virus code

and execution.

 Afterward, it connects to a Command and Control address and retrieves further

instructions. Although this property is a Trojan-type malware property, these lines in-

between malware types are quite blurred as every malware author tries to improve their

code by adding several functions from other malware. This property is discussed in the

malware families part later in this Chapter.

19

Figure 2.2. (a) The virus inserts itself into another executable. (b) The virus alters

the entry point in the header. (c) New entry point jumps to decryptor of the static

encrypted virus body. (d) The decrypted virus body executes.

 The virus uses two engines for modifications while spreading to avoid signature-

based detections. While the first one changes the code itself, which decrypts the

malware, the other one decrypts the static body of the malware. More details on this

malware can be found in the reference article (Zakorzhevsky, 2010).

20

2.3. Structure of a Worm

 Similar to a virus, a worm also has the capability of reproduction on a network

environment. The anti-inspection and disguise techniques are similar, but a worm

generally contains other parts for finding new targets on the network and exploiting

some vulnerability to a new host. Therefore, all worms contain the three essential parts:

the sniffer, the propagator, and the payload. Since the infection is on a target network

rather than on a target host, there are some other managemental parts for a worm such

as life-cycle manager, remote control and update manager (Szor, 2005).

 A general worm strategy can be given in the following pseudocode in Listing 2.

Listing 2 – Pseudocode for a schematic worm (Sharp, 2007).

Begin Procedure:

if 𝑠𝑝𝑟𝑒𝑎𝑑_𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 ≔ 𝒕𝒓𝒖𝒆:

 victim_hosts_addresses = search_for_victims();

 for 𝑣 ∈ 𝑣𝑖𝑐𝑡𝑖𝑚_ℎ𝑜𝑠𝑡𝑠_𝑎𝑑𝑑𝑟𝑒𝑠𝑠𝑒𝑠 :

 if not_infected(v):

 fingerprint_network_host(v);

 transfer_code(v_address, port, payload);

 send_message_to_execute_on_host(v);

 endif;

 endfor;

endif;

execute_payload();

check_for_updates(); //optional

listen_remote_connections(); //optional

End Procedure

 Many versions of worms rely on human interactions to execute on the targeted

hosts. It can be an email attachment to view or a network connection to accept.

However, as the sophistication of malware improves, the vulnerabilities on target hosts

are utilized, and the need for the interaction is decreased for the propagation.

21

 New targets of the worm can be found in many ways depending on the

propagation strategy. The most common ones are as follows:

• Email Discovery: In this type of spreading strategy, the worm looks for contacts

and email addresses in human readable files and send itself to these addresses

through an email client.

• File Share Discovery: The worm searches for shared files, folders and drives and

locates itself to these drives or files for propagation.

• Communications Discovery: This strategy includes the worm sniffing the

network communications of the current host and trying to exploit

vulnerabilities of network communications.

• Network Discovery: This strategy needs the worm to have network scanning

modules to provide propagation. Some search strategies on a networked

environment for a worm would be random scanning, permutation scanning,

localized scanning, hit-list scanning, topological scanning, meta-server

scanning (Smith & Matrawy, 2008).

 As an example of this strategy, the analysis report for W32.Waledac worm is

used in this part (Tenebro, 2009). The worm Waledac is a multipurpose worm; it has

the functionalities of emailing, vulnerability exploiting, mining the host, acting as a

proxy and acting as a binary downloader.

 The first propagation strategy of this worm is social engineering, which involves

sending Christmas themed emails, phishing emails about the election campaigns of

2008-2009 and a popular news site. The second strategy is about the websites that host

this virus; these websites exploit browser vulnerabilities for the victims to download

the malware.

 This malware aims to create a botnet through spamming and steal FTP

information from the infected targets. After successfully running on a host, the emails

in user files (other than video and music files) are gathered and spamming continues.

As for the payload, the malware creates a node list of other bots in its neighborhood

and generates a fast-flux network structure for malware hosting nodes. The nodes act

as a proxy for the hosting websites to avoid detection.

22

2.4. Structure for a Trojan

 A trojan is engineered to resemble a useful, harmless program that gains control

of the target computer and do harm or steal data and network information. A trojan is

a software that aims to acquire full control of the target machine. There are many types

of Trojans such as a banking trojan, a fake anti-virus trojan, a distributed denial-of-

service trojan, a backdoor trojan, a ransom trojan, an info-stealer trojan, and so on.

Therefore, it is hard to derive a single procedure to cover all these aspects. However,

their code structure contains an installment procedure, a sign-on procedure, a privilege

escalation procedure, and a connection interface with the command and control (C&C).

These procedures are depicted in Figure 2.3.

Figure 2.3. A Flow Chart of a Computer Trojan.

 In the installment procedure, the malicious code is generally hidden inside

another executable, such as an online gaming client or a keygen. The fake cover

23

executable is designed to trick the user into installing to the target system. It can also

use social engineering techniques to install itself on the potential host.

 The sign-on procedure involves connecting to the master server for further

instructions. It generally includes getting general information on the host machine to

create a unique identification code for the host computer. An example of this procedure

is the banking Trojan.Dyre (Symantec, 2015). Trojan.Dyre aims to steal banking

credentials by directing the user of the host computer to fraud websites. It uses spam

email messages as an infection vector and installs itself through the

Downloader.Upatre which is used in many attack campaigns in computer crimes

history. After Trojan.Dyre has been installed on the target computer, it collects the

banking information from vulnerabilities of popular browsers, generates a campaign

Id, host Id and logs in to the C&C server to transfer the credentials.

 In the privilege escalation procedure, computer trojans use an operating system

vulnerability to gain root access on the host system. In the example of Trojan.Dyre, a

vulnerability in a database compatibility service program, is utilized to redirect root

privileges to run the malware component. As for the C&C procedure, either a full

remote control is provided, or an interface or an encapsulation module for the desired

commands are provided to the attacker.

2.5. Malware Families

 A group of malware that shares common properties and functionalities is called

malware families. There are many reasons for malware to grow into a family. The first

one is a process called anonymization. Anonymization is done by the malware authors

to hide the actual author of the malware; they upload their malware to a code-sharing

platform, and within hours, several new instances of the malware are created. Other

malware authors can get parts of it and turns into some other weapon for another attack,

or they can directly use it as happened in the case of the Downloader malware family

(Gupta, Kuppili, Akella, & Barford, 2009). Many trojans use one instance from the

Downloader family to spread their malware; and as mentioned in the previous part of

this chapter, a downloader may be configured to download several different malware.

In the case above, it was used for downloading several botnets so that once a computer

is part of a botnet, it is automatically becoming part of several others.

24

 Another reason the number of malware instances from the same sample increases

in the wild is the self-mutation engine written by the author. It is done to avoid

detection, especially from the signature detection mechanisms. In general, the tactics

involve adding several NOP operations to change the cryptographic hash values of

sections, and the number of NOP operations picked randomly, using interchangeable

assembly instructions such as conditional jumps that check the same condition,

pushing and popping values from the stack without the actual need or using

unnecessary swap operations between registers. Utilized these and similar approaches,

hundreds of different versions of malware can be encountered in the wild.

 There is an arms race between malware authors and computer security specialists.

As the anti-virus vendors find new solutions and detection techniques to stop malware,

the authors of the malware continue to patch their malware to survive in the wild. As

mentioned in the structure of trojans section, many new generation malware has

capabilities of updating themselves while the malware authors manage their lifespans

through controlled C&Cs. A recent study researching the questions about the lineage,

lifespan, and the number of generations of a malware family is presented in the work

Gupta et al. (Gupta et al., 2009). In this study, 669 different malware families identified

over 19 years of malicious code metadata. This research shows that some malware

families can survive for a few years using the patches and updates coming from the

malware authors community. Malware lineage is the problem of identifying the

versions of malware among samples which is another research field approaching the

same problem (Haq, Chica, Caballero, & Jha, 2018; Heinricher & Jilcott, 2013; Karim,

Walenstein, Lakhotia, & Parida, 2005; Walenstein & Lakhotia, 2007; Xin & Zhang,

2007).

 Contemporary attack vectors include several malware in their weaponization:

trojans are used for initial attacks, worms are included for their lateral movement and

rootkits are deployed for remaining the communication with the targeted systems. This

is another reason because of which a number of malware samples in a family increase.

Malware authors constructing several malware as a bundle and generating malware

families in a modular, compartmented fashion. These malwares are called modular

malware. In this type of malware, the attacks are staged into phases, and for every

phase, a different portion of the code harms the targeted system. A recent example of

such malware family is the botnet service named DiamondFox, which is a malware-

25

as-a-service platform. It has several modules and functionalities such as browser

password stealer, FTP stealer, DDoS, Email Grabber, RAM scraper, Spam Function,

CryptoWallet Stealer and so on. All of these functions are provided as a plugin to this

malware. It has a technical support staff; all of these features bundled as a fully-fledged

business service.

2.6. Conclusion

 In this chapter, the general structure of an executable and, the capabilities of

contemporary malware are investigated. It is intended to explain how the malware

evolves, how the malware families are constructed, and to what extent the capabilities

of malware authors reach. In the following chapters, the malware analysis mechanisms,

both static and dynamic, and a novel contribution of memory analysis is presented.

27

CHAPTER 3

STATIC ANALYSIS OF MALWARE

 This chapter is aimed at identifying the contemporary techniques of static binary

analysis along with the literature of malware detection and classification based on

these techniques. The limitations of static analysis and the evasion techniques from

static signature-based detection schemas are introduced in the previous chapters. In

this chapter, while a novel methodology of visualizing and fingerprinting of malware

is provided, also the limitations of static analysis are exampled and illustrated through

this developed methodology.

 Moreover, in this Chapter, an implementation of Convolutional Neural Networks

(CNN) to the static features of malware is provided. For this aim, first, a graph database

representation of malware is presented along with the feature extraction queries. This

representation is created by the extraction of static properties such as Call function

graphs and API calls; which are extracted with the reverse engineering tool RADARE,

and these results of the static analysis are inserted into a graph database which is

created by the Neo4j Graph Database application. Secondly, the implementation of a

CNN classifier is demonstrated on the images that are extracted from such data. For

demonstration, a collection of a recent malware sample space is analyzed. Finally, the

limits of static analysis are also discussed on the results of the implemented CNN.

3.1. Static Analysis Techniques

 Static analysis of malware is the collection of the techniques that are used on the

binary file without mapping on the memory and without executing. It provides a rapid

overall inspection of the binary file, reveals general information about how the binary

is compiled, gives insight about which API calls and libraries are used and, presents

the structure of the malicious file. It is also used for understanding if the binary has

been encrypted, obfuscated, and packed. In general, tools such as disassemblers, PE

file analyzers, and tools for searching for strings and binary patterns are utilized. The

section headers, mapped resources, symbolic links, and dynamically linked libraries

28

and modules are also available if no counter-measures are taken when compiling and

preparing the binary.

Extraction of Strings

 Hardcoded strings inside a binary can sometimes provide useful insight into the

file. By utilizing string search algorithms, the following indicators of a suspicious file

can be found.

• In the cases of creating malicious files on the targeted system, malware

can be matched using these hardcoded names extracted from the

executable.

• Most current malware searches for the processes with the names of

most common anti-virus vendors. Finding these names in the

executable files can be an indicator of maliciousness.

• When a malware tries to connect with the C&C, it is done by resolving

a domain name or trying to establish a connection with an IP address.

This information is generally hard-coded in the executable; therefore

searching for a string with the format of IP addresses or URLs are useful.

• When the malware drops another executable as a backdoor or a bot

service, it registers the file as a service and therefore inserts and alters

the registry keys. Because of this reason, searching for a registry key in

the strings can be identifying for malware as well.

 The string extraction can be used to quickly check for suspicious things in a

binary, although generally, it does not provide a clear picture. The string extraction of

malware is exampled in the following Table 3.1. and 3.2.

29

Table 3.1 Suspicious strings of W32.eternalrocks creating and installing

an onion network node in the Microsoft updates folder.

(Sha256:1ee894c0b91f3b2f836288c22ebeab44798f222f17c255f557af2260b8

c6a32d)

Ordinal

Virtual

Address

Physical

Address Size Length Section-Type-String

298

0x0000a79e

0x0040c59e 14 15 (.text) ascii 020430Project1

299

0x0000a7ad

0x0040c5ad 7 8 (.text) ascii 0-C000-

300

0x0000a81d

0x0040c61d 4 5 (.text) ascii orm1

301

0x0000a826

0x0040c626 5 6 (.text) ascii Form1

302

0x0000a839

0x0040c639 5 6 (.text) ascii Form1

303

0x0000a8b0

0x0040c6b0 4 5 (.text) ascii VB5!

304

0x0000a928

0x0040c728 8 9 (.text) ascii TorUnzip

305

0x0000a931

0x0040c731 8 9 (.text) ascii Project1

306

0x0000a93b

0x0040c73b 8 9 (.text) ascii Project1

308

0x0000aac8

0x0040c8c8 47 96

(.text) utf16le

*\AC:\Users\tmc\Documents\TorUnzip\Project1.vbp

309

0x0000ad70

0x0040cb70 8 9 (.text) ascii Project1

310

0x0000ad7c

0x0040cb7c 5 6 (.text) ascii Form1

312

0x0000adec

0x0040cbec 59 60

(.text) ascii C:\Program Files (x86)\Microsoft Visual

Studio\VB98\VB6.OLB

313

0x0000ae54

0x0040cc54 12 13 (.text) ascii WindowsUnZip

314

0x0000ae78

0x0040cc78 45 92

(.text) utf16le \Program Files\Microsoft

Updates\temp\tor.zip

315

0x0000aedc

0x0040ccdc 37 76 (.text) utf16le \Program Files\Microsoft Updates\temp

316

0x0000af60

0x0040cd60 24 50 (.text) utf16le ripting.FileSystemObject

30

Table 3.2 Suspicious strings of W32.carberp extracted possible signature

filenames.

(sha256:4297ad0f5bb72616337d88f14c07a6c6d6e0c93d2a9bb5eaa7e09219556aafdb)

Ordinal

Virtual

Address

Physical

Address Size Length Section-Type-String

6 0x00025d10 0x0044e110 12 26 (.rsrc) utf16le BuML8ymRlYnf

7 0x00025d32 0x0044e132 15 32 (.rsrc) utf16le FileDescription

8 0x00025d54 0x0044e154 10 22 (.rsrc) utf16le 0mJ8otjGpz

9 0x00025d72 0x0044e172 11 24 (.rsrc) utf16le FileVersion

10 0x00025d8c 0x0044e18c 12 26 (.rsrc) utf16le S3BF7IZ2ZLiF

11 0x00025dae 0x0044e1ae 12 26 (.rsrc) utf16le InternalName

12 0x00025dc8 0x0044e1c8 6 14 (.rsrc) utf16le KayU1y

13 0x00025dde 0x0044e1de 16 34 (.rsrc) utf16le OriginalFilename

14 0x00025e00 0x0044e200 9 20 (.rsrc) utf16le 7AhVva8ai

15 0x00025e1a 0x0044e21a 11 24 (.rsrc) utf16le ProductName

16 0x00025e34 0x0044e234 14 30 (.rsrc) utf16le 08ZkvxeDt8DPLE

17 0x00025e5a 0x0044e25a 14 30 (.rsrc) utf16le ProductVersion

18 0x00025e78 0x0044e278 7 16 (.rsrc) utf16le lxqR7dS

19 0x00025e90 0x0044e290 10 22 (.rsrc) utf16le arFileInfo

Symbols

 Symbols are the various entities about the executable such as variable names,

imported functions, function names, and objects. This information is stored in the

Symbol Table by the compiler. This table reveals useful information about the code

itself when the binary is not stripped. An example of symbols in a malicious binary is

demonstrated in Table 3.3.

Table 3.3 Imports table extracted from the symbol table of malware

Win32.Emotet.

(sha256:6393fe8dd4721190f240e22feeb769675b6194a70cabd5a415c2364686a9089c)

Ordinal

Virtual

Address

Physical

Address Type Size Name

107 0x00001134 0x00401134 FUNC 0 imp.MSVBVM60.DLL__CIatan

108 0x00001138 0x00401138 FUNC 0 imp.MSVBVM60.DLL___vbaStrMove

109 0x0000113c 0x0040113c FUNC 0 imp.MSVBVM60.DLL___vbaStrVarCopy

110 0x00001140 0x00401140 FUNC 0 imp.MSVBVM60.DLL___vbaR8IntI4

111 0x00001144 0x00401144 FUNC 0 imp.MSVBVM60.DLL__allmul

112 0x00001148 0x00401148 FUNC 0 imp.MSVBVM60.DLL__CItan

113 0x0000114c 0x0040114c FUNC 0 imp.MSVBVM60.DLL___vbaAryUnlock

31

114 0x00001150 0x00401150 FUNC 0 imp.MSVBVM60.DLL___vbaVarForNext

115 0x00001154 0x00401154 FUNC 0 imp.MSVBVM60.DLL__CIexp

116 0x00001158 0x00401158 FUNC 0 imp.MSVBVM60.DLL___vbaFreeObj

117 0x0000115c 0x0040115c FUNC 0 imp.MSVBVM60.DLL___vbaFreeStr

Control Flow Graphs (CFGs)

 Control Flow Graph is one of the most common used signatures in the malware

analysis community to identify the characteristics of a binary. It is a directed graph

where each node represents a block of code or a function, and each arrow represents

the flow of execution calls or jumps in the executable binary (Nguyen, Nguyen,

Nguyen, & Quan, 2018).

 To obtain these graphs, the complete disassembly of the binary should be

searched for cross-references. A cross-reference can be a call to a function, a jump in

the address space, a return function, and so on. An example of CFG is illustrated in

Figure 3.1. As can be seen in the example, the flow of execution is given for the sample

Virus.Xpaj.c with the given cryptographic hash function sha256 of

5cb89de13b078839bf8c56549de1fbf99a73dd8179d150d2cd975722e9f70e5. Each

node represents a function either from the code section (named as fcn symbols) or a

function from an imported library (named as dll_). Figure 3.1 contains only a portion

of the given sample as the whole CFG is too large to fit. In the second figure, another

version of CFG of this sample is provided. Figure 3.2 is an output of the graph database

that is constructed for this research.

32

Figure 3.1 CFG of Virus Xpaj.C with hash

95cb89de13b078839bf8c56549de1fbf99a73dd8179d150d2cd975722e9f70e5

These CFGs are converted into nodes and edges in a graph database to store

much more characteristics than a regular CFG such as degrees of a node, size of a

function, addresses of jumps, calls as well as the beginning of the function itself.

These are detailed later in this Chapter. The function calls within the code section of

the executable is given in Figure 3.2., Figure 3.3. contains the imported library and

API functions together in one graph.

33

Figure 3.2 Graph Database Output of a CFG of the Virus Xpaj.C with hash

95cb89de13b078839bf8c56549de1fbf99a73dd8179d150d2cd975722e9f70e5

Figure 3.3 Function-Imported and API Functions illustrated Together of the same

executable in Figure 2.

34

3.2. The literature on Static Malware Analysis and Machine Learning

Methods

 The problem of detecting new malicious executables is not new. Majority of the

computer security community have identified this problem as a classification problem

where the classes are benign and malicious. Another problem is that the community

tries to tackle is the problem of identifying the family of a malware which has been

reduced to a multi-class classification problem.

 With the success of data mining techniques on Intrusion Detection and

Prevention Systems (IDPs), the first research on malware detection is conducted in

2001 by Schultz et al. (Schultz, Eskin, Zadok, & Stolfo, 2001). This paper discusses

the significant limitations of signature detection methodology and joins the data

mining and machine learning approaches with the static analysis techniques that are

mainly based on DLL and imported functions extraction.

 Next, in the paper of (Christodorescu & Jha, 2003), a malicious code checking

algorithm based on CFGs is defined. This research mainly attacks the problem of

detection of obfuscated malware; a solution is generated with the annotation of

obfuscated CFGs, and an algorithm is developed for checking the maliciousness.

Another significant milestone in the literature is the introduction of graph isomorphism

and utilization of graph algorithms in similarity checking. In the work of Bruschi et

al., graph isomorphism is used for discovering self-mutating malware (Bruschi,

Martignoni, & Monga, 2006). The research is based on the intuition that self-mutating

malware will result in isomorphic malware, and by converting the malware into a

graph, similarities can be reported with the detection of isomorphisms.

 Machine learning algorithms are researched in the same year in the work of

Kolter and Maloof; the bytecodes of the executables are vectorized into fixed-size

vectors by n-gram methodology, and learning techniques are applied. Another research

on learning technique called Objective Oriented Association (OOA) which is based on

API sequences (Ye, Wang, Li, & Ye, 2007). This study generates rules based on the

API sequences extracted by the static analysis and reaches 93 percent of accuracy in

detecting the malicious executables.

 Extracting opcode sequences by disassembling malware is another technique

that is heavily used in the literature. This technique has been researched by learning

35

algorithms in the works of Santos et al. and Shabtai et al. (Santos, Brezo, Ugarte-

Pedrero, & Bringas, 2013; Shabtai, Moskovitch, Feher, Dolev, & Elovici, 2012). N-

grams, KNN, RF, SVM, Naïve Bayes, K2, Hill Climber, TAN learning algorithms are

used in these researches and 91, and the results of these studies have reached 95

percentages of accuracy.

 Static analysis methodologies are investigated and tried with Deep Learning

methodologies as well. Convolutional Neural Networks (CNN) which is the state-of-

the-art Deep Learning technique on images and matrices have been investigated with

malware classification in the works of (Karbab, Debbabi, Derhab, & Mouheb, 2018;

Ni, Qian, & Zhang, 2018). In the paper Maldozer, API sequences extracted from

mobile malware are converted into matrices and fed into a CNN classifier; resulted in

98 percent of accuracy. Another work exploiting CNN’s success in image

classification; converting the malware hashes into images and researched the CNN on

these images had resulted in approximately 99 percentages of accuracy.

 Classifying and analyzing the malicious codes based on the data from the static

analysis are summarized in Table 3.4. Some of the research is attacking the problem

of detection while some focuses on obfuscation, polymorphism, and self-mutation.

The aims of the studies and the features that have been used are given in the Features

column. The technique that has been invented or incorporated is provided in the Used

Technique column, and the results in the formats of classification accuracy (accuracy),

false positive (FP) and false-negative (FN) rates are given in the last column.

 In this thesis, a version of CNN is applied on Function-API call graphs to show

the applicability of our graph database approach with deep learning. Function Call

Graphs reveal an essential characteristic for the code to be analyzed, whether it is

malicious or not. This research also integrates this vital data into account as the

branching in the execution provides a backbone structure for the malicious code.

Another significant characteristic is the API calls of the malicious code as it reveals

the intention of the analyzed code by showing the interaction with the underlying

operating system. Although the main focus on this thesis is extracting characteristics

from malware analysis instead of the exploitation of deep learning on these results; the

applicability of these images on a Deep Learning methodology is discussed in this

Chapter.

36

Table 3.4. Comparison of Researches that utilizes Static Analysis Techniques.

Reference Work Dataset Features Used Technique Success Rate /Classification Accuracy

(Schultz et al., 2001) 3,265 malware and 1,001

benign programs.

Function Calls, DLLs, Opcodes,

Strings

Naïve Bayes, Ripper, Multi-Naïve

Bayes

97,11% Naïve Bayes Accuracy on Strings

SAFE (Christodorescu &

Jha, 2003)

10 Obfuscated Viruses Annotated Function Call Graphs

of Obfuscated Executables

Malicious Code Checking Algorithm FN and FP rates are 0

(Bruschi et al., 2006) 115 samples of Metaphor

Virus

Detection of Self-mutated

malware on Control Flow

Graphs.

Graph Isomorphism 70% of equivalent viruses and %100 of different

software.

(Kolter & Maloof, 2006) 1,971 benign and 1,651

malicious executables

n-grams Naive Bayes, decision trees, SVM, and

boosting

TP 98%., FP 0.05%

IMDS (Ye et al., 2007) 12214 benign and 17366

malicious samples

Objective Oriented Association

(OOA)

Rule Mining Based 93% Accuracy

(Shabtai et al., 2012) 7,688 malicious and

22,735benign files.

Opcode Sequences represented

as n-grams

n-grams 91% Accuracy with DF Classifier with n=2

(Santos et al., 2013) 17,000 malware, 585

malware families

Opcode Sequences KNN, RF, SVM, Naïve Bayes, K2, Hill

Climber, TAN

95.90% Accuracy with SVM

Maldozer(Karbab et al.,

2018)

Malgenome, Drebin and

Maldozer set of 33k

malicious apps.

API Call Sequences Convolutional Neural Networks (CNN) Over 98% Accuracy on datasets and Over 99% on

Family Classification.

MCSC(Ni et al., 2018) 10,805 samples Hash results are converted into

visual images.

Hashing and CNN 99.260% Accuracy

37

3.3. Tool support for Static Malware Analysis and Visualizations.

The construction of the graph database is accomplished through the reverse

engineering framework Radare2 version 2.3.0 (Sergi Alvarez, 2006). All the functions

are analyzed, and all the calls and imports are retrieved by automation of this tool

written in Python scripts given by the open-source project R2graphity

(GDATAAdvancedAnalytics, 2016). The extracted information inserted into the graph

database instance created on the engine of Neo4j version 3.5.6. The 2d and 3d

visualizations are designed with the 3d-force JavaScript library (Asturiano, n.d.).

3.4. A Graph Database approach for Static Analysis

 The static analysis of the malware constructs the graph database. This analysis

includes the complete disassembling and matching the calls that are made to the code

section of the malware. All the functions are analyzed to the parameters of address,

size, API references, in-degrees (how many times the function is called) and out-

degrees (how many times the functions call another function). These properties then

converted into the queries of the graph database. API references are also inserted as

nodes in this graph database with the address of the calling instruction stored as

relationships. General schema of the database is in Figure 3.4, and information on

nodes and relationships can be found in the following Table 3.5.

Figure 3.4 - The schema of the Graph Database.

38

Table 3.5 - Properties of the Nodes of the Graph Database.

Node/Relationship Label Properties

SAMPLE Sha1 hash, File Name, Section Count,

Binary Type, Compilation Date, File

Size, Section Entry Point, Original File

Name, Entry Point Address.

FUNCTION In degree, Out degree, Number of API

calls, Function Size, Call Type, Function

Type.

API API name

CALLS Distance, Calling Instructions Address

IMPORTS Calling Instructions Address

STARTS <none>

 Some of these properties play a significant role in the visualization process,

which is discussed in the Visualizations part of this Chapter. The distance in functions

is calculated as the absolute value difference in addresses between functions. The

addresses of calling instructions are the relative addresses of the instruction that made

the API or the function call and not presented as an offset notation. The function size

is the size of the function in the code segment, the entry point is the entry point

provided by the static analysis, and in many cases, it is an obfuscated value showing

some function other than actual main function of the malware.

 The process of inserting static analysis results is quite straightforward. First, the

static analysis of the sample is done, and a SAMPLE node is created. All the functions

of the sample are extracted and inserted as FUNCTION nodes. Thereafter, all the

cross-references captured by the static analysis are iterated and matched with API

names and functions and inserted as API nodes. The flowchart of the construction of

the graph database is illustrated in Figure 3.5 below.

39

Figure 3.5- Insertion process of the Static Analysis Results.

3.5. Visualizations of Static Analysis

 In this part of the thesis, the visualization methodology developed for static

analysis and for the aim of producing fingerprints is presented. This fingerprinting

technique is formed in the hope of being helpful to a malware analyst to provide a

general idea about the analyzed malicious sample rapidly.

 In Figure 3.6, the round nodes represent functions, while the square nodes

present API calls or Imports. As can be seen in Figure 3.6, the node size of the function

nodes on visualizations varies according to their actual sizes. Moreover, the distances

between function nodes are scaled from the exact sizes the functions have from the

graph database. However, as many operating systems integrate memory address

randomization schemas such as Address Space Layout Randomization (ASLR), the

size of and the distances to API calls are ignored in this visualization as these measures

may provide inconsistent results due to this randomization process.

40

(a)

(b)

(c)

(d)

Figure 3.6 - The visualization of the malware sample with Sha1 33e8e894297e0f94c5df36cb4e5b3ee68662ceff (a) An overview of the malware

(b) Hovering on a function node (c) Hovering on an API node (d) Hovering on an edge between functions.

41

 For this research, a 3-dimensional visualization model is also presented.

The 3d visualization is analog to the 2d model and can be seen in Figure 3.7 below.

Figure 3.7 - 3d model of the same sample in Figure 6.

3.6. Limitations of Static Analysis

 The limits to the static analysis and its results are given in the work of (Moser,

Kruegel, & Kirda, 2007) through a custom designed obfuscator that is available on the

binary without having the source code itself. In this work, the polymorphism,

metamorphism, and obfuscation properties of the malicious executables are discussed,

and a binary obfuscation approach is presented to show the insufficiency of the static

analysis alone in detection malware. The fundamental limits of obfuscation are also

provided in a trade-off with performance. In this part of Chapter 3, it is aimed to show

the limitations of the static analysis by examples from the designed and deployed graph

database.

 The following Figure 3.8 presents four different types of anti-static-analysis

techniques. In Figure 3.8a, it is possible to see unreachable and dead functions that are

designed to evade signature level detection. Figure 3.8b contains API calls related to

42

the cryptography scheme and virtual memory allocations; while Figure 3.8c has

randomly generated, same-sized functions in the numbers of the order of 10, therefore

showing the features of obfuscation. In Figure 3.8d, only the unpacking functions are

present since a kind of packing is applied.

43

(a)

(b)

(c)

(d)

Figure 3.8 The visualization of the malware samples with Sha1 0f241d84aa44034c924197d3bce94faa07811f35,

f53e68832af99cf553471cf87cc5da332c695659, ada9efdf8dee612599377f6ade3e78e06d4069f4, a9accc4fe6cd45b9a54c25a1447ed74cc61d5675

respectively, showing (a) dead code insertion (b) encryption engine (c) obfuscation (d) packing.

45

3.7. Convolutional Neural Networks (CNN) on Static Images

 CNN's, are a particular type of neural network for implementing a matrix or grid-

like data. It utilizes a specific operator, convolution operator, which is specialized kind

of a linear operator and a CNN is a neural network that uses at least one convolution

layer in its layers (Lecun & Bengio, 1995).

 In this research, a CNN network with three times two convolutional ReLU layers

plus a max-pooling layer, and a SoftMax layer as output have been tried. However,

because of the aforementioned limitations, no satisfying result could be achieved.

Although with a fine-tuned CNN approaches worked well on the examples and studies

in the literature, as the focal point of this thesis is to extract analysis data particularly

on memory, the continuation of Deep Learning approaches is left as future work. In

the following chapters, a successful training attempt on the memory patterns is

presented in both Machine Learning and Deep Learning methods.

3.8. Conclusion of Chapter 3

 As shown in this chapter, static analysis has some serious drawbacks when

applied for detection. The evasion techniques mentioned in this chapter are commonly

used in contemporary malware, and therefore, in many cases, the methods based on

only static techniques seem to be failing. One useful methodology in this context

would be stripping malware from all the static evasion techniques, extracting the

executable from the memory address space and applying static analysis after the

extraction. However, this technique will also suffer from randomization techniques

employed by the malware authors.

 In the following chapters, the dynamic analysis and memory forensics

techniques are discussed and evaluated before presenting the novel methodology used

in this thesis.

47

CHAPTER 4

DYNAMIC ANALYSIS OF MALWARE

 Dynamic analysis techniques involve running the malware instance in an

isolated environment and extracting characteristics of the instance by monitoring it. In

the dynamical analysis, the malware is analyzed red-handed during the execution, and

the analysis system becomes robust to any obfuscation, encryption or alternation to the

original code. This is the main advantage of dynamic analysis compared to the static

analysis. However, every instance of the malware should be run separately which

would result in a computational overhead which is the main disadvantage (Shijo &

Salim, 2015; Yadegari, Stephens, & Debray, 2017).

In this chapter, the methods of Dynamic Analysis are presented, the methodologies are

exampled and visualized; it’s relevance and pitfalls are discussed. Moreover, a

dynamic analysis method, Dynamic Binary Instrumentation, which constructs one of

the building blocks of this thesis, is introduced in this Chapter.

4.1. Dynamic Analysis Techniques

 A sandbox system is a secure dedicated or virtual system for running and testing

unknown executables. Sandbox systems employ a simulating environment similar to

or identical to the system that is to be protected. The idea is to detect and monitor the

effects of the unknown executable on the simulating system without compromising the

actual hosts and users.

 The sandbox systems are based on the architecture of a client-server model

where the simulating system acts as a client, and analysis machine is the host. The

client’s APIs and kernel functions are hooked and monitored to collect relevant

information about the binary that runs on the client, and communication between

analysis machine and client is established either by virtual local networks or by the

API functions of the virtualization software.

48

 Most of the sandboxing solutions are closed-proprietary software as of today.

However, there are powerful open-source alternatives such as Cuckoo Sandbox

(Cuckoo Sandbox, 2019), Joe’s Sandbox (Joe Sandbox, 2019) and Zerowine

(Zerowine, 2019). These automated sandboxing solutions construct the basics of

dynamic binary analysis and provide a rapid and easy method to analyze various

features of the binary.

 The dynamic analysis makes use of many changes and differentiation within the

system. In this part, these indicators are presented and explained.

Registry Snapshots

 Registry analysis is a significant indicator for malware as malware needs

persistence in the infected system. The persistence of malware is the property that the

malware will stay dormant on the compromised computers until some triggering event

or some predefined time for the attack to start. In such cases, the malware needs to

hide in the system, should be restart resilient and should be reachable to the C&C.

Therefore, malware should place the necessary indicators in the auto-start locations of

the registry, scheduled tasks, and cronjob events.

 Another significant contemporary threat is a new malware type file-less malware.

These types of malware reside as scheduled tasks in the registry, retrieves itself every

item an event is triggered and run on memory without any filesystem indicators.

Because of these reasons, the analysis of the registry holds paramount importance for

the dynamic analysis of the sandbox.

API Call Sequences

 The API calls are the user-space requests of kernel operations of the operating

system. The execution of malware needs various types of API calls such as registry

operations, file operations, and virtual memory operations. In most cases, if not evaded,

these calls show the actual intention of the malware. However, as the malware authors

become aware of these analysis techniques, they are implementing evasion procedures

such as code injection, native DLL coding and target process obfuscation (Kawakoya,

Iwamura, Shioji, & Hariu, 2013).

49

Memory Forensics

 The dynamic binary analysis integrates the memory forensics procedures and

practices with its analysis methodologies. These details are discussed in Chapter 5.

Dynamic Taint Analysis

In dynamic taint analysis, the data originating from or arithmetically derived from

untrusted sources such as the network is referred to as tainted. These tainted resources

are followed during the execution to detect buffer overwrite attacks. The method is

first introduced in (Newsome & Song, 2005).

 Dynamic taint analysis (DTA) is utilized for analyzing execution paths that an

attacker may use to exploit a system. DTA is studied extensively in the literature:

TaintCheck(Newsome and Song, 2005), Dytan (Clause, Li, and Orso, 2007), BitBlaze,

DTA++ (Gyung et al., 2011) and SworDTA (Cai et al., 2016).

Logging Network Attempts

Another result of the dynamic analysis of malware is its network connections. With

utilizing a network generator sandbox server and attaching the analysis machine as a

client, all the network traffic can be diverted over the sandbox server, and the network

dump data (such as TCPDUMP) can be collected.

Dynamic Binary Instrumentation (DBI)

 DBI is a technique of Dynamic Binary Analysis. It requires an analysis program

working on the side with the actual process that is to be instrumented. The analysis

program is injected as a DLL or a kernel process to the analyzed system (Kawakoya et

al., 2013). With the analysis code inserted into the execution of the target program,

instruction level, API level, Stack and Heap level analysis can be done through DBI

systems. This thesis covers and utilizes DBI for capturing memory operations of a

binary. The methodology and used tools are being included in the next Chapter.

4.2. The literature of Dynamic Malware Analysis

 The effectiveness of Dynamic Analysis has been tested rigorously in the malware

analysis literature. Machine Learning, Deep Learning, and Graph Matching methods

have been applied on API call sequences and graphs, hooking behaviors, kernel-level

50

executions, memory usage, imported DLLs, and network communications. Table 1

below summarizes the building blocks of the malware analysis literature.

The first study on dynamic malware analysis is the study of (Yin, Song, Egele, Kruegel,

& Kirda, 2007). In this work, a particular dynamical analysis technique called taint

analysis is used. In dynamic taint analysis, the data originating from or arithmetically

derived from untrusted sources such as the network is referred to as tainted. These

tainted resources are followed during the execution to detect buffer overwrite attacks.

 In the study of (Bailey et al., 2007), dynamic analysis results are collected as

event logs and converted into non-transient state changes. These state changes are

converted into trees, and the distances between samples are researched. Similarly, in

the work of Kolbitsch et al., taint analysis results are converted into behavioral graphs,

and a similar rate of success has been achieved with subgraph matching (Kolbitsch et

al., 2009). An extension to Kolbitsch et al. is the dependency graph study of (Park,

Reeves, & Stamp, 2013), where dynamic system calls are converted into graphs and

tested similarly. The results of this work showed a 100 percent success rate for some

of the malware families.

Code slicing methodologies are integrated with the extraction of API call sequences in

the work of (Lanzi, Sharif, & Lee, 2009), The aim is to extract and use kernel-level

operations within the malicious executable, and the data access patterns and data

modifications using these calls are comprehended. A similar idea is presented in the

work of (Park et al., 2013) where the behavioral indicators are constructed as a graph,

and instead of slicing the code and analyzing the flow, the graph data is clustered. The

results of this work showed zero false positives.

 The tests on API call data is also extended on the machine learning and deep

learning subjects. N-gram technique is used in two significant studies in the literature;

Uppal et al. utilize Naïve Bayes, Random Forests, SVM and Decision Tree Classifiers

on the call sequence n-grams; Kolosnjaji et al. use the same feature on a Deep Learning

approach with Convolutional Neural Networks. The results of these two studies are

shown in Table 1.

Another study on API calls converted into matrices, utilizes Random Forests on the

matrix data by (Pirscoveanu et al., 2015) and a similar research with unsupervised

51

learning methods presented in the same year, (Fujino, Murakami, & Mori, 2015)

utilizing Term Frequency- Inverse Document Frequency (TF-IDF) matrices.

 Finally, a research paper on Android operating systems malware is presented to

extract TCP/IP features for testing in various machine learning algorithms is presented

in Table 1 (Narudin, Feizollah, Anuar, & Gani, 2016).

52

Table 4.1. Comparison of Researches that utilizes Dynamic Analysis Techniques.

Reference Work Dataset Features Used Technique Success Rate /Classification

Accuracy

Panorama (Yin et al., 2007) 42 malware and 56 benign

samples

Taint Graphs Policy generation based on

Taint Graphs

Around 3% FP rate.

(Bailey et al., 2007) 3698 Samples Non-transient State Changes Normalized Fingerprint

Distances

91.6% detection rate

(Kolbitsch et al., 2009) Six malware families with 50

samples each

Behavior graphs extracted from

taint analysis and program

slicing

Subgraph matching 90%at maximum for known

malware, 23% for an unknown

malware

K-Tracer(Lanzi et al., 2009) 8 Rootkits Data Access, Triggers,

Hardware Events

Dynamic Slicing Detects all the rootkits that have

been tested with it.

(Park, Reeves, Mulukutla, &

Sundaravel, 2010)

Six malware families with 50

samples each

Dynamic system Call

Dependence Graphs

Graph Similarity Measurement Some of the families showed

100% accuracy, while some

have poorer results.

(Park et al., 2013) 563 and 520 samples in two

datasets

HotPath (constructed by kernel

objects and system call traces)

extraction

Graph Clustering and Matching No false positives.

(Uppal, Sinha, Mehra, & Jain,

2014)

120 malicious and 150 benign

software

Call-grams generated from call

sequences

Naïve Bayes, Random Forests,

SVM and Decision Tree

Classifiers

Accuracy of 98.5%

(Pirscoveanu et al., 2015) 42,000 malware samples API Call Matrices Random Forests 89.6% TP and 0.049 FP rates.

(Narudin et al., 2016) Android Malgenome (1260

Malicious apps)

TCP/IP packages RF, J48, MLP, Bayesian Net,

KNN

99,97% Accuracy with BN and

RF

(Kolosnjaji, Zarras, Webster, &

Eckert, 2016)

4753 malware samples Malware System Call

Sequences

Sequence-grams on feed-

forward, convolutional and

hybrid neural networks

85.6% on precision and 89.4%

on recall

(Pektaş & Acarman, 2017) 17,900 recent malign codes API-call sequences N-grams Training and Testing Accuracy

of 94% and 92.5%

53

4.3. Tool support for Dynamic Malware Analysis.

 The dynamic binary instrumentation system is provided by the Intel PIN Tool

version 3.7. Intel pin tool is a dynamic binary instrumentation framework where a

process state containing registers, memory, heaps, stacks, memory access, and the

execution flow can be traced and analyzed (Luk et al., 2005). In this API, the

instrumentation is accomplished by the just-in-time (JIT) compiler. Just-in-time

compiler in this API, as distinct from its Java version de facto standard, takes in a

native opcode instead of bytecode and observes and generates the native opcode for

the executable (Luk et al., 2005). The architectural structure of the Pin Tool is

illustrated in Figure 1.

Figure 4.1 Architecture of Pin Tool

 As can be seen from Figure 4.1, the application to be instrumented, and

the pin tool shares the same address space. The instrumentation application is written

as a DLL for this library using the Pin API. The instrumented and traced opcodes are

cached in the Code Cache as the execution flows through the Just-in-time compiler

and the emulated native opcodes are then forwarded to the Operating System

underneath.

54

4.4. A Showcase of Dynamic Analysis with Intel PIN Tool.

 For the demonstration purposes, dynamic traces and indicators are extracted

from two malware samples. These samples are selected from the family of

Worm.Ramnit malware family and hash values are given in the following Table 4.2.

Table 4.2. Sha1 hashes and compilation information of the malware

samples

 Malware Information

Ramnit Worm v1 {

 "sha1": "33e8e894297e0f94c5df36cb4e5b3ee68662ceff",

 "fname":

"Worm.ramnit.9a08d9b7853a65fb52f119806b2f3aae.exe",

 "sectionCount": 5,

 "binType": "PE32 executable (GUI) Intel 80386, for MS

Windows, Nullsoft Installer self-extracting archive",

 "compilation": "2009-06-18 21:33:23",

 "fileSize": 18430835,

 "sectionEp": ".text|0",

 "originalFilename": "",

 "addressEp": 12577

}

Ramnit Worm v2 {

 "sha1": "8293f7ddbb7a6163aafed7ebeaea9bc5d60716fb",

 "fname":

"Worm.ramnit.9ad7b41a1f0bee2112c1b497094aa085.exe",

 "sectionCount": 5,

 "binType": "PE32 executable (GUI) Intel 80386, for MS

Windows, InstallShield self-extracting archive",

 "compilation": "2009-12-05 22:50:46",

 "fileSize": 3363317,

 "sectionEp": ".text|0",

 "originalFilename": "",

 "addressEp": 12860

}

55

 The execution flow and its indications on the memory address space is the main

interest of this research, and the samples are analyzed and dissected according to their

instruction flow. As a result, three indicators are extracted for the two samples:

Function Hit Trace, Function Trace, and Instruction Trace. For the demonstration, the

static analysis features of Function and API relationship graphs are extracted and

presented in Figure 4.2, as shown in Chapter 3.

Worm.Ramnit v1 Worm.Ramnit v2

Figure 4.2. Static Analysis Graphs of the samples.

Function Hit Trace and Function Trace

 The function hit trace and function trace are the features of the execution flow.

These properties are extracted by following the instruction pointer and recording the

functions that the instruction belongs as the execution continues. The recordings are

then converted to 2d images where the x-axis shows the sequence of the instruction

and the y-axis shows the memory address of the function.

• Function Hit Trace is the analysis where a function is recorded only the first

time that the instruction pointer is inside the memory space of that function

(Luk et al., 2005).

• Function Trace is the analysis where a function is recorded every time the

instruction pointer enters the address space of the function (Luk et al., 2005).

 For the two samples, the function trace and the function hit trace graphs are given

in the following Figure 4.3.

56

(a) (b)

(c) (d)

Figure 4.3. Function Hit Traces(a), (b) and Function Traces (c), (d) of Ramnit v1 and v2 respectively.

57

 Function and Function Hit Traces are beneficial when debugging a known

function for bug fixing. Moreover, these measures can be used to un-obfuscate

function obfuscation and sieve the functions that are used and unused in the code space.

For unpacked malware, this measure can be advantageous when used with static

analysis. Execution flow can be understood and taken into malware analysis with the

identification of all the functions. Function Hit Traces can replace Function Trace

when the analyzed malware contains recursive functions which can obfuscate the

analysis.

API Call Sequences

 Following a similar idea, memory address space access of the imported functions

can also be traced using dynamic instrumentation. This feature is the memory

representations of the API call sequence property that is being utilized in several works

in the literature. The following Figure 4.4 illustrates this feature.

(a)

58

(b)

Figure 4.4. DLL Addresses and Sequence graphs of the Samples. (a) Ramnit v1 (b)

Ramnit v2.

DLL Addresses and API imports have already been explored in the literature

excessively. However, an address-wise representation of imported functions is

provided in Figures 4.4 (a) -(b), and executed addresses of the imported calls and

functions are shown similarities for this two malware. It is crucial to turn off the ASLR

for this measure to have an implementable metric.

Instruction Address Trace

 Instruction level tracing shows the traversal of the address space by the

instruction pointer. For the vast amount of the processes that have been tested, this

trace results in gigabytes of trace data thus become infeasible to graph and analyze.

However, for the demonstration purpose, two graphs are generated for the first one

thousand entry of these two sample traces.

 As can be seen in Figure 4.5, the first 1000 instruction trace of the two malware

can result in similarities when the two malware are stripped from any obfuscation.

However, the resulting data of such trace for a malware reaches the order of 10

gigabytes thus become unfeasible quickly.

59

(a)

(b)

Figure 4.5. Instruction Pointer Traces of the Samples. (a) Ramnit v1 (b) Ramnit v2.

4.5. Conclusion and Discussion of Chapter 4.

 The dynamic analysis techniques, the binary instrumentation, and the

demonstration of these techniques are presented in Chapter 4. For the following

chapters, the utilization of this binary instrumentation on extracting the memory access

patterns and the generation of a graph database from this information and the results

for this dissertation is provided.

61

CHAPTER 5

MALWARE MEMORY FORENSICS

As previously mentioned in Chapter 1, this dissertation aims to shed light on

the memory access patterns of malware, to visualize these patterns and to compare and

contrast the access patterns to identify similar characteristics on memory. For this aim,

Chapter 5 identifies the contemporary memory operations of malware. These

operations include packing, code injection, DLL injection, and process hollowing

methods which malware integrates into their code to avoid being detected.

5.1. Memory Forensics

 Memory Forensics is the process of acquiring, dissecting, and analyzing the

volatile memory data for suspicious events and operations. The process of memory

forensics provides a detailed description of the state of the computation for the time

that the memory image is captured. Every operation on a computer either done by an

operating system or a user application allocates itself on the memory. These operations

are grouped by the data structures of the operating system as processes, and every

process has its threads (at least one, the main thread) which are the smallest chunks of

executable memory contents. The structure of a process is discussed in Chapter 2 for

the Microsoft Windows operating system for which the majority of malware is

designed for.

 Memory Forensics provides significant data about the processes on the memory

such as;

• How many processes are running on the system?

• What is the current state of the processes on the system?

• Which executable files are associated with the processes on the system?

• Which files are open currently? By whom they are opened?

62

• Which DLLs are loaded and by which processes?

• How many active network connections are there? Which processes are ported to

network and at which ports?

 Memory Forensics can answer all of these questions and many similar to them.

It is the closest analysis method to in-vivo analysis while hard drive forensics is the

post-mortem analysis for a system.

 As mentioned in Chapter 3 and 4, contemporary malware utilize many

techniques to evade from detection. Malware, when running on the memory, is in its

exact form, stripped out of all obfuscations, packing and encryption. Therefore

capturing the characteristics from memory is one of the best options for automated

search mechanisms.

 A recent, on-the-rise malware type is file-less malware. This type of malware

works only on the memory, leaving no traces on the storage spaces and steals other

process's address space to do their malicious work. This type of malware is impossible

to analyze without taking memory images and investigating them. This type of

malware and their techniques are discussed later on in this Chapter.

 Another reason the memory is the actual key to understand malware is that the

authors are now aware of malware analysis techniques, and they incorporate this

knowledge into their works. The signature detection mechanisms depended on

cryptographic hash algorithms to identify malware. However, polymorphic malware

with mutation engines is capable of attacking this system stealthily. For that reason,

current hash-based detection techniques involve a method called Fuzzy Hashing,

which involves hashing of the parts of the malicious executable on memory and

comparing/detecting partially (Li et al., 2015; Sarantinos, Benzaïd, Arabiat, & Al-

Nemrat, 2016).

 Moreover, contemporary malware exploits vulnerabilities in the user

applications to rewrite the application code, reuse existing code in a way that is not

intended to be used by changing the execution flow with Return Oriented

Programming and Jump Oriented Programming methods (Korczynski & Yin, 2017).

To detect the aforementioned on-memory strategies of malware leads to on-memory

malware detection techniques to be developed, which are based on memory forensics.

In the following section, these techniques are detailed.

63

5.2. Malware Operations on Memory

5.2.1. Packing and Compression

 Packing is the method of compressing and/or encrypting the malicious

components before infection. The sections of the executable are compressed into a data

section, and an unpacking stub of code is inserted into the PE file. For some standard

packers such as UPX, the section names can reveal if the binary is packer or not.

Otherwise, the section name can be anything as it does not result in any changes in the

execution of the program.

 After the packed program runs on the memory of the target computer, it unpacks

itself by allocating space from its or other processes address space. The DLL functions

used for such operations are as follows:

• VirtualAlloc,

• VirtualAllocEx,

• VirtualFree,

• VirtualLock,

• VirtualProtect,

• VirtualQuery.

The function that is used for accessing DLLs and imports from within an address space

are also listed below.

• LoadLibraryA

• LoadLibraryW

• LoadLibraryExA

• LoadLibraryExW

• FreeLibrary

• GetProcAddress

64

 Extracting DLL functions of a binary and observing that the above functions are

called in a library, does not necessarily specify the maliciousness of a program.

However, in most of the studies mentioned in Chapter 4 – Dynamic Analysis of

Malware extracts the data into their machine learning-deep learning approaches. In the

learning approaches, if a value of a feature does not yield into differences in

classification, then their weights become smaller, and their importance in the process

of classification degrades. Our research which will be detailed in the next chapter

considers these functions and features as it is for that matter.

 The operation of packing is illustrated in Figure 5.1. below. The address space

illustrated on the left is the version of the executable before it is packed. Moving to the

right, the second image shows a packed version of the same executable and the image

on the rightmost of the illustration shows the unpacked executable. The unpacked

version of the executable is accessible from the moment the executable finishes

unpacking itself to the end of the execution(Ligh, Case, Levy, & Walters, 2014).

 Although it has been stressed in this dissertation, the unpacking operation can

include modules that obfuscate the executable code which will produce different

signatures for the leftmost and rightmost images of the executable (Ligh et al., 2014).

65

Figure 5.1. Illustration of packing of an executable.

5.2.2. Code Injection

 Code injection is the process of copying malicious executable code payloads or

malicious pe executables into another process address space and running the code from

there. It requires the malware to have the debugging permissions to access another

process address space.

 The procedure of code injection is as follows and ill (Ligh et al., 2014):

1. Malware process acquires debugging privileges (SE_DEBUG_PRIVILAGE)

that enables read and write access to another process address space.

2. Malware process opens the target process and receives its handle through

OpenProcess() function.

3. Malware process allocates memory space using virtual memory functions with

the PAGE_EXECUTE_READWRITE permission.

66

4. Malware transfers payload, shellcode, or a complete PE executable to the

allocated address space using WriteProcessMemory().

5. The malware calls a CreateRemoteThread() and gives the address of the injected

code to the thread.

Figure 5.2. Illustration of Code Injection.

5.2.3. DLL Injection and Reflective DLL Injection

 DLL injection is a similar approach to the Code Injection with some minor

differences that effects the detection of malicious acts. In DLL Injection, the malicious

code is loaded from disk to the target process address space using the LoadLibrary()

method.

 The allocated address space is not required to be executable in this method;

instead, PAGE_READWRITE permissions are sufficient enough to insert a DLL to

the target process. CreateRemoteThread() method is used again for running the

DLLmain.This schema is illustrated in Figure 5.3.

67

Figure 5.3. Remote DLL Injection using LoadLibrary method.

 Reflective DLL Injection is the hybrid process of Code Injection and DLL

Injection. This method involves loading a DLL to the target address space from

memory and in which the loading process is done by native DLL coding instead of

using LoadLibrary() method. This property of a DLL loading itself is making this

procedure stealthier as it leaves no mark on the Disk. The loaded DLL can also be

downloaded from a URL of the malicious actors, which makes this method a file-less

malware.

5.2.4. Process Hollowing

 This method is one of the stealthiest methods of hiding a process. This method

has been used in highly effective APTs such as Stuxnet, Duqu, and Patchwork

(Bencsáth et al., 2012; Cymmetria Reseach, 2016; Falliere et al., 2011).

 The process of hollowing a process is illustrated in Figure 4, and it is as follows:

68

1. The malware starts a new instance of a legit system process such as lsass.exe.

This process starts in the suspended state by providing the parameter of the

creation flag to CREATE_SUSPENDED.

2. The malicious code is fetched from memory, disk, or over the network.

3. The code section of the target process is unmapped, and the process becomes a

hollow process. The commands used here can be ZwUnmapViewOfSection or

NtUnmapViewOfSection.

4. A new memory segment with PAGE_EXECUTE_READWRITE permission is

allocated from the memory space of this hollow process using the virtual

memory allocation calls.

5. PE Header of the malicious process is copied into the hollow process.

6. Each segment of the malicious code is transferred to the proper virtual address

space of the hollow process.

7. The start address is set so that the malicious code starts from its entry point.

8. Suspended thread is resumed.

69

Figure 5.4. Illustration of Process Hollowing.

5.3. Manual Analysis Detection of Memory Operations

 A rule of thumb approach for understanding memory operations is to check the

Process Environment Block (PEB) structure and cross-reference with the Virtual

Address Description (VAD) structure of the Kernel Space of the memory.

 PEB structure is a data structure that exists for every process, and it contains the

full path of the executable, the full command line that starts the process, pointers to

heaps, standard I/O handles and data structure for holding the loaded DLLs and

Modules. PEB structure is accessible within the process itself, and malware authors

most commonly play with these structures to hide their intentions. However, the VAD

structure is in the kernel space of the memory, and under normal circumstances, the

information in the VAD and different PEBs should be aligned. Therefore, cross-

referencing these two structures would identify most of the malicious code and DLL

injection attacks. For example, in DLL Injection, if the injected DLL and its loading

place from the disk are not consistent in these two structures, or the DLL has no record

in the PEB but exists in the VAD, it means the DLL forced into the process address

70

space. However, in Process Hollowing and its variants, as the process is a legit process,

and only the contents of the sections are modified, it is harder to detect with cross-

referencing.

5.4. The literature on Automated Malware Detection with Memory

Analysis

 While the vast amount of the literature uses API call sequences and call traces

for the behavioral graph, there is a relatively short list that uses memory access for the

detection for the malware. By utilizing the memory forensics techniques, operating

systems resources and their handles, registry keys (Zhu, Gladyshev, & James, 2009),

running processes and threads, network connections, loaded DLL files and even

commands that had been previously given can be retrieved (Stevens & Casey, 2010).

In the study by (Kolbitsch et al., 2009), the memory access of malware families had

also been integrated into the behavior graph of the sample. Moreover, in the work of

Duan et al., the tool Detective, extracts DLL imports from the memory snapshots and

applies HNB classifier to this data (Duan et al., 2015).

 In the work of Korczynski and Yin, a tool named Tartarus, a solution to the

aforementioned injection techniques and code propagation approaches is given by

generating and combining taint analysis with the tracing of the memory writes through

execution tracing (Korczynski & Yin, 2017).

 Another line of work incorporates memory differences; snapshots of the memory

image are taken several times, and the differences are identified. One of the work in

this line is (Zaki & Humphrey, 2014); This research has identified the modifications

(file system changes, newly loaded driver or a newly loaded image) that are done in

kernel space by a rootkit and generates signatures using this information.

 A similar memory differencing approach attacking this problem is given by

(Teller & Hayon, 2014). A Cuckoo Sandbox plugin is described in their paper, and the

applied idea was to take snapshots of the memory whenever something important

(defined by API call triggers) comes up such as loading some image into memory or

generating a call to a registry call. With a similar approach, the studies (Mosli, Li,

Yuan, & Pan, 2016, 2017a) and (Aghaeikheirabady, Farshchi, & Shirazi, 2015) extract

DLL, API calls and registry activities using the memory analysis program volatility to

generate features to be fed into a machine learning tool.

71

Observations

 Our approach differentiates from the above by binary instrumentation of the

memory access instructions and logging every memory access in different regions of

the process memory separately. A similar approach is taken in the work of (Banin,

Shalaginov, & Franke, 2016). In this study, their memory accesses are reduced to read

and write operations regardless of the region and section information of the memory.

The order n-grams are then fed into a learning network to identify maliciousness.

However, our work differentiates from this one by taking into spatial properties of the

memory access in addition to just using the order of the memory access types. In the

referenced work, only the order of operation, and the type R/W is taken into

consideration.

 Taking the snapshots of memory regions within an interval and comparing them

through the kernel objects identifies a lot about the malware however in most cases

the malware creates several other processes, injects itself to another process or service

as explained in the previous section of this Chapter. This contagious behavior of the

malware results in a vast region of memory space to be snapshot within the interval,

and therefore the method becomes infeasible (Bletsch, Jiang, Freeh, & Liang, 2011).

 Another problem of taking a snapshot of the memory is that deciding the

frequency of snapshots. If there are too many snapshots, there will be gigabytes of data

to be analyzed for just malware, and if the interval is set long enough, there might be

a chance that the malicious activity can slip from the memory before getting in one of

those memory images snapshots.

5.5. Conclusion

 This chapter identifies the memory operations of malware, the tricks, and

workarounds that are being used by contemporary malware. The literature of the filed

in the intersection of malware detection and memory forensics also provided in this

Chapter. In the following Chapter 6, the dissertations main work, the general idea, and

the graph database for created for memory access is described and detailed.

73

CHAPTER 6

MALWARE MEMORY IMAGING AND EVALUATION

 This Chapter presents and defines the main aims and contributions of this

dissertation, along with the problems and contributions to solutions to these problems.

A malware memory image is a 3-dimensional representation of the memory access

patterns of malware. The methodology presented in this chapter is a method of

identifying these access patterns through binary instrumentation.

 As presented in Chapter 5, different malware has different methods of doing

malicious work on memory, which results in distinctive behavioral characteristics for

malware families as malware adopt code from its predecessors. In this dissertation, it

is aimed to show and compare these characteristics by the memory images between

several types of different malware families and types.

6.1. Motivation

 The vast amount of work is relying on the dynamic API calls and DLLs as

discussed in Chapter 4 – Dynamic Analysis of Malware, and it is so far one of the most

promising methods in the literature. However, as malware authors become aware of

this detection technique, they start to implement a workaround with Native DLL

coding. Native DLL is the dynamic library written directly in the machine language,

and malware authors prefer to include binary formatted DLLs instead of calling them

from Windows libraries. Native DLL coding provides a level of stealthiness against

behavioral detection mechanisms.

 Another reason the detection mechanisms fail is the general assumption that a

malware process should be executed/started from a hidden file somewhere on the disk

and it needs to spread to other files. On the contrary, new types of malware are

designed to work, spread, and complete their lifecycles only on memory. They are

downloaded from network to memory via exploiting vulnerabilities in operating

system tools and programs. For this reason, signature-based detection, static analysis,

and sandboxing effectiveness are significantly decreased for such malware.

74

 As discussed in the previous chapter, incorporating memory forensics into

dynamic analysis and detection provides promising results on these types of malware

(Mosli et al., 2016; Mosli, Li, Yuan, & Pan, 2017b; Rughani & Rughani, 2017; Teller

& Hayon, 2014). However, the approaches for taking memory dumps and snapshots

of process address space suffers from two problems. Firstly, it is vital to decide how

often the memory dumps are going to be taken. When it is too frequent, there will be

tens of gigabytes data for just one malware, and when the interval between dumps are

long, it is possible that the malware execution can slip away between dumps without

detection. The second problem is when taking memory dumps of a process; it is

possible that the malware injects itself to another process and continue its execution

from another address space. In this case, complete memory dumps have to be taken,

but unfortunately, this approach also leads to the analysis of gigabytes of data for

malware again.

 In this dissertation, the developed solution to this problem is to instrument

memory access operations. Instead of taking memory dumps, every operation of a

process is traced, and the memory usage patterns are observed. This way, the memory

operations are captured as the process is still running on the memory, and taking

memory dumps becomes unnecessary. Our method is also promising for file-less

malware as the instrumentation is done on a memory level.

 The memory access operations are converted to 3-dimensional patterns to

capture significant characteristics of malware. These 3-dimensional patterns are

constructed from a type of access (Read/Write), access sequence, instruction address,

and access address. Since the patterns are built from the physical operations to memory,

natively coded DLLs are recorded as well as operating systems API calls, functions,

DLL calls, and several other procedures that affect memory. It is shown in this research

that similar malware samples coming from the same families show similar memory

access patterns in 3- dimensional space constructed by the sequence of the access

relative to the computation instruction sequence, the instructions address and the

memory address that is being accessed. Also, in the defined 3-dimensional space,

process injection, packing, and malicious acts affecting other processes address space

can be identified by our methodology.

75

6.2. Instrumenting the Memory Operations

 The dynamic binary instrumentation system presented in this research is

provided by the Intel PIN Tool version 3.7 (Luk et al., 2005). The executable samples

to be imaged are executed by the Intel PIN Tool and our memory tracer DLL is inserted

into the executions address space to instrument every single memory operation. The

details on Intel PIN Tool is given in Chapter 4.

6.2.1. Memory Layout

The memory layout for all the Win32 applications, which is called Portable

Executable (PE) format consists of several images that are dynamically loaded into

memory during the execution.

Majority of the malicious files intend to work Win32 based systems and to develop

our methodology; selected samples are executables in the PE format. The Structure of

Portable Executable format is given in Chapter 2. The standard layout of the

executables on the memory is given in Figure 6.1. Two main sections: the header and

the sections are present in the PE format (Pietrek, 2011). The execution of an

executable starts from the loader of the operating system. The loader first reads the

header page of the PE file and retrieves the image base. The process memory space is

allocated and divided by sections according to the image base. The import tables are

read for loading all the DLLs which are set to be loaded at the initialization of the

program. After loading the DLLs, the real addresses of the functions is resolved and

stored in the import address table. Afterward, the main thread is created; the instruction

pointer is set to the entry point of the main thread and execution starts.

The images of the DLLs and Libraries are also in the format of a PE layout. During

an execution when a function is referenced inside an image, the instruction pointer

jumps to that specific location of the instruction and the memory accesses occur from

these addresses.

76

Figure 6.1. Memory Layout of a PE Format.

Even though the memory layout is a one-dimensional address space, there are more

dimensions to consider when it is a memory operation. Three compounds are defined

in our methodology for a memory operation: the sequence of the operation, the

instruction addresses, and the address that is being accessed. The sequence defines the

order of the access, which creates an ordered set from these operations. Another

valuable property is the mode of the accesses of which can be a read or a write

operation.

6.2.2. Flowchart of the Methodology

 Figure 6.2 below is the flowchart of our methodology. The process starts with

creating a Windows 7 SP2 virtual machine with Intel PIN Tool installed on it. The

virtual machine is hardened for the virtual machine detection modules of the malware

with the analysis program Paranoid Fish – Pafish (Ortega, 2016). The virtual machine

77

(VM)’s snapshot is taken with the clean state before any infection, and every new

sample is analyzed on this clean state of the VM.

Figure 6.2. Flowchart of the Proposed Methodology.

After the new sample is loaded into the VM, the process is started with the PIN

Tool with our memory tracer DLL utilized. During the execution, when an image is

loaded, an entry table for images in our module keeps their traces to bin the memory

accesses according to their module address spaces. There is a time limit of three

minutes for the execution to finish, or the process is ended automatically.

The automation approach taken in this methodology is similar to the one in the

work of (Banin et al., 2016) although it differentiates from it by the custom pin tool

that is developed specifically for this research. Distinguishing from the work of Banin

et al., the developed pin tool captures the memory layout of the process by continually

monitoring the image loading and unloading operations. While doing so, the memory

access operations are also logged and classified by the memory images inside the

process memory. The accesses to stack, heap, and memory images are logged

78

separately for each image in the process memory layout.

As explained in the previous Chapter 5, most of the malware memory operations

are done from the code section. The binary should execute a series of memory writes

to unpack itself or to copy and inject its malicious components to other memory spaces.

Therefore in our methodology, the memory accesses of the code section are traced and

imaged to generate these characteristics.

6.2.3. Algorithm for the PIN Tool

 In the algorithm below, the work of our tracer is described. The instrumentation

is done one instruction level; every instruction is checked for stack access and memory

access. Stack operations can lead to compiler characteristics results as the optimization

levels, and stack operations are most likely to be arranged by the compilers. Memory

reads and writes are tracked for the cases as described in the algorithm.

Algorithm: Pin Memory Tracer

Input: A program for tracing, An image linked list - imgs,

Output: A trace file - trace.out, sequence, containing instruction pointer, accessed memory

location, mode of the operation, the base of the image that has done the access.

0: seq := 0

1: for each instruction ins:

2: if new_image_loaded is true:

3: Get the base address and highest address of the image and insert it in imgs.

4: if ins has stack read:

5: Write it in output buffer as stack_read.

6: else if ins has stack write:

7: Write it in output buffer as stack_write.

8: else:

9: if ins is a memory read:

10: Look up ins address in the imgs, write it in outbut buffer as

 <seq, instruction address, accessed memory location, ‘R’>

11: else if ins has memory read: //such as in adding a value from memory

 // to a register

12: Look up ins address in the imgs, write it in outbut buffer as

 <seq, instruction address, accessed memory location, ‘R’>

13: if ins is a memory write:

14: Look up ins address in the imgs, write it in outbut buffer as

 <seq, instruction address, accessed memory location, ‘W’>

15: Increment seq by 1

79

INS_InsertPredicatedCall API Function

 An instruction is traced in the PIN tool by the JIT compiler, the dynamic

compilation process, by the function INS_InsertPredicatedCall. This call inserts our

recording function if the next instruction has stack or memory operation in its byte

code. Therefore the runtime is affected by the number of memory operations and added

overhead for the dynamic compilation. The detailed runtime analysis for PIN tool can

be found in (Luk et al., 2005).

6.2.4. A Memory Image Extraction Example

 In the example below, a malware from the Keygen Trojan family with the md5:

5fe2aebb2fe4abe503d297c318a37a62 is exampled. By observing the traces of the

memory operations and image loadings of this malware, a linked list with images is

constructed. The table of the linked list entries is given in Table 6.1 for this particular

malware. The table is snipped as there are 42 images in the address space of this

malware.

Table 6.1. Linked list of memory images of the malware Keygen

with md5: 5fe2aebb2fe4abe503d297c318a37a62.

Memory Image Image Name Size in bytes

1 ADVAPI32.dll 1241704

2 CFGMGR32.dll 246345

3 COMCTL32.dll 624878

4 CRYPTBASE.dll 157748

5 DEVOBJ.dll 242715

6 devrtl.dll 243177

7 dwmapi.dll 167310

8 GDI32.dll 1192927

9 heap.csv 67104884

10 imm32.dll 524073

11 kernel32.dll 6307693

12 KERNELBASE.dll 2341679

13 LPK.dll 148552

14 Keygen.exe 24399092

15 mfc42.dll 1947667

16 MSCTF.dll 567270

 After the extraction of the memory images, the memory access from malware’s

code section is converted into 3d data patterns where the dimensions are the sequence,

80

instruction pointer, and access pointers. The data is visualized through plotting the 3d

data, and the points in the patterns are given colors regarding whether it is a read or

write operation. Following Figure 6.3. is the extracted image of the example malware.

Figure 6.3. The Extracted image of one of the images from the Keygen Trojan

family. The md5 of the malware is 5fe2aebb2fe4abe503d297c318a37a62.

6.3. Graph Database Model for Memory Access and a Showcase

 In our methodology, the extracted data is saved on a graph database provided by

Neo4j. Every memory access is saved as a node in this database for further analysis.

The reason for utilizing such data tool is to increase the efficiency of pattern

recognition algorithms for future studies. An example analysis of a sample from the

Ramnit Worm family is provided in this section for further reference (see Table 6.2).

Table 6.2. Sample Details for Example Analysis.

Malware Sample Worm.Ramnit.0fe268b9d7eade3a9270e5ab4e54e77d

Memory Access Count 8579

Sha1 Hash Value a0abbf36a32d22a2e178bb8e2fb82ba6d17c651d

Type PE32 executable (GUI) Intel, 80386, for MS Windows,

Nullsoft Installer self-extracting archive

Section Count 5

81

 Memory access nodes are not connected in the beginning, since there are in total

of 134.535.767 memory access entries in our database. However, the selected sample

can be connected with a simple relationship called DISTANCE providing the

Euclidean distances between nodes. The following Figure 6.4. shows a six hundred of

the memory accesses connected with DISTANCE relationship (the result is reduced

due to the visibility of the nodes).

Figure 6.4. Memory Accesses of a Sample connected with Euclidean Distances.

 A meaningful query would be looking for consecutive writes on the memory as

it is an indication of code injection. Therefore, our demo analysis result is queried for

82

consecutive writes, which have Euclidean distances between nodes smaller than 2. The

shortened query results in Figure 6.5.

Figure 6.5. Consecutive writes of the malicious sample.

 After getting the instruction addresses of the consecutive writes, an analyst can

quickly get the image base of the code section and extract the memory exploiting parts.

This methodology would significantly reduce the time of the analysis. Another

analysis demonstration would be that understanding the memory access clustering of

the malware. As memory accesses should be done on memory sections either created

by LoadLibrary() or one of the Virtual Allocation functions, there needs to be a

clustering of sections. A straightforward analysis would be to merge the nodes with

Euclidean distances are smaller than some threshold value. This value should be

selected based on the observations on the data. In the following Figure 6.6, the nodes

with Euclidean distances are smaller than 100 are shown.

83

Figure 6.6. The nodes with Euclidean distances are smaller than 100 are merged in

this example. An apparent clustering of the memory access can be seen from this

figure.

6.4. Structured Similarity Index Measure (SSIM)

The comparison of the memory images is given by the Structural Similarity

Index given by the work of Wang et al. (Wang, Bovik, Sheikh, & Simoncelli, 2004).

This method is used to measure the similarity between malware families in this

research. The method takes two images and calculates their average, variance and

cross-correlations of the binary strings of the two images and return the luminance,

contrast and structural similarities. These similarities then merged into one similarity

metric. The derivation of the metric is as follows:

84

𝑆𝑆𝐼𝑀(𝑥, 𝑦) = [𝑙(𝑥, 𝑦)]𝛼. [𝑐(𝑥, 𝑦)]𝛽 . [𝑠(𝑥, 𝑦)]𝛾

where

𝑙(𝑥, 𝑦) =
2𝜇𝑥𝜇𝑦 + 𝐶1

𝜇𝑥
2 + 𝜇𝑦

2 + 𝐶1

c(x, y) =
2𝜎𝑥𝜎𝑦 + 𝐶2

𝜎𝑥
2 + 𝜎𝑦

2 + 𝐶2

𝑠(𝑥, 𝑦) =
𝜎𝑥𝑦 + 𝐶3

𝜎𝑥𝜎𝑦 + 𝐶3

where 𝜇𝑥, 𝜇𝑦, 𝜎𝑥, 𝜎𝑦 and 𝜎𝑥𝑦 are the local means, standard deviations, and cross-

covariance for images. The exponents 𝛼, 𝛽 and 𝛾 are the weight of the similarities of

luminance, contrast and structural similarities. These exponents are selected as 1

which is the default settings of the implementation of the SSIM in MATLAB 2018b

which is given by the authors of (Wang et al., 2004).

6.5. Conclusion of Chapter 6

 In our methodology, we highlight two contributions to this chapter. The first one

is the memory access analysis can be a characteristics feature of a binary. By analyzing

the access patterns in 3d dimensions, as explained in this chapter, various patterns for

memory operations can be extracted from this data. By instrumenting the memory

access instructions in the binary in an isolated environment, both the benefits of the

dynamic analysis and memory forensics can be merged as shown in this Chapter.

 The second contribution is the demonstration of spatial properties of the 3d data

can be used to identify even more signatures and characteristics. However, the

investigation of these properties are left as future work, and only a showcase is

presented.

 In the next chapter, we present our tests on a malware dataset, which led to

134.535.767 memory access. SSIM has been used as a measure of similarity and

relevance between similar memory operations and malware families are presented.

85

CHAPTER 7

TESTS AND RESULTS

 This chapter presents the test and results on extracted malware memory images

with the methodology provided by the previous chapter. The memory images are tested

against their behavioral characteristics, and these characteristics are matched with the

memory artifacts and results. Similarities on the memory images are revealed, and the

memory images, particularly on the merits of their similarities amongst their malware

families are evaluated and discussed.

7.1. Software Support

 Several open source projects are utilized in this research. Intel’s Pin Tool version

3.7 is used for the dynamic binary instrumentation, as mentioned in the methodology

chapter. The malware memory images are inserted in a graph database, and the graph

database engine is provided by Neo4j version 3.5. For the implementation of the

sandboxing and automation, Oracle’s Virtualbox Software version 5.2 and its API are

integrated into the research. To compare and contrast our malware for their behavioral

analysis, Cuckoo Sandbox version 2.0.6 is combined. MATLAB R2018b and SSIM

implementation in this software is used. In the rest of this chapter, similarity ratio refers

to the value of the result of SSIM.

7.2. Malware Dataset

 A dataset consisting of malicious and benign programs are collected to test our

methodology. The malicious samples come from 24 families of different types of

malware composed of trojans, ransomware, viruses, and worms in a total of 121

malware samples. In addition to malware families, six benign portable executable files

are included in the dataset. The malware families and the number of samples from each

can be found in Table 7.1. The malware samples are downloaded from Virusign

86

website (ViruSign, 2019), and the benign files are downloaded from

http://www.portablefreeware.com website (Freeware, 2019).

 For demonstrating and testing our methodology, six system internal programs

are included in the dataset. These programs although being extremely useful for system

analysis, process tracking and memory tracking, their methods show similarities with

that of the malicious samples. These programs are downloaded from from

http://www.sysinternals.com website (Microsoft, 2019).

Table 7.1. The distribution of the malware samples in our dataset.

Type Family Number of

Samples

Trojan Autorun 5

Botnet BackOrifice 5

Ransomware Ceber 4

Ransomware Cryptowall 5

Botnet Cutwail 5

Ransomware Jigsaw 4

Trojan Keygen 9

Botnet Lethic 2

Ransomware Locky 5

Botnet Marina 3

Trojan Matsnu 1

Botnet Necurs 6

Trojan Netbus 3

Cleanware Portable 10

Worm Ramnit 10

Virus Rex 2

Botnet Sality 6

Botnet Storm 4

Trojan Sub7 3

Cleanware Sysinternals 6

Trojan Tdss 3

Ransomware TeslaCrypt 5

Botnet Torpig 4

Virus Virut 5

Virus Xpaj 4

 Total 121

7.3. Malware Memory Patterns

 In this section, our observed characteristics for similar patterns are presented.

Observed patterns are grouped by the memory operations of malware, as discussed in

Chapter 5. The common groups of patterns are;

87

• The Ultimate Packer for Executables (UPX) packing algorithm patterns,

• Packing patterns,

• Process or Code Injection Patterns

• Encryption patterns, particularly ransomware patterns

• Infectors and Virus patterns.

These patterns are evaluated with the Average Similarity Measure built on SSIM

method. This is a straightforward approach to apply the SSIM index to a group of

pictures where the average value is calculated after the calculation of the pairwise

similarities within a group of samples. Although there are ~134 billion memory

operations that are investigated for this research, the number of malware samples is

moderately low for a kernel-based similarity and clustering approach (Choi, Cha, &

Tappert, 2010). Therefore applying an O(n2) algorithm to calculate all the similarities

between the pairs exhaustively suffices for this research.

For the memory images in this section of the dissertation, the red points are for the

read operations, and green points are the write operations. The sequence of the access,

instruction address, and accessed memory locations are given in x, y, and z-axis,

respectively. The lines in between memory accesses construct the blue colored spaces.

UPX Packing Patterns

Our first observation was packed binaries, particularly the ones that are packed

with UPX produce similar patterns on the 3d memory images while unpacking

themselves on the memory. Figure 7.1. presents two benign software and two malware

samples from Keygen family. It has been detected that these four samples show similar

patterns of consecutive writing to the memory space incrementally. The similarity ratio

for UPX patterns is 0.6724712.

88

(a) Md5: 0ae3db62540fc9443e420e3f809072fb (b) Md5: 0b86536bba2a922f5f32ad1792d8a03b (c) Md5: 5fe2aebb2fe4abe503d297c318a37a62

(d) Md5: 08039889e160893714465c1f5db811a6 (e) Md5: c8bdd8fb4e3dbda64d78ef5a90f3df9f (f) Md5:590e5724d3400abb3184341bb280d70

Figure 7.1 UPX patterns for the samples respectively, (a), (b) portable benign executables, (c), (d), (e) Trojans from Keygen Family, (f) a trojan

from Sub7 family. The average similarity ratio for these patterns is 0.6724712.

89

As can be seen from Figure 7.1., there is a clear packing pattern in all the

images, and the average similarity ratio is around 0.67. The sizes of the packed

executables are varying, and the unpacking operation has resulted in more extended

patterns for some executables, as in Figure 1 (e) and Figure 1 (b). The trojan from Sub7

malware family, Figure 1 (f), is relatively different from the other images in this

Figure, as it contains injection patterns in its memory image although the unpacking

operation can be seen around the sequence 0.5 x 107.

Packing and Self-Decrypting Patterns

For packing algorithms other than UPX, the patterns from Figure 7.2. are

observed. These patterns from different malware families show similar memory

operations within their address space.

Another observation in these patterns is the self-decrypting malware result in

similar memory patterns with that of the ransomware. In Figure 2, the similarity ratio

for Figure 2 (a) and (b) is 0.987532, which shows that their packed with the same

algorithm and showing similar memory operations.

 Figure 2 (c) and (d) are revealing another pattern for packing and self-

decrypting structure even though two samples are coming from different botnet

families.

(a) Necurs Botnet, Md5:

8465be244e52d903b2b98781f3a

96aab

(b) Ceber Ransomware, md5:

2a919a45826055c1b6dbc19b659fcf

2e

90

(c) Sality Botnet, Md5:

56ad40196a523b618b61f3c5b8b618

47

(d) Necurs Botnet, Md5:

050f2d3c27ca7402ea61dc141fc93d

3f

Figure 7.2. Observed Packing and Self-decrypting patterns.

Process or Code Injection Patterns

Code injection is the process of copying malicious executable code payloads

or malicious pe executables into another process address space and running the code

from there. In the following Figure 7.3., indications of rate code injection are present.

The observed patterns are from several malware families. These families are

Marina, Torpig, Storm, Necurs, and Matsnu. The resulting patterns show the visibility

of writing to the same memory space, possibly an opened pipe between process address

spaces, and therefore forming straight green lines along the sequence axis.

Two botnets in Figure 7.3. (a) and (c), showing very close observations. This

is generally the reason for using the same algorithm or code piece for injection into

another process's address space. Their similarity ratio is 0.989123. Figure 7.3. (d) and

(e), Trojan Matsnu and Botnet Torpig show injection to another module address space

after reading either unpacked or decrypted the malicious code. These patterns they

construct are unique in other samples, and these patterns occurred only among in their

family members in our dataset. This observation can be seen later on this chapter in

the results of malware family pairwise comparisons. In Figure 7.3. (b) consecutive

reading and writing is done by the Necurs malware, which indicates a calculation on

the written data done prior to injecting. This pattern also can be seen in ransomware

samples.

91

(a) Marina Botnet, Md5:

1cbeefe63d550d0648f86b08d8bacf52

(b) Necurs Botnet, Md5:

f2b45e5ac7d8393a89c485986a25748f

(c) Storm Botnet, Md5:

4e1d57de057c94d0b24f9468af950532

(d) Torpig Botnet, Md5:

585228c82d2c7642c5bb7a6b992734e0

(e) Matsnu Trojan, Md5:

7ea3d5d87f39a222c79291b201599ca8

(f) Storm Botnet, Md5:

8af33ef131ef54c1b114eeeadfd8db6f

Figure 7.3. Process Injection Indications on Various Patterns.

93

Ransomware Patterns

Another important observation in these patterns was from the ransomware

samples. It has been seen that ransomware has a very distinctive memory trace that

can easily be distinguished from our artifacts. The following figure contains three

different families of 4 ransomware samples producing the same output pattern with the

similarity ratio of 0.822487.

Cryptowall

Md5:

3c45e0306f7b8921b7947a1e41b83e65

Locky

Md5:

0d1c01615134f26fdc52bd7764b19996

Locky

Md5:

1c75d83bf9e55b44b4b90b4b9dcb64a1

TeslaCrypt

Md5:

1c8291eb7c1e8a98d3ba12a52e89b429

Figure 7.4 Ransomware Patterns with the pairwise similarity average of 0.822487.

As can be seen from Figure 7.4., these ransomware samples produce red and green

straight lines on the same instruction write patterns in their images.

94

Observed Patterns among Infectors

Similarly, slightly different patterns are also caught from the observations of virus

(infector) files. Among the samples, the files that are infecting other files and their

images have been extracted. Some of the examples of viruses from the same families

are given in pairs in the following Figure 7.5.

Rex

Md5:

eabcc1ca51682d55b2451c4f5da1dc11

Rex

Md5:

d477636cd715e375f6ec29280a2e7808

Autorun

Md5:

2c3ccd32927839768639b88829a5c04a

Autorun

Md5:

3b37acbeb2b4e2d4748ab0d80d6016ef

Figure 7.5. Viruses and Infectors Fingerprints. For the family samples of Rex Virus

given above, the similarity rate is 0.999994, and for the Autorun samples, the same

ratio is 0.947181.

These results are obtained on a computer with Intel Processor Intel(R) Core

(TM) i7-7700HQ CPU @ 2.80GHz, 4 Core(s). In our dataset, nine of the malware

could not be mapped into 3d space as the number of points was not feasible to map on

our experiment computer. It has been observed in our experimentation that 16 of the

95

malware from our sample did not run on our sandbox or detected that they are being

observed.

7.4. Malware Families

 One of the main reasons for this research is to reveal malware family based

characteristics in addition to identifying memory operations of malware. For this aim,

the average pairwise similarity ratios of the samples coming from the same family are

given in the following Figure 7.6. Most of the families in this research resulted in

ratios between 0.6 and 0.7, with a minimum similarity ratio of 0.6923085. It is shown

that even for a small number of samples in our dataset, our mechanism and the search

for memory patterns are evident. This is the main contribution of this dissertation.

Figure 7.6. Pairwise Similarity ratio average values for all the families in our

dataset.

7.5. Discussion

Figure 7.6. shows the average similarity ratio amongst the same malware

family. As mentioned in the previous Chapter 7, the average similarity ratio is

calculated by comparing all the pairs in a family and getting the arithmetic averages

of these pair-wise similarity rates. The lower bound of this measure for our malware

dataset is around the value of 0.50. As the SSIM measure is a tool for comparing

images and our resulting patterns resides on the same axis structure in each image.

0

0.2

0.4

0.6

0.8

1

1.2

P
ai

rw
is

e
S

im
il

ar
it

y
 M

ea
su

re
 w

it
h

 S
S

IM

Malware Families

Similarity Averages of Malware Families

96

The higher bound is 1.00 which means the resulting patterns are the same.

Figure 7.6. reveals the similarity of the families Rex Virus and Matsnu Trojan

produced precisely the same memory images and patterns, although they have

employed mechanisms to avoid signature-based detection. Although their

cryptographical hash values and behavior analysis differs from sample to sample, their

memory usage patterns and representations shows 0.995655667 for Marina Botnet

Family and 0.999994 for Rex Virus Family.

Virus Families result in the highest similar images with the average ratio of

0.886347678. The pattern that the virus families produce is very similar to the patterns

in Figure 7.5. Botnet Families in our dataset generates the second most similarities

amongst their families with an average ratio around 0.82. It is an expected property of

a botnet as they are in general designed to tweak their code a little bit at every infection

and connect to the same C&C with the same protocol.

There are some striking cross-family similarities in our dataset. It is mainly

because of the utilization of the same loader or downloader integrated into several

types of malware. As for an example to the cross-family similarities, Figure 7.2 (a) -

(b) and Figure 7.3 (a) - (c) can be considered. There are many more examples for the

utilization of the same code-piece, and these can be observed from the Github page of

our dataset and resulting images. A heatmap of the pairwise similarities of all malware

in our dataset is given in Figure 7.7.

97

Figure 7.7 - Heatmap of the Malware Dataset Similarities.

98

 On the heatmap in Figure 7.7, the malware are numbered consecutively to their

families in the order of Botnets, Cleanware, Ransomware, System Tools, Trojans,

Viruses and Worms. The numbers closed to each other represents the malware coming

from the same family. Therefore, the tones around the diagonal line are lighter.

 Thre rectangular areas with same tones in the heatmap in Figure 7.7 are mostly

around the diagonal line. However in these results, our methodlogy shows significant

similarities between worms and viruses which can be seen around 103-107 on X-axis

and 114-120 on Y-axis. The light scalars distant from the diagonal line typically shows

malware coming from different families and have integrated similar piece of codes in

their developments. This heatmap and the data that constructs this heatmap can be

found in the accompanying GitHub page given in Conclusion Chapter 8.

In this chapter, common indicators of memory operations and similarities of the

malicious samples on memory are shown and presented. The next chapter concludes

this dissertation with the challenges and future works, as well as emphasizing our

contributions in this study.

99

CHAPTER 8

CONCLUSION

8.1. Problem Definition Re-visited

 Contemporary malware detection mechanisms and malware analysis techniques

are not able to keep up with the malware authors because of the avoidance techniques

employed. Static analysis techniques suffer from obfuscation, packing, and encryption

methodologies, and thus, the limitations of static analysis are evident and discussed in

Chapter 3.

 Dynamic analysis and behavioral detection methods surpass these limitations.

However, as the malware authors advance on the malware analysis techniques, new

avoidance techniques such as native DLL coding, memory resident, file-less malware

came into existence. Because of these reasons, the need for detection and analysis

methodologies on the memory is present.

 In this dissertation, a memory tracing technique combining dynamic analysis

methodologies and memory forensics with dynamic binary instrumentation is

employed. A novel method is explained and presented for memory imaging and pattern

extraction of the malicious files. It has been shown on Windows PE Executable

Malware that similar malware samples coming from the same families show similar

memory access patterns in 3d space constructed by the sequence of the access relative

to the computation instruction sequence, the instructions address and the memory

address that is being accessed.

8.2. Contributions

Samples from a malicious and a benign software dataset experimented with the

methodology, and the results are shared in this dissertation. Therefore;

• The main contributions of this research are first providing a novel

methodology for extracting memory usage patterns – namely obtaining the

digital memory images of the various malware or benign software.

100

• Secondly demonstrating that the similar malware samples can be detected

utilizing these memory images

• Lastly, underlining the fact that the visual patterns of memory utilization

of the various software may be utilized in computer forensics research.

The instances, results, and the graph DB access is open to public on,

http://github.com/cgyphd/Imaging-and-Evaluating-Memory-Access-for-Malware.

8.3. Discussions and Challenges

 The main challenge in this methodology is that the number of malware access

entries can grow in the order of 107, therefore to generate and extract patterns in

sufficient quantities for machine learning and deep learning becomes unfeasible.

 The second challenge is pattern recognition in 3-dimensional data is still a big

challenge in the pattern recognition community. Therefore, the technique employed in

this dissertation is applied on the 2-d images of 3-d data. Moreover, for 3-dimensional

pattern recognition, a graph database is used and integrated into this research for this

reason.

 The results of the static analysis visualizations are not explored further n this

research, as mentioned in Chapter 3. Static analysis has its limitations set by

obfuscations, packing and other avoidance schemes that are excessively explained in

this dissertation. Therefore, the thesis is directed to and aimed at dynamical analysis

methodologies.

 This dissertation presents an analysis methodology that is designed for a post-

mortem strategy. The analysis and comparisons can be done after the infection has

occurred. There is an absolute need for methods and techniques that are capable of

identifying and deciding on memory patterns on a live system. It could be achieved

through monitoring the state of the process memory either by utilizing external gates

to the processors read/write gates by adding hardware components or by adding

external software components to the virtual machines and monitoring the behavior of

the virtual machine interfaces.

 The methodology in this dissertation assumes that the memory patterns reside in

3-dimensional spaces. Another question arises from this research is whether there will

be an additional fourth dimension on the memory. This dissertation does not answer

101

this question. However, the evolution of the malware and observation of this evolution

through a collection of malicious patterns of families over years might result in new

links between malicious samples and their evolving patterns. These links may reveal

new features and new dimensions yet to be discovered. For this aim, the similarity

between families can be related to Open Source Intelligence on malware families for

the time being. Collected open-source information content will result in better labeling

of the patterns, which will, in return, result in better identification of malicious

executables.

8.4. Future Work

Spatial properties of the graphs constructed with the memory extraction are

demonstrated in Chapter 6. A line of future work is to investigate these properties

rigorously and thoroughly. In that sense, the analysis of the malware can be enrichened

utilizing those properties.

This Ph.D. work hopes that with the advancement of Deep Learning

methodologies, especially the state-of-the-art Convolutional Neural Networks (CNN)

for image recognition, the cyber intelligence analysts will be able to identify malware

in less amount of time than it already takes currently.

The final and maybe the most crucial future work of this Ph.D. is to integrate

the results and patterns of this research into big data platforms and live systems to

engineering real-time detection systems through memory analysis.

.

103

REFERENCES

Aghaeikheirabady, M., Farshchi, S. M. R., & Shirazi, H. (2015). A new approach to

malware detection by comparative analysis of data structures in a memory

image. 2014 International Congress on Technology, Communication and

Knowledge, ICTCK 2014, (Ictck), 1–4.

https://doi.org/10.1109/ICTCK.2014.7033519

Asturiano, V. (n.d.). 3d Force Graph Library.

Avoine, G., Oechslin, P., & Junod, P. (2007). Computer System Security: Basic

Concepts and Solved Exercises. EPFL Press.

Bailey, M., Oberheide, J., Andersen, J., Mao, Z. M., Jahanian, F., & Nazario, J.

(2007). Automated Classification and Analysis of Internet Malware. Recent

Advances in Intrusion Detection, 178–197. https://doi.org/10.1007/978-3-540-

74320-0_10

Banin, S., Shalaginov, A., & Franke, K. (2016). Memory access patterns for malware

detection. NISK-2016 Conference, 12.

Bencsáth, B., Pék, G., Buttyán, L., & Félegyház, M. (2012). Duqu_Analysis,

Detection, and Lessons Learned.

BitDefender. (2010). Malware History. BitDefender, 71. Retrieved from

http://download.bitdefender.com/resources/files/Main/file/Malware_History.pdf

.

Bletsch, T., Jiang, X., Freeh, V. W., & Liang, Z. (2011). Jump-oriented

programming. Proceedings of the 6th ACM Symposium on Information,

Computer and Communications Security - ASIACCS ’11, 30.

https://doi.org/10.1145/1966913.1966919

Brunner, J. (1984). Shockwave Rider. Del Rey.

Bruschi, D., Martignoni, L., & Monga, M. (2006). Detecting self-mutating malware

using control-flow graph matching. Informatica, 4064, 129–143.

https://doi.org/10.1007/11790754_8

Cheng, B., Ming, J., Fu, J., Peng, G., Chen, T., Zhang, X., & Marion, J.-Y. (2018).

104

Towards Paving the Way for Large-Scale Windows Malware Analysis: Generic

Binary Unpacking with Orders-of-Magnitude Performance Boost. CCS.

https://doi.org/10.1145/3243734.3243771

Choi, S., Cha, S., & Tappert, C. C. (2010). A Survey of Binary Similarity and

Distance Measures. Group, 0(1), 43–48. Retrieved from

http://www.iiisci.org/Journal/CV$/sci/pdfs/GS315JG.pdf

Christodorescu, M., & Jha, S. (2003). Static Analysis of Executables to Detect

Malicious Patterns. SSYM’03 Proceedings of the 12th Conference on USENIX

Security Symposium - Volume 12, 12.

https://doi.org/http://doi.org/10.1109/MSP.2010.92

Cuckoo Sandbox. (2019). Cuckoo Sandbox. Retrieved from

https://cuckoosandbox.org/

Cymmetria Reseach. (2016). Unveiling Patchwork – the Copy-Paste Apt.

Dewdney, A. K. (1989). COMPUTER RECREATIONS. Scientific American,

260(4), 116–119. Retrieved from http://www.jstor.org/stable/24987222

Ding, S. H. H., Fung, B. C. M., & Charland, P. (2016). Kam1n0: MapReduce-based

Assembly Clone Search for Reverse Engineering. Proceedings of the 22nd ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining -

KDD ’16. https://doi.org/10.1145/2939672.2939719

Duan, Y., Fu, X., Luo, B., Wang, Z., Shi, J., & Du, X. (2015). Detective:

Automatically identify and analyze malware processes in forensic scenarios via

DLLs. IEEE International Conference on Communications, 2015-Septe, 5691–

5696. https://doi.org/10.1109/ICC.2015.7249229

Falliere, N., Murchu, L., & Chien, E. (2011). W32.Stuxnet Dossier. Symantec-

Security Response, Version 1.(February 2011), 1–69. https://doi.org/20

September 2015

Farhadi, M. R., Fung, B. C. M., Fung, Y. B., Charland, P., Preda, S., & Debbabi, M.

(2015). Scalable code clone search for malware analysis. Digital Investigation,

15, 46–60. https://doi.org/10.1016/j.diin.2015.06.001

FBI. (2018). The Morris Worm 30 Years Since First Major Attack on the Internet.

Retrieved April 23, 2019, from https://www.fbi.gov/news/stories/morris-worm-

105

30-years-since-first-major-attack-on-internet-110218

Freeware, P. (2019). Portable Freeware. Retrieved February 24, 2019, from

https://www.portablefreeware.com/

Fujino, A., Murakami, J., & Mori, T. (2015). Discovering similar malware samples

using API call topics. 2015 12th Annual IEEE Consumer Communications and

Networking Conference, CCNC 2015, 140–147.

https://doi.org/10.1109/CCNC.2015.7157960

Gandotra, E., Bansal, D., & Sofat, S. (2014). Malware Analysis and Classification: A

Survey. Journal of Information Security, 05(02), 56–64.

https://doi.org/10.4236/jis.2014.52006

GDATAAdvancedAnalytics. (2016). r2graphity. Retrieved from

https://github.com/GDATAAdvancedAnalytics/r2graphity

Gupta, A., Kuppili, P., Akella, A., & Barford, P. (2009). An Empirical Study

ofMalware Evolution. COMSNETS’09 Proceedings of the First International

Conference on COmmunication Systems And Networks Pages 356-365, 356–

365. Retrieved from http://pages.cs.wisc.edu/~pb/comsnets09.pdf

Haq, I., Chica, S., Caballero, J., & Jha, S. (2018). Malware lineage in the wild.

Computers and Security, 78, 347–363.

https://doi.org/10.1016/j.cose.2018.07.012

Heinricher, A., & Jilcott, S. (2013). An Evolutionary Trace Algorithm for

Constructing Malware Lineages. 264–269.

Joe Sandbox. (2019). Joe Sandbox. Retrieved June 20, 2019, from

https://www.joesecurity.org/

Karbab, E. M. B., Debbabi, M., Derhab, A., & Mouheb, D. (2018). MalDozer:

Automatic framework for android malware detection using deep learning.

Digital Investigation, 24, S48–S59. https://doi.org/10.1016/j.diin.2018.01.007

Karim, M. E., Walenstein, A., Lakhotia, A., & Parida, L. (2005). Malware phylogeny

generation using permutations of code. Journal in Computer Virology, 1(1–2),

13–23. https://doi.org/10.1007/s11416-005-0002-9

Kaspersky. (2019). 1990. Retrieved April 23, 2019, from

106

https://encyclopedia.kaspersky.com/knowledge/year-1990/

Kawakoya, Y., Iwamura, M., Shioji, E., & Hariu, T. (2013). API Chaser: Anti-

analysis resistant malware analyzer. Lecture Notes in Computer Science

(Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes

in Bioinformatics), 8145 LNCS, 123–143. https://doi.org/10.1007/978-3-642-

41284-4_7

Kolbitsch, C., Comparetti, P. M., Kruegel, C., Kirda, E., Zhou, X., Wang, X., …

Antipolis, S. (2009). Effective and Efficient Malware Detection at the End Host.

System, 4(1), 351–366. https://doi.org/10.1093/mp/ssq045

Kolosnjaji, B., Zarras, A., Webster, G., & Eckert, C. (2016). Deep Learning for

Classification of Malware System Call Sequences. In Lecture Notes in

Computer Science (including subseries Lecture Notes in Artificial Intelligence

and Lecture Notes in Bioinformatics): Vol. 9992 LNAI (pp. 137–149).

https://doi.org/10.1007/978-3-319-50127-7_11

Kolter, J. Z., & Maloof, M. A. (2006). Learning to Detect and Classify Malicious

Executables in the Wild. Journal of Machine Learning Research, 7, 2721–2744.

Korczynski, D., & Yin, H. (2017). Capturing Malware Propagations with Code

Injections and Code-Reuse Attacks. Proceedings of the 2017 ACM SIGSAC

Conference on Computer and Communications Security - CCS ’17, 1691–1708.

https://doi.org/10.1145/3133956.3134099

Lanzi, a, Sharif, M., & Lee, W. (2009). K-Tracer: A System for Extracting Kernel

Malware Behavior. Ndss, 163–169.

https://doi.org/http://www.isoc.org/isoc/conferences/ndss/09/pdf/12.pdf

Lecun, Y., & Bengio, Y. (1995). Convolutional Networks for Images, Speech, and

Time-Series. In The Handbook of Brain Theory and Neural Networks (p. 43).

Li, Y., Sundaramurthy, S. C., Bardas, A. G., Ou, X., Caragea, D., Hu, X., & Jang, J.

(2015). Experimental Study of Fuzzy Hashing in Malware Clustering Analysis.

8th Workshop on Cyber Security Experimentation and Test (CSET 15).

Retrieved from https://www.usenix.org/conference/cset15/workshop-

program/presentation/li

Ligh, M. H., Case, A., Levy, J., & Walters, Aa. (2014). The Art of Memory

107

Forensics: Detecting Malware and Threats in Windows, Linux, and Mac

Memory. In Wiley (Vol. 1). https://doi.org/10.1007/s13398-014-0173-7.2

Luk, C.-K., Cohn, R., Muth, R., Patil, H., Klauser, A., Lowney, G., … Hazelwood,

K. (2005). Pin: building customized program analysis tools with dynamic

instrumentation. Proceedings of the 2005 ACM SIGPLAN Conference on

Programming Language Design and Implementation - PLDI ’05, 40(6), 190.

https://doi.org/10.1145/1065010.1065034

Microsoft. (2019). Windows System Internals. Retrieved March 2, 2019, from

http://www.sysinternals.com

Miles, C. (1986). Early History of the Computer Virus. (1984).

Moser, A., Kruegel, C., & Kirda, E. (2007). Limits of static analysis for malware

detection. Proceedings - Annual Computer Security Applications Conference,

ACSAC, 421–430. https://doi.org/10.1109/ACSAC.2007.21

Mosli, R., Li, R., Yuan, B., & Pan, Y. (2016). Automated malware detection using

artifacts in forensic memory images. 2016 IEEE Symposium on Technologies

for Homeland Security, HST 2016. https://doi.org/10.1109/THS.2016.7568881

Mosli, R., Li, R., Yuan, B., & Pan, Y. (2017a). A Behavior-Based Approach for

Malware Detection. In IFIP Advances in Information and Communication

Technology (pp. 187–201). https://doi.org/10.1007/978-3-319-67208-3_11

Mosli, R., Li, R., Yuan, B., & Pan, Y. (2017b). A Behavior-Based Approach for

Malware Detection. In Advances in Digital Forensics IV (pp. 187–201).

https://doi.org/10.1007/978-3-319-67208-3_11

Narudin, F. A., Feizollah, A., Anuar, N. B., & Gani, A. (2016). Evaluation of

machine learning classifiers for mobile malware detection. Soft Computing,

20(1), 343–357. https://doi.org/10.1007/s00500-014-1511-6

Neumann, J. Von. (1969). Theory of self-reproducing automata. Information Storage

and Retrieval, Vol. 5, p. 151. https://doi.org/10.1016/0020-0271(69)90026-6

Newsome, J., & Song, D. (2005). Dynamic taint analysis for automatic detection,

analysis, and signature generation of exploits on commodity software. Analysis,

44(May 2004), 2–3. https://doi.org/10.1.1.62.8372

108

Nguyen, M. H., Nguyen, D. Le, Nguyen, X. M., & Quan, T. T. (2018). Auto-

detection of sophisticated malware using lazy-binding control flow graph and

deep learning. Computers and Security, 76, 128–155.

https://doi.org/10.1016/j.cose.2018.02.006

Ni, S., Qian, Q., & Zhang, R. (2018). Malware identification using visualization

images and deep learning. Computers and Security, 77, 871–885.

https://doi.org/10.1016/j.cose.2018.04.005

Ortega, A. (2016). Paranoid Fish. Retrieved February 24, 2019, from

https://github.com/a0rtega/pafish

Park, Y., Reeves, D., Mulukutla, V., & Sundaravel, B. (2010). Fast malware

classification by automated behavioral graph matching. Proceedings of the Sixth

Annual Workshop on Cyber Security and Information Intelligence Research, 1–

4. https://doi.org/10.1145/1852666.1852716

Park, Y., Reeves, D. S., & Stamp, M. (2013). Deriving common malware behavior

through graph clustering. Computers and Security, 39(PART B), 419–430.

https://doi.org/10.1016/j.cose.2013.09.006

Pektaş, A., & Acarman, T. (2017). Classification of malware families based on

runtime behaviors. Journal of Information Security and Applications, 37, 91–

100. https://doi.org/10.1016/j.jisa.2017.10.005

Pietrek, M. (2011). Peering Inside the PE : A Tour of the Win32 Portabl ... Peering

Inside the PE : A Tour of the Win32 Portable Executable File Format Peering

Inside the PE : A Tour of the Win32 Portabl ... (1), 1–21.

Pirscoveanu, R. S., Hansen, S. S., Larsen, T. M. T., Stevanovic, M., Pedersen, J. M.,

& Czech, A. (2015). Analysis of malware behavior: Type classification using

machine learning. 2015 International Conference on Cyber Situational

Awareness, Data Analytics and Assessment (CyberSA), 1–7.

https://doi.org/10.1109/CyberSA.2015.7166128

Risak, V. (1972). Selbstreproduzierende Automaten mit minimaler

Informationsübertragung. Elektrotechnik Und Maschinenbau, 89(11), 449–457.

Rughani, V., & Rughani, P. H. (2017). AUMFOR : Automated Memory Forensics for

Malware Analysis. 6(2), 36–39.

109

Santos, I., Brezo, F., Ugarte-Pedrero, X., & Bringas, P. G. (2013). Opcode sequences

as representation of executables for data-mining-based unknown malware

detection. Information Sciences, 231, 64–82.

https://doi.org/10.1016/j.ins.2011.08.020

Sarantinos, N., Benzaïd, C., Arabiat, O., & Al-Nemrat, A. (2016). Forensic malware

analysis: The value of fuzzy hashing algorithms in identifying similarities.

Proceedings - 15th IEEE International Conference on Trust, Security and

Privacy in Computing and Communications, 10th IEEE International

Conference on Big Data Science and Engineering and 14th IEEE International

Symposium on Parallel and Distributed Proce, (July 2018), 1782–1787.

https://doi.org/10.1109/TrustCom.2016.0274

Schultz, M. G., Eskin, E., Zadok, E., & Stolfo, S. J. (2001). Data mining methods for

detection of new malicious executables. Proceedings. 2001 IEEE Symposium on

Security and Privacy, 2001. S&P 2001., 38–49.

https://doi.org/10.1109/SECPRI.2001.924286

Sergi Alvarez. (2006). Radare2 Reverse Engineering Framework. Retrieved

December 7, 2018, from https://rada.re/r/

Shabtai, A., Moskovitch, R., Feher, C., Dolev, S., & Elovici, Y. (2012). Detecting

unknown malicious code by applying classification techniques on OpCode

patterns. Security Informatics, 1–22.

Sharp, R. (2007). An Introduction to Malware. In Lecture Notes of DTU02233

Network Security. https://doi.org/10.1002/9781119183433.ch9

Shijo, P. V., & Salim, A. (2015). Integrated static and dynamic analysis for malware

detection. Procedia Computer Science, 46(Icict 2014), 804–811.

https://doi.org/10.1016/j.procs.2015.02.149

Smith, C., & Matrawy, A. (2008). Computer worms: Architectures, evasion

strategies, and detection mechanisms. Journal of Information …, 4, 69–83.

Retrieved from http://www.softcomputing.net/jias/smith.pdf

Stevens, R. M., & Casey, E. (2010). Extracting Windows command line details from

physical memory. Digital Investigation, 7(SUPPL.).

https://doi.org/10.1016/j.diin.2010.05.008

110

Symantec. (2015). Dyre : Emerging threat on financial fraud landscape.

Szor, P. (2005). The Art of Computer Virus Research and Defense. Addison-Wesley

Professional.

Teller, T., & Hayon, A. (2014). Enhancing Automated Malware Analysis Machines

with Memory Analysis. 1–5.

Tenebro, G. (2009). W32.Waledac Threat Analysis. In Security Response Articles.

Thompson, K. (1984). Reflections on trusting trust. Communications of the ACM,

27(8), 761–763.

Touchette, F. (2015). The Evolution Of Malware. Retrieved May 5, 2019, from

https://www.darkreading.com/risk/the-evolution-of-malware/a/d-id/1322461

Uppal, D., Sinha, R., Mehra, V., & Jain, V. (2014). Malware detection and

classification based on extraction of API sequences. Proceedings of the 2014

International Conference on Advances in Computing, Communications and

Informatics, ICACCI 2014, 2337–2342.

https://doi.org/10.1109/ICACCI.2014.6968547

ViruSign. (2019). Virusign. Retrieved February 24, 2019, from

https://www.virusign.com/

Walenstein, A., & Lakhotia, A. (2007). The software similarity problem in malware

analysis. Proceedings Dagstuhl Seminar 06301: Duplication, Redundancy, and

Similarity in Software, 1–10. Retrieved from

http://drops.dagstuhl.de/opus/volltexte/2007/964/

Wang, Z., Bovik, A. C., Sheikh, H. R., & Simoncelli, E. P. (2004). Image Quality

Assessment: From Error Visibility to Structural Similarity. IEEE Transactions

on Image Processing, 13(4), 600–612. https://doi.org/10.1109/TIP.2003.819861

Wei, Y., Zheng, Z., & Ansari, N. (2008). Revealing packed malware. IEEE Security

and Privacy, 6(5), 65–69. https://doi.org/10.1109/MSP.2008.126

Xin, B., & Zhang, X. (2007). Efficient online detection of dynamic control

dependence. Proceedings of the 2007 International Symposium on Software

Testing and Analysis - ISSTA ’07, 185.

https://doi.org/10.1145/1273463.1273489

111

Yadegari, B., Stephens, J., & Debray, S. (2017). Analysis of Exception-Based

Control Transfers. CODASPY, 205–216.

https://doi.org/10.1145/3029806.3029826

Ye, Y., Wang, D., Li, T., & Ye, D. (2007). IMDS: Intelligent Malware Detection

System. Proceedings of the 13th ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, 1043–1047.

https://doi.org/10.1145/1281192.1281308

Yin, H., Song, D., Egele, M., Kruegel, C., & Kirda, E. (2007). Panorama: Capturing

System-wide Information Flow for Malware Detection and Analysis.

Proceedings of the 14th ACM Conference on Computer and Communications

Security (CCS ’07), 116–127.

https://doi.org/http://doi.acm.org/10.1145/1315245.1315261

You, I., & Yim, K. (2010). Malware obfuscation techniques: A brief survey.

Proceedings - 2010 International Conference on Broadband, Wireless

Computing Communication and Applications, BWCCA 2010, 297–300.

https://doi.org/10.1109/BWCCA.2010.85

Zaki, A., & Humphrey, B. (2014). Unveiling the kernel : Rootkit discovery using

selective automated kernel memory differencing. Virus Bulletin, (September),

239–256.

Zakorzhevsky, V. (2010). Analysis Article on Virut.ce. Retrieved July 6, 2019, from

Securelist.com website: https://securelist.com/review-of-the-virus-win32-virut-

ce-malware-sample/36305/

Zerowine. (2019). Zerowine. Retrieved June 21, 2019, from

http://zerowine.sourceforge.net/

Zhu, Y., Gladyshev, P., & James, J. (2009). Temporal Analysis of Windows MRU

Registry Keys. In Advances in Digital Forensics IV (pp. 83–93).

https://doi.org/10.1007/978-3-642-04155-6_6

