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ABSTRACT 

EVOLUTIONARY ALGORITHMS FOR SOLVING A MULTI-OBJECTIVE 

GREEN VEHICLE ROUTING PROBLEM  

Erdoğdu, Kazım 

Ph.D., Computer Engineering 

Advisor: Asst. Prof. Korhan KARABULUT 

June 2019 

Green Vehicle Routing Problems (GVRPs) increasingly gain prominence due to the 

environmental issues created by the transportation vehicle fleets. The amount of 𝐶𝑂2 

emissions caused by the fossil fuel vehicles can be decreased by reducing the amount 

of fuel consumption of these vehicles. In this thesis, a Multi-Objective Green Vehicle 

Routing Problem (MOGVRP) was studied. Two objectives were taken into 

consideration in the problem: minimizing the total distance and minimizing the total 

fuel consumption of all vehicle routes. Two state-of-the-art methods NSGA-II and 𝝐-

MOEA were adapted and applied for the solution of the problem, a multi-objective 

local search heuristic was proposed, and Path-Relinking heuristic was modified for the 

multi-objective problem. 

Key Words: Green Vehicle Routing Problems, Multi-Objective Problems, 

Evolutionary Algorithms. 
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ÖZ 

ÇOK AMAÇLI BİR YEŞİL ARAÇ ROTALAMA PROBLEMİNİN 

ÇÖZÜMÜ İÇİN EVRİMSEL ALGORİTMALAR 

Erdoğdu, Kazım 

Doktora Tezi, Bilgisayar Mühendisliği 

Danışman: Dr. Öğr. Üyesi Korhan KARABULUT 

Haziran 2019 

Yeşil Araç Rotalama Problemleri, nakliye araç filolarının sebep olduğu çevre 

kirliliklerinden ötürü artan ölçüde önem kazanmaktadır. Fosil yakıtlı araçların 

yaydıkları 𝐶𝑂2  miktarı bu araçların yakıt tüketimlerinin azaltılmasıyla daha az bir 

seviyeye indirgenebilir. Bu tez çalışmasında, Çok Amaçlı Yeşil Araç Rotalama 

Problemi üzerinde çalışılmıştır. Problem içerisinde iki amaç fonksiyonu kullanılmıştır: 

araçların toplam kat ettiği mesafenin en aza indirgenmesi ve toplam yakıt tüketiminin 

en aza indirgenmesi. Çözüm için bilinen yöntemlerden olan NSGA-II and 𝝐-MOEA 

uyarlanarak uygulanmış, yeni bir çok amaçlı yerel arama sezgisel yöntemi önerilmiş 

ve de Path-Relinking sezgisel yöntemi çok amaçlı problem yapısına göre 

uyarlanmıştır. 

Anahtar Kelimeler:  Yeşil Araç Rotalama Problemleri, Çok Amaçlı Problemler, 

Evrimsel Algoritmalar.
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CHAPTER 1 

INTRODUCTION 

Vehicle Routing Problems (VRPs) are one of the widely occurring problems in 

distribution and logistics fields. As commerce grows all around the world each day, 

the transportation of commercial products from the warehouses to the customers plays 

a more critical role for the commercial and transportation companies. In order to 

maximize their gain and minimize their costs, they need to arrange the routes of their 

vehicle fleets in the best possible way. This fact makes VRPs very relevant to real-life 

optimization problems, especially in the transportation field. 

Although there are numerous variants of VRP, Green VRPs (GVRPs) have begun to 

attract many researchers for environmental reasons. The increase in the number of 

vehicles running on fossil fuel has been increasing the level of emissions of air 

pollutants all around the world. The measurements on Greenhouse Gas (GHG) 

Emissions in different countries demonstrate the seriousness of the problem. 

According to the 2016 report of the United States Environmental Protection Agency, 

83% of the GHG emissions in transportation was caused by light-, medium-, and 

heavy-duty trucks. 96.7% of total emitted GHG is CO2 (Figure 1.1). GHG emissions 

caused by light-duty trucks was increased by 14.4% and GHG caused by medium- and 

heavy-duty trucks was increased by 84.9% from 1990 to 2016 (EPA, 2018). 

  
Figure 1.1 EPA Report on GHG Emissions in the USA in 2016 (EPA, 2018) 



2 

According to the 2017 report of the European Environment Agency, heavy-duty 

vehicles are responsible for 27 % of road transport CO2 emissions. Since 1990, heavy-

duty vehicle emissions have increased by 25 % mainly as a result of the increase in 

road freight traffic (Figure 1.2) (EEA, 2018). 

 
Figure 1.2 EEA Report on GHG Emissions in Europe from 1990 to 2015 (EEA, 

2018) 

According to TÜİK report on GHG emissions in Turkey 2012, 90.5% is caused by 

road transportation (Figure 1.3). 39.6% of this road transportation is done by light- and 

heavy-duty trucks (Figure 1.4). The amount of CO2 emitted by all road transportation 

was increased by 129.22% from 1990 to 2012 (TUIK, 2012). 

 
Figure 1.3 TÜİK Report on GHG Emissions in Turkey from 1990 to 2012 (TUIK, 

2012) 
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Figure 1.4 CO2 emission distribution according to vehicle types in Turkey in 2012 

(TUIK, 2012) 

As it is seen in the statistical data on GHG emissions in different continents, road 

transportation vehicle (especially the trucks) cause great damages to environment. The 

GHGs must be reduced. One of the ways for reducing this emission is to arrange the 

routes of those vehicles in a way to minimize their fuel consumption. And that is the 

focus of GVRP.  

VRPs can be either Single Objective Problems (SOPs) or Multi-Objective Problems 

(MOPs). SOPs, hence the name, focus on optimizing one objective while MOPs aim 

to optimize more than one objective at the same time. Most of the time, these objectives 

fully or to some degree are in conflict with one another. MOPs are more difficult and 

realistic problems compared to SOPs. Furthermore, while SOPs try to find the single 

best solution for the problem, MOPs aim to provide multiple and alternative trade-off 

solutions. 

Multi-Objective Green Vehicle Routing Problem (MOGVRP) was studied in this thesis. 

In Chapter 2, VRPs were defined formally and their variants were discussed. In 

Chapter 3, MOPs were defined and explained. In addition, solution methods for MOPs 

were discussed and performance metrics that are used to evaluate the algorithms for 

solving MOPs were explained. In Chapter 4, the MOGVRP studied in this thesis and 

the solution methods for this MOGVRP were explained in detail. In Chapter 5, the 

experimental results were presented and analyzed. And in the last chapter, this thesis 

study was evaluated, and some future works were mentioned.  
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CHAPTER 2 

VEHICLE ROUTING PROBLEM 

VRP is a combinatorial optimization problem which aims to find the minimum cost 

for a fleet of vehicles in delivering their products to certain customers according to the 

demands of the customers. In a classical VRP, there is a fleet of capacitated vehicles, 

a depot, a set of customers and their demands. Each customer is assigned to a vehicle 

in the fleet until there is no customer left out and while the total load of the demand 

does not exceed the vehicle capacities. Each vehicle needs to accomplish its tour by 

leaving the depot loaded with the demands of its customers, delivering these demands 

to the corresponding customers by visiting them only once, and returning to the depot 

after all the demands are delivered. The objective of VRP is to minimize the total cost 

of all vehicle tours. This cost can be the total sum of the distances of vehicle tours, or 

the total number of vehicles in order to deliver all demands, the total fuel consumption 

or gas emission of the vehicles, etc. VRP contains the classical Travelling Salesman 

Problem (TSP). In each vehicle tour, the VRP searches the best TSP solution by 

starting and ending with depot under certain constraints (Figure 2.1). 

 
Figure 2.1. Vehicle Routing Problem 
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2.1. Variants of the VRP 

The pioneer studies of VRP began with the paper of George Dantzig and John Ramser 

in 1959. In their paper, they laid a foundation of mathematical programming and 

algorithmic approach for VRP in delivering fuel to certain gas stations. Since then, 

there have been numerous studies in VRP which led the variations of the problem 

(Carić & Gold, 2008). These variations are related to the capacity of the vehicles, the 

number of depots, quantity and the quality of the objectives of the problem, dynamic 

or static locations of the customers, customers’ availability time windows, delivering 

and or picking up the demands of the customers, etc.  

In homogeneous VRPs, the vehicles have homogenous capacities wherein 

heterogeneous VRPs, these capacities are heterogeneous (HVRP). VRPs are generally 

considered as homogeneous VRPs unless they are defined otherwise. In a classical 

VRP, there is only one depot. There, however, are VRPs that have multiple depots. The 

demands of the customers are stored in different depots (MDVRP). Sometimes, the 

demands are not delivered to the customers all at once. Their demands can be divided 

into smaller amounts and these smaller demands can be delivered to the customers 

either by the same or different vehicles. Therefore, a customer can be visited more than 

once. This type of VRPs is called Split Delivery VRP (SDVRP). 

In some VRPs, the demands of the customers must be delivered at certain time 

intervals. This type of VRPs is called VRP with Time Windows (VRPTW). There are 

two types of time windows: hard and soft. In hard time windows, all the vehicles must 

visit their customers within the customers’ availability time windows. If the vehicles 

are early, then they need to wait. If they arrive late, then the customer’s demand is not 

satisfied, therefore the solution is not feasible. In soft time windows, even if the 

vehicles visit their customers before or after the time interval, it is still considered as a 

feasible solution. Yet, a penalty is applied to this situation. In Pickup and Delivery 

VRPs (PDVRPs), while vehicles deliver the demands of the customers from the depot 

to the customers, they may also pick up goods along the way from the customers and 

deliver them to the other customers or return them to the depot. 

Sometimes the products can be picked up from a single location or from multiple 

locations before they are delivered to a certain customer. The special case for PDVRPs 

is called “dial-a-ride problem” in which the goal is to provide transportation to elderly 
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and handicapped people from one location to another via a fleet of vehicles. In this 

version of PDVRP, there is no demand of the customers. Vehicle capacities are 

evaluated in terms of the number of their customers. In certain situations, time 

windows are also included in the problem. 

There are also some VRPs that include some random characteristics. These VRPs are 

called Stochastic VRPs (SVRPs). In SVRPs, either the demands, customers, or times 

can be stochastic. The volume or amount of the demands of the customers may be 

known with a probability, the customers might be present or absent by the time a 

vehicle visits them, or both the service times at the customers’ locations or traveling 

times of vehicles may be stochastic. 

In Dynamic VRPs, the information about the customers, their locations, their demands, 

travel times, etc. are not known partially or totally prior to the beginning of vehicle 

tours, and yet they become available over time. Since this information changes over 

time in this type of problems, the exact information can be deterministically or 

stochastically obtained in time. 

There are also VRPs that focus on the environmental side of the VRP. This type of 

VRPs is called Green VRP (GVRP). In GVRPs, the main objective is to minimize the 

level of pollutants that are produced during the routes of the vehicles (Toth & Vigo, 

2014). 

There are more variants of VRP, and these variants are extended with recent studies in 

order to model new problems. Most of them are either a subcategory of these variants, 

or a combination of these variants. Only few of them are totally new variants. However, 

only the major variants of VRP are mentioned in this thesis. The problem that was 

studied in this thesis is in the category of GVRP. 
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CHAPTER 3 

MULTI-OBJECTIVE OPTIMIZATION PROBLEMS 

Multi-Objective Optimization Problems (MOOPs) are the optimization problems that 

aim to find the optimum solutions for more than one objective function. Most of the 

time, these objectives conflict with one another, either partially or fully.  In this sense, 

they are more realistic than Single Objective Problems (SOPs) in which there is only 

one objective function to be optimized. Most real-world optimization problems are 

MOOPs by their nature. For example, in a multi-objective version of a Vehicle Routing 

Problem (VRP), the objective of minimizing the total distance conflict with the 

objective of minimizing travel cost (i.e. cost of fuel, vehicle number, drivers’ cost, 

taxes, etc.). In this sense, minimizing the total travel distance may lead to minimization 

of the number of vehicles but it will cause each vehicle to carry more load. This, then, 

will increase the fuel consumption of each vehicle. Therefore, when dealing with the 

optimum solutions for the problem, both objectives must be taken into consideration. 

3.1. Mathematical Model of MOOPs 

The mathematical model of a general MOOP contains a set of decision variables, a set 

of objective functions and a set of constraints as follows (Zitzler, 1999). 

Objective functions:   

𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒 𝑦 = 𝑓(𝑥) = ( 𝑓1(𝑥), 𝑓2(𝑥), … , 𝑓𝑘(𝑥) )  (1) () 

Constraints: 

subject to 𝑒(𝑥) = (𝑒1(𝑥), 𝑒2(𝑥), … , 𝑒𝑚(𝑥) ) ≥ 0 (2) () 

Inputs: 

where   𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛) ∈ 𝑋  (decision variables) 

       

  𝑦 = (𝑦1, 𝑦2, … , 𝑦𝑘)  ∈ 𝑌  (objective functions) 

(3) () 

 

In this mathematical model of MOOP, 𝑥𝑖  are the decision variables, 𝑒𝑖  are the 

constraints of the problem and 𝑦𝑖 = 𝑓(𝑥𝑖) are the objective functions. The function 
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𝑓: 𝑋 → 𝑌 (Figure 3.1) is defined from the set of decision variables to the objective 

functions.  

 

Figure 3.1. Set of Objective Functions (Zitzler, Laumanns, & Bleuler, 2004) 

The feasible search space for the problem consists of the decision variables that satisfy 

the constraints. The feasible solution space is the image of these feasible search space. 

The goal of MOOP is to optimize its objective functions. Since these objective 

functions are conflicting due to the nature of MOOPs, there is no single optimum 

solution. These objective functions cannot be optimized simultaneously, either. 

Therefore, the goal of MOOP is to find a set of alternative trade-offs called Pareto-

optimal solutions (Zitzler, 1999). 

3.2. Pareto-Optimality 

In SOPs, the superiority of a solution is determined by comparing its fitness value with 

other solutions’ fitness values. In MOOPs, however, the superiority of a solution is 

determined by the dominance criterion. For any two solutions, there are three options: 

either one dominates the other, or one weakly dominates the other, or none of them 

dominates each other. For the decision vectors u and v, the following describe the 

dominance, weakly dominance and non-dominance (Zitzler, 1999). 
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For the minimizing objective functions, 

𝐹𝑜𝑟 𝑢, 𝑣 ∈ 𝑋 𝑎𝑛𝑑 𝑓 ∈ 𝑌 𝑤ℎ𝑒𝑟𝑒 𝑓 = (𝑓1, 𝑓2, … 𝑓𝑘)  

𝑢 ≺ 𝑣  (𝑢 𝑑𝑜𝑚𝑖𝑛𝑎𝑡𝑒𝑠 𝑣)    ⇔    ∀𝑓𝑖 ∈ 𝑓   𝑓𝑖(𝑢) < 𝑓𝑖(𝑣)  

𝑢 ≼ 𝑣  (𝑢 𝑤𝑒𝑎𝑘𝑙𝑦 𝑑𝑜𝑚𝑖𝑛𝑎𝑡𝑒𝑠 𝑣)    ⇔   ∀𝑓𝑖 ∈ 𝑓   𝑓𝑖(𝑢) ≤ 𝑓𝑖(𝑣)  

𝑢 ∼ 𝑣  (𝑢 𝑎𝑛𝑑 𝑣 𝑎𝑟𝑒 𝑛𝑜𝑛 − 𝑑𝑜𝑚𝑖𝑛𝑎𝑡𝑒𝑑)    ⇔    

∃𝑓𝑖, 𝑓𝑗 ∈ 𝑓  𝑠. 𝑡.  𝑓𝑖(𝑢) < 𝑓𝑖(𝑣)  𝑎𝑛𝑑 𝑓𝑗(𝑣) < 𝑓𝑗(𝑢)  

(4) () 

 

For the maximizing objective functions, 

𝐹𝑜𝑟 𝑢, 𝑣 ∈ 𝑋 𝑎𝑛𝑑 𝑓 ∈ 𝑌 𝑤ℎ𝑒𝑟𝑒 𝑓 = (𝑓1, 𝑓2, … 𝑓𝑘)  

𝑢 ≻ 𝑣  (𝑢 𝑑𝑜𝑚𝑖𝑛𝑎𝑡𝑒𝑠 𝑣)    ⇔    ∀𝑓𝑖 ∈ 𝑓   𝑓𝑖(𝑢) > 𝑓𝑖(𝑣)  

𝑢 ≽ 𝑣  (𝑢 𝑤𝑒𝑎𝑘𝑙𝑦 𝑑𝑜𝑚𝑖𝑛𝑎𝑡𝑒𝑠 𝑣)    ⇔   ∀𝑓𝑖 ∈ 𝑓   𝑓𝑖(𝑢) ≥ 𝑓𝑖(𝑣)  

𝑢 ∼ 𝑣  (𝑢 𝑎𝑛𝑑 𝑣 𝑎𝑟𝑒 𝑛𝑜𝑛 − 𝑑𝑜𝑚𝑖𝑛𝑎𝑡𝑒𝑑)    ⇔    

∃𝑓𝑖, 𝑓𝑗 ∈ 𝑓  𝑠. 𝑡.  𝑓𝑖(𝑢) > 𝑓𝑖(𝑣)  𝑎𝑛𝑑 𝑓𝑗(𝑣) > 𝑓𝑗(𝑢)  

(5) () 

As a result, if the decision variable vector of x (i.e. a solution) cannot be dominated by 

other decision variable vectors (solutions), then this solution vector is called a Pareto-

optimal solution. The set of all Pareto-optimal solutions are called the Pareto-optimal 

set or Pareto front. Pareto front of a MOOP contains the globally optimal solutions for 

the problem. A general graphic for bi-objective minimization problems are shown in 

Figure 3.2. 

 
Figure 3.2. Dominated and Non-dominated Solutions (Araujo, Poldi, & Smith, 2014) 
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In both graphics above, the apsis and the ordinate consist of the two objectives of the 

problem (𝑓1 and 𝑓2). The grey area in (a) represents the feasible solution space. Each 

solution in this area is a feasible solution. The dashed curve shows the Pareto front. In 

other words, all the solutions on the Pareto front are non-dominated by any feasible 

solution, and the solutions on the Pareto front dominate all the feasible solutions that 

are not on the Pareto front. For example, the solutions A and B are on the Pareto front 

and are non-dominated solutions (i.e. 𝐴 ∼ 𝐵  ). The solutions C, D, E, F, and G are 

dominated by the solutions A and B (i.e. 𝐴 ≺ 𝐶, 𝐴 ≺ 𝐷 , 𝐴 ≺ 𝐸, 𝐴 ≺ 𝐹, 𝐴 ≺ 𝐺, 𝐵 ≺

𝐶, 𝐵 ≺ 𝐷 , 𝐵 ≺ 𝐸, 𝐵 ≺ 𝐹 and 𝐵 ≺ 𝐺). 

The graphics (b) shows the dominance and non-dominance of a single solution. The 

solutions in the bottom left square of C (A and B) dominate the solution C. The 

solutions in the top right square of C (E and F) are dominated by the solution C. The 

solutions in both the top left and bottom right squares of C are non-dominated with the 

solution C. According to Figure 3.2 (b), 𝐴 ≺ 𝐶 and 𝐵 ≺ 𝐶, 𝐶 ≺ 𝐸 and 𝐶 ≺ 𝐹, 𝐶 ∼ 𝐷 

and 𝐶 ∼ 𝐺. 

3.3. Solution Methods for MOOPs 

Solving MOOPs are different than solving SOPs. It is because, in SOPs, there is only 

one objective function to be optimized. In each iteration an algorithm for solving SOPs, 

the algorithm tries to find a better solution than the best-so-far solution. Therefore, the 

whole process focuses on optimizing a single solution. In MOOPs, however, there is 

no “the best” solution due to the nature of the conflicting objectives. One solution that 

provides good results for one of the objectives may not perform the same success for 

the others. It may even worsen the results of these objectives. Handling all the 

objective functions simultaneously leads MOOP to progress by taking the whole 

Pareto-optimal solutions (i.e. Pareto front) into consideration. In order to do that, many 

different methods have been suggested for the solution of MOOPs. All these methods 

fall into either of these two categories: classical methods or evolutionary methods. 

3.4. Classical Solution Methods for MOOPs 

Classical methods consist of no-preference methods, posteriori methods, priori 

methods, and interactive methods. The no-preference methods basically generate a few 

non-dominated solutions to the problem and allow the decision-maker to select from 
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these results. There is no priori knowledge about the importance of the objective 

functions. The method, however, uses a heuristic to find a single solution to the 

problem. The posteriori methods, on the other hand, contain some information about 

the importance of the objectives and the parameters of the algorithm. They use this 

information to generate a Pareto-optimal solution iteratively. The priori methods 

progress like posteriori methods. They also use information about the importance of 

objectives and produce one Pareto-optimal solution. The interactive methods use  

priori information about the objectives, as well, but they obtain this information 

progressively. The following methods are some classical methods which use either 

priori or progressive information about the importance of objectives (Deb, 2001). 

3.4.1. Weighted Sum Method 

Weighted sum method is probably one of the easiest, earliest and widely used classical 

method for the solution of MOOPs. In this method, all the objective functions are 

weighted with non-negative weight values. Then, the objective function of the problem 

becomes the linear combination of these weighted objective functions. This way, the 

MOOP is converted into an SOP by scalarizing all the objective functions into a single 

objective function. The weighted sum method, then, tries to find a decision vector 

which optimizes this single objective function. Once it is found, then each objective 

function of the problem is calculated with this decision vector and these results are 

considered as the solution for the problem. The mathematical formulation of the 

weighted sum method is as follows (Deb, 2001): 

𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒 𝐹(𝑥) = ∑ 𝑤𝑚𝑓𝑚(𝑥)𝑀
𝑚=1   

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜  𝑔𝑗(𝑥) ≥ 0, 𝑗 = 1,2, … , 𝐽  

𝑤ℎ𝑒𝑟𝑒 ∑ 𝑤𝑚 = 1𝑀
𝑚=1   

(6) () 

The weights for the functions are determined by the decision maker. The weights can 

either be the same if there is not much priori information about the objective functions. 

If there is enough priori information about the objective functions, then the weights 

can be distributed proportionally with regards to the importance of the objective 

functions. Besides determining the weights, the objective function values should be 

normalized, as well. It is because if the value range of any objective function differs 

from the others significantly, then the single objective function obtained by the sum of 
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these weighted objective functions will favor this objective function. In order to 

prevent this, the value ranges of the objective functions must be normalized before 

scalarized with weights. 

The Pareto-optimal solution is obtained by iteratively changing the weights of each 

objective function. At each change of these weights, the algorithm is run for this new 

single objective function in order to find a new optimum solution depending on these 

parameters. The results of each objective function that are obtained by different weight 

combinations are compared with each other by dominance. The non-dominated 

solutions after this comparison construct the Pareto front of the solution. 

Weighted sum method has both advantages and disadvantages (Deb, 2001). Its 

advantages are that it can easily be applied and used for MOOPs. And, if there is a 

priori information about the importance of objective functions, the weights can 

adequately be arranged proportionately. For the MOOPs that have convex Pareto-

optimal front, the weighted sum method can find the Pareto-optimal solution (Figure 

3.3). On the other hand, the weighted sum method has some serious disadvantages. 

Weighted sum method cannot find Pareto-optimal solutions in the non-convex feasible 

solution space (Figure 3.4). Furthermore, changing the weights of each objective 

function can be done infinitely. Since those weights are Real numbers, then there is no 

way for the decision maker to try every possible combination of the weights. Even if 

the decision maker determines a discrete step for changing the weights, there is still a 

need for an explanation of the size of these steps. As a result, the weighted sum method 

carries a sort of arbitrariness. 

 
Figure 3.3 Weighted Sum Method on a Convex Feasible Solution Space (Deb, 2001) 
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Figure 3.4 Weighted Sum Method on a Non-convex Feasible Solution Space (Deb, 

2001) 

3.4.2. 𝝐-Constraint Method 

The 𝝐-constraint method was proposed in order to provide a solution to the problems 

which weighted sum approach encounters with non-convex solution spaces. In this 

method, the objective functions are not scalarized into a single objective function by 

weights. One of the objective functions in the MOOP, however, is chosen as the single 

objective function for the problem. The rest of the objective functions are moved into 

the constraints set with an upper bound labeled with ϵ𝑚. The mathematical formulation 

of this method is as follows (Deb, 2001): 

𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒  𝑓𝑖(𝑥)  

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜   𝑓𝑚(𝑥) ≤ ϵ𝑚   𝑚 = 1,2, … , 𝑀, 𝑚 ≠ 𝑖 

                    𝑔𝑗(𝑥) ≥ 0,      𝑗 = 1,2, … , 𝐽 

(7) () 

Each ϵ𝑚 for the respective objective function divides the feasible solution space into 

regions restricted by these ϵ𝑚 . The union of all these regions become the feasible 

search space for the MOOP. Then, the goal is to find the optimum value of the function 

of 𝑓𝑖(𝑥) in this feasible search space. Only one optimum solution for the MOOP is 

obtained for each ϵ𝑚 value. Optimum solutions for each feasible search space regions 

are obtained by iteratively changing the ϵ𝑚 values. Among all these solutions, the non-

dominated ones generate the Pareto-optimal solution for the MOOP. Figure 3.5 
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demonstrates an example process of the 𝝐-constraint method on a bi-objective 

optimization problem. 

 
Figure 3.5 𝝐-Constraint Method (Deb, 2001) 

The 𝝐-constraint method is advantageous in its ability in providing solutions for non-

convex solution spaces. In that sense, it works both on convex and non-convex feasible 

regions. On the other hand, selecting which objective function to be the single 

objective function of the system, deciding on the ϵ𝑚 and the iteration number or steps 

all depend on the decision maker. If there is a priori information about the importance 

of objectives and restrictions on the objective functions, then the method can produce 

effective Pareto-optimal solutions. If there is no priori information as such, then the 

method may end up in infeasible solutions or no Pareto-optimal solutions. For these 

reasons, like the weighted sum method, the 𝝐-constraint method is also highly 

dependent on the priori information about the MOOP. 

3.4.3. Weighted Metric Methods  

The weighted metric method is the generalized version of the weighted sum method. 

In weighted metric methods, a distance metric of 𝑙𝑝 is used. All the objective functions 

are combined into this single objective function of 𝑙𝑝  as shown in Equation (8). 

Therefore, 𝑙𝑝  becomes the main single objective function to be optimized for the 

MOOP. 𝑙𝑝 is calculated by getting the distance between each objective function and 

the ideal solution of 𝑧∗, scalarizing these distances by non-negative weights, getting 

the sum of these scalarized distances, and exponentiating it with 1/𝑝 . The 

mathematical formulation is described as such (Deb, 2001):  
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𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒  𝑙𝑝 = (∑ 𝑤𝑚|𝑓𝑚(𝑥) − 𝑧𝑚
∗ |𝑝𝑀

𝑚=1 )1/𝑝  

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜  𝑔𝑗(𝑥) ≥ 0, 𝑗 = 1,2, … , 𝐽  

𝑤ℎ𝑒𝑟𝑒 ∑ 𝑤𝑚 = 1𝑀
𝑚=1   

(8) () 

As it can be seen in the formulation, optimizing this single objective of 𝑙𝑝 depends on 

the parameters of the ideal solution 𝑧∗, the weights of each objective function and the 

exponentiation parameter of p. The ideal solution 𝑧∗  is either the utopian objective 

vector or the vector of best-known results of each objective function. The weights, as 

in weighted sum method, can either be distributed evenly or determined according to 

a priori information about the importance of the objective functions. The sum of these 

weights is one. The parameter p can be any value in the interval of [1, ∞). These values 

of p determine the characteristic of the weighted metric method. For example, when     

p = 1 the method turns into the weighted sum method (Figure 3.6(a)). When p = 2, 𝑙𝑝 

calculates the sum of the Euclidean distances between the objective functions and the 

ideal solution 𝑧∗ (Figure 3.6(b)).  

  

(a) (b) 

Figure 3.6 (a) Weighted Metric Methods: (a) when p = 1, (b) when p = 2 (Deb, 

2001) 

The parameter p can also be infinite. This weighted metric with 𝑝 = ∞ is called the 

weighted Tchebycheff method. This way, the weighted method calculates 𝑙𝑝  as 

following (Deb, 2001): 
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𝑙∞ = 𝑚𝑎𝑥𝑚=1
𝑀 𝑤𝑚|𝑓𝑚(𝑥) − 𝑧𝑚

∗ |  (9) () 

Once the parameter p and the vector 𝑧∗ are determined for the problem, the Pareto-

optimal solutions are obtained by iteratively changing the weights of the single 

objective function of 𝑙𝑝 . As the value of p increases, then the obtained solutions 

converge to the Pareto-optimal solutions set. Theoretically, in the case of  𝑝 = ∞, the 

real Pareto-optimal set is found. 

Weighted metric methods also have some advantages and disadvantages. The primary 

advantage of the method is that it can be used in both convex and non-convex feasible 

solution spaces due to the parameter of p. Another advantage of this method is that 

when the weighted Tchebyceff metric is used, it guarantees a Pareto-optimal solution. 

This method, however, has certain disadvantages. It is highly dependent on the 

selection of the parameter p and the weights for the objective functions. It requires a 

priori information about the importance of objective functions and needs the ideal 

solution vector 𝑧∗ or any information about this vector. Furthermore, as the value of p 

increases, the problem becomes non-differentiable. As a result, gradient-based 

methods cannot be used in finding the optimum solution (Deb, 2001). 

Besides all these methods, there are other classical methods in solving the MOOPs. 

Most of them, however, are derived methods out these classical methods mentioned 

here. Since they are out of the scope of this thesis, they are not mentioned here. 

3.5. Evolutionary Algorithms 

Evolutionary Algorithms (EAs) are metaheuristic optimization algorithms. Unlike the 

exact methods, they include a stochastic process in finding solutions. EAs mimic the 

biological evolution processes such as recombination, mutation, and natural selection. 

In EAs, each solution candidate is considered as an individual. The set of all these 

individuals constitutes a population. EAs begin with an initial population which is 

constructed either randomly or by using certain heuristics. Then, the individuals in this 

initial population are selected using a criterion for producing new individuals. This 

step is called parent selection. In the reproduction process, recombination and/or 

mutation mechanisms are used. Optionally, a local search algorithm can be included 

for improving the quality of each individual. The quality of an individual is evaluated 
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by fitness functions. Depending on the problem, the goal of the process might either 

be minimizing or maximizing these fitness functions. 

EAs include an iterative process. In each iteration, a new population is generated by 

reproduction, local search, evaluation, and selection operations. EAs end when they 

satisfy the termination criterion of the algorithm. This termination criterion can be 

running for a certain number of iterations, using predefined computational resources 

or obtaining results within a threshold, etc. The general structure of an EA is described 

in the following pseudo-code (Deb, 2001). 

Initialization 

Evaluation 

Repeat  

 Parent Selection 

 Reproduction (Recombination and/or Mutation) 

 [Optional: Local Search] 

 Fitness Evaluation 

 Survival Selection 

Until the Termination Criterion is Satisfied 

Figure 3.7 Pseudo-code for EAs 

Many EA methodologies have been proposed since the origins of EAs in the 1950s. 

They, however, can be listed under these categories: Genetic Algorithms (GAs), 

Evolutionary Strategies (ESs), Evolutionary Programming (EP), and Genetic 

Programming (GP). 

Like in classical methods for MOOPs, there are advantages and disadvantages of EAs. 

One of the advantages of EAs is that they can explore and exploit the search space of 

the problem in a reasonable amount of time due to their stochastic process. Although 

EAs do not guarantee to obtain the optimum solution, they can easily be applied to the 

problems which cannot be solved by exact methods due to time limitations. EAs can 

be applied to both SOPs and MOOPs. In the case of MOOPs, since the required 

solution is a Pareto-optimal set, EAs fit better as a solution method than the classical 

methods mentioned in the previous section. It is because, in each iteration, an EA 

produces a population of solutions which gradually contributes to the Pareto-optimal 

front for the solution. The major disadvantage of EAs is that they do not guarantee the 

optimum solution. In addition, the parameters used in different parts of EAs (i.e. 

probability ratios, operator types, etc.) need to be determined by the decision maker. 
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There has been many EAs proposed for MOOPs such as Multi-Objective Genetic 

Algorithm (MOGA), Niched Pareto Genetic Algorithm (NPGA), Vector Evaluated 

Genetic Algorithm (VEGA), Strength Pareto Evolutionary Algorithm (SPEA), Non-

dominated Sorting Genetic Algorithm (NSGA), NSGA-II, 𝝐-based Multi-Objective 

Evolutionary Algorithm (𝝐-MOEA), Pareto Archived Evolutionary Strategy (PAES), 

etc. However, only two of these MOOPs have been studied in this thesis: NSGA-II and 

𝝐-MOEA. The former algorithm uses only a population in its process while the latter 

algorithm uses both a population and an archive in its process. 

3.5.4. Non-Dominated Sorting Genetic Algorithm II (NSGA-II) 

Srinivas and Deb developed Non-Dominated Sorting Genetic Algorithm (NSGA) by 

implementing the concept of non-dominated sorting on GAs in 1994 (Srinivas & Deb, 

1994). NSGA, however, was criticized for having a high time complexity, not having 

an elitist selection approach, and not providing enough diversity in the Pareto-optimal 

solution. Therefore, Deb et al. constructed another non-dominated sorting algorithm 

that responded to these critiques. This new algorithm is called “a Fast and Elitist Non-

dominated Sorting Algorithm II” (NSGA-II) (Deb, Pratap, Agarwal, & Meyarivan, 

2002). 

In both of NSGA and NSGA-II algorithms, ranking the individual solutions play a 

critical role. Each individual in the population is ranked according to the dominance 

criterion. All the individuals in the population are compared with each other using this 

dominance criterion. The non-dominated individuals obtained by this comparison 

consist of the first front (i.e. Pareto front) and are ranked with 0. Once the first front is 

found, the individuals in this Pareto are temporarily discounted in order to find the 

next front. With this temporary discount of the previous front, the rest of the 

individuals get compared with one another and ranked by the same dominance 

comparison. This second front is ranked with 1. Then the algorithm continues to find 

the next ranked front. This ranking process continues until the last front is found and 

all individuals are assigned a rank. In the end, the whole population gets sorted 

according to their ranks by finding these fronts (Figure 3.8). 
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Figure 3.8 A sample for the fronts of a MOOP 

In NSGA, the diversity of the solutions is obtained by a shared function. This sharing 

function finds and evaluates the groups of solutions which have similar or close fitness 

values for each objective function. As a result, in the selection process, only one of the 

solutions in the same group is selected in order to protect diversity in the fronts. This 

sharing function, however, is highly dependent on the decision maker’s determination 

of the sharing values and it increases the overall complexity of the algorithm. 

Therefore, in NSGA-II, a new method called crowding distance was developed to 

substitute this sharing function. Crowding distance is the sum of all the distances of 

each solution to the other solutions. NSGA-II uses this value to eliminate all similar 

solutions in the same crowding box and preserve diversity throughout the process 

(Figure 3.9). 

 
Figure 3.9 Crowding distance in NSGA-II  (Deb, Mohan, & Mishra, 2003) 

 

The general structure of NSGA-II is as follows (Deb et al., 2002): 
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Generating an initial population 

Evaluating fitness values 

Repeat 

Reproducing offspring by recombination and/or mutation on the parent 

population 

Evaluating the offspring’s fitness values 

Combining the parent and offspring populations 

Finding fronts by fast non-dominated sorting 

Crowding distance sorting 

Truncating the combined population 

Replacing the parent population with the population after truncation 

Until the Termination Criteria is satisfied  

The solution is the Pareto front (i.e. the front with rank 0) 

 

Figure 3.10 Pseudo-code for NSGA-II 

In generating the initial population, a random process or a constructive heuristic can 

be used. The individuals that will be used in recombination and/or mutation are 

selected according to a non-dominated selection method. In this type of selection, the 

ranks are used in the evaluation. If one of the candidates in the selection group 

dominates the other(s) than it is selected. Otherwise, if the candidate individuals in the 

selection group are non-dominated, then one of them is chosen randomly. Once the 

individuals from the parent population are selected, then recombination and/or 

mutation operators are applied to these selected individuals. These operators are the 

same as the recombination and mutation operators in classical GA. After the fitness 

values of these newly reproduced offspring are calculated, they are added to the 

offspring population. Then, the parent and offspring population are combined. The 

individuals in this new extended population are sorted in a non-dominated manner and 

are assigned ranks to determine their fronts. Then, their crowding distance is calculated, 

and the truncating process is applied to the whole population. The truncated population 

becomes the next parent generation. This whole process repeats until the termination 

criteria are satisfied. When the algorithm ends, the front ranked with 0 is the Pareto 

front solution for the MOOP. 

3.5.5. 𝝐-based Multi-Objective Evolutionary Algorithm (𝝐-MOEA) 

𝝐-based Multi-Objective Evolutionary Algorithm (𝝐-MOEA) was developed by Deb, 

Mohan and Mishra (Deb et al., 2003). 𝝐 in the name of the algorithm refers to the area 

of the hyper-boxes in the search space. 𝝐-MOEA divides the problem’s search space 

into the grids called hyper-boxes with the lengths of different 𝝐’s determined by the 
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decision maker. Only one solution exists in each of these hyper-boxes. In other words, 

if any two solutions fall into the same box, they are considered as the same and only 

one of them is chosen as a solution. For the solutions in different hyper-boxes, the 

dominance comparison is applied. This process is called 𝝐-dominance comparison. 

This way, the diversity among solutions are preserved by eliminating the near solutions 

in the solution space (Figure 3.11). 

 
Figure 3.11 Hyper-boxes in 𝝐-MOEA  (Deb et al., 2003) 

𝝐-MOEA uses two evolving populations in its process. The first one is called 

Evolutionary Algorithm (EA) population 𝑃(𝑡) and the second one is called the archive 

population 𝐸(𝑡)  (where 𝑡  is the iteration index). For simplicity, the former will be 

called population and the latter will be called archive from now on. The algorithm 

begins with generating an initial population which will be the population of the 

algorithm. Generating this initial population can be done either by randomization or 

using certain constructive heuristics. Then the fitness values of each individual are 

calculated, and every individual is compared with one another by 𝝐-dominance 

comparison. The 𝝐-non-dominated individuals are added to the archive. After these 

initial moves, the iteration phase of the algorithm begins. In each iteration, first, the 

reproduction takes place. For reproduction, one individual is selected from the 

population and another one from the archive for mating. After reproduction (i.e. 

crossover and/or mutation) of these two individuals, the offspring are produced. Then, 

these offspring are tried to be added to both the population and the archive.  

For inclusion of the offspring in the population, the following cases are taken into 

consideration (Kollat & Reed, 2006). The following items must be understood as if-

else statements. 
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i. If the offspring dominates any individuals in the population, then it is replaced 

with one of them at random. 

ii. If the offspring is dominated by any individual in the population, then the 

offspring is not included in the population. 

iii. If the offspring is non-dominated by all the individuals in the population, then 

it is replaced with one of the population individuals at random. 

For inclusion of the offspring into the archive the following cases are taken into 

consideration (Kollat & Reed, 2006) (Deb et al., 2003). The following items must be 

understood as if-else statements. 

i. If the offspring 𝝐-dominates any individuals in the archive, then all the 𝝐-

dominated individuals in the archive are removed and the offspring is included 

to archive. 

ii. If the offspring is 𝝐-dominated by any individuals in the archive, then the 

offspring is discarded. 

iii. If the offspring is 𝝐-non-dominated, then: 

a. If the offspring is not in any of the 𝝐 hyper-boxes in the archive then it 

is included in the archive. 

b. If the offspring is in any of the 𝝐 hyper-boxes in the archive, then the 

normal dominance criteria is applied within this 𝝐 hyper-box. If the 

offspring and the individual in the 𝝐 hyper-box are still non-dominated 

then one of them is selected at random and the other one is removed. 

This way, the size of the population is kept constant, but it is gradually improved by 

the better offspring in each iteration. The archive, on the other hand, is not limited in 

size and may enlarge or shrink through each iteration because of the 𝝐-dominance 

comparisons. Because of the 𝝐 hyper-boxes in the archive, archive preserves the 

diversity in among its solutions.  

𝝐-MOEA algorithm continues the same process at each iteration until the termination 

criterion is satisfied. Once the algorithm finishes its run, the archive is the Pareto front 

solution for the MOOP. The general structure of 𝝐-MOEA algorithm is as follows (Deb 

et al., 2003): 
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Generating an initial population 

Evaluating fitness values 

Updating the archive by 𝝐-dominance 

Repeat 

Reproducing offspring by recombination and/or mutation on the population 

Evaluating the offspring’s fitness values 

Updating the population by 𝝐-dominance 

Updating the archive by 𝝐-dominance 

Until the Termination Criteria is satisfied  

The archive is the solution 

 

Figure 3.12 Pseudo-code for 𝝐-MOEA 

3.6. Performance Metrics   

Evaluating the performance of Multi-Objective Evolutionary Algorithms (MOEAs) is 

very different than evaluating the performance of classical Evolutionary Algorithms 

(EAs) for SOPs. In the latter, the best result of the algorithm for its single objective 

function is compared with the best-so-far solution or the optimum solution if it exists. 

The statistical results of this comparison (i.e. success ratio, standard deviation, etc.) 

measure the performance of the algorithm. In MOOPs, however, the comparison must 

be done according to the non-dominance criterion since there is a set of non-dominated 

solutions in the result. In literature, many performance metrics have been provided for 

evaluating the performance of the MOOPs. According to Riquelme et al., there are 54 

performance metrics being used in the MOOP literature (Riquelme, Lücken, & Baran, 

2015). In this thesis, only three of them are used and therefore these three performance 

metrics will be explained. These performance metrics are Hypervolume (HV), 

Generational Distance (GD), and Inverted Generational Distance (IGD). There are 

certain reasons for picking these three measures. First, they have been in the top five 

of the most used metrics for MOOPs in the literature. Second, while all of them 

measures the accuracy of the algorithm, HV and IGD also measure the diversity of the 

solutions provided by the algorithm. Third, they are all unary metrics, that is, they need 

just one set of solutions to measure the performance (Riquelme et al., 2015). 

3.6.1. Hypervolume (HV) 

Hypervolume (HV) performance metric was introduced by Zitzler and Thiele (Zitzler 

& Thiele, 1998). HV metric is a unary metric which evaluates the performance of an 

MOEA by calculating the area (or volume) between the Pareto front of the algorithm 
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and the selected reference point in the solution space. HV calculates the sum of the 

consecutive areas (or volumes) between each consecutive solution in the Pareto front 

and the reference point (Figure 3.13).  

 
Figure 3.13 Hypervolume for a minimization MOOP with two objectives 

The mathematical formula of HV is as follows (Friedrich, Horoba, & Neumann, 2009): 

𝐼𝐻 = 𝑣𝑜𝑙𝑢𝑚𝑒 ( ⋃ (𝑟1, 𝑥1) × (𝑟1, 𝑥1) × … × (𝑟𝑛, 𝑥𝑛)

(𝑥1,… ,𝑥𝑛)∈𝑋

) (10) () 

where X is the Pareto front and 𝑟 = (𝑟1, … , 𝑟𝑛) is the reference point. 

Since HV is a unary performance metric, each algorithm can be evaluated individually 

by its HV value. For the maximization problems, the reference point can be selected 

as the origin of the objective space. For the minimization problems, the reference point 

is the point in which each coordinate is the optimum solution for the related objective 

function if these optimum solutions exist and are known. Otherwise, it can be the point 

in which each coordinate is the best-so-far solution found by running different MOEAs. 

In both minimization and maximization problems, the algorithms having a greater HV 

value are said to be more promising than the other ones. 

3.6.2. Generational Distance (GD) 

Generational Distance (GD) metric was proposed by Veldhuizen and Lamont (Van 

Veldhuizen & Lamont, 2000). The main idea in GD is to calculate the distance between 

the Pareto front found by the MOEA and the true Pareto front (Figure 3.14). More 

specifically, GD calculates an average minimum Euclidean distance between each 

solution in the found Pareto front and those in true Pareto front.  
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Figure 3.14 Generational Distance for a MOOP with two objectives (Sheng et al., 

2014) 

The mathematical formulation of GD is as follows (Tian, Zhang, Cheng, & Jin, 2016): 

𝐺𝐷(𝑃, 𝑃∗) =
√∑ min

𝑥∈𝑃∗
𝑑(𝑥, 𝑦)2

𝑦∈𝑃

|𝑃|
 

(11) () 

In this formula, 𝑃 refers to the Pareto front found by the MOEA and 𝑃∗ refers to the 

true Pareto front. 𝑥 represents the solutions on the found Pareto front while 𝑦 refers to 

the solutions on the true Pareto front. The function 𝑑(𝑥, 𝑦) calculates the Euclidean 

distance between 𝑥 and 𝑦. 

GD measures the convergence of 𝑃, therefore, a smaller GD value indicates a better 

solution. Unlike HV, GD is not able to evaluate the diversity of 𝑃. 

3.6.3. Inverse Generational Distance (IGD) 

Inverse Generational Distance (IGD) was proposed by Coello and Cortes (Coello & 

Cortés, 2005). They based their method on GD. In IGD, the distance from the true 

Pareto front to the found Pareto front by the MOEA is measured. This is why it is 

called “inverted”. In IGD, the average distance of every point on the true Pareto front 

to the points on the found Pareto front by the MOEA is calculated (Figure 3.15).  



26 

 
Figure 3.15 Inverted Generational Distance for a MOOP with two objectives 

(Ishibuchi, Masuda, & Nojima, 2016) 

The mathematical formula of IGD is shown below (Tian et al., 2016): 

𝐼𝐺𝐷(𝑃, 𝑃∗) =
∑ min

𝑦∈𝑃
𝑑(𝑥, 𝑦)𝑥∈𝑃∗

|𝑃∗|
 (12) () 

In this mathematical formula, 𝑃 refers to the Pareto front found by the MOEA and 𝑃∗ 

refers to the true Pareto front. 𝑥 represents the solutions on the found Pareto front while 

𝑦 refers to the solutions on the true Pareto front. The function 𝑑(𝑥, 𝑦) calculates the 

Euclidean distance between 𝑥 and 𝑦. Like GD, the smaller values of IGD indicates that 

the found Pareto front by the MOEA is closer to the true Pareto front.  

IGD, however, has some advantages over GD. First, it measures the convergence of 𝑃 

better than GD. It is because, when 𝑃 has fewer solutions, GD does not give much 

information about the distance between 𝑃 and 𝑃∗ (Coello & Cortés, 2005). Second, 

IGD measures both convergence and diversity of 𝑃 , while GD measures only 

convergence (Tian et al., 2016). 
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CHAPTER 4 

EVOLUTIONARY ALGORITHMS FOR SOLVING A MULTI-

OBJECTIVE GREEN VEHICLE ROUTING PROBLEM 

4.1. Definition of the Problem 

In this thesis, a Multi-Objective Green Vehicle Routing Problem (MOGVRP) was 

studied. It is because environmental concerns increase day by day with the increase of 

the level of pollutants caused by the vehicles, and there has been less amount of studies 

being done in GVRP compared to the other variants of VRP. In addition, there has been 

a growing interest in GVRP recently. The reason for this recent interest is twofold. 

First, along with the growth of number of vehicles around the world, the pollution 

caused by these vehicles has been increased proportionally. According to the European 

Environment Agency’s 2011 Report, greenhouse gases (GHG) emitted in 

transportation in 2011 increased by 24% compared to the GHG emission in 2009 

(Eglese & Bektaş, 2014). This led the European Parliament and Council to adopt 

regulations on new mandatory 𝐶𝑂2 emissions for passenger cars and vans in 2009 and 

2011. Since then, despite some ups and downs, there has been an increase in 𝐶𝑂2 

emissions by vehicles in Europe according to the European Environment Agency’s 

2019 Report (Pastorello, 2019). As a result, many environmental organizations have 

begun to advise solutions on urban and highway transportation. Second, the companies 

that use vehicle fleets for transportation or delivery have concerns about their fuel 

consumption as well as delivery times and travelled distances due to the incremental 

cost of fuel (Xiao, Zhao, Kaku, & Xu, 2012). Decreasing the costs of these vehicle 

fleets will also be of benefit for the transportation companies. 

The MOGVRP studied in this thesis has two objectives. One of them is minimizing 

the total distance of all vehicle routes, while the other one is minimizing the total fuel 

consumption of all vehicle routes. For the former objective’s fitness evaluation, 2D 

Euclidean distance calculation was used. For the latter objective’s fitness evaluation, 

the fuel consumption formula presented by Xiao et al. (Xiao et al., 2012) was used. It 

is because this fuel consumption formula is highly referenced by other articles and it 

only requires the distances between the customers (and the depot) and the amount of 

the demands of the customers. As a result, it can be applied to any VRP instance. The 

detailed formulations of these objective functions are explained in Section 4.3.  
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NSGA-II and 𝝐-MOEA were used in solving the MOGVRP studied in this thesis. 

Along with these algorithms, certain constructive heuristic methods and local search 

algorithms were included in the solution method. The parameters and the nature of 

these methods and algorithms are explained more in detail in Section 4.5. 

Seven Christofides (Christofides, Mingozzi, & Toth, 1979) and five Golden (Golden, 

Wasil, Kelly, & Chao, 1998) instances were selected for experimental studies in this 

thesis. Xiao et al (Xiao et al., 2012) also used the same instances and provided single 

objective results for both objectives. Therefore, their results were taken as Pareto front 

results containing two solutions for each instance, and the Pareto-results obtained by 

the algorithms used in this thesis were compared and evaluated against them via the 

performance metrics mentioned in the previous chapter. 

4.2. Literature Review 

The studies done on GVRP mainly focus on minimizing the emission of air pollutants 

that cause GHG, i.e. CO, CO2, CH4 and NOx (Eglese & Bektaş, 2014)(Demir, Bektaş, 

& Laporte, 2013)(Toth & Vigo, 2014)(Boulter, Mccrae, & Barlow, 2007). Different 

studies on GVRP included different components to their emission functions and used 

different algorithms. Figliozzi (Figliozzi, 2010) focused on Emissions in VRPTW with 

three objectives: minimizing emissions, minimizing fuel consumption and minimizing 

total travel distance. He considered the problem as a SOVRP and applied his IRCI 

(Iterative Route Construction and Improvement) algorithm. He used an emission 

function that includes the average speed of vehicles and their travel distances. Since 

the benchmark set he used (Solomon’s well-known 56 instances) does not include data 

on the speed of the vehicles, he generated three different speed levels depending on 

the urban traffic: uncongested, somewhat congested and congested. 

Kuo (Kuo, 2010) studied a Time-Dependent VRP (TDVRP) on Solomon’s 100-

customer Euclidean problems using three objectives: minimizing total time, 

minimizing fuel consumption and minimizing total distance. He considered these 

objectives as a SOVRP in turn and applied a simulated annealing algorithm. He 

considered the speed and weight of the vehicles and their traveling distances as 

components of the fuel consumption function. Similar to Figliozzi, Kuo also classified 

his speed constants in three categories: low, medium and high. 
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Bektaş and Laporte (Bektaş & Laporte, 2011) studied Pollution-Routing Problem 

(PRP) which is a type of GVRP. They focused on a single objective which basically 

calculates the total fuel consumption of vehicles. This fuel consumption is the 

weighted sum of three functions which are the cost of the vehicle’s load, the cost 

caused by variations in the vehicle’s speed and the salaries of the drivers. Since there 

is no concrete speed data, they used the average of lower and upper bounds of the 

speed on each arc between the customers. They applied their study on a real-life case 

(using generated data for 10, 15 and 20 cities in the UK) and analyzed the effects of 

each component in the fuel consumption function. 

Demir et al. (Demir, Bektaş, & Laporte, 2011) reviewed and compared six different 

fuel consumption models using simulations with 18 scenarios. The fuel consumption 

models they have considered are instantaneous fuel consumption model, four-mode 

elemental fuel consumption model, running speed fuel consumption model, and 

comprehensive modal emission model, MEET (methodology for calculating 

transportation emissions and energy consumption) and COPERT (computer program 

to calculate emissions from the read transportation model). 

Jabali et al. (Jabali, Woensel, & Kok, 2012) studied an Emission-based Time-

Dependent VRP (E-TDVRP) as a SOVRP. They used a cost function containing the 

hourly cost of a driver, 𝐶𝑂2 emission cost, and fuel cost. Their fuel consumption model 

also includes various speed parameters of the vehicle such as optimal speed, 

congestion speed in traffic, the upper limit of speed. They implemented a Tabu search 

algorithm and used a specific benchmark set used in (Jabali et al., 2012). 

Demir et al. (Demir, Bektaş, & Laporte, 2012) studied PRP with Time Windows 

(PRPTW) as a SOVRP. In their study, they used a more comprehensive fuel 

consumption model than the fuel consumption models used in other GRVP studies. 

The parameters in their model that impact fuel consumption are the weight of the 

vehicle, lower and upper bounds in the speed of the vehicles, rolling and air resistance, 

air density, engine friction factor, the heating value of typical diesel fuel, fuel and 𝐶𝑂2 

emission cost per liter. Most of these parameters were taken into consideration with 

their estimated values. The authors developed a heuristic algorithm called Adaptive 

Large Neighborhood Heuristic Algorithm (ALNS) and applied it on nine different 

instance sets which were generated by the authors. 
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Demir et al. (Demir et al., 2013) improved their study on PRPTW and applied their 

enhanced ALNS Algorithm on newly generated instances based on real geographic 

data. In their study, the authors considered the PRPTW problem as a MOVRP with 

two objectives: minimizing fuel consumption and minimizing total travel time. As in 

their former studies, their fuel consumption function included many parameters such 

as the weight of the vehicle, lower and upper bounds in the speed of the vehicle, rolling 

and air resistance, air density, engine friction factor, heating value of typical diesel fuel, 

fuel and 𝐶𝑂2 emission cost per liter. The authors used four different methods for the 

solution: weighted sum, weighted sum with normalization, 𝝐-Constraint, and a hybrid 

method (hybridization of the adaptive weighted sum and 𝝐-Constraint methods). They 

obtained Pareto fronts (i.e. non-dominated solution sets) for each method and 

compared their results. Their comparison also includes two performance metrics: 

Hypervolume and 𝝐-indicator. 

Xiao et al. (Xiao et al., 2012) focused on Fuel Consumption Rate on VRP (FCVRP) 

with two objectives: minimizing total fuel consumption rate and minimizing total 

distance. They solved the FCVRP as a SOVRP for each objective by using a String-

model-based Simulated Annealing (SMSA) Algorithm developed by the authors. They 

also formulated a fuel consumption function which only depends on the weight of the 

vehicle and the distance traveled by the vehicle. In this way, their fuel consumption 

function can be used in many instances in literature without generating, estimating or 

assuming extra data such as speed, engine power, the slope of the roads, etc. The 

authors applied their SMSA method along with their fuel consumption function on 7 

instances of Christofides et al. (Christofides et al., 1979) and 20 instances of Golden 

et al. (Golden et al., 1998). 

Koç and Karaoğlan (Koç & Karaoğlan, 2016) developed an exact solution approach 

which is based on the simulated annealing heuristic and branch and cut algorithm to 

solve a single objective GVRP. In their study, they aimed to provide the optimum 

solution to the transportation companies in organizing the routes of their vehicles 

which use alternative energy such as electricity or natural gas. 

Dükkancı et al. introduced the Green Location-Routing Problem GLRP which includes 

locating the depots from which the vehicles will be dispatch and solving the classical 

TWVRP with multiple depots (Dükkancı, Kara, & Bektaş, 2019). Their problem 

contains a single objective function which consists of two components. The first 
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component minimizes the fixed cost of operating depots and the second component 

minimizes the total fuel consumption cost. Dükkancı et al. proposed two heuristic 

algorithms: Cumulative Location-Routing and Speed Optimization Algorithm 

(CLRSOA) and Iterated Local Search algorithm (ILS). They concluded that the “green” 

aspect in their objective function affect the optimal solutions. 

Macrina et al. (Macrina, Laporte, Guerriero, & Pugliese, 2019) studied an energy 

efficient GVRP in which they tried to reduce the costs caused by electric and 

conventional vehicles. For the electric vehicles, they also took the recharging 

operations into account in their objective function. In their study, they propose an 

energy consumption model that includes real-life parameters such as the acceleration 

and deceleration aspects of the vehicles while driving. 

According to Demir et al. (Demir et al., 2013), GHG emissions are directly 

proportional to fuel consumption. It means that minimizing fuel consumption also 

means minimizing GHG emissions. As it is seen in the literature, various fuel 

consumption functions have been proposed. Most of them are highly dependent on real 

case data such as vehicle’s type and speed, engine power, air density and resistance, 

road surface wear, gradient and resistance, fuel type, traffic conditions, etc. (Boulter et 

al., 2007) (Ardenkani, Hauer, & Jamei, 2001). Although the VRP problem gets more 

realistic when all these parameters are taken into consideration, it is unlikely to have 

all of this information for any benchmark instance in the literature. Therefore, if a 

simple but efficient fuel consumption function, which is less dependent on external 

data, is selected then the performance measures of different algorithms on the same 

benchmark sets can be compared and analyzed. 

For this reason, in this thesis, the same VRP and fuel consumption formulation in Xiao 

et al. (Xiao et al., 2012) is used. However, these objectives have been used in the 

MOGVRP. For this purpose, two well-known Multi-Objective Evolutionary 

Algorithms, i.e. NSGA-II and 𝝐MOEA, have been used for the solutions.  

4.3. The Mathematical Model of the MOGVRP  

The mathematical model of a  GVRP contains the general structure of the capacitated 

VRP (CVRP). Therefore, the mathematical model for the MOGVRP used in this thesis 

is developed on the classical CVRP’s mathematical model (Carić & Gold, 2008) and 

is presented as follows. 
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Variables: 

For 𝑖, 𝑗 ∈ {0,1, … , 𝑛} and 𝑘 ∈ {1,2, … , 𝑚} 

𝐺(𝑉, 𝐴) Representation of VRP as a graph 

𝑉 = {𝑣0, 𝑣1, 𝑣2, … , 𝑣𝑛} Set of vertices (𝑣0: depot and 𝑣𝑖: customers) 

𝐴 = {(𝑣𝑖, 𝑣𝑗): 𝑖 ≠ 𝑗} Set of arcs 

𝑑𝑖𝑗 = (𝑣𝑖 , 𝑣𝑗) The Euclidean distance between the vertices 𝑣𝑖 and 𝑣𝑗  

𝑞𝑖 The demand of the customer i 

𝐾 = {𝑘1, 𝑘2, … , 𝑘𝑚} The vehicles fleet 

Q The capacity of each vehicle (homogenous VRP) 

𝑦𝑘  The remaining capacity of each vehicle 

𝑇𝑚𝑎𝑥  The upper bound of each vehicle tour  

Decision Variables: 

𝑥𝑖𝑗
𝑘 = {

1 if the vehicle 𝑘 visits the customer 𝑗 directly after the customer 𝑖
0 otherwise  

Objective functions:  

𝑓1(𝑋) = 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ ∑ ∑ 𝑑𝑖𝑗 . 𝑥𝑖𝑗
𝑘

𝑗∈𝑉𝑖∈𝑉𝑘∈𝐾   (13) () 

𝑓2(𝑋) = 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ ∑ 𝑐0. 𝜌𝑖𝑗
𝑘𝑑𝑖𝑗 . 𝑥𝑖𝑗

𝑘
𝑗∈𝑉𝑖∈𝑉   (14) () 

𝑤ℎ𝑒𝑟𝑒    𝜌𝑖𝑗
𝑘 =  𝜌0 +  

𝜌∗−𝜌0

𝑄
𝑤𝑖𝑗

𝑘  (15) () 

Here, 𝑐0 is unit fuel cost, 𝜌𝑖𝑗 is the Fuel Consumption Rate (FCR) of the vehicle from 

customers i to j. 𝜌0 is the empty vehicle FCR and 𝜌∗ is the full-load vehicle FCR. 𝑤𝑖𝑗
𝑘  

is the load of the vehicle k while traveling from customers i to j. In the experimental 
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studies, the values of the parameters of 𝑐0 , 𝜌0  and 𝜌∗  are taken as 1, 1 and 2 

respectively since Xiao et al. used the same values for the same parameters (Xiao et 

al., 2012).  

Constraints:   

∑ ∑ 𝑥𝑖𝑗
𝑘

𝑗∈𝑉𝑘∈𝐾 = 1          ∀𝑖 ∈ 𝑉 (16) () 

∑ 𝑥𝑖𝑝
𝑘

𝑖∈𝑉 −  ∑ 𝑥𝑝𝑗
𝑘

𝑗∈𝑉 = 0      ∀𝑝 ∈ 𝑉 − {𝑣0}, 𝑘 ∈ 𝐾  (17) () 

∑ 𝑥0𝑗
𝑘

𝑗∈𝑉−{𝑣0} = 1    ∀𝑘 ∈ 𝐾 (18) () 

∑ 𝑥𝑗0
𝑘

𝑗∈𝑉−{𝑣0} = 1    ∀𝑘 ∈ 𝐾 (19) () 

𝑥𝑖𝑗
𝑘 = 1  ⇒  𝑦𝑘 − 𝑞𝑖 ≥ 0    ∀𝑖, 𝑗 ∈ 𝑉, 𝑘 ∈ 𝐾 (20) () 

𝑘 = ∅ ⇒    𝑦𝑘 = 𝑄 ,  ∀𝑘 ∈ 𝐾 (21) () 

∑ 𝑞𝑖𝑖∈𝑉

𝑄
≤ ∑ ∑ 𝑥0𝑗

𝑘
𝑗∈𝑉𝑘∈𝐾 ≤ |𝐾|  (22) () 

∑ ∑ 𝑑𝑖𝑗. 𝑥𝑖𝑗
𝑘

𝑗∈𝑉𝑖∈𝑉  ≤ 𝑇𝑚𝑎𝑥   (23) () 

Constraint (16) ensures that each customer is visited only once. Constraint (17) 

guarantees that each vehicle visits the customers consecutively in its tour. Constraint 

(18) makes sure that each vehicle leaves the depot once and visits its first customer by 

leaving from the depot. Constraint (19) ensures that each vehicle returns to the depot 

only once and at the end of its tour. Constraint (20) guarantees that a vehicle’s 

remaining capacity cannot be below zero. In other words, vehicles cannot contain the 

customers’ demands which exceed the vehicle’s remaining capacity. Constraint (21) 

states that every vehicle’s initial capacity is the total capacity of the vehicle. Constraint 
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(22) guarantees that the number of vehicles cannot be lower than the ratio of total 

demands of the customers over the capacity of the vehicles and cannot be more than 

the cardinality of the set of all vehicles. Constraint (23) ensures that each vehicle’s 

total tour length does not exceed the 𝑇𝑚𝑎𝑥 defined in the problem which is the limit of 

the total travel time for a vehicle. 

4.4. Solution Representation 

In NSGA-II and 𝝐-MOEA, the solutions are represented as genomes. In each genome, 

the genotype of the solution is stored in arrays. Each genotype’s fitness values of total 

distance and total fuel consumption are the phenotype of the genome. 

Each customer in a genome is represented by an index number from 1 to n, and the 

depot by 0. As a result, the vehicle tours in the solutions were represented by 

permutations of these index numbers in dynamic arrays. Two different types of 

representations of these permutations were used in solving the MOGVRP. The first 

one is the giant tour and the second one is the split vehicle tours. It was observed that 

both representations have pros and cons. For example, giant tour representation allows 

algorithms to apply any crossover and mutation operators easily. Yet, it does not give 

control over individual vehicles due to its splitting procedure. Customers cannot 

directly be moved between or within the vehicles. On the other hand, split vehicle tours 

representation makes these moves possible. It allows algorithms to interfere with each 

vehicle directly. However, classical crossover operators do not work with this type of 

representation and modifying these crossover operators according to this type of 

representation is quite difficult. Because of the limitations in both representations, both 

representations were used in the algorithms separately, and their results were compared 

in Chapter 5. The details of these representations are explained below. 

In giant tour representation, all the customer indices were assigned to the giant tour 

permutation either randomly or by a constructive heuristic. The depot’s index was not 

included in the permutation. Yet, the depot was intrinsically added in evaluating the 

vehicle tour fitness. The giant tour represents all the vehicle tours in order. In order to 

find these tours, the well-known Bellman Split algorithm was applied (Prins, 2004). 

The pseudo-code of the Bellman Split algorithm is presented in Figures 4.1 and 4.2. 
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Figure 4.1 Bellman Split Algorithm: Splitting Procedure (Prins, 2004) 

 

 

 
Figure 4.2 Bellman Split Algorithm: Extracting Vehicles Procedure (Prins, 2004) 

Bellman Split algorithm returns the splitting points (i.e. index numbers of the giant 

tour) for each vehicle on the giant tour and these indices are stored in another dynamic 

array (Figure 4.3).  
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Figure 4.3 Bellman Split Example 

Bellman Split algorithm begins with the first customer in the giant tour and 

hypothetically assigns it in the first vehicle. For the following customers in the giant 

tour, it decides on whether this customer should belong to the current vehicle or a new 

vehicle. If the current customer’s load is greater than the remaining capacity of the 

current vehicle or it increases the total distance cost of all vehicles when included to 

the current vehicle more than being included to a new vehicle, then Bellman Split 

algorithm hypothetically assigns this customer to a new vehicle, otherwise the 

customer is considered in the vehicle. Each time Bellman Split decides on starting a 

new vehicle it holds the index of the last customer in a temporary array by which it 

later extracts the vehicle split indices on the giant tour. 

Vehicle split representation, on the other hand, directly uses separate vehicle arrays. 

There is no giant tour array and each vehicle is represented by a separate individual 

dynamic array. This way, each vehicle can be accessed, and their customers can be 

moved between or within the vehicles directly. As a result, mutation operators can 

easily be applied to these vehicle tours. However, applying crossover on two genomes 

cannot be done as directly as in mutation operators. Since there is no one giant tour, 

selecting different customers from different genomes causes permutation problems. 

Controlling the repeating or missing customers during and after crossover operation 

requires checking all the other vehicle permutations in each genome as well. And, this 

increases the time complexity of the crossover operation. In this thesis, for this split 

vehicle representation, no crossover operation was used. Instead, Path-relinking 

heuristic was modified and applied to substitute the crossover operation. After, path-

relinking, the mutation operators were applied to the vehicles. 

The experimental results with both representations are presented in Chapter 5. It has 

been observed that split vehicle representation produced more promising results. 
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4.5. Constructive Heuristics 

Twelve constructive heuristics were used in initial population generation for the 

algorithms in this thesis. Seven of them favor minimizing the distance objective while 

the other five favor minimizing the fuel consumption objective in making decisions. 

These constructive heuristics are Clark and Wright Savings (C&W Savings) algorithm, 

a modified version of the Apparent Tardiness Cost with Setups (ATCS) Rule used in 

scheduling problems, a modified version of the Somhom Competition Rule used in 

multiple TSP (mTSP), Insert End All, Assigning Heaviest Load First (AHLF), Nearest 

Neighbor algorithm, Random Task (RT), and RT-Flower (RTF). The first five of these 

heuristics were both applied for minimizing the distance and minimizing the fuel 

consumption objectives with appropriate modifications. The last two of these 

constructive heuristics were applied only favoring minimizing the distance objective 

function. 

C&W Savings heuristic algorithm (Clarke & Wright, 1964) starts with considering the 

worst-case situation in the VRP. That is, assigning a vehicle for each customer. Then 

it iteratively tries to combine the customers into the same vehicle under the VRP 

constraints and checks how much saving this new route produces regarding distance. 

Therefore, the algorithm tries to assign customers to vehicles that will produce the best 

savings. The mathematical formula of the C&W Savings is as follows: 

𝑠𝑖𝑗 =  𝑑𝑖0 + 𝑑0𝑗 − 𝑑𝑖𝑗,    𝑓𝑜𝑟 𝑎𝑙𝑙  𝑖, 𝑗 > 0 𝑎𝑛𝑑 𝑖 ≠ 𝑗   (24) () 

𝑠𝑖𝑗: 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑠𝑎𝑣𝑖𝑛𝑔𝑠 𝑤ℎ𝑒𝑛 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟 𝑗 𝑖𝑠 𝑎𝑑𝑑𝑒𝑑 𝑖𝑛 𝑡ℎ𝑒 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑡𝑜𝑢𝑟 

𝑑𝑖𝑗: 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡ℎ𝑒 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠 𝑖 𝑎𝑛𝑑 𝑗  

ATCS Rule heuristic algorithm (Ow & Morton, 1989) was developed for minimizing 

the total early and tardy costs of a single machine in scheduling problems. In this thesis, 

it was adapted for VRP. This adapted algorithm basically tries to add each customer at 

the end of each vehicle in turn. Then it calculates the estimated distance difference. If 

this distance is below the average value, then it adds the new customer to the current 

vehicle, otherwise, it starts a new vehicle and adds this customer to it. The 

mathematical formula of the ATCS Rule is as follows: 
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ℎ𝑖𝑗 = 𝑑𝑙𝑎𝑠𝑡,𝑗. 𝑒
𝑇𝑖

𝑇  

  
(25) () 

ℎ𝑖𝑗: 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦 𝑣𝑎𝑙𝑢𝑒 𝑤ℎ𝑒𝑛 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟 𝑗 𝑖𝑠 𝑎𝑑𝑑𝑒𝑑 𝑡𝑜 𝑡ℎ𝑒 𝑒𝑛𝑑 𝑜𝑓 𝑡ℎ𝑒 𝑣𝑒ℎ𝑖𝑐𝑙𝑒′𝑠 𝑡𝑜𝑢𝑟 

𝑑𝑙𝑎𝑠𝑡,𝑗: 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡ℎ𝑒 𝑙𝑎𝑠𝑡 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟 𝑖𝑛 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑡𝑜𝑢𝑟 𝑎𝑛𝑑 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟 𝑗 

𝑇𝑖: 𝑡𝑜𝑡𝑎𝑙 𝑡𝑜𝑢𝑟 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑖 

𝑇:
∑ 𝑇𝑖

𝑛
𝑖=1

𝑛
 , 𝑤ℎ𝑒𝑟𝑒 𝑛 𝑖𝑠 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠  

 

Somhom Competition Rule is like ATCS rule with a difference in the multiplier. The 

following is the mathematical formula of Somhom Competition Rule: 

ℎ𝑖𝑗 = 𝑑𝑙𝑎𝑠𝑡,𝑗. (1 +
𝑇𝑖−𝑇

𝑇
)  (26) () 

ℎ𝑖𝑗: 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦 𝑣𝑎𝑙𝑢𝑒 𝑤ℎ𝑒𝑛 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟 𝑗 𝑖𝑠 𝑎𝑑𝑑𝑒𝑑 𝑡𝑜 𝑡ℎ𝑒 𝑒𝑛𝑑 𝑜𝑓 𝑡ℎ𝑒 𝑣𝑒ℎ𝑖𝑐𝑙𝑒′𝑠 𝑡𝑜𝑢𝑟 

𝑑𝑙𝑎𝑠𝑡,𝑗: 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡ℎ𝑒 𝑙𝑎𝑠𝑡 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟 𝑖𝑛 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑡𝑜𝑢𝑟 𝑎𝑛𝑑 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟 𝑗 

𝑇𝑖: 𝑡𝑜𝑡𝑎𝑙 𝑡𝑜𝑢𝑟 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑖  

𝑇 =
∑ 𝑇𝑖

𝑛
𝑖=1

𝑛
 , 𝑤ℎ𝑒𝑟𝑒 𝑛 𝑖𝑠 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠 

 

Insert End All constructive heuristic tries to add the new customer to a vehicle by 

trying to add it to the end of each vehicle and finding the minimum cost in doing that. 

The following is the mathematical formula of this heuristic: 

∆= 𝑑𝑙𝑎𝑠𝑡,𝑗 + 𝑑𝑗,0 − 𝑑𝑙𝑎𝑠𝑡,0  (27) () 

∆: 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑤ℎ𝑒𝑛 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟 𝑗 𝑖𝑠 𝑎𝑑𝑑𝑒𝑑 𝑡𝑜 𝑡ℎ𝑒 𝑒𝑛𝑑 𝑜𝑓 𝑡ℎ𝑒 𝑣𝑒ℎ𝑖𝑐𝑙𝑒′𝑠 𝑡𝑜𝑢𝑟 

𝑑𝑙𝑎𝑠𝑡,𝑗: 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡ℎ𝑒 𝑙𝑎𝑠𝑡 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟 𝑖𝑛 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑡𝑜𝑢𝑟 𝑎𝑛𝑑 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟 𝑗 

These four constructive heuristics mentioned above were applied with distance and 

fuel consumption calculations separately. For fuel consumption calculations, the 
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distance calculations in the formulas above were replaced with the fuel consumption 

formula (Eq. 13).  This way, it was aimed to generate initial solutions favoring either 

one of the objective functions in the problem. 

Assigning Heaviest Load First (AHLF) is a greedy method that assigns the customers 

to vehicles with regards to their demands by sorting them in descending order. In this 

sense, this heuristic favors minimizing the fuel consumption objective. After sorting 

the customers in descending order according to their demands, each customer is 

assigned to the vehicles in their order. If there is more than one customer having the 

same demand, then the nearest one to the previous customer (or depot if it is the first 

customer) is chosen. If the customer's demand exceeds the capacity of the current 

customer, then a new vehicle is started. 

The nearest Neighbor algorithm, RT and RTF heuristics (Prins, Labadi, & Reghioui, 

2009) are greedy algorithms based on the distance calculations. In the Nearest 

Neighbor method, the first customer of each vehicle is selected by finding the nearest 

customers to the depot. Then, the rest of the customers in a vehicle is selected by 

finding the nearest unassigned customer to the last customer in the vehicle. If there is 

more than one candidate of nearest neighbors, then the smaller index numbered 

customer is selected. When the next nearest customer’s demand exceeds the remaining 

capacity of the current vehicle then this customer is not assigned to any vehicle and 

the whole process is done by starting a new vehicle. The algorithm ends when there 

are no more customers to assign to a vehicle. 

RT and RTF were developed on the Nearest Neighbor method. RT works the same way 

with Nearest Neighbor except for including a decision making step when there is more 

than one candidate of nearest neighbors. Unlike, Nearest Neighbor algorithm, RT gives 

a chance to each candidate by storing them in a dynamic array. RT, then, decides on 

which one to choose randomly. In order to increase the number of candidates, a 

threshold may be added in comparing the distances of the neighbors. Hence, RT 

provides more variety than Nearest Neighbor in generating the initial population. 

RTF, on the other hand, adds an intuition into decision making between the nearest 

customer candidates. It divides the unvisited customers into two sets every time the 

nearest customers are being searched. The first set (i.e. 𝐿1 ) contains the unvisited 

nearest customers that drive the vehicle away from the depot. The second set (i.e. 𝐿2) 
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contains the rest of the unvisited customers. RTF, then, decides between these two sets 

in order to find the next customer to assign the current vehicle. If one of these sets are 

empty, then RTF randomly selects a customer from the other set. Otherwise, if the 

vehicle’s total load is less than or equal to the half of its full capacity, then the next 

customer is selected from the set 𝐿1, and from the set 𝐿2 otherwise. RTF repeats this 

process until all the customers are assigned to vehicles. As a result, RTF first tries to 

assign the nearest customers which drive the vehicles away from the depot until the 

vehicle reaches to its half-capacity. Then, it tries to assign the rest of the customers 

which drive the vehicle closer to the depot. 

4.6. Local Search Heuristics 

Two different local search algorithms are used for the giant tour representation: 2-Opt 

with best improvement pivot rule and All Insertion Heuristic. The former is applied to 

favor the minimizing the total distance objective, while the latter one is applied 

favoring both objectives.  2-Opt algorithm is a state-of-the-art local search algorithm 

applied to Travelling Salesman Problems (TSPs) in general. In 2-Opt, every binary 

combination of the customers in the giant tour is selected and the block of customers 

between them (including these two customers) is inverted. This way it is desired to fix 

the unnecessary crossroads in the tours as it is seen in Figure 4.4. 

Then, the giant tour was split into vehicles and the total distance cost is calculated. In 

calculating the total distance, a speed up method is used. This method just calculates 

the difference of the distance after the change of the customers and adds this difference 

to the current total distance. If this new vehicle tour permutation decreases the total 

distance value, then this new permutation replaces the current permutation. Otherwise, 

the giant tour permutation remained unchanged and the next two edges in the giant 

tour were selected and the same procedure is applied to them. This process in 2-Opt 

continues until no further improvements can be made. 2-Opt on giant tour causes 

customer exchanges between the vehicles due to its split procedure. Because of this 

reason, it helped both the exploration and exploitation of the algorithms. 
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Figure 4.4 2-Opt example 

In All Insertion Heuristic (AIH), every customer in the giant tour is removed from its 

current location and is inserted to every possible location in the giant tour. In each 

reinsertion, the giant tour is split into vehicles and the fitness values for both objectives 

are calculated. Then, the current and new permutations are compared according to the 

dominance comparison. If the new permutation dominates the current one, then the 

new permutation replaces the current one. If the new permutation is dominated by the 

current one, then the algorithm continues with the current permutation. If the new 

permutation and the current permutations are non-dominated, then the new 

permutation is added to the population as a new solution, but the local search continues 

with the current permutation. AIH algorithm is run until all the customers in the 

permutation are tried to be inserted in every possible location in the giant tour. 

For the split vehicle tour representation, four different local search algorithms are used: 

Cross Exchange, 2-Opt with first improvement pivoting rule, Emptying the Lighter 

Vehicles (ELV), Moving Customers Between and Within Vehicles (MCBWV). The 

first one is applied to favor minimizing the total distance objective. The other three are 

applied to favor both objectives. 

Cross Exchange method (Taillard, Badeau, Gendreau, Guertin, & Potvin, 1997) 

searches the solution space by exchanging the blocks of customers between two 

vehicle tours in a solution. The size of the blocks (i.e. L) on each vehicle tour is 

bounded above by a distance length determined by the decision maker. The number of 

customers in each block might be different but the total distance length of these blocks 

is less than or equal to L. Cross Exchange aims to find the best solution during the 

search among the neighborhoods of the initial vehicle tours (Figure 4.5).  
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Figure 4.5 Cross Exchange (Taillard et al., 1997) 

In the algorithms used in this thesis, Cross Exchange method is adjusted for the MOP 

structure. That is, in each searching phase, all the produced solutions are stored in a 

non-dominated archive population which is the outcome of Cross Exchange. The 

distance length L is selected in a way proportional to the size of the problem instance. 

Two vehicles are randomly selected for Cross Exchange. Cross Exchange is applied to 

these vehicles with all the possible L sized block of customers from the first to the end 

of each vehicle tour.  

2-Opt with first improvement pivoting rule is applied to each individual vehicle tour 

permutation independently. The same procedure in 2-Opt applied on the giant tour is 

used for individual vehicles in the solution. This way 2-Opt on split vehicle tours 

provides only exploitation in the algorithms. 

ELV aims to improve the fitness values for both objectives by trying to reduce the 

number of vehicles in the solution. It tries to empty the least loaded vehicles if possible. 

Since ELV aims to favor both objectives, it used a temporary local archive in which it 

keeps all the non-dominated results generated during the process. In ELV, first, the 

original solution is added into this temporary local archive and duplicated in order to 

find new solutions without changing the original solution. Then all the vehicles in this 

duplicated copy are sorted according to their remaining capacities in descending order 

and assigned to a temporary list. In other words, the lighter vehicles (or the vehicles 

that have more remaining capacities) are placed at the beginning of the list. Starting 

from the first vehicle in the list, all the customers in this vehicle are tried to be moved 

to the other vehicles one by one. Then, the distance differences caused by these trials 

are calculated. After minimum distance difference is found, the customer is added into 

the vehicle that gave the minimum distance. The solution obtained by this move is 
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compared with the solutions in the local archive according to dominance criteria. If it 

dominates any solution in the local archive, then these dominated solutions are 

removed from the local archive and this new solution is added to the local archive. If 

it is dominated by any solution in the local archive, then it is not added to the local 

archive. If it is non-dominated with all the solutions in the local archive, then it is 

added to the local archive. After this dominance comparison, ELV proceeds with the 

next customer in the vehicle. If no customer is left in the vehicle, then the current 

vehicle is deleted and the next vehicle in the list is tried. If the remaining customers in 

the current vehicle cannot be added to any other vehicle after all tries, then the whole 

process is repeated with the next vehicle in the temporary list. ELV terminates when 

all the vehicles in the temporary list are tried. In the end, there might be some vehicles 

emptied by moving their customers to other vehicles and removed from the solution. 

Or, even if there is no change in the number of vehicles, the vehicle tours might have 

been improved by these changes. As a result, ELV returns a temporary local archive 

that contains a set of non-dominated solutions produced by ELV. 

MCBWV also uses a local archive in order to keep all the non-dominated solutions 

during the process. MCBWV starts with finding the vehicle with the highest distance 

and then tries to move its customers to every possible location within the same vehicle 

and in other vehicles. In each remove and insertion move, the generated new solution 

is compared with the current one according to the dominance criterion. If the current 

solution dominates the new solution, then the algorithm continues with the next 

remove and insertion move. Otherwise, if the new solution dominates the current one 

or they are non-dominated, then the new solution is added to the local archive and the 

current solution is replaced with the new solution. The algorithm continues until there 

is no improvement or all the customers in the current vehicle are removed. MCBWV 

tries to find better and non-dominated solutions by improving the worst vehicle with 

regards to the distance objective and balance the tour distances of all vehicles. 

4.7. Path-Relinking Heuristic 

Path Relinking (PR) algorithm (Glover, Laguna, & Marti, 2000) aims to find better 

solutions by searching among the trajectories of the elite solutions produced during the 

search of the algorithm. It is applied to two selected solutions named initial and 

guiding solutions. It generates a path from the initial to the guiding solution with the 
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hope of obtaining improved results. First, it finds the common path sequences in both 

solutions based on the principle that good solutions are likely to share common 

characteristics (Hof & Schneider, 2019). These paths are commonly shared paths by 

both the initial and the guiding solutions. It, then, runs through each path in the guiding 

solution that is not in this common set of paths and transfers the paths in the initial 

solution like the ones in the guiding solution by removing and inserting the elements 

in the initial solution. At each of these moves, a new candidate solution is produced 

and evaluated, and the initial solution is gradually transferred into the guiding solution 

(Figure 4.6). PR runs until all the uncommon paths in the guiding solution are run 

through and the related changes are made in the initial solution. The best solution 

generated during the PR process is carried on to the next generation of solutions.    

 
Figure 4.6  Path Relinking (Zhang, Bai, & Dong, 2010) 

PR algorithm is adapted for the MOP structure in this thesis. That is, for each move in 

PR, the generated intermediate solutions are evaluated according to the dominance 

criteria and stored in a temporary non-dominance archive through the whole process 

of PR. As a result, PR produces a set of non-dominated solutions. PR is used with split 

vehicle representation. Since no crossover was used in NSGA-II and 𝝐-MOEA, PR 

functioned like a crossover operator and produced children for the population in the 

MOGVRP in this thesis. 
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Select the initial and guiding solutions 

Initialize the temporary local archive 

Find all edges in the initial solution that are different than the edges in the guiding 

solution and assign them into the uncommon_edges list 

Sort the uncommon_edges list according to the length of the edges in decreasing order 

Repeat  

Select the next edge from the uncommon_edges list 

Find the endpoints (customers) of the edge in the initial solution 

Remove and insert the first endpoint before and after the second endpoint in the 

initial solution 

Remove and insert the second endpoint before and after the first endpoint in the 

initial solution 

Evaluate all these recently produced children 

Add the non-dominated children in the temporary local archive 

Discard the dominated children 

Replace the initial solution with one of these recently produced and non-

dominated children 

Until every edge in uncommon_edges is applied 

Return the temporary local archive 

Figure 4.7 Pseudocode for adapted PR with MOP structure 

4.8. Reproduction Operators 

Different reproduction procedures are applied for two different solution 

representations. In the giant tour representation, Partially Mapped Crossover (PMX), 

Ordered Crossover (OX), Cycle Crossover (CX), Two-point Crossover (TPX), and 

mutations by swapping, insertion, and inverting are used. 

In PMX (Goldberg & Lingle, 1985), two random crossover points are selected on two 

parent giant tours and the customers between these crossover points are copied to two 

new offspring. Then, a mapping is made between these copied sub-tours. The missing 

customers in each offspring are selected from the other parent depending on this 

mapping. 

As in PMX, two random crossover points are selected and the related sub-tours are 

transferred to the offspring in OX (Davis, 1985). The rest of the customers in each 

offspring, however, are selected in order from the other parent. If the customer selected 

from the other parent already exists in the offspring, then it is skipped and the next 

customer in the parent permutation is checked. This way the repetitions of the 

customers are prevented. If the last customer in the parent tour is reached and the 

offspring is not completed yet, then the checking and adding the customers from the 

parent tour continues with the beginning of the parent tour. 
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In CX (Oliver, Smith, & Holland, 1987), no crossover points are selected. A cycle 

between the two parents is found first. Finding the cycle begins with the first customers 

in each parent tour. The first customers in both parent tours are added to the cycle 

respectively. Then, the customer in the second parent tour is searched in the first parent 

tour. When it is found, its index number in the first parent tour is used to find the next 

customer in the second parent tour. The customer with that index number in the second 

tour is added to the cycle. The same process is repeated with this recently added 

customer. Once its index number is found in the second parent, this index number is 

used to find the next customer in the first parent tour. The customer located at this 

index in the first parent tour is added to the cycle. This process goes back and forth 

between the two parents until the cycle is closed. Then, the customers in the first parent 

tour are checked with this cycle. If the customer is in the cycle, then it is directly 

transferred to the offspring with the same location in the tour. Otherwise, that customer 

is transferred to the offspring with its location in the second parent tour. The same 

process is applied on the second parent tour in order to produce the second offspring. 

In TPX (Ishibuchi & Murata, 1998), two crossover points are selected first. Then, the 

customers from the beginning to the first crossover point and from the second 

crossover point to the end in each parent tour are transferred to two new offspring with 

the same locations. The rest of the customers are selected from the other parent tour 

and located in between the two crossover points in each offspring. If the customer to 

be added already exists in the offspring, then it is skipped. This process continues until 

all the customers are completed in both offspring. 

In swap mutation move, any two customers in the giant tour are randomly selected and 

swapped. In insertion mutation move, a randomly selected customer is removed and 

inserted to a different location in the giant tour. In invert mutation move, two customers 

are randomly selected and all the customers between them are inverted (Sivanandam 

& Deepa, 2010). 

In split vehicle tour representation, no crossover operator was used due to the structure 

of the representation. None of the crossover operators that were used for the giant tour 

is applicable to split vehicle representation. Therefore, only some of the mutation 

operators are used on the split vehicle representation. 
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The very same mutation operators used in the giant tour representation are also used 

in the split vehicle representation. Yet, they are applied to the individual vehicle tours 

since there is no giant tour in this representation. In addition, mutations by swapping 

and inserting are applied both within the individual vehicle tours and between 

randomly selected two vehicles.  

When swapping is applied on the same vehicle, two randomly selected customers are 

swapped in the same vehicle. When it was applied to two different vehicles, then two 

randomly selected customers from two different vehicles were swapped. This swap 

operator is also applied as swapping a block of customers between two vehicles. In 

this type of swap, the same number of customers in each block are chosen and only 

the blocks that did not violate the T-max and capacity constraints are swapped, i.e., 

only feasible swap moves are made. 

When insertion mutation is applied within an individual vehicle, a randomly selected 

customer is removed and reinserted in a different location in the same vehicle. When 

it is applied to two different vehicles, a randomly selected customer is removed from 

a randomly selected vehicle and is inserted in a random location in the another 

randomly selected vehicle. As in swapping mutation, insertion mutation is applied with 

removing a block of customers from one vehicle and inserting this block in the second 

vehicle. T-max and capacity constraints are also checked in order to prevent infeasible 

solutions.  

The inverting mutation is applied in the same way in giant tour representation except 

it is only applied on the individual vehicle tours. 

4.9. NSGA-II and 𝝐-MOEA Used in the Thesis 

NSGA-II and 𝝐-MOEA are utilized for the solution of the MOGVRP studied in this 

thesis. They both use the constructive heuristics, local search moves and reproduction 

operators with the related solution representations as they are mentioned in the 

previous subsections. The general structures of both algorithms are given below. The 

differences in the algorithms for two different solution representations (i.e. giant tour 

and split vehicle representations) are explained in the following paragraphs. 

Pseudo-code for the adapted NSGA-II used in this thesis is given below: 
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Generate individuals in the initial population by using constructive heuristics and by 

generating random permutations 

Calculate the fitness values of the initial population and rank each individual with 0 

Apply local search on the initial population 

Repeat  

Select individuals for reproduction 

Reproduce offspring 

Apply local search on the offspring 

Evaluate the offspring 

Add the offspring to the population by using non-dominance criteria 

Find fronts of the combined population by fast non-dominated sorting 

Sort the combined population by crowding distance 

Truncate the population 

Until all the iterations are done 

Return the Pareto front 

Figure 4.8 Pseudo-code of the adapted NSGA-II for the MOGVRP 

Each component of this algorithm was explained more in detail in the previous 

subsections. Hence the unmentioned details will be given here. Selecting individuals 

for reproduction is done by a modified binary tournament selection method. In 

classical binary tournament selection, two individuals randomly selected from the 

population are compared and the better individual with regards to the fitness value is 

selected for recombination. In this study, this tournament comparison is done 

according to the non-dominance criteria of the selected individuals. If one individual 

dominates the other one, then the dominating one is selected. If they were non-

dominated, then one of them was randomly selected. 

Reproducing offspring is done differently in different solution representations. In the 

giant tour representation, the crossover and mutation operators for the giant tour 

mentioned in Section 4.8 are used. In split vehicle representation, Path Relinking 

(Section 4.7) and the mutation operators for split vehicle representation mentioned in 

Section 4.8 are used. 

The common and different constructive heuristics and local searches are also applied 

as mentioned in sections 4.5 and 4.6. 

Pseudo-code for the adapted 𝝐-MOEA used in this thesis is given below: 
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Generate some individuals in the initial population by using constructive heuristics 

and the rest randomly 

Create an empty non-dominated archive 

Calculate the fitness values of the initial population 

Evaluate the initial population 

Update the archive using the initial population by 𝝐-dominance 

Apply local search on the initial population 

Evaluate the new individuals generated by local search 

Update the archive with the generated members by the local search by 𝝐-dominance 

Repeat  

Select individuals for reproduction 

Reproduce offspring 

Apply local search on the offspring 

Evaluate the offspring 

Add offspring to the population by non-dominance criteria 

Add offspring to the archive by 𝝐-dominance 

Until all the iterations are done 

Return the archive 

Figure 4.9 Pseudo-code of the adapted 𝝐-MOEA for the MOGVRP 

Each component of this algorithm is explained in more detail in the previous 

subsections, as well. However, selecting parents for reproduction is done differently 

than NSGA-II. That is, one individual is selected from the population and the other 

one is selected from the archive for reproduction in 𝝐-MOEA. Hence binary 

tournament selection is not used.  Reproducing offspring, applying constructive 

heuristics and local search is done in the same way as it is in NSGA-II. The major 

difference in 𝝐-MOEA is that it uses an archive which holds the non-dominated 

solutions throughout the algorithm. And, population and archive are both updated after 

each reproduction and local search process. 
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CHAPTER 5 

EXPERIMENTAL STUDIES 

All the algorithms and methods used in this study are coded in C++ programming 

language with Microsoft Visual Studio Enterprise 2017, version 15.9.11. These 

algorithms and methods are coded accordingly for each solution representation and 

their results were obtained separately. First, the giant tour representation version was 

programmed, and its results were produced. Since these obtained results were not 

promising with regards to producing Pareto fronts, the solution representation was 

switched to split vehicle representation. It was observed that the results obtained with 

the split vehicle representation were more promising than the results of giant tour 

representation. All these results are presented below. 

Seven instances from Christofides (Christofides et al., 1979) and twenty instances 

from Golden (Golden et al., 1998) instances were used in the experimental studies. In 

Christofides instances (i.e. CMT1, CMT2, CMT3, CMT4, CMT5, CMT11, and 

CMT12), the depot and the customers are randomly scattered in the solution space. 

Each instance is different in size with regards to the number of customers and has a T-

max value for the vehicle tours. The number of customers in these instances are 50, 

75, 100, 150, 199, 120 and 100 respectively. 

In Golden instances, on the other hand, the customers and the depot are laid out in the 

solution space within an order. These twenty instances can be categorized into five sets 

(Figure 5.1). In each set, the distribution of the customers is the same, but the number 

of total customers is different. These sets are {Golden_1, Golden_2, Golden_3, 

Golden_4}, {Golden_5, Golden_6, Golden_7, Golden_8}, {Golden_9, Golden_10, 

Golden_11, Golden_12}, {Golden_13, Golden_14, Golden_15, Golden_16}, and 

{Golden_17, Golden_18, Golden_19, Golden_20} (Figure 5.1). The number of 

customers in each Golden instance is {240, 320, 400, 480}, {200, 280, 360, 440}, {255, 

323, 399, 483}, {252, 320, 396, 480}, and {240, 300, 360, 420}. 

In the experimental studies with the giant tour representation, only the first instances 

of each Golden instance set were used. In the experimental studies with the split 

vehicle tour representation, all the Golden instances were used. 
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Figure 5.1 Golden instance sets (Xavier et al., 1998) 
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The results that are obtained in the experimental studies are compared with the results 

obtained by Xiao et al. (2012). In their article, Xiao et al. obtained their results for two 

objectives as SOP results. In this thesis, the same two objectives are used as it is in the 

study of Xiao et al. (2012), and the best results of Xiao et al. are taken into 

consideration as their Pareto front. 

5.1. Results with Giant Tour Solution Representation 

After various combinations were tried with the giant tour in the experimental studies, 

those parameters observed to be producing better Pareto fronts are: population size = 

500, crossover rate = 70% and mutation rate = 50%. Termination criteria for the 

algorithms is defined with the number of iterations, which was 10000. Each algorithm 

is run ten times on each instance and the best Pareto results obtained by all these ten 

runs are considered as the results of the algorithms. 

The following figures show the Pareto fronts obtained by the adapted NSGA-II and 

the adapted 𝝐-MOEA using the giant tour representation. Their numerical results are 

laid out as tables in Appendix 1. In the following figures, the blue diamonds are the 

results obtained by Xiao et al. (2012), the red squares contain the Pareto front obtained 

by the adapted NSGA-II and the green triangles contain the Pareto front obtained by 

the adapted 𝝐-MOEA used in this thesis. 

 
Figure 5.2 Pareto Fronts of the adapted NSGA-II and the adapted 𝝐-MOEA with 

Giant Tour for CMT1 
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Figure 5.3 Pareto Fronts of the adapted NSGA-II and the adapted 𝝐-MOEA with 

Giant Tour for CMT2 

 

 
Figure 5.4 Pareto Fronts of the adapted NSGA-II and the adapted 𝝐-MOEA with 

Giant Tour for CMT3 

 

 
Figure 5.5 Pareto Fronts of the adapted NSGA-II and the adapted 𝝐-MOEA with 

Giant Tour for CMT4 
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Figure 5.6 Pareto Fronts of the adapted NSGA-II and the adapted 𝝐-MOEA with 

Giant Tour for CMT5 

 

 
Figure 5.7 Pareto Fronts of the adapted NSGA-II and the adapted 𝝐-MOEA with 

Giant Tour for CMT11 

 

 
Figure 5.8 Pareto Fronts of the adapted NSGA-II and the adapted 𝝐-MOEA with 

Giant Tour for CMT12 
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Figure 5.9 Pareto Fronts of the adapted NSGA-II and the adapted 𝝐-MOEA with 

Giant Tour for Golden_1 

 

 
Figure 5.10 Pareto Fronts of the adapted NSGA-II and the adapted 𝝐-MOEA with 

Giant Tour for Golden_5 

 

 
Figure 5.11 Pareto Fronts of the adapted NSGA-II and the adapted 𝝐-MOEA with 

Giant Tour for Golden_9 
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Figure 5.12 Pareto Fronts of the adapted NSGA-II and the adapted 𝝐-MOEA with 

Giant Tour for Golden_13 

 

 
Figure 5.13 Pareto Fronts of the adapted NSGA-II and the adapted 𝝐-MOEA with 

Giant Tour for Golden_17 

As it is seen in the figures, although promising Pareto fronts were generally obtained 

for the Christofides instances, the Pareto results obtained for Golden instances were 

dominated by the results of Xiao et al. (2012). Therefore, the solution representation 

was switched to split vehicle representation. Their results are explained in the next 

subsection. 

5.2. Results with Split Vehicle Tour Solution Representation 

As in giant tour representation, various experimental studies are done with split vehicle 

representation with different parameters for the methods used in the algorithms in the 

thesis. Three of these parameters are observed to be significant and affect the results 

of the algorithms directly. These are the population size (i.e. popSize), the divisor that 
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adjusts the length of the block depending on the number of the customers in cross 

exchange (i.e. divN), and the second divisor that adjusts the size of the block which is 

moved to another vehicle in one of the mutation operators (i.e. blockSizeDivisor). 

A full factorial design of experiment (DoE) approach is applied with different ranges 

for each of these three parameters for the adapted NSGA-II and the adapted 𝝐-MOEA. 

Since there are infinitely large different possibilities for each of these parameters, the 

following values are chosen for DoE after some initial experiments: popSize = 400, 

500, 600, divN = 2, 3 and blockSizeDivisor = 6, 7. These parameters generated 12 

different combinations (i.e. 3x2x2) and each combination is run 10 times with 1000 

iterations in each run on a different instance other than the Christofides and Golden 

instances. Li_22 instance (Li, Golden, & Wasil, 2005) was chosen for the DoE runs. 

The reason for not choosing from the Christofides or Golden instances is to prevent 

the algorithms to adjust their parameters specific to the instances that are used for 

measuring performance. Three performance metrics of these 12 combinations obtained 

by the adapted NSGAII and the adapted 𝝐-MOEA are evaluated using Minitab 

software.  The main effects of these performance metrics and their interactions with 

one another are presented in the following figures. 

 

 
Figure 5.14 HV values of the DoE for the adapted NSGA-II 
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Figure 5.15 GD values of the DoE for the adapted NSGA-II 

 

 
Figure 5.16 IGD values of the DoE for the adapted NSGA-II 

 

 
Figure 5.17 Interaction of DoE parameters according to HV for the adapted NSGA-

II 
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Figure 5.18 Interaction of DoE parameters according to GD for the adapted NSGA-

II 

 

 
Figure 5.19 Interaction of DoE parameters according to IGD for the adapted NSGA-

II 

 

DoE results show that when each parameter was individually evaluated, the best 

combination for the adapted NSGA-II is obtained as popSize = 400, divN = 2 and 

blockSizeDivisor = 6. In the interaction plots, it was seen that popSize = 400, 

blockSizeDivisor = 6 and divN = 3, popSize = 400, and blockSizeDivisor = 6 and divN 

= 2 give the best results for two by two interactions. Although the interaction of 

popSize and divN favored the values of 400 and 3 respectively, the other interactions 

confirm the individual evaluation results. Therefore, popSize = 400, divN = 2 and 

blockSizeDivisor = 6 are used for the adapted NSGA-II for the final execution of the 

experimental results. 
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Figure 5.20 HV values of the DoE for the adapted 𝝐-MOEA 

 

 
Figure 5.21 GD values of the DoE for the adapted 𝝐-MOEA 

 

 
Figure 5.22 IGD values of the DoE for the adapted 𝝐-MOEA 
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Figure 5.23 Interaction of DoE parameters according to HV for the adapted 𝝐-

MOEA 

 

 
Figure 5.24 Interaction of DoE parameters according to GD for the adapted 𝝐-

MOEA 

 

 
Figure 5.25 Interaction of DoE parameters according to IGD for the adapted 𝝐-

MOEA 
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The best combination for the adapted 𝝐-MOEA is obtained as popSize = 500, divN = 

2 and blockSizeDivisor = 6 when these parameters are evaluated individually. When 

the two by two interactions of these parameters are taken into consideration, although 

popSize = 400 and blockSize = 7 seemed to be better than the other options, the other 

interactions still favor the individual evaluation results of the adapted 𝝐-MOEA with 

HV, GD and IGD. As a result, popSize = 500, divN = 2 and blockSizeDivisor = 6 are 

used for the in 𝝐-MOEA for the final execution of the experimental results. 

Both algorithms are run with these parameters respectively on the Christofides and 

Golden instances. The Pareto front results of them are shown in the figures below and 

their tables are given in Appendix 2. 

 
Figure 5.26 Pareto Fronts of the adapted NSGA-II and the adapted 𝝐-MOEA with 

Split Vehicle Tour for CMT1 

 

 
Figure 5.27 Pareto Fronts of the adapted NSGA-II and the adapted 𝝐-MOEA with 

Split Vehicle Tour for CMT2 
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Figure 5.28 Pareto Fronts of the adapted NSGA-II and the adapted 𝝐-MOEA with 

Split Vehicle Tour for CMT3 

 

 
Figure 5.29 Pareto Fronts of the adapted NSGA-II and the adapted 𝝐-MOEA with 

Split Vehicle Tour for CMT4 

 

 
Figure 5.30 Pareto Fronts of the adapted NSGA-II and the adapted 𝝐-MOEA with 

Split Vehicle Tour for CMT5 
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Figure 5.31 Pareto Fronts of the adapted NSGA-II and the adapted 𝝐-MOEA with 

Split Vehicle Tour for CMT11 

 

 
Figure 5.32 Pareto Fronts of the adapted NSGA-II and the adapted 𝝐-MOEA with 

Split Vehicle Tour for CMT12 

 

 
Figure 5.33 Pareto Fronts of the adapted NSGA-II and the adapted 𝝐-MOEA with 

Split Vehicle Tour for Golden_1 
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Figure 5.34 Pareto Fronts of the adapted NSGA-II and the adapted 𝝐-MOEA with 

Split Vehicle Tour for Golden_2 

 

 
Figure 5.35 Pareto Fronts of the adapted NSGA-II and the adapted 𝝐-MOEA with 

Split Vehicle Tour for Golden_3 

 

 
Figure 5.36 Pareto Fronts of the adapted NSGA-II and the adapted 𝝐-MOEA with 

Split Vehicle Tour for Golden_4 
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Figure 5.37 Pareto Fronts of the adapted NSGA-II and the adapted 𝝐-MOEA with 

Split Vehicle Tour for Golden_5 

 

 
Figure 5.38 Pareto Fronts of the adapted NSGA-II and the adapted 𝝐-MOEA with 

Split Vehicle Tour for Golden_6 

 

 
Figure 5.39 Pareto Fronts of the adapted NSGA-II and the adapted 𝝐-MOEA with 

Split Vehicle Tour for Golden_7 
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Figure 5.40 Pareto Fronts of the adapted NSGA-II and the adapted 𝝐-MOEA with 

Split Vehicle Tour for Golden_8 

 

 
Figure 5.41 Pareto Fronts of the adapted NSGA-II and the adapted 𝝐-MOEA with 

Split Vehicle Tour for Golden_9 

 

 
Figure 5.42 Pareto Fronts of the adapted NSGA-II and the adapted 𝝐-MOEA with 

Split Vehicle Tour for Golden_10 
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Figure 5.43 Pareto Fronts of the adapted NSGA-II and the adapted 𝝐-MOEA with 

Split Vehicle Tour for Golden_11 

 

 
Figure 5.44 Pareto Fronts of the adapted NSGA-II and the adapted 𝝐-MOEA with 

Split Vehicle Tour for Golden_12 

 

 
Figure 5.45 Pareto Fronts of the adapted NSGA-II and the adapted 𝝐-MOEA with 

Split Vehicle Tour for Golden_13 
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Figure 5.46 Pareto Fronts of the adapted NSGA-II and the adapted 𝝐-MOEA with 

Split Vehicle Tour for Golden_14 

 

 
Figure 5.47 Pareto Fronts of the adapted NSGA-II and the adapted 𝝐-MOEA with 

Split Vehicle Tour for Golden_15 

 

 
Figure 5.48 Pareto Fronts of the adapted NSGA-II and the adapted 𝝐-MOEA with 

Split Vehicle Tour for Golden_16 
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Figure 5.49 Pareto Fronts of the adapted NSGA-II and the adapted 𝝐-MOEA with 

Split Vehicle Tour for Golden_17 

 

 
Figure 5.50 Pareto Fronts of the adapted NSGA-II and the adapted 𝝐-MOEA with 

Split Vehicle Tour for Golden_18 

 

 
Figure 5.51 Pareto Fronts of the adapted NSGA-II and the adapted 𝝐-MOEA with 

Split Vehicle Tour for Golden_19 
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Figure 5.52 Pareto Fronts of the adapted NSGA-II and the adapted 𝝐-MOEA with 

Split Vehicle Tour for Golden_20 

All the adapted NSGA-II results on Christofides instances are non-dominated with the 

ones obtained by Xiao et al. (2012). Furthermore, the adapted NSGA-II results on four 

Christofides instances (i.e. CMT2, CMT5, CMT11, and CMT12) dominated the results 

of Xiao et al. (2012). The adapted NSGA-II results on nine Golden instances are non-

dominated with the results of Xiao et al (2012). In five of these instances (i.e. Golden_3, 

Golden_4, Golden_5, Golden_6, and Golden_13), the adapted NSGA-II results 

obtained in this thesis dominated the results obtained by Xiao et al. (2012). The 

adapted NSGA-II results on the other eleven Golden instances (Golden_1, Golden_2, 

Golden_7, Golden_8, Golden_12, Golden_15, Golden_16, Golden_17, Golden_18, 

Golden_19, Golden_20) are dominated by the results of Xiao et al. (2012). 

The adapted 𝝐-MOEA results show that the adapted 𝝐-MOEA is not quite successful 

as the adapted NSGA-II on the same instances. The adapted 𝝐-MOEA also found 

Pareto fronts on six Christofides instances (i.e. CMT1, CMT3, CMT4, CMT5, CMT11 

and CMT12). In three of these instances (i.e. CMT1, CMT4 and CMT11), some of the 

solutions on the adapted 𝝐-MOEA Pareto fronts dominated the solutions on the adapted 

NSGA-II Pareto front. In other words, the adapted 𝝐-MOEA improves the results of 

the adapted NSGA-II results for these instances. In the rest of the Christofides 

instances, the adapted 𝝐-MOEA results are either dominated by the adapted NSGA-II 

results or these both algorithms construct longer Pareto fronts. Concerning Golden 

instances, when the adapted 𝝐-MOEA Pareto results are compared with the Pareto 

fronts of the adapted NSGA-II and Xiao et al. (2012), in seven Golden instances (i.e. 



72 

Golden_3, Golden_4, Golden_5, Golden_6, Golden_8, Golden_14, Golden_15) , the 

adapted 𝝐-MOEA found Pareto fronts. In five of these instances (i.e. Golden_3, 

Golden_4, Golden_8, Golden_14, Golden_15), the adapted 𝝐-MOEA results either 

fully or partially dominates the adapted NSGA-II results. Especially for Golden_8 and 

Golden_15 instances, the adapted 𝝐-MOEA found a Pareto front where the adapted 

NSGA-II is dominated by the Pareto front of Xiao et al. (2012). In the rest of the 

Golden instances, the adapted 𝝐-MOEA results are dominated by the adapted NSGA-

II results. 

When the adapted NSGA-II and the adapted 𝝐-MOEA results are evaluated together, 

Pareto fronts are found for all the Christofides instances and eleven Golden instances 

(i.e. Golden_3, Golden_4, Golden_5, Golden_6, Golden_8, Golden_9, Golden_10, 

Golden_11, Golden_13, Golden_14 and Golden_15). As a result, in 18 out of 27 total 

instances, Pareto fronts are obtained. The ratio of success in finding Pareto fronts is 

roughly 67%. 

In order to compare the success of each algorithm (i.e. the adapted NSGA-II and the 

adapted 𝝐-MOEA) according to one another, ultimate Pareto fronts are obtained with 

the combination of two Pareto fronts found by two algorithms for all the instances. 

Then each algorithm’s HV, GD and IGD performance metrics are calculated with 

regards to the ultimate Paretos for each instance. Since there are differences in value 

ranges in both objectives, the values of the solutions on the Pareto fronts are 

normalized before these performance measures are calculated. For HV, the greater 

values show the better performance of the algorithms. For GD and IGD, on the other 

hand, the smaller values represent the better performance of the algorithms. The results 

of these performance measures are shown in Table 5-1 below. 
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Table 5-1 Performance Measures of the adapted NSGA-II and the adapted 𝝐-MOEA 

with Split Vehicle Tour on all Christofides and Golden Instances 
 

HV GD IGD 
 

NSGA-II ϵ-MOEA NSGA-II ϵ-MOEA NSGA-II ϵ-MOEA 

CMT1 0.683497 0.762114 0.046143 0 0.033476 0 

CMT2 0.946663 0 0 1.04107 0 1.18082 

CMT3 0.760264 0.563496 0.012077 0.147646 0.012077 0.185655 

CMT4 0.741566 0.739884 0.062816 0.03684 0.053004 0.054819 

CMT5 0.960098 0.138975 0.003517 0.718941 0 0.752425 

CMT11 0.286957 0.233049 0.056284 0.292471 0.087126 0.215366 

CMT12 0.252041 0.252041 0 0 0 0 

Golden_1 0.749671 0.337396 0 0.021217 0.004334 0.474205 

Golden_2 0.84724 0.124374 0 0.121653 0.474559 0.403982 

Golden_3 0.882599 0.593339 0 0.350762 0 0.256122 

Golden_4 0.985454 0.953694 0.083649 0.294451 0.062127 0.021489 

Golden_5 0.100637 0 0 0 0 1.04902 

Golden_6 0.617323 0.4653 0.04969 0 0.011959 0.576547 

Golden_7 0.444354 0.49715 0.222956 0.009479 0.065334 0.023388 

Golden_8 0.408271 0.9528 0.482998 0 0.474355 0 

Golden_9 0.899187 0.202718 0 0.595763 0 0.551235 

Golden_10 0.993208 0.00146 0 1.24667 0 1.24271 

Golden_11 0.988256 0.009293 0 1.10412 0 1.09754 

Golden_12 0.986207 0.002894 0 1.12743 0 1.18577 

Golden_13 0.938819 0.037269 0 0.899962 0 0.946233 

Golden_14 0.321121 0.728837 0.141339 0 0.198177 0.088666 

Golden_15 0.234111 0.992845 0.792566 0 0.752829 0 

Golden_16 0.534843 0.928557 0.359287 0 0.355676 0 

Golden_17 0.581536 0.96536 0.454765 0 0.286691 0 

Golden_18 0.933153 0.513913 0.045212 0.480939 0.008793 0.274546 

Golden_19 0.775472 0.873302 0.16336 0 0.091762 0.070519 

Golden_20 0.919272 0.130127 0 0.573554 0 0.654776 

Average 0.695253 0.444451 0.110247 0.335665 0.110084 0.418735 

 

5.3. Visualization of the Results 

A graphical user interface (GUI) is developed in Java programming language in order 

to visualize the solutions obtained in the experimental studies. The red dots represent 

the customers in the problem instance (Figure 5.53). They are located on the canvas 

according to their Euclidean coordinates. The size of the red dots is determined 

proportionally to their demands. The greater dots represent the customers that have 

bigger demands, while smaller dots represent customer with smaller demands. The 

obtained solutions are also shown on the GUI (Figure 5.54). Each vehicle tour is drawn 
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with a different color and each of them can be seen individually (Figure 5.55). The 

following figures visualize the adapted NSGA-II solution for Golden_3 instance. 

 
Figure 5.53 MOGVRP GUI with JAVA – Instances 

 

 
Figure 5.54 MOGVRP GUI with JAVA – Solutions 
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Figure 5.55 MOGVRP GUI with JAVA – Individual Vehicle Tours 

  



76 

CONCLUSIONS AND FUTURE RESEARCH 

In this thesis, a MOGVRP was studied and two state-of-the-art MOEAs (i.e. NSGA-II 

and 𝝐-MOEA) were applied to this problem. Minimizing the total distance cost and 

minimizing the total fuel consumption objectives were selected as the two objective 

functions for the problem. Since there are more than one fuel consumption formula in 

literature, the one that did not require external information other than the problem 

instances provide and that is referenced more than the others was selected as the second 

objective for the problem. The fuel consumption rate formulated by Xiao et al. (2012) 

was taken into consideration in this thesis. The advantage of this fuel consumption 

formulation is that it only requires the distance information between the customers and 

the demands of these customers. In other words, it could be applied on any VRP 

instance in literature. 

The contributions of this thesis study can be summarized as follows. First, it provides 

Pareto fronts to the well-known VRP instances (Christofides and Golden instances 

used in this thesis) by using the objective functions: minimizing the total distance and 

minimizing the total fuel consumption. For the latter, the formula proposed by Xiao et 

al. (2012) is used. In 18 out of 27 the Christofides and Golden instances, the produced 

Pareto fronts are not dominated by the results of Xiao et al. In that sense, these Pareto 

fronts are the state-of-the-art results for this MOGRVP on these instances until better 

Pareto fronts are obtained. To the best of our knowledge, there is no benchmark study 

done for these two objectives on these instances before. 

Another contribution of this thesis is the developed version of PR. PR heuristic is used 

in a multi-objective structure and used in order to function as a crossover operator 

rather than a local search method. In the classical PR process, the best solution along 

the path between the initial solution and the guiding solution is searched. PR used in 

this thesis, on the other hand, produces a set of non-dominated solutions from the two 

parent solutions selected from the population and/or archive. Then, the mutation and 

local search heuristics are applied to these solutions. This adapted PR assisted the 

adopted NSGA-II and 𝝐-MOEA with split vehicle tour solution representation in the 

reproduction phase by generating non-dominant offspring. In that sense, it functioned 

like a crossover operator generating multiple offspring that fit into MOOP structure.  
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Another contribution of this thesis is the proposed ELV local search heuristic. During 

the experimental studies, it was observed that eliminating the vehicles with the least 

customers by moving its customers to other vehicles minimized the total values of the 

objectives. In this process, ELV heuristic applied within a multi-objective setting 

played a critical role. When ELV is used, the results of the algorithms are improved. It 

is thought that ELV can be used as a local search to improve the obtained results in 

other VRPs, as well. 

There have also been some challenges during this thesis study. Thinking, designing, 

applying and adopting the methods and algorithms in the MOOP setting was not easy. 

Some of the methods did not work effectively due to their greedy nature and not 

contributing to the gain for both objectives. Since there are two partially conflicting 

objective functions, these methods can not favor both objectives at the same time. Or, 

some of the methods have to favor one objective or another, otherwise cannot be 

applied within a MOOP context. 

Another challenge was caused by solution representations. In the giant tour 

representation, intervening directly to the vehicles is not possible. The well-known 

Bellman split algorithm has full control over the giant tour and its vehicle splits. 

Although giant tour representation provides opportunities to apply classical crossover 

operators, it still does not allow to make small but effective changes by directly 

accessing the individual vehicles. In that sense, the giant tour has shortcomings on the 

exploitation of the algorithms in the search space. Concerning the split vehicle tour 

representation, although it has given all the opportunities to intervene directly to the 

individual vehicles, it does not allow to apply crossover operators which could help 

algorithms to do wider exploration on the search space. In order to fill that gap, some 

other local search methods such as PR are adapted in a MOOP setting and applied in 

the algorithms. 

The last challenge that was encountered during this thesis study is related to the 

characteristic of Golden instances. As it is seen in the results, both algorithms produced 

promising Pareto front results on Christofides instances. It is because the distribution 

of the customers and depot in those instances is random. However, in Golden instances, 

both the locations of the customers and the depot, and the demands of the customers 

are laid out in a pattern. In all the Golden instances, the neighbors of the customers are 

located with an even distance. This fact provides multiple options when an algorithm 
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is to decide on including the next customer in a vehicle. This situation challenges 

algorithms in making the right selections. In some of the Golden instances, the 

customers with the heaviest loads are located right around the depot. This situation 

leads to unbalanced vehicle routes. This is another challenge that the algorithms need 

to solve. This orderly pattern concerning the locations and the demands of the 

customers challenged the algorithms used in this thesis in finding the aimed Pareto 

fronts for Golden instances (especially Golden instance set 5). In order to find the 

Pareto optimal solutions for these instances, algorithms need to know or get trained 

according to this pattern. It could be done with setting the parameters in the algorithms 

specifically favoring those instances by a DoE. Then, however, this DoE setting would 

be very much problem specific. The same parameters may not be as successful as in 

other instances. And this type of convergence would be against the nature EAs in 

general. Therefore, in this thesis, it was avoided such an approach and all the instances 

were taken into consideration in setting the parameters of the algorithms.  

Despite all these challenges, Pareto fronts are found in 67% of all the instances used 

in the experimental studies. As future work, this percentage can be increased by either 

improving the current local search moves used in the thesis, or adopting other local 

search moves, or even implementing other well-known MOEAs in literature. 

Another future study would be studying on another variant of MOGVRP such as VRPs 

include only electrical cars or vehicles that carry hazardous material, etc. During this 

thesis study, it was observed that MOGVRP has a different number of fields that can 

be studied and can be easily applied to real life problems.  
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APPENDIX 1 – Pareto Front Results for the Giant Tour Representation 

Table A1- 1 Pareto Front Results of the adapted NSGA-II and the adapted ϵ-MOEA 

with Giant Tour for CMT1 

Xiao et al., 2012 NSGA-II ϵ-MOEA 

Total  

Distance 

Total Fuel 

Consumption 

Total  

Distance 

Total Fuel 

Consumption 

Total  

Distance 

Total Fuel 

Consumption 

524.61 775.82 524.611 764.59 524.611 764.59 

536.88 751.11 524.629 764.266 525.72 763.943 

    524.81 763.518 525.902 762.501 

    525.902 762.501 527.011 761.854 

    527.011 761.854 527.109 756.562 

    527.109 756.562 527.303 755.443 

    527.126 756.238 528.399 754.473 

    527.303 755.443 528.593 753.354 

    527.32 755.12 529.703 752.707 

    527.502 754.371 531.4 751.745 

    528.593 753.354 547.535 750.709 

    529.703 752.707 549.165 749.811 

    531.4 751.745 550.673 749.717 

    536.881 751.112 553.303 749.212 

    547.535 750.709 553.565 748.792 

    550.427 749.784 553.959 747.375 

    550.673 749.717     

    550.821 748.367     

    553.959 747.375     

Table A1- 2 Pareto Front Results of the adapted NSGA-II and the adapted ϵ-MOEA 

with Giant Tour for CMT2 

Xiao et al., 2012 NSGA-II ϵ-MOEA 

Total  

Distance 

Total Fuel 

Consumption 

Total  

Distance 

Total Fuel 

Consumption 

Total  

Distance 

Total Fuel 

Consumption 

835.45 1209.36 846.828 1211.32 846.407 1208.47 

874.7 1179.53 847.128 1209.96 848.669 1202.89 

    847.775 1208.25 865.045 1201.8 

    848.074 1206.88 865.069 1199.82 

    851.677 1206.71 865.748 1199.75 

    851.701 1206.37     

    855.304 1206.19     

    856.992 1201.96     

    857.292 1200.6     



84 

    860.919 1200.08     

    862.857 1199.18     

    863.156 1197.81     

    866.783 1197.29     

 

Table A1- 3 Pareto Front Results of the adapted NSGA-II and the adapted ϵ-MOEA 

with Giant Tour for CMT3 

Xiao et al., 2012 NSGA-II ϵ-MOEA 

Total  

Distance 

Total Fuel 

Consumption 

Total  

Distance 

Total Fuel 

Consumption 

Total  

Distance 

Total Fuel 

Consumption 

826.14 1228.67 833.351 1193.59 832.443 1197.99 

850.34 1147.83 834.566 1191.72 832.666 1196.89 

    834.688 1187.81 833.104 1196.17 

    835.257 1187.75 833.138 1194.66 

    835.328 1179.67 834.371 1194.59 

    836.336 1176.2 834.57 1194 

    836.419 1174.77 834.624 1190.58 

    837.085 1174.61 834.906 1189.12 

    837.38 1174.22 835.057 1187.89 

    837.427 1171.3 835.167 1187.27 

    838.093 1171.14 835.402 1181.82 

    838.388 1170.75 835.625 1180.71 

    838.903 1170.59 836.063 1180 

    839.157 1169.96 837.361 1178.51 

    839.206 1169.86 837.584 1177.4 

    839.753 1169.53 838.022 1176.69 

    839.911 1167.12 844.844 1176.14 

    840.576 1166.96 845.066 1175.29 

    840.872 1166.57     

    841.64 1165.78     

    841.689 1165.68     

    842.237 1165.35     

    842.653 1165.05     

    843.201 1164.7     

 

Table A1- 4 Pareto Front Results of the adapted NSGA-II and the adapted ϵ-MOEA 

with Giant Tour for CMT4 

Xiao et al., 2012 NSGA-II ϵ-MOEA 

Total  

Distance 

Total Fuel 

Consumption 

Total  

Distance 

Total Fuel 

Consumption 

Total  

Distance 

Total Fuel 

Consumption 
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1034.37 1543.38 1058.05 1524.13 1044.68 1515.28 

1061.83 1452.88 1058.16 1522.95 1045.21 1510.26 

    1058.41 1522.2 1051.27 1500.22 

    1058.54 1519.51 1051.79 1495.21 

    1058.65 1518.33     

    1058.76 1517.45     

    1059.01 1516.66     

    1059.14 1513.97     

    1059.25 1512.79     

    1060 1512.04     

    1060.37 1511.63     

    1060.39 1511.11     

    1060.63 1509.47     

    1060.74 1508.29     

    1061.49 1507.54     

    1061.86 1507.13     

    1061.88 1506.6     

    1062.61 1506.38     

    1062.63 1505.86     

    1063 1505.45     

    1063.75 1504.7     

    1065.05 1503.31     

    1065.16 1502.12     

    1065.92 1501.38     

    1066.31 1500.44     

    1067.06 1499.69     

    1068.63 1499.04     

    1069.38 1498.29     

 

Table A1- 5 Pareto Front Results of the adapted NSGA-II and the adapted ϵ-MOEA 

with Giant Tour for CMT5 

Xiao et al., 2012 NSGA-II ϵ-MOEA 

Total  

Distance 

Total Fuel 

Consumption 

Total  

Distance 

Total Fuel 

Consumption 

Total  

Distance 

Total Fuel 

Consumption 

1308.88 1954.24 1340.73 1899.47 1347.24 1991.03 

1359.49 1844.87 1341.54 1897.16 1347.55 1924.03 

    1341.93 1891.69 1347.56 1922.72 

    1342.45 1890.05 1347.65 1922.25 

    1342.6 1889.89 1347.89 1922.21 

    1342.67 1887.84 1347.98 1921.73 

    1343.19 1885.69 1348.41 1921.46 
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    1343.6 1885.53 1348.65 1921.42 

    1343.99 1884.34 1348.74 1920.94 

    1344.39 1884.18     

    1344.85 1883.36     

    1345.05 1883.21     

    1345.16 1882.99     

    1345.66 1882.25     

    1346.06 1882.09     

    1346.52 1881.27     

    1346.72 1881.12     

    1346.83 1880.89     

 

Table A1- 6 Pareto Front Results of the adapted NSGA-II and the adapted ϵ-MOEA 

with Giant Tour for CMT11 

Xiao et al., 2012 NSGA-II ϵ-MOEA 

Total  

Distance 

Total Fuel 

Consumption 

Total  

Distance 

Total Fuel 

Consumption 

Total  

Distance 

Total Fuel 

Consumption 

1042.12 1557.13 1044.57 1533.97 1050.68 1533.94 

1052.18 1513.48 1044.67 1530.97 1051.55 1530.11 

    1044.71 1530.4 1051.83 1523.69 

    1044.74 1530.33 1051.86 1523.62 

    1044.8 1527.39 1052.1 1521.17 

    1044.83 1527.33 1052.38 1514.74 

    1045.12 1525.03 1052.4 1514.68 

    1045.21 1522.03     

    1045.25 1521.45     

    1045.28 1521.39     

    1045.35 1518.45     

    1045.38 1518.39     

    1053.2 1516.22     

 

Table A1- 7 Pareto Front Results of the adapted NSGA-II and the adapted ϵ-MOEA 

with Giant Tour for CMT12 

Xiao et al., 2012 NSGA-II ϵ-MOEA 

Total  

Distance 

Total Fuel 

Consumption 

Total  

Distance 

Total Fuel 

Consumption 

Total  

Distance 

Total Fuel 

Consumption 

819.56 1203.76 819.558 1180.95 820.921 1185.32 

827.05 1174.02 819.965 1179.42 821.689 1185.1 

    820.188 1179.27 821.912 1184.53 
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    820.733 1179.19 822.047 1182.11 

    820.956 1179.04 822.27 1181.96 

    824.009 1178.91 822.815 1181.88 

    824.232 1178.76 823.038 1181.73 

    824.777 1178.69 823.922 1181.62 

    825 1178.54 826.091 1181.6 

    825.649 1175.92 826.314 1181.45 

    826.056 1174.39 826.859 1181.38 

    826.279 1174.24 827.082 1181.23 

    826.824 1174.17 827.966 1181.11 

    827.047 1174.02 828.138 1177.08 

        828.361 1176.93 

        828.906 1176.86 

        829.129 1176.71 

        830.013 1176.59 

 

Table A1- 8 Pareto Front Results of the adapted NSGA-II and the adapted ϵ-MOEA 

with Giant Tour for Golden_1 

Xiao et al., 2012 NSGA-II ϵ-MOEA 

Total  

Distance 

Total Fuel 

Consumption 

Total  

Distance 

Total Fuel 

Consumption 

Total  

Distance 

Total Fuel 

Consumption 

5645.17 8416.86 5923.23 8144.12 5916.72 8051.54 

5696.02 7683.95 5923.96 8119.97 5917.27 8031.51 
  

5925.25 8115.13 5925.23 8020.89 
  

5925.31 8099.83 5925.38 8017.32 
  

5925.87 8097.31 5929.38 8006.43 
  

5926.59 8094.99 5934.09 8004.55 
  

5927.15 8092.46 5934.64 7984.51 
  

5927.21 8077.16 5936.78 7967.24 
  

5928.49 8072.32 5944.89 7953.05 
  

5929.35 8070.25 5948.89 7942.17 
  

5929.9 8066.25 5962.29 7935.48 

  
 

5930.03 8065.37 
 

  

  
 

5931.31 8060.53 
 

  

  
 

5932.04 8059.34 
 

  

  
 

5932.17 8058.46 
 

  

  
 

5932.72 8054.46 
 

  

  
 

5933.45 8053.62 
 

  

  
 

5934.8 8051.22 
 

  

  
 

5934.86 8047.55 
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5936.86 8042.54 
 

  

  
 

5938.84 8040.83 
 

  

  
 

5938.94 8039.31 
 

  

  
 

5939 8035.63 
 

  

  
 

5939.68 8030.75 
 

  

  
 

5941.76 8027.51 
 

  

  
 

5941.82 8023.84 
 

  

  
 

5943.9 8020.6 
 

  

  
 

5944.46 8020.15 
 

  

  
 

5945.8 8017.12 
 

  

  
 

5946.53 8016.92 
 

  

  
 

5946.77 8015.46 
 

  

  
 

5947.45 8010.58 
 

  

  
 

5949.53 8007.35 
 

  

  
 

5949.59 8003.67 
 

  

  
 

5951.67 8000.43 
 

  

  
 

5953.57 7996.95 
 

  

  
 

5958.28 7994.79 
 

  

  
 

5962.98 7993.86 
 

  

  
 

5965.12 7992.22 
 

  

  
 

5969.83 7990.06 
 

  

  
 

5974.54 7989.13 
 

  

  
 

5981.81 7987.97 
 

  

  
 

5986.52 7987.04 
 

  

 

Table A1- 9 Pareto Front Results of the adapted NSGA-II and the adapted ϵ-MOEA 

with Giant Tour for Golden_5 

Xiao et al., 2012 NSGA-II ϵ-MOEA 

Total  

Distance 

Total Fuel 

Consumption 

Total  

Distance 

Total Fuel 

Consumption 

Total  

Distance 

Total Fuel 

Consumption 

6460.98 9253.3 6506.57 8711.18 6460.98 8564.89 

6460.98 8561.53 6508.66 8673.48 6565.89 8558.1 
  

6511.47 8670.96 
  

  
6639.26 8638.51 

  

  
6642.06 8620.02 

  

  
6642.14 8619.56 

  

  
6644.87 8606.74 

  

  
6644.94 8606.28 

  

  
6647.76 8600.77 

  

  
6647.84 8600.32 

  

  
6650.57 8587.49 
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6650.65 8587.04 

  

 

Table A1- 10 Pareto Front Results of the adapted NSGA-II and the adapted ϵ-

MOEA with Giant Tour for Golden_9 

Xiao et al., 2012 NSGA-II ϵ-MOEA 

Total  

Distance 

Total Fuel 

Consumption 

Total  

Distance 

Total Fuel 

Consumption 

Total  

Distance 

Total Fuel 

Consumption 

590.6 877.51 617.558 892.778 608.776 884.347 

604.44 850.8 617.793 890.201 608.883 884.238 
  

618.331 889.94 609.342 883.885 
  

618.36 889.553 611.915 883.261 
  

618.899 889.292 
  

  
618.957 884.016 

  

  
619.153 882.838 

  

  
619.209 882.2 

  

  
619.405 881.022 

  

  
619.877 880.873 

  

  
 

620.025 880.501 
 

  

  
 

620.497 880.352 
 

  

  
 

620.852 879.98 
 

  

  
 

621.324 879.825 
 

  

 

Table A1- 11 Pareto Front Results of the adapted NSGA-II and the adapted ϵ-

MOEA with Giant Tour for Golden_13 

Xiao et al., 2012 NSGA-II ϵ-MOEA 

Total  

Distance 

Total Fuel 

Consumption 

Total  

Distance 

Total Fuel 

Consumption 

Total  

Distance 

Total Fuel 

Consumption 

869.07 1288.34 905.513 1302.73 905.368 1314.06 

896.93 1261.93 905.64 1301.9 905.77 1313.4 
  

905.775 1300.08 905.919 1310.36 
  

905.902 1299.25 
  

  
906.103 1297.75 

  

  
906.23 1296.92 

  

  
906.354 1296.6 

  

  
906.4 1296.23 

  

  
906.555 1295.11 

  

  
906.6 1294.73 

  

  
906.682 1294.27 

  

  
906.727 1293.9 
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907.078 1293.79 

  

  
907.124 1293.42 

  

  
907.52 1293.14 

  

  
908.083 1293.11 

  

  
908.164 1293.04 

  

  
908.479 1292.84 

  

  
909.123 1292.74 

  

  
909.504 1292.68 

  

  
910.148 1292.58 

  

  
918.859 1292.54 

  

  
919.077 1292.5 

  

  
919.205 1292.44 

  

  
919.423 1292.39 

  

  
919.515 1292.33 

  

  
919.733 1292.28 

  

 

Table A1- 12 Pareto Front Results of the adapted NSGA-II and the adapted ϵ-

MOEA with Giant Tour for Golden_17 

Xiao et al., 2012 NSGA-II ϵ-MOEA 

Total  

Distance 

Total Fuel 

Consumption 

Total  

Distance 

Total Fuel 

Consumption 

Total  

Distance 

Total Fuel 

Consumption 

710.19 1063.01 738.342 1068.32 732.726 1079.79 

720.89 1027.21 738.379 1067.39 732.751 1068.55 
  

738.565 1065.79 733.28 1065.77 
  

738.602 1064.87 
  

  
738.867 1064.7 

  

  
738.903 1063.77 

  

  
739.539 1063.27 
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APPENDIX 2 – Pareto Front Results for the Split Vehicle Tour 

Representation 

Table A2- 1 Pareto Front Results of the adapted NSGA-II and the adapted ϵ-MOEA 

with Split Vehicle Tour for CMT1 

Xiao et al., 2012 NSGA-II ϵ-MOEA 

Total  

Distance 

Total Fuel 

Consumption 

Total  

Distance 

Total Fuel 

Consumption 

Total  

Distance 

Total Fuel 

Consumption 

524.61 775.82 524.611 764.59 524.611 764.59 

536.88 751.11 524.629 764.266 524.629 764.266 

    524.81 763.518 524.81 763.518 

    526.13 763.231 525.919 762.871 

    531.025 757.621 527.303 755.443 

    531.282 757.406 527.502 754.371 

    531.945 755.277 528.822 754.085 

    533.375 754.949 535.823 752.133 

    535.823 752.133 536.881 751.112 

    536.881 751.112 547.535 750.709 

    547.535 750.709 549.165 749.811 

    549.165 749.811 552.481 748.73 

    552.481 748.73 557.237 748.651 

    557.237 748.651     

 

Table A2- 2 Pareto Front Results of the adapted NSGA-II and the adapted ϵ-MOEA 

with Split Vehicle Tour for CMT2 

Xiao et al., 2012 NSGA-II ϵ-MOEA 

Total  

Distance 

Total Fuel 

Consumption 

Total  

Distance 

Total Fuel 

Consumption 

Total  

Distance 

Total Fuel 

Consumption 

835.45 1209.36 835.321 1201.45 859.288 1241.33 

874.7 1179.53 835.445 1200.48     

    836.366 1192.56     

    838.443 1187.14     

    839.606 1184.37     

    841.64 1182.92     

    843.378 1182.03     

    844.364 1181.7     

    846.399 1180.25     

    852.349 1179.9     
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Table A2- 3 Pareto Front Results of the adapted NSGA-II and the adapted ϵ-MOEA 

with Split Vehicle Tour for CMT3 

Xiao et al., 2012 NSGA-II ϵ-MOEA 

Total  

Distance 

Total Fuel 

Consumption 

Total  

Distance 

Total Fuel 

Consumption 

Total  

Distance 

Total Fuel 

Consumption 

826.14 1228.67 827.393 1180.94 830.786 1178.71 

850.34 1147.83 828.084 1180.23 831.012 1177.15 

    828.737 1174.59 831.832 1176.73 

    829.943 1174.48 833.29 1175.9 

    830.038 1168.22 833.375 1174.53 

    830.261 1167.11 833.601 1172.98 

    831.414 1165.94 835.879 1171.72 

    831.637 1164.84 838.748 1167.8 

    832.972 1164.45 839.567 1167.37 

    836.951 1164.3 839.637 1160.15 

    837.041 1162.4 846.618 1159.62 

    838.376 1162.02     

    839.018 1161.7     

    840.354 1161.31     

    848.542 1161.19     

 

Table A2- 4 Pareto Front Results of the adapted NSGA-II and the adapted ϵ-MOEA 

with Split Vehicle Tour for CMT4 

Xiao et al., 2012 NSGA-II ϵ-MOEA 

Total  

Distance 

Total Fuel 

Consumption 

Total  

Distance 

Total Fuel 

Consumption 

Total  

Distance 

Total Fuel 

Consumption 

1034.37 1543.38 1035.78 1473.11 1034.5 1484.42 

1061.83 1452.88 1036.32 1469.2 1034.69 1482.04 

    1037.01 1469.16 1035.02 1472.72 

    1037.36 1468.76 1035.11 1468.82 

    1037.41 1466.32 1036.81 1468.8 

    1037.82 1465.96 1036.89 1467.47 

    1039.93 1465.9 1038.42 1467.23 

    1039.99 1465.62 1042.77 1465.65 

    1040.44 1463.96 1043.01 1463.31 

    1040.6 1461.46 1043.06 1462.57 

    1041.52 1460.72 1044.24 1461.68 

    1042.17 1460.71 1045.45 1458.95 

    1042.54 1460.29 1045.61 1456.46 

    1043.09 1459.97     

    1044.11 1459.9     
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    1044.5 1459.74     

    1045.03 1459.17     

    1046.21 1459.02     

    1047.13 1458.28     

    1047.78 1458.26     

    1048.7 1457.53     

    1049.73 1457.45     

    1050.11 1457.29     

    1050.64 1456.71     

 

Table A2- 5 Pareto Front Results of the adapted NSGA-II and the adapted ϵ-MOEA 

with Split Vehicle Tour for CMT5 

Xiao et al., 2012 NSGA-II ϵ-MOEA 

Total  

Distance 

Total Fuel 

Consumption 

Total  

Distance 

Total Fuel 

Consumption 

Total  

Distance 

Total Fuel 

Consumption 

1308.88 1954.24 1307.63 1890.62 1319.52 1909.27 

1359.49 1844.87 1307.65 1889.65 1319.53 1908.28 

    1307.66 1887.34 1319.61 1908.14 

    1307.67 1886.37 1320.04 1906.33 

    1307.68 1886.07 1320.05 1905.34 

    1307.69 1883.76 1320.12 1905.2 

    1307.71 1882.79 1321.06 1904.93 

    1307.95 1882.24 1321.13 1904.79 

    1308.56 1882.03 1323.02 1904.72 

    1308.96 1881.83 1326.58 1904.28 

    1309.09 1880.77 1327.08 1902.33 

    1309.34 1880.21 1327.09 1901.35 

    1309.95 1878.22 1327.8 1900.17 

    1309.96 1877.25 1327.82 1899.18 

    1310.21 1876.69 1327.89 1899.04 

    1311.22 1876.28 1328.32 1897.23 

    1311.58 1874.58 1328.33 1896.25 

    1311.6 1873.59 1328.4 1896.1 

    1311.68 1872.67 1329.35 1895.83 

    1311.7 1871.69 1329.42 1895.69 

    1311.94 1871.2 1331.3 1895.63 

    1311.96 1870.84 1337.43 1895.42 

    1312.2 1870.28 1337.45 1895.38 

    1312.58 1870.02 1337.5 1895.28 

    1312.71 1869.52 1337.52 1895.23 

    1312.83 1869.47 1337.79 1894.45 
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    1312.95 1868.97     

    1313.96 1868.55     

    1315.18 1868.28     

 

Table A2- 6 Pareto Front Results of the adapted NSGA-II and the adapted ϵ-MOEA 

with Split Vehicle Tour for CMT11 

Xiao et al., 2012 NSGA-II ϵ-MOEA 

Total  

Distance 

Total Fuel 

Consumption 

Total  

Distance 

Total Fuel 

Consumption 

Total  

Distance 

Total Fuel 

Consumption 

1042.12 1557.13 1042.12 1529.46 1042.12 1529.46 

1052.18 1513.48 1043.84 1529.04 1042.25 1525.88 

    1043.87 1528.98 1042.28 1525.82 

    1046.76 1526.31 1052.02 1525.3 

    1047 1525.73 1052.05 1525.24 

    1051.79 1512.86 1052.16 1524.18 

        1052.19 1524.12 

        1053.99 1524.09 

 

Table A2- 7 Pareto Front Results of the adapted NSGA-II and the adapted ϵ-MOEA 

with Split Vehicle Tour for CMT12 

Xiao et al., 2012 NSGA-II ϵ-MOEA 

Total  

Distance 

Total Fuel 

Consumption 

Total  

Distance 

Total Fuel 

Consumption 

Total  

Distance 

Total Fuel 

Consumption 

819.56 1203.76 819.558 1180.95 819.558 1180.95 

827.05 1174.02 819.965 1179.42 819.965 1179.42 

    825.649 1175.92 825.649 1175.92 

    826.056 1174.39 826.056 1174.39 

 

Table A2- 8 Pareto Front Results of the adapted NSGA-II and the adapted ϵ-MOEA 

with Split Vehicle Tour for Golden_1 

Xiao et al., 2012 NSGA-II ϵ-MOEA 

Total  

Distance 

Total Fuel 

Consumption 

Total  

Distance 

Total Fuel 

Consumption 

Total  

Distance 

Total Fuel 

Consumption 

5645.17 8416.86 5699.01 8067.17 5765.9 7749.48 

5696.02 7683.95 5699.17 8053.63 5768.72 7742.17 

    5699.74 8017.54 5769.15 7731.66 

    5699.9 8003.99 5770.18 7726.82 

    5701.25 7988.54 5775.62 7725.07 
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    5701.98 7986.46 5792.95 7722.1 

    5702.28 7981.05 5796.2 7711.3 

    5702.54 7977.07 5797.66 7711.1 

    5703.27 7974.6 5800.9 7709.53 

    5704 7968.7 5802.36 7709.32 

    5704.73 7966.23     

    5705.06 7964.65     

    5705.22 7951.1     

    5705.84 7934.94     

    5706.57 7932.87     

    5706.87 7927.45     

    5707.14 7923.48     

    5707.87 7921.01     

    5708.6 7915.1     

    5709.33 7912.63     

    5710.5 7906.79     

    5711.23 7904.32     

    5712.56 7901.99     

    5713.86 7898.84     

    5714.64 7895.07     

    5715.91 7894.1     

    5716.52 7893.98     

    5716.54 7886.76     

    5717.28 7886.21     

    5717.81 7885.79     

    5719.18 7877.9     

    5722.84 7874.9     

    5723.1 7871.53     

    5724.62 7871.28     

    5724.74 7868.21     

    5725 7864.85     

    5729.71 7862.5     

    5729.98 7857.92     

    5730.71 7837.9     

    5732.17 7835.47     

    5734.69 7834.82     

    5736.15 7830.41     

    5739.14 7824.8     

    5739.23 7819.23     

    5739.87 7810.33     

    5739.96 7804.77     

    5741.42 7795.3     

    5745.4 7793.21     
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    5746.2 7789.66     

    5746.93 7784.24     

    5748.86 7769.55     

    5749.12 7763.4     

    5749.21 7757.43     

    5753.27 7752.82     

    5753.35 7746.59     

    5758.06 7745.14     

    5761.34 7740.56     

    5761.43 7734.83     

    5765.49 7729.46     

    5765.57 7723.72     

    5770.28 7722.23     

    5781.6 7718.11     

    5786.31 7717.9     

    5787.03 7717.67     

    5791.74 7716.07     

 

Table A2- 9 Pareto Front Results of the adapted NSGA-II and the adapted ϵ-MOEA 

with Split Vehicle Tour for Golden_2 

Xiao et al., 2012 NSGA-II ϵ-MOEA 

Total  

Distance 

Total Fuel 

Consumption 

Total  

Distance 

Total Fuel 

Consumption 

Total  

Distance 

Total Fuel 

Consumption 

8452.72 12234.33 8467.48 11570.9 8643.24 11676.5 

8466.58 11172.71 8468.21 11475.5 8644.44 11523 

    8468.93 11440 8646.37 11482.2 

    8469.67 11410.9 8646.84 11425.4 

    8470.39 11400.1 8647.57 11414.9 

    8471.12 11393.8 8648.3 11408.1 

    8472.53 11383.2 8650.44 11407.6 

    8476.34 11369 8653.74 11407.2 

    8477.02 11365.2 8653.86 11401.9 

    8477.75 11363.9 8654.59 11368.7 

        8656.52 11359.2 

        8660.94 11354.8 

        8661.19 11341.7 

        8662.57 11336.9 

        8663.58 11333.3 

        8664.31 11327.9 

        8665.2 11323.6 

        8665.97 11320.5 
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        8667.43 11317 

        8668.16 11311.3 

        8675.01 11310.2 

 

Table A2- 10 Pareto Front Results of the adapted NSGA-II and the adapted ϵ-

MOEA with Split Vehicle Tour for Golden_3 

Xiao et al., 2012 NSGA-II ϵ-MOEA 

Total  

Distance 

Total Fuel 

Consumption 

Total  

Distance 

Total Fuel 

Consumption 

Total  

Distance 

Total Fuel 

Consumption 

11045.81 16135.45 11036.2 14604 11036.2 14645.2 

11076.16 14497.64 11037.4 14597.9 11037.4 14625.6 

    11038.6 14554.9 11038.6 14623.5 

    11039.8 14534.2 11039.4 14594.4 

    11040.5 14533.7 11040.1 14588.1 

        11042.9 14561 

        11044.4 14553.8 

        11046.5 14549.9 

        11048.4 14545 

        11050.5 14542.3 

 

Table A2- 11 Pareto Front Results of the adapted NSGA-II and the adapted ϵ-

MOEA with Split Vehicle Tour for Golden_4 

Xiao et al., 2012 NSGA-II ϵ-MOEA 

Total  

Distance 

Total Fuel 

Consumption 

Total  

Distance 

Total Fuel 

Consumption 

Total  

Distance 

Total Fuel 

Consumption 

13630.52 20177.36 13624.5 18879.5 13624.5 18612.8 

13728.29 18327.03 13625.3 18817.5 13625.3 18443.4 

    13625.7 18443.6 13625.7 18394.5 

    13626.9 18436.6 13630.5 18350.9 

    13628.1 18417.7 13821.8 18348.8 

    13629.8 18410.2 13833.4 18342.1 

    13630 18396.4     

    13631.1 18395.1     

    13633.9 18378.9     

    13633.9 18392.8     

    13636.7 18368.4     

    13638.1 18365.3     

    13640 18334.1     

    13643.2 18327.4     
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Table A2- 12 Pareto Front Results of the adapted NSGA-II and the adapted ϵ-

MOEA with Split Vehicle Tour for Golden_5 

Xiao et al., 2012 NSGA-II ϵ-MOEA 

Total  

Distance 

Total Fuel 

Consumption 

Total  

Distance 

Total Fuel 

Consumption 

Total  

Distance 

Total Fuel 

Consumption 

6460.98 9253.3 6460.98 8561.53 6460.98 8561.53 

6460.98 8561.53 6556.51 8532.67     

    6559.31 8522.2     

    6562.21 8513.67     

    6567.91 8513.16     

    6570 8509.69     

 

Table A2- 13 Pareto Front Results of the adapted NSGA-II and the adapted ϵ-

MOEA with Split Vehicle Tour for Golden_6 

Xiao et al., 2012 NSGA-II ϵ-MOEA 

Total  

Distance 

Total Fuel 

Consumption 

Total  

Distance 

Total Fuel 

Consumption 

Total  

Distance 

Total Fuel 

Consumption 

8413.82 12316.21 8412.9 11126.5 8412.9 11117 

8416.13 11102.22 8413.36 11116 8413.36 11114.3 

    8413.82 11115.8     

    8414.29 11111.7     

    8421.46 11110.3     

    8546.34 11106.6     

    8546.8 11102.1     

    8547.26 11101     

    8548.73 11100.3     

 

Table A2- 14 Pareto Front Results of the adapted NSGA-II and the adapted ϵ-

MOEA with Split Vehicle Tour for Golden_7 

Xiao et al., 2012 NSGA-II ϵ-MOEA 

Total  

Distance 

Total Fuel 

Consumption 

Total  

Distance 

Total Fuel 

Consumption 

Total  

Distance 

Total Fuel 

Consumption 

10195.59 14975.25 10268.4 13940.2 10276.4 13884.2 

10208.52 13422.16 10270.2 13898.1 10277.3 13864 

    10271.1 13869.2 10278.1 13856.6 

    10288.4 13855.6 10279 13845.1 

    10289.6 13840.8 10284.3 13843.1 

    10291.4 13840.4 10286 13821.1 

    10292.3 13829.6 10288.7 13819.7 
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    10294.7 13812.8 10290.5 13813.5 

    10295.8 13812.3 10310.3 13802.6 

    10296.5 13803.1 10439.2 13600 

    10297.4 13794.8 10441 13596.9 

    10439.2 13772.8 10450.4 13595.6 

    10440.1 13756.2     

    10442.8 13755     

    10443.7 13744.3     

    10446.1 13729.1     

    10448.2 13728.7     

    10449.9 13726.6     

    10456.2 13723.8     

    10457.1 13716.5     

    10461.9 13715.7     

    10462.1 13707.8     

    10464 13705.9     

    10464.9 13694.6     

    10472.9 13691.9     

    10473.6 13683.7     

    10476.3 13682.5     

    10483.3 13679.4     

 

Table A2- 15 Pareto Front Results of the adapted NSGA-II and the adapted ϵ-

MOEA with Split Vehicle Tour for Golden_8 

Xiao et al., 2012 NSGA-II ϵ-MOEA 

Total  

Distance 

Total Fuel 

Consumption 

Total  

Distance 

Total Fuel 

Consumption 

Total  

Distance 

Total Fuel 

Consumption 

11689.1 17396.39 11926.1 16529.8 11878.6 15871.9 

11774.5 15928.26 11928.5 16476.7 11880.9 15862.5 

    11930.3 16443.2 11885.1 15834.5 

    11933.2 16420.1 11885.7 15826.3 

    11933.8 16370.6 11886.3 15819.9 

    11935.8 16362.7 11887.5 15816.8 

    11940.5 16349.2 11888.7 15814.8 

    11941.1 16341.8 12089.4 15810.1 

    11948.8 16332.5 12094.7 15773.6 

    11952.5 16319.5     

    11953 16307.3     

    11953.1 16296.2     

    11954.2 16261.7     

    11954.8 16244.8     
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    11957.5 16226.6     

    11959.8 16197.4     

    11960.5 16197.4     

    11964.8 16195.9     

    11965.7 16187.1     

    11974.3 16179     

    11985.1 16168     

    11995 16155.6     

    12103.4 16055.9     

    12103.8 15936.3     

    12104.4 15933.6     

    12105.5 15930.5     

    12106.2 15926.5     

    12111.7 15919.8     

    12115.1 15902.7     

    12121 15896.2     

    12130.6 15880.2     

    12134.4 15875.7     

    12135 15868.9     

    12137.4 15867.4     

 

Table A2- 16 Pareto Front Results of the adapted NSGA-II and the adapted ϵ-

MOEA with Split Vehicle Tour for Golden_9 

Xiao et al., 2012 NSGA-II ϵ-MOEA 

Total  

Distance 

Total Fuel 

Consumption 

Total  

Distance 

Total Fuel 

Consumption 

Total  

Distance 

Total Fuel 

Consumption 

590.6 877.51 597.39 873.718 605.79 878.313 

604.44 850.8 598.108 871.305 608.825 876.153 

    598.234 869.727 608.985 874.186 

    598.747 869.658 609.691 873.176 

    602.575 867.188 609.943 872.963 

    602.88 866.819 621.271 872.797 

    603.096 866.495 621.982 872.631 

    603.401 866.126     

    603.977 865.878     

    604.374 865.603     

    604.724 865.072     

    605.029 864.703     

    605.606 864.456     
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Table A2- 17 Pareto Front Results of the adapted NSGA-II and the adapted ϵ-

MOEA with Split Vehicle Tour for Golden_10 

Xiao et al., 2012 NSGA-II ϵ-MOEA 

Total  

Distance 

Total Fuel 

Consumption 

Total  

Distance 

Total Fuel 

Consumption 

Total  

Distance 

Total Fuel 

Consumption 

750.18 1113.7 760.344 1108.89 774.814 1128.58 

773.6 1083 761.32 1108.08 774.94 1128.41 

    761.645 1107.09 775.725 1125.74 

    762.502 1107 775.85 1125.56 

 

Table A2- 18 Pareto Front Results of the adapted NSGA-II and the adapted ϵ-

MOEA with Split Vehicle Tour for Golden_11 

Xiao et al., 2012 NSGA-II ϵ-MOEA 

Total  

Distance 

Total Fuel 

Consumption 

Total  

Distance 

Total Fuel 

Consumption 

Total  

Distance 

Total Fuel 

Consumption 

931.21 1406.91 951.467 1378.77 965.932 1385.98 

972.59 1352.31 952.043 1378.65 965.944 1383.88 

    952.232 1378.62 966.196 1383.5 

    952.638 1378.13 966.448 1383.2 

    952.89 1377.93     

    953.404 1377.73     

    954.484 1377.69     

 

Table A2- 19 Pareto Front Results of the adapted NSGA-II and the adapted ϵ-

MOEA with Split Vehicle Tour for Golden_12 

Xiao et al., 2012 NSGA-II ϵ-MOEA 

Total  

Distance 

Total Fuel 

Consumption 

Total  

Distance 

Total Fuel 

Consumption 

Total  

Distance 

Total Fuel 

Consumption 

1127.18 1682.76 1161.02 1692.5 1189.62 1714.78 

1161.33 1630.81 1161.48 1691.49 1189.69 1713.02 

    1161.57 1689.15 1189.77 1712.78 

    1161.85 1688.94 1189.8 1711.96 

    1169.29 1688.75 1189.87 1711.73 

    1169.98 1688.41 1190.49 1711.53 

    1170.31 1687.94     
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Table A2- 20 Pareto Front Results of the adapted NSGA-II and the adapted ϵ-

MOEA with Split Vehicle Tour for Golden_13 

Xiao et al., 2012 NSGA-II ϵ-MOEA 

Total  

Distance 

Total Fuel 

Consumption 

Total  

Distance 

Total Fuel 

Consumption 

Total  

Distance 

Total Fuel 

Consumption 

869.07 1288.34 877.419 1267.29 890.671 1283.77 

896.93 1261.93 877.468 1264.86 891.083 1283.53 

    877.518 1262.42 891.71 1283.4 

    877.645 1261.8 892.337 1283.27 

    877.922 1261.3 892.954 1281.58 

    879.076 1261.14 893.366 1281.33 

    879.203 1260.51 893.993 1281.2 

    879.481 1260.01 894.822 1279.75 

    881.751 1259.54 895.234 1279.5 

    882.229 1258.37 895.86 1279.37 

    882.64 1257.91 896.168 1278.91 

    883.441 1257.69 896.58 1278.66 

    883.732 1257.39 897.207 1278.53 

    883.853 1257.23 897.752 1278.31 

    884.944 1256.71 898.378 1278.18 

    886.696 1256.59     

    886.82 1255.07     

 

Table A2- 21 Pareto Front Results of the adapted NSGA-II and the adapted ϵ-

MOEA with Split Vehicle Tour for Golden_14 

Xiao et al., 2012 NSGA-II ϵ-MOEA 

Total  

Distance 

Total Fuel 

Consumption 

Total  

Distance 

Total Fuel 

Consumption 

Total  

Distance 

Total Fuel 

Consumption 

1101.51 1639.14 1118.83 1624.26 1113.98 1615.17 

1134.52 1595.48 1119.16 1623.76 1114.03 1612.74 

    1119.63 1623.5 1114.66 1612.61 

    1119.91 1611.89 1114.96 1612.1 

    1120.04 1611.26 1115.01 1609.67 

    1120.57 1611.14 1115.63 1609.54 

    1120.61 1609.91 1116.45 1609.51 

    1120.73 1609.28 1117.48 1608.51 

    1120.89 1608.82 1117.84 1607.83 

    1121.02 1608.19 1118.46 1607.7 

    1121.41 1606.3 1118.68 1607.56 

    1121.69 1605.9 1119.41 1607.27 

    1121.72 1605.4 1120.03 1607.14 
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    1121.82 1605.27 1120.85 1607.12 

    1122.14 1604.85     

    1122.38 1604.66     

    1122.48 1604.52     

    1122.79 1604.11     

    1123.3 1603.66     

    1123.43 1603.03     

    1123.75 1602.62     

 

Table A2- 22 Pareto Front Results of the adapted NSGA-II and the adapted ϵ-

MOEA with Split Vehicle Tour for Golden_15 

Xiao et al., 2012 NSGA-II ϵ-MOEA 

Total  

Distance 

Total Fuel 

Consumption 

Total  

Distance 

Total Fuel 

Consumption 

Total  

Distance 

Total Fuel 

Consumption 

1363.42 2034.08 1410.35 2040.42 1396.16 2016.61 

1412.67 1970.43 1410.47 2036.79 1396.31 2014.2 

    1410.8 2036.27 1396.36 2013.92 

    1410.9 2035.7 1396.46 2013.62 

    1413.96 2023.67 1396.5 2011.51 

    1414.06 2021.98 1396.66 2010.94 

    1414.1 2021.43 1396.79 2009.63 

    1414.2 2019.23 1396.95 2009.05 

    1414.35 2017.73 1397.15 2009.01 

    1414.51 2017.15 1397.18 2008.87 

    1414.67 2016.48 1397.31 2008.44 

    1414.83 2015.88 1397.34 2008.3 

    1415.33 2015.42 1397.54 2008.26 

    1415.49 2014.64 1397.69 2007.68 

    1416.76 2014.57 1398.45 2007.16 

    1416.92 2014     

    1417.42 2013.33     

    1417.58 2012.75     

    1417.65 2012.28     

    1417.81 2011.7     

    1418.31 2011.03     

    1418.47 2010.46     

    1420.4 2009.93     
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Table A2- 23 Pareto Front Results of the adapted NSGA-II and the adapted ϵ-

MOEA with Split Vehicle Tour for Golden_16 

Xiao et al., 2012 NSGA-II ϵ-MOEA 

Total  

Distance 

Total Fuel 

Consumption 

Total  

Distance 

Total Fuel 

Consumption 

Total  

Distance 

Total Fuel 

Consumption 

1646.14 2439.68 2271.2 3061.39 2264.52 3231.23 

1705.25 2391.12 2271.35 3060.88 2264.68 3230.78 

    2271.41 3059.28 2264.91 3230.42 

    2271.56 3058.58 2265.07 3229.87 

    2271.84 3057.86 2265.35 3208.97 

    2287.03 3053.45 2265.47 3092.41 

    2287.04 3053.43 2265.62 3091.97 

        2265.76 3060.97 

        2265.92 3060.65 

        2267.21 3039.15 

        2267.37 3038.83 

        2267.95 3027.22 

        2268.27 3027.16 

        2268.36 3026.92 

        2268.58 3026.54 

        2268.67 3004.59 

        2268.99 3004.52 

        2269.08 3004.28 

        2269.3 3003.91 

        2269.63 3003.77 

        2269.72 3003.6 

        2270.04 3003.46 

        2270.36 3003.32 

 

Table A2- 24 Pareto Front Results of the adapted NSGA-II and the adapted ϵ-

MOEA with Split Vehicle Tour for Golden_17 

Xiao et al., 2012 NSGA-II ϵ-MOEA 

Total  

Distance 

Total Fuel 

Consumption 

Total  

Distance 

Total Fuel 

Consumption 

Total  

Distance 

Total Fuel 

Consumption 

710.19 1063.01 725.741 1060.37 724.952 1053.13 

720.89 1027.21 725.89 1059.91 724.979 1052.66 

    726.019 1057.68 727.191 1052.28 

    726.169 1057.21 727.679 1052.18 

    726.329 1055.75     

    726.675 1055.72     

    726.84 1054.97     
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    726.867 1054.5     

    726.954 1053.03     

    727.592 1052.75     

    728.957 1052.59     

 

Table A2- 25 Pareto Front Results of the adapted NSGA-II and the adapted ϵ-

MOEA with Split Vehicle Tour for Golden_18 

Xiao et al., 2012 NSGA-II ϵ-MOEA 

Total  

Distance 

Total Fuel 

Consumption 

Total  

Distance 

Total Fuel 

Consumption 

Total  

Distance 

Total Fuel 

Consumption 

1006.69 1510.25 1036.8 1506.14 1036.77 1504.31 

1025.54 1462.31 1036.86 1504.75 1037.28 1504.16 

    1037.29 1503.84 1037.3 1503.28 

    1037.3 1502.45 1041.1 1503.07 

    1037.45 1502.27 1041.45 1502.56 

    1037.6 1501.99 1041.46 1502.54 

    1037.79 1501.43 1045.66 1502.34 

    1037.85 1500.9 1045.82 1502.31 

    1037.92 1500.36 1046.31 1500.66 

    1037.98 1499.83 1046.48 1500.63 

 

Table A2- 26 Pareto Front Results of the adapted NSGA-II and the adapted ϵ-

MOEA with Split Vehicle Tour for Golden_19 

Xiao et al., 2012 NSGA-II ϵ-MOEA 

Total  

Distance 

Total Fuel 

Consumption 

Total  

Distance 

Total Fuel 

Consumption 

Total  

Distance 

Total Fuel 

Consumption 

1377.58 2059.98 1426.47 2087.63 1426.33 2082.35 

1421.28 2007.62 1426.75 2086.97 1426.35 2080.76 

    1427.03 2086.32 1426.59 2080.64 

    1428.4 2084.42 1426.63 2080.1 

    1428.53 2084.39 1426.86 2079.98 

    1428.63 2084.3 1430.15 2079.53 

    1428.68 2083.77 1430.17 2077.93 

    1428.69 2081.16 1430.41 2077.82 

    1428.74 2080.54 1430.45 2077.28 

    1428.98 2080.42 1430.68 2077.16 

    1429.02 2079.88     

    1429.25 2079.76     

    1432.51 2078.34     

    1432.53 2076.93     
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    1443.01 2076.42     

 

Table A2- 27 Pareto Front Results of the adapted NSGA-II and the adapted ϵ-

MOEA with Split Vehicle Tour for Golden_20 

Xiao et al., 2012 NSGA-II ϵ-MOEA 

Total  

Distance 

Total Fuel 

Consumption 

Total  

Distance 

Total Fuel 

Consumption 

Total  

Distance 

Total Fuel 

Consumption 

1849.6 2753.97 1906.86 2800.13 1912.02 2803.99 

1904.59 2687.85 1907.16 2800.09 1912.3 2803.76 

    1907.25 2797.46 1913.45 2803.57 

    1907.45 2778.02 1913.51 2802.87 

    1907.49 2776.62 1913.71 2802.35 

    1907.75 2775.91 1913.85 2802.05 

    1908.67 2775.3 1914.06 2801.53 

    1908.93 2774.59 1914.35 2801.37 

    1912.26 2773.09 1915.79 2795 

    1912.52 2772.39 1915.94 2794.15 

    1913.44 2771.77 1916.01 2794.07 

    1913.7 2771.07 1916.21 2793.8 

        1916.28 2793.73 

        1916.55 2793.48 

        1920.71 2790.62 

        1920.78 2790.55 

        1920.98 2790.28 

 


