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ABSTRACT  

ONLINE ADAPTIVE CLASSIFICATION OF FINGER MOVEMENTS FOR 

BRAIN COMPUTER INTERFACES 

Al-dabag, Mohand 

PHD, Computer Engineering 

Advisor: Dr. Nalan Özkurt 

April 2019 

 

Studies on Brain computer interface (BCI) are challenging and promising since it 

establishes an indirect link between human and machine. This link depends on a 

correct interpretation of the brain activities to control the machine based usually on 

noninvasive brain acquisition system which is called Electroencephalography (EEG). 

Since EEG signals record the brain cortical activities indirectly through using 

electrodes placed on the scalp of the head, is seriously affected by different sources of 

noises such as bad electrode connection, power line.. etc.  This thesis construct an 

online adaptive BCI system based on EMOTIV EPOC+ headset using MATLAB and 

C# programming languages. The study first focused on the offline study to propose an 

algorithm, which constructs discriminative cognitive features to classify the right/left 

fingers EEG movement signals. After preprocessing and denoising the EEG signals, 

the proposed method uses two classifiers (Multilayers perceptron network MLP and 

support vector machine SVM) to classify the features produced from ten statistical 

moments of cross-correlated channels. It is observed that cross-correlation of effective 

channels with right and left hemisphere channels constructs more discriminative 

features from the EEG signals. The classification results show that the two classifiers 

have competitive results (96% on average) to classify 13 subjects offline dataset. Also 

these results show, SVM is more effective than MLP in term of computation time. 

Genetic algorithm is also used to select the best features and it is found that only three 

statistics (mode, maximum, and standard deviation) are enough to discriminate the 

cognitive EEG signals.  After feature selection, SVM classifier still has competitive 

classification rates with MLP and faster computation time than MLP. Therefore only, 

SVM classifier was used in the online phase. Secondly, an online BCI software is 
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constructed using by imbedding the MATLAB algorithm in C# BCI platform to make 

use of the scientific and parallelism facilities of both programming languages. This 

online system is based on the enhanced method proposed in the offline phase. It used 

a very common solution to synchronizing the concurrent processing 

(producer/consumer problem) for simulating the functionality of the two stage pipeline 

system. This simulation provides a real time acquisition of EEG motor signal to the 

preprocessing and classification stage and provides an interactive online response time 

rather than the sequential processing system.  

Keywords: Brain computer interface, pipeline, cross-correlation, discrete wavelet 

transform (DWT), genetic algorithm.   
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ÖZET  

BEYİN BİLGİSAYAR ARAYÜZLERİ İÇİN EL HAREKETLERİNİN 

ÇEVRİMİÇİ UYARLANIR MODELLENMESİ 

Al-dabag, Mohand 

PHD, Computer Engineering 

Advisor: Dr. Nalan Özkurt 

April 2019 

Beyin bilgisayar arayüzü (BBA) çalışmaları insan ile makine arasında dolaylı bir 

bağlantı kurduğu için hem zorludur hem de ümit vadeder. Bu bağlantı genellikle 

girişimsel olmayan beyin sinyalleri algılama sistemi Elektroansefalografi (EEG) 

sinyallerinin makineyi yönetmek için doğru şekilde yorumlanması ile kurulur. EEG 

sinyalleri, beyin korteksindeki elektriksel aktiviteyi kafa derisi üzerinden dolaylı 

olarak kaydettiği için EEG sinyalleri, kötü kontak, güç hattı gürültüleri vb. gibi çok 

büyük miktarda bozulmadan mustariptir. Bu tezde, MATLAB ve C# programlama 

dilleri kullanılarak EMOTIV EPOC+ EEG cihazı tabanlı bir gerçek zamanlı uyarlanır 

BBA sistemi gerçeklenmiştir. Tezde önce EEG hareket sinyallerinden sağ ve sol 

parmak hareketlerinin ayrıştırılması için çevrimdışı bir algoritma geliştirilmesine 

odaklanılmıştır. Önişleme ve gürültü azaltmanın ardından, sistem kanalların çapraz 

ilintilerinin istatistiksel momentlerini sınıflandırmak için Çok Katmanlı Yapay Sinir 

Ağı (YSA) ve Destek Vektör Makineleri (DVM) kullanır. Etkin kanalların sağ ve sol 

lob kanallarıyla ilintileri daha ayırıcı öznitelikler oluşturuduğu gözlenmiştir.  Sonuçlar 

YSA ve DVM’nin ortalamada %96 ile benzer başarıya sahip olduğunu gösterirken, 

DVM her zaman daha hızlıdır. Genetik algoritma ile istatistiksel özniteliklerden en 

ayırıcılar arandığında, parmak EEG sinyallerinin ayırılabilmesi için mod, en büyük ve 

standart sapmanın yeterli olduğu görülmüştür. Öznitelik seçiminen sonra da DVM, 

YSA ile benzer sınıflandırma oranlarına sahipken daha hızlı sonuç vermektedir. İkinci 

olarak MATLAB ve C# programlama dillerinin sırasıyla bilimsellik ve paralellik 

özellikleri kullanılarak gerçek zamanlı BBA yazılımı gerçeklenmiştir. Gerçek zamanlı 

sistem, çevrimdışı sistemde geliştirilen önişleme ve sınıflandırma yöntemlerini 

kullanarak kullanıcı arayüzü geliştirir. Bu sistem eş zamanlı işleme (üretici/tüketici) 

probleminin yaygın bir çözümünü iki aşamalı ardışık düzen benzetiminde kullanır. Bu 
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da EEG hareket sinyallerinin gerçek zamanlı kaydı ve işlenmesi/sınıflandırılmasını 

ardışıl yerine interaktif çevrimiçi tepki zamanıyla işlenmesini sağlar. 

Anahtar Kelimeler: Beyin bilgisayar arayüzü, Elektroansefalografi, ardışık düzen 

işleme, çapraz-ilinti, genetik algoritma.   
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INTRODUCTION  

1.1 Brain Computer Interfaces 

Brain Computer Interface (BCI) systems are the systems that allow humans to 

communicate with a machine through brain signals and they have diverse applications, 

such as smart living, entertainment, and neuro prostheses. BCIs also provide a new 

chance to rehabilitate disabled people by making them able to interact with their 

environment without the help of their family members. To acquire brain signals, 

Electroencephalography (EEG) signal is widely used as a noninvasive system. It 

records the cerebral cortex electrical activity of the brain through a number of 

electrodes on the scalp. Using EEG allows us to detect motor movement and motor 

imagery which is the mental rehearsal of a movement (such as a hand or foot 

movement) without executing it, and it can be used as a control signal in BCI systems. 

 

The EEG devices used for medical diagnosis are complex devices with a large number 

of electrodes and not comfortable especially during sleep EEG measurements. For a 

BCI system designed for everyday use of a disabled person or for playing games, the 

ergonomic system will be an important aspect as well as the accuracy. With the 

advances in sensor and communication technology, now it is possible to design 

wireless EEG devices with acceptable signal resolution and accuracy.  

 

In the following section, challenges in EEG processing and the BCI studies in literature 

will be briefly reviewed. 

 

1.2 Literature Review 

EEG classification is still confronting serious challenges for many reasons. Firstly, the 

EEG signals are collected indirectly from human scalp, so they are distorted signals of 

the actual brain signals. Secondly, the artifacts and noises introduced by the body 
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interfere with EEG signals, all these weaken the EEG signal and make it hard to be 

classified. The examples of those contaminations are measurement instruments noise 

and bad electrode connections (Rakendu & Reza, 2005). The human body also adds 

some artifacts to EEG signals. These artifacts could be caused by eye blinks or eye 

movements, and both are called ocular artifacts (OA) or electrooculography (EOG) 

artifacts which mainly and frequently interfere with EEG signal in anterior scalp 

regions. Electromyogram (EMG), caused by muscles movements, could be another 

source of artifacts that weaken EEG signals. EOG and EMG occur frequently with 

amplitude several times larger than EEG signals. Therefore, these artifacts seriously 

confuse the interpretation of EEG signals. Several techniques were suggested to 

remove these artifacts from EEG signals (Rakendu & Reza, 2005) (Junfeng, Pan, 

Yong, Pei, & Chongxun, 2010). 

 

The simplest technique to reject the EEG segments contaminated by artifacts is done 

by inspection the EEG data visually. However, this means losing the whole 

contaminated EEG data and this is unacceptable especially when the artifacts occur 

frequently (Junfeng, Pan, Yong, Pei, & Chongxun, 2010). Some methods were 

proposed for removing EOG based on the time domain or frequency domain 

regression. Reliable reference EOG channel is always needed in these methods but this 

channel is also corrupted with EEG signal (Manish, Rohan, M., & Ajoy, 2017). 

Therefore, these methods may not be suitable for EOG removal (Junfeng, Pan, Yong, 

Pei, & Chongxun, 2010). Other methods proposed to remove these artifacts are based 

on the Principal component analysis (PCA) or based on the independent component 

analysis (ICA) (Junfeng, Pan, Yong, Pei, & Chongxun, 2010) (Manish, Rohan, M., & 

Ajoy, 2017) (Sim, et al., August 2017). Another technique depends on time amplitude 

thresholding (Manish, Rohan, M., & Ajoy, 2017). 

 

Different schemes are suggested to classify EEG motor signals due to the complexity 

of the waveform. While some of the studies focus on separation of EEG rhythm bands, 

the others make classification by focusing on motor EEG channels. There were also 

some studies tried to extract the original motor signal and eliminate artifacts by using 

blind source separation (BSS) methods, such as Principal Component Analysis (PCA), 

Independent Component Analysis (ICA). These are complex algorithms which need 

excessive computation time to find the source signal. Other studies try to find a 
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template signal between the training set like Common Special Pattern (CSP). Some of 

the studies are considered as follows: 

The first study applied two search algorithms (metagene (AM) algorithm and the Bat 

optimization algorithm (BA)) to search for the most discriminative common special 

pattern CSP feature to optimize the SVM parameters (Selim, Tantawi, Shedeed, & 

Badr, 2018).  The other study searched for an optimal feature subset using a 

Differential Evolution (DE) optimization algorithm. They used filtering to extract µ 

and β bands, CSP and Support Vector Machine (SVM) as a classifier. They had in 

average 95% classification accuracy with a minimum of just 10 features (Muhammad, 

Nauman, Hubert, & Shum, 2017). The next study extracts three different feature 

groups (time, frequency and time-frequency features) and used five Evolutionary 

Computation (EC) algorithms to find best features with an ANN  as a classifier 

(Bahareh, Mohammad, Dian,, & Vinod, 2017). Other researchers use ICA and four 

well-known features (adaptive autoregressive (AAR) parameters, and Hjorth 

parameters, power spectral density (PSD) and discrete wavelet coefficients). Firefly 

algorithm and Self-Adaptive firefly algorithm are used for electrodes and features 

selection with SVM classifier to have good classification rates (Rimita, Pratyusha, & 

Amit, 2017). 

 

There are also some methods, which extracts the feature using extensive computation. 

In the first study, the researchers applied one dimension-aggregate approximation (1d-

AX) to construct an effective signal representation for long short-term memory 

(LSTM) networks and channel weighting technique is further applied to enhance the 

classification rates (Wang, Jiang, Liu, Shang, & Zhang, 2018). Another study deployed 

an artifact rejected CSP (AR-CSP) for extracting motor imaginary MI features to the 

neuro-fussy classifier. This is performed to develop the MI EEG-based BCIs 

(Jafarifarmand, Badamchizadeh, Khanmohammadi, Nazari, & Tazehkand, 2018). The 

next researchers retained the temporal features by performing the multi-channel series 

in CSP space. Then they encoded the multi-channel data by applying the separated 

channel convolutional network to extract features for a recognition network (Zhu, et 

al., 2019). 

Another important BCI topic is to investigate the effective motor channel(s). The 

researchers performed the sequential forward search method for each subject to find 

the effective channels that maximize the SVM classification rates. This was done after 
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preprocessing the EEG signal using a moving average filter and extraction of some 

features using the Hilbert transform (Aydemir & Ergün, 2019). The other study 

performed filtering techniques to extract alpha and beta bands from channels 

(C1,C3,C5,CP3). Then, they used Linear Discriminant Analysis (LDA) to distinguish 

the presence/absence of real right hand movement. (McCrimmon, et al., 2017). The 

next study applied band pass filter onto (C4 and C3) channels to construct beta rhythm. 

Then, they evaluated the frequency band energy, Hilbert transform and Phase Locking 

Value (PLV) to extract features for support vector machine (SVM) (Liu, et al., 2017). 

 

The online BCI is still an open research subject because each part of the system has 

effects influencing the overall system performance. In one of the studies, it is tried to 

control the movement of an online robot arm using five motor imagery mental 

commands acquired via EMOTIV EPOC+ headset. They performed three days of 

offline training using 5-fold cross validation to train the system and then performed 

the online testing. The classification was accomplished by an Adaptive Neural Fuzzy 

Inference System and the accuracy rate is measured as 65-70% (Bhattacharyya, Basu, 

& Amit Konara, 2015). Another study used an open source software (Open ViBE) to 

acquire EEG signals from EMOTIV EPOC+ headset and makes online/offline 

classification using Support Vector Machine (SVM). The average recognition rate in 

offline testing and single trial classification is 60.63% for right arrow and 45.93% for 

left arrow (Risangtuni, Suprijanto, & Widyotriatmo, 2012). Next study proposed a 

method for controlling the Arduino LED via eye blink. They used Simulink for 

communication between the Arduino and the processed EEG data stored in Matlab 

workspace (Mahajan & Bansal, 2017).  Another study implemented an online BCI 

system using OpenBCI headset and FPGA. The online classification performance of 

this system was about 75% on average (Belwafi, Romain, Ghaffari, Djemal, & Ouni, 

2018). 

 

1.3 Aim of the Thesis 

The researchers have been interested to develop some techniques for improving the 

BCI operation. In recent years, this interest is accelerated due to the need of installing 

new channel between human and machine. This channel not only improves the lives 
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of the disabled people but also improves the life quality of healthy people. As 

described in the literature review, there are still challenges to overcome. 

 

The objective of this thesis is to design an online adaptive mobile BCI system. Since 

EEG signal characteristics change from one person to another, an adaptive system is 

aimed to fit the needs of different users. Furthermore, the goal of the mobile system is 

to provide a comfortable system for the user without cables around. 

 

Therefore, this thesis addresses the following issues: 

 Developing an accurate and fast algorithm for preprocessing, feature extraction 

and classification by using pre-recorded data which is called the offline 

algorithm later in this thesis; 

 Constructing an online upgradable BCI platform based on EMOTIV EPOC+ 

headset. This platform uses the best and the fastest algorithm provided by the 

offline study. 

 

The scope of the study is limited to classification of left and right finger movement in 

order to demonstrate the applicability of the algorithm in both offline and online cases. 

 

1.4 Contributions 

In the offline study, an EEG signal processing and classification system is proposed to 

classify the EEG motor signals. The preprocessing stage is specialized for motor 

movement classification. The cross-correlation of effective channels with right and left 

hemisphere channels increases the discriminative abilities of the extracted features. 

The proposed algorithm is based on relatively simple tools which is a crucial demand 

for the real time system. The algorithm simplicity leads to a quick response time which 

is demonstrated in the online processing. The online BCI also improved the 

performance of the EEG acquisition stage by simulating the pipeline mechanism which 

increased the system reliability and reduced the response time of the system. Thus the 

proposed system meets the aims of the thesis by providing a mobile system since it is 

based on wireless EEG headset and it also provides the ability to retrain the system 

which makes the system adaptive to different users.   
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1.5 Thesis Outline  

Chapter 1 demonstrates the BCI system and provides a quick review of the challenges 

in design. It also presents the aim of the thesis and its novelty. Then, it explores the 

literature review, and finally a quick outline revision of the thesis is provided.     

 

Chapter 2 demonstrates brief review about: the human brain anatomy, structure of 

neuron, the neuron action potential, the brain electrical activity and how EEG signal is 

generated in brain, the EEG rhythms, a description of the standard system that 

measures the EEG signal, the common montages to connect the EEG electrodes, and 

finally describes and lists the specification of EMOTIV EPOC+ headset that is used in 

this work. 

 

Chapter 3 has two main topics. The first topic explores the signal analysis tools used 

in this thesis. It gives an explanation of the reasons for using wavelet transform and 

the reasons for preferring this transform. Then, a detailed description of wavelet 

transform is given. After that, it explains the common thresholding techniques used 

with the wavelet transform for denoising.  The second topic provides a description of 

the statistical feature extraction methods used in this thesis. It also demonstrates the 

randomized search algorithm called genetic algorithm, and it provides the reason why 

this algorithm is preferable for feature selection.   

 

Chapter 4 explores a summary in three issues. The first, it provides a brief description 

of the popular evaluation methods to evaluate the classifier performance. It also gives 

a brief explanation of two machine learning classifiers which are the SVM and 

multilayer perceptron network (MLP). Secondly, it expresses the pipelining technique 

used in parallel processing and its characteristics that distinguish it from traditional 

processing. Finally, it provides an abbreviation of concurrent processing and the 

solution of the most popular concurrent problem (producer/consumer problem).   

 

Chapter 5 provides a detailed description about the two offline datasets used in this 

thesis and it also explains the setting of the two classifiers (MLP and SVM). Then, it 

provides a detailed explanation of the proposed method and its classification 

performance for both datasets.  After that, it explores the reason for enhancing the 
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proposed method and explains the enhanced method with its impact on performance 

using only the EMOTIV dataset. It also lists the results after feature selection and the 

computation times of the two classifiers.  

     

Chapter 6 explains the reasons for choosing the programming languages that are used 

to construct the online software. Then, a detail description is given for the online 

EMOTIV data acquisition procedure and it describes the way of converting the 

MATLAB program to a DLL file and how to link it with the C# program. After that, 

it demonstrates the online software platform, its components, and its facilities.  An 

exploration is given to the computation times of the real time BCI and compares it 

with theoretical and simulation times. Finally, it demonstrates the classification rates 

of the online BCI software.  

   

Chapter 7 expresses the conclusions that have been drawn from the offline/online 

classification rates and computation times. It also provides a suggestions for future 

works.   
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EEG SIGNAL 

2.1 Introduction 

The nervous system is the neural network that forms and transmits information 

throughout the body in the form of electrical impulses. An electrical charge creates 

electrical energy, which has two important characteristics: it moves very quickly and 

in distinct “packets” called impulses (Norris & Siegfried, 2011) 

Richard Caton (1842–1926), a scientist from Liverpool, England, is the first scientist 

that recorded the brain electrical activity by placing two electrodes of a galvanometer 

over the human scalp in 1875. Since then, the terminology for the electrical activity of 

the brain is electroencephalography (EEG) which is a combination of three terms: 

electro-(referring to the brain electrical activities acquisition) encephalo- (referring to 

the signals radiating from the head), and gram (or graphy), which means writing or 

drawing (Sanei & Chambers, 2007). 

2.2 Human brain anatomy 

The central nervous system (CNS) receives and integrates the information from 

sensory receptors and coordinates the body activity. The spinal cord and brain 

constitute the largest part of the nervous system.  

Anatomically, the cerebrum, cerebellum, and brain stem are the three parts of the 

human brain, see Figure 2.1 (Norris & Siegfried, 2011) (Al-Aimama, 2013) 

 
Figure 2.1: The Basic Brain Anatomy. 
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The cerebrum is divided into left and right halves which called the left and right 

cerebral hemispheres. The frontal, parietal, temporal, and occipital are four lobes of 

each brain hemisphere. The names of the lobes are derived from the skull bones that 

cover them. Table 2.1 lists each lobe functions (Norris & Siegfried, 2011) 

Table 2.1: Functions of Lobes within Cerebral Hemispheres 

Lobe  Functions 

Frontal lobe 
Voluntary muscle control, problem solving, concentration, 

planning, and speech production 

Parietal lobe  

Understanding speech, general interpretation area , ability to 

use words, sensations including heat/cold, pain, touch, and 

pressure 

Temporal lobe 
learning, Interpretation of sensations, hearing, remembering 

through sounds, and remembering visually 

Occipital lobe  
combining images received visually, recognizing objects 

visually, and Vision 

 

The basic unit of the nervous system is the individual cell which is called a neuron. 

These neurons are specialized for the transmission and initiation of impulses (electrical 

signals). It has the ability to receive the outputs (pulses) of many other neurons, process 

it, decides whether it needs to initiate its own signal and pass it to other neurons, 

muscle, or gland cells. 

Neurons have special cellular anatomy adapted to the quick transmission of an 

electrical charge. See Figure 2.2. All neurons have the same three parts, all enclosed 

within their cell membrane: 

 Cell body: is similar to a generic cell and it contains the mitochondria, nucleus, 

and other organelles.  

 Dendrites: are extensions that branch from one end of the cell body. They receive 

signals from other neurons and send electrical impulses towards the cell body. 

 Axon: The axon transmits the impulses from the cell body to the next neuron 

forming a chain. (Think of electrical transmission wires.).It is like a cable on the 

opposite end of the dendrite (Norris & Siegfried, 2011). 
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Figure 2.2: Neuron Structure (Sanei & Chambers, 2007). 

2.3 Action Potentials 

An Action Potential (AP) is an impulse that is emitted from a nerve to form a kind of 

information. APs are consequences of exchanging the ions across the neuron 

membrane and an AP is a temporary change in the membrane potential that is 

transmitted along the axon. It usually forwards in one direction and the cell body 

normally generated it. The membrane produces a spike by depolarizing the potential 

(becomes more positive). After reaching the peak of the spike, the membrane 

repolarizes (becomes more negative) and the potential becomes more negative than 

the resting potential and then returns to normal. The action potentials of most nerves 

last between 5 and 10 milliseconds. Figure 2.3 shows an example of AP (Nam, Nijholt, 

& Lotte, 2018) (Sanei & Chambers, 2007). 

 
Figure 2.3: An Example of Action Potential. 

2.4 EEG Generation 

An EEG signal is a summation of the various neurons activities in the cerebral cortex 

and it measures the generated currents during the brain activities. The current 

generated by the synaptic excitation produces a magnetic field which is measurable by 

magnetic encephalography (MEG) machines and it is also produces a secondary 



 

11 

 

electrical field over the scalp measurable by EEG systems (Nam, Nijholt, & Lotte, 

2018) (Sanei & Chambers, 2007). 

The human head is constructed from different layers which include the scalp, skull, 

brain and many other thin layers in between, see Figure 2.4. The skull weakens the 

signals roughly one hundred times more than the soft tissue. However, most of the 

noise is generated either over the scalp (system noise or external noise) or within the 

brain (internal noise). Therefore, only huge populations of active neurons can generate 

satisfactory potential to be recordable using the scalp electrodes. These signals are later 

amplified greatly for display purposes. 

 
Figure 2.4: The Three Main Layers of The Brain And Their Approximate 

Resistivities And Thicknesses (Ω=ohm). 

The acquired EEG signals from a human (and also from animals) may, for example, 

be used for investigation of the following clinical problems 

1. Observation of brain death, coma, and alertness; 

2. Localization of the damaged areas in the brain caused by head injury, stroke, and 

tumor; 

3. Locating seizure origin and investigating epilepsy; 

4. Testing epilepsy drug effects; 

5. Investigating mental disorders; (Sanei & Chambers, 2007) 

2.5 Brain Rhythms 

Diagnosing of many brain disorders is done by the visual inspection of EEG signals 

and the clinical experts are familiar with monitoring of the brain rhythms in the EEG 

signals. The EEG signals frequencies and amplitudes change from one state to another 
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of the healthy adult, such as sleep and wakefulness. The features of the waves also 

vary with age. There are five main brain waves that can be distinguished by their 

frequency bands. Delta (δ), theta (θ), Alpha (α), beta (β), and gamma (γ) are these 

frequency bands from low to high frequencies respectively. 

Delta (δ) band lies within 0.5–4 Hz range of the brain activities. The deep sleep is 

originally related to these rhythms and these rhythms may be appeared in the waking 

state. It is very easy to be corrupted with artifact signals due to the muscular 

movements of the jaw and neck. 

The Theta waves frequencies lie within the range of 4–7.5 Hz. Theta waves appear as 

awareness slips towards drowsiness. The changes in the rhythm of theta waves are 

examined for maturational and emotional studies. 

Alpha (α) waves are usually found over the occipital lobe of the brain and appear in 

the rear half of the head. They can be revealed in all parts of rear lobes of the brain. 

The frequency for alpha waves lies within the range of 8–13 Hz. Alpha waves exist in 

the motor movement and somatosensory and it has been thought it related to a relaxed 

awareness without any concentration or attention. 

The frequency band within the range of 14–26 Hz of the brain electrical activity is 

called beta (β) wave. A beta wave is associated with active attention, focusing on the 

outside world, thinking, or problems solving, and all these activities are related to the 

waking status. Beta rhythm is mainly found over the central and frontal regions. The 

Beta band associated with Imaginary and real movement and presents a phenomenon 

known as event-related synchronization (ERS) and event-related desynchronization 

(ERD). 

The gamma (γ) band are sometimes called the fast beta band and it exists above 30 Hz 

up to 45 Hz. Although this rhythm occurs rarely with very low amplitude but, the 

detection of these rhythms proofs the existence of certain brain diseases. The existing 

of this band proves to be a good indication of event-related synchronization (ERS) of 

the brain and can be used to indicate the presenting of right toes, right/left index finger 

movement, and tongue movement. 

The above rhythms may last if the state of the subject does not change and therefore 

they are approximately cyclic in nature. On the other hand, there are other brain 

waveforms but the one that related to motor events is the mu rhythm (Sanei & 

Chambers, 2007) (Nam, Nijholt, & Lotte, 2018). 
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Mu (8–12 Hz) denotes motor and is strongly related to the motor cortex. Rolandic 

(central) mu is related to posterior alpha in terms of amplitude and frequency. From 

the mu rhythm the cortical functioning and the changes in brain (mostly bilateral) 

activities subject to physical and imaginary movements can be investigated (Sanei & 

Chambers, 2007) (J. R. Wolpaw, D. J. McFarland, & T. M. Vaughan, 2000). 

2.6 EEG measurement  

The early diagnosis of various human diseases need acquiring of signals and images 

from the human body. The electrobiological signals are one of these biological data 

which can be an electromyogram (EMG) from muscles, electrocardiogram (ECG) 

from the heart, magnetoencephalogram (MEG) or electroencephalogram (EEG) from 

the brain, electroocclugram (or electrooptigram, EOG) from eye nerves, and 

electrogastrogram (EGG) from the stomach (Sanei & Chambers, 2007).  

The measurement of the brain activities has several methods such as Functional 

Magnetic Resonance Imaging (fMRI), Positron Emission Tomography (PET), and 

megnetoencephalography (MEG). However, EEG signal is still a useful tool for 

observing the brain activity because it is an inexpensive tool and it is also convenient 

for the patient (Yonghui Fang, Minyou Chen, & Xufei Zheng, 2015). 

2.7 Electrode Placement 

The differential amplifiers input signals are provided from the head via electrodes. 

They are attached to the head using a conductive silver chloride (AgCl) gel. The 

standard electrode placement guide is the 10-20 system of electrode placement which 

is used for measuring the EEG signal. The name is derived from 10%-20% distance 

measures on the head. It considers the distance from the naison (dip between nose and 

forehead) to the inion (bump at the back of the head above the neck) as 100%. The 

first line of electrodes (Fp1, F7 . . .O1, O2 . . . F8, Fp2) is placed 10% of this distance 

up from the naison and inion. Fz is another 20% up, Cz another 20%, etc. (see 

Figure 2.5.a). For electrode identification, each electrode symbolled with a letter and 

a number. The letters refer to the lobes of the brain (the Frontal, Temporal, Central, 

Parietal and Occipital) but there is no central lobe of the brain and this is just an 

identification term. The even/odd numbers refer to the right/left hemisphere 

respectively so, the electrode numbers refer to the hemisphere locations. The smaller 

the number, it is closer to the mid-line between the two hemispheres. The electrodes 
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on the mid-line represented by a (z), see Figure 2.5.b. Depending on usage, the number 

of electrodes used can vary (Stephen, 2007). 

 

  
a B 

Figure 2.5: The 10-20 System Electrod Placement (Graimann, Allison, & 

Pfurtscheller, 2010). 

2.8  Montages 

Each EEG channel is made of two inputs. In EEG recording, one of these inputs is 

always an electrode and the other input is the reference voltage which will be compared 

to the first input. There are different approaches for generating this reference voltage. 

These various configurations are known as montages (Stephen, 2007): 

Common Reference: The common reference montage uses a common reference point 

as one input to each differential amplifier. Each channel of EEG is then formed by the 

difference between one scalp electrode and a reference electrode. The reference 

electrode should be chosen as a point which is generally electrically quiet. An 

advantage to this approach is that the distribution of activity over the scalp is very easy 

to determine. However, it is often difficult to find a quiet electrode to use as the 

common reference. The central point Cz is often used as a reference channel to the all 

electrodes. 

Average Reference: This montage is similar to the common reference montage in 

that, the same reference is used as one input to all the differential amplifiers. However, 

the common reference is formed by summing all of the activity from the electrodes, 

averaging it and passing this through a high value resistor.  This constructs a quiet 
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electrode and it also eliminates the problem of the previous montage (Al-Aimama, 

2013) (Handy, 2009). 

Bipolar: The bipolar montage connects all of the scalp electrodes in a chain form. An 

electrode which serves as the input for one differential amplifier also serves as the 

reference for the next. These chains normally run from the front of the head to the back 

or transversely across the head. The advantage of the bipolar montage is that the 

activity in neighboring electrodes can be easily distinguished, thereby giving better 

special resolution than the reference montage types. A disadvantage of this approach 

is that the amplitude and morphology of the activity can be distorted if it affects both 

electrodes used to generate a channel (Al-Aimama, 2013). 

2.9 EMOTIV headset 

EMOTIV EPOC+ is a 14 -channel mobile EEG headset and designed for scalable brain 

research and brain computer interface. It provides easy and quick access to acquire 

EEG data. It also has a facility to access high-quality raw EEG with a PRO license. It 

is a wireless rechargeable device with 14 channels based on wet electrodes, see 

Figure 2.6. The technical specification of this headset are: 

 14 channels: AF3, F7, F3, FC5, T7, P7, O1, O2, P8, T8, FC6, F4, F8, AF2 

 References: In the CMS/DRL noise cancellation configuration P3/P4 locations 

 Sampling method: Sequential sampling. Single ADC 

 Sampling rate: 128 SPS or 256 SPS* (2048 Hz internal) 

 

 
Figure 2.6: Electrodes of EMOTIV EPOC+ Headset. 

 Resolution: 14 bits 1 LSB = 0.51μV ( 16 bit ADC, 2 bits instrumental noise 

floor discarded), or 16 bits* 

 Bandwidth: 0.2 – 43Hz, digital notch filters at 50Hz and 60Hz 
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 Filtering: Built in digital 5th order Sinc filter 

 Dynamic range (input referred): 8400μV(pp) 

 Coupling mode: AC coupled 

 Wireless: Bluetooth® Smart 

 Proprietary wireless: 2.4GHz band 

 Battery: Internal Lithium Polymer battery 640mAh 

 Battery life: up to 12 hours using proprietary wireless, up to 6 hours using 

Bluetooth® Smart (EMOTIV, 2008) 
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DATA ANALYSIS 

3.1 Introduction  

The aim of data analysis is to extract, to enhance, to compress, or to transmit useful 

information from the signal. Our environment is filled with various kinds of signals. 

Some of them are natural and other signals are manmade such as music ..etc. In an 

engineering context, information is carried through signals and this information may 

be useful or not. Therefore, signal processing is used to extract or enhance the useful 

information from a mix of conflicting information (Ingle & Proakis, 2012). 

EEG signals are corrupted with different noises or artifacts. Thus the biggest challenge 

in EEG applications is to reduce the effect of the noise to extract useful features for 

patterns such as motor movement or a neurological pathology. Such artifacts may be 

caused by external or internal interferences during EEG recording. The human body 

physiological activities represent the internal artifacts that interfere EEG such as EMG, 

ECG and EOG. External artifacts are those who are caused by non physiological 

activities during the acquisition of EEG signal such as power-line coupling, electrode 

popping (Maswanganyi, Tu, Owolawi, & Du, 2018) (Guzmán, Heute, Stephani, & 

Galka, 2017). 

Brain computer interface BCI is a system that establishes a communication channel 

between human and an external device. Such system consists of several parts which 

are human signal acquisition, preprocessing, feature extraction and signal prediction 

(Alireza, Esmat, Ali, Mehdi, & Farhad, 2017). Preprocessing stage may involve one 

or more of numerous methods that try to eliminate the artifacts and to enlarge the signal 

to noise ratio (Maswanganyi, Tu, Owolawi, & Du, 2018). These methods includes 

signal filtering, signal processing (Fourier transform, wavelet transform ..etc.), blind 

source separation, and normalization. Feature extraction try to extract the most 

discriminative features from EEG signal and try to reduce the signal dimensionality 

(Muhammad, Nauman, Hubert, & Shum, 2017). Also this stage may involve one or 

more of statistical methods such as mean, standard deviation ..etc.  

This chapter gives brief description about the methods used in this thesis for signal 

denoising, feature extraction and feature selection. The chapter also involves a 

description about topic related to our study.   



 

18 

 

3.2 Wavelet Transform  

Perhaps the better way to illustrate wavelet transforms is to first check some transforms 

and its concepts. The purpose of any transform is to make our job easier.  For example, 

fast Fourier transform (FFT) allows us to see the frequency domain of signals. In other 

words, it describes the signal in terms of its frequencies by correlating (comparing) the 

signal with these various sinusoids. Figure 3.1 shows the signal consist from sinusoids 

of different frequencies (spectrum). Unfortunately, FFT extracts the event frequencies 

but it losses the time of its occurrence. A possible solution of this problem is to divide 

the total time into shorter intervals and then implement the FFT for each interval. This 

provides time-frequency information about the signal and this method called short-

time Fourier transform (STFT) (Fugal, 2009).  

 

Figure 3.1: Fourier Transform Convert The Signal to Various Sinusoids of Different 

Magnitudes And Frequencies. 

STFT provides time-frequency information about the signal (event) but its accuracy is 

limited by the size and the shape of the window. For example, a narrow window gives 

an accurate time resolution but in contrast reflect worse frequency resolution and vice 

versa. 

 
Figure 3.2: The Windowing Comparison Between Three Transformation (FFT, 

STFT, WT  (Misiti, Misiti, Oppenheim, & Poggi (2002)). 
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Wavelet transform has the facility of variable size windows (Fugal, 2009). Figure 3.2 

illustrates the windowing difference between these three transformations (FFT, STFT, 

and WT). 

3.2.1 Continuous Wavelet Transform 

The continuous signal can be transformed using a continuous wavelet transform which 

is defined as 

 

𝑇(𝑎, 𝑏) = ∫ 𝑥(𝑡)𝜓∗
𝑎,𝑏

(𝑡)𝑑𝑡
∞

−∞

                                                                                       (1) 

 

𝜓𝑎,𝑏(𝑡) =
1

√𝑎
𝜓 (

𝑡 − 𝑏

𝑎
)                                                                                                  (2) 

 

Where  is a function called mother wavelet function and a, b are the dilation and 

location parameter respectively. This function can be stretched or squeezed (dilation) 

via parameter a or can be moved (translation) via parameter b. Figure 3.3 shows a 

squeezed and stretched to, respectively, half and double of its original width on the 

time axis of the one of wavelet function (Mexican hat). The dilation parameter a is the 

tuning parameter that dilates and contracts the wavelet. The distance between the 

wavelet crossing of the time axis and its center is represented by this parameter 

(Addison, 2017). 

 

  

Figure 3.3: Dilation Factor A (a1 = a2/2; a3 = 2a2) of The Wavelet Function. 
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The second parameter b (the translation parameter) moves the wavelet function along 

the time axis. Figure 3.4b shows the translation of a wavelet from b1 via b2 to b3 along 

the time axis.  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4 : Wavelet Translation. 

For instance of WT, let's examine a simple example. Figure 3.5 shows Mexican hat 

wavelets of various dilations that are correlated with a simple sinusoidal waveform at 

various locations. The dilation and the location and of the wavelet determines the value 

of the wavelet transform integral (Equation 1). Let's examine Figure 3.5a, which 

superimposes the signal with the wavelet at location b and that leads to a local 

matching between the signal and the wavelet. It can be seen obviously from the figure, 

the configuration of these two parameters (a and b) makes a high correlation between 

the signal and wavelet. The integration of the WT (T(a,b)) produces here a high 

positive value caused form the production of the signal with the wavelet. Figure 3.5b 

shows the wavelet and signal appear to be out of phase after the location of the wavelet 

was changed to a new location. Here, A large negative value of T(a,b) is produced 

from the WT integral. The third figure (Figure 3.5c) shows the midpoint between the 

last two figures. It shows the position of the wavelet with respect to the signal produces 

a zero value of T(a,b) (Addison, 2017). 
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Figure 3.5: Wavelet Transform of Sinusoidal Signal. 

The impacts of using a smaller a scale on the transform are shown in Figure 3.5d. it is 

obviously the negative and positive parts of the wavelet superimposed with almost the 

same parts of the signal which produces approximately zero value of T(a,b). The same 

thing occurs in Figure 3.5e when setting a with a large value. That concludes, when 

the wavelet function approaches to zero width it will make T(a,b) tend to be zero. 

T(a,b) also tends to be zero when the wavelet covers repetitive negative and positive 

parts of the signal. Thus, a very small value of the WT means that the wavelet function 

has either very small or very large width compared with the signal. Usually, this 

transform uses continuous range of a and b instead of arbitrary dilations and translation 

parameters (Addison, 2017). 

 

3.2.2 Inverse WT 

There is an inverse wavelet transform like Fourier transform and it is defined as 
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𝑥(𝑡) =
1
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Where Cg is the admissibility coefficient and represented as 

𝑐𝑔 = ∫
|𝜓(𝑓)|2

𝑓
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∞
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3.2.3 Discrete Wavelet Transform  

The use of a logarithmic discretization of the two scaling and translating parameters is 

a natural operation to simplify these two parameters. Also, establishing a link between 

them makes the WT so easier. To accomplish this, translation factor b is varied in 

discrete steps and with the proportional to the a scale. The form of the discretization 

wavelet is illustrated in (Addison, 2017): 

𝜓𝑚.𝑛(𝑡) =
1

√𝑎0
𝑚

𝜓(𝑎0
−𝑚𝑡 − 𝑛𝑏0)                                                                                       (5) 

 

where dilation and translation are controlled by integers m and n, a0  is the dilation 

step parameter greater than 1 and b0 is the location parameter greater than zero. 

The discrete wavelet transform of a continuous signal becomes in the following form:  

 

𝑇𝑚,𝑛 = ∫ 𝑥(𝑡)
1

𝑎0
𝑚/2

𝜓(𝑎0
−𝑚𝑡 − 𝑛𝑏0)𝑑𝑡                                                                         (6)

∞

−∞

 

where Tm,n are the discrete wavelet transform values given on a scale–location grid of 

index m,n. 

 

3.2.4 Dyadic Grid Scaling of Wavelet Transforms 

Setting a0 and b0 to 2 and 1 respectively makes the discrete wavelet parameters having 

a power of two logarithmic variations which is known as the ‘dyadic grid’ of both the 

dilation and translation. This arrangement (dyadic grid) is the most efficient and 

simplest discretization of the wavelet transform. The original signal can be 

reconstructed using orthonormal wavelet basis (ψm,n(t)) and the wavelet coefficients 

(Tm,n) so the inverse discrete wavelet transform formula is: 
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𝑥(𝑡) = ∑ ∑ 𝑇𝑚,𝑛𝜓𝑚,𝑛(𝑡)                                                                                         (7)

∞
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∞
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3.2.5 Scaling Function and Multiresolution Representation 

There are other orthonormal and dyadic functions associated with wavelet functions 

called Scaling function. The scaling function smooths the signal unlike wavelet 

function and it has the same form as the wavelet which is given by: 

 

𝜙𝑚.𝑛(𝑡) =
1

√2𝑚
𝜙 (

𝑡 − 𝑛2𝑚

2𝑚
)                                                                                              (8) 

 

The convolution of the signal with scaling function produces approximation 

coefficients and its formula is (Addison, 2017)  

𝑆𝑚,𝑛 = ∫ 𝑥(𝑡)𝜙𝑚,𝑛(𝑡)𝑑𝑡
∞

−∞

                                                                                                  (9) 

 

The approximation coefficients and the wavelet (detail) coefficients can reconstruct a 

signal x(t) using the following equation: 

 

𝑥(𝑡) = ∑ 𝑆𝑚0,𝑛𝜙𝑚0,𝑛 + ∑ ∑ 𝑇𝑚,𝑛𝜓𝑚,𝑛(𝑡)

∞

𝑛=−∞

𝑚0

𝑚=−∞

∞

𝑛=−∞

                                                  (10) 

 

This equivalent to the following equation  

𝑥(𝑡) = 𝑥𝑚0
(𝑡) + ∑ 𝑑𝑚(𝑡)

𝑚0

𝑚=−∞

                                                                                          (11) 

From this equation, it is easy to show that 

 

𝑥𝑚−1(𝑡) = ∑ 𝑆𝑚,𝑛𝜙𝑚,𝑛(𝑡)

∞

𝑛=−∞

+ ∑ 𝑇𝑚𝜓𝑚,𝑛(𝑡)

∞

𝑛=−∞

                                                       (12) 

 The last equation tells us that at arbitrary scale (m), we can add both the signal 

approximation and detail coefficients to the signal approximation at higher resolution 



 

24 

 

(i.e. at a smaller scale m − 1). This is called a multiresolution representation (Addison, 

2017). 

3.2.6 Fast Wavelet Transform FWT 

At the end of the 1980s, Stéphane Mallat proposed a fast algorithm of decomposition-

reconstruction for the discrete wavelet transform. He thus established the link between 

the traditional filter banks in signal processing and the orthonormal wavelet bases. This 

algorithm is remarkably simple and it has linear complexity with the size of data which 

means, it is lower than the fast Fourier transform. This aspect is obviously crucial for 

applications (Misiti, Misiti, Oppenheim, & Poggi, 2007). 

This algorithm is a fast algorithm for machine computation, like the Fast Fourier 

Transform (FFT(. It transforms the vector into a numerically different vector of the 

same length. Also, like the FFT, the DWT is invertible and orthonormal. DWT has a 

hierarchical set of “wavelet functions” that satisfy certain mathematical criteria 

(Daubechies, 1992; Mallat, 1989b) and are all translations and scaling of each other. 

Unlike FFT, the base functions are sins and cosines. 

3.2.6.1 Fast wavelet decomposition  

Fast wavelet transform (FWT) is a multiresolution analysis that uses a pair of 

quadrature mirror filters defined from the underlying wavelet function. This algorithm 

is the equivalent version of DWT but faster than it. In this process, the signal is split 

into two components, the first contains the low-frequencies or “approximation 

coefficients” information and the other contains the high-frequencies or “detail 

coefficients” information. The two components have half of the original signal length 

(Olkkonen, 2011). These two coefficients can be calculated using equations 13 & 14: 

𝐶𝑗(𝑘) = ∑ ℎ𝑑(𝑚 − 2𝑘)

𝑚

𝑐𝑗+1(𝑚)                                                                                   (13) 

𝑑𝑗(𝑘) = ∑ 𝑔𝑑(𝑚 − 2𝑘)

𝑚

𝑐𝑗+1(𝑚)                                                                                   (14) 

where c and d are the scaling and details coefficients. These two coefficients can be 

computed according to equations 13 & 14 at different levels of scale by convolving 

the expansion coefficients at scale j+1 by low and high pass filters (hd(n) and gd(n) 

respectively) then down-sampling by 2 to give the scaling (approximation ) and details 

coefficients at the next level of j. Figure 3.6 illustrates the function of equations 13 and 

14 (FWT) (Burrus, Gopinath, & Guo, 1998) (Fugal, 2009).  
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Figure 3.6: Single Level Fast Wavelet Transform (Burrus, Gopinath, & Guo, 

1998). 

This procedure can be repetitively repeated on the scaling coefficients and this method 

is called multiresolution FWT (Burrus, Gopinath, & Guo, 1998) (Fugal, 2009). 

Figure 3.7 shows the two decomposition stages of FWT. This multiresolution 

decomposition of a signal into its scale and detail components is useful for data 

compression, feature extraction, and denoising (Rao & Yip, 2001) 

 

 

 

 

 

 

Figure 3.7: Two Stage Decomposition of FWT (Burrus, Gopinath, & Guo, 1998). 

3.2.6.2 Fast wavelet reconstruction   

The original signal can be reconstructed from a combination of the scaling and details 

coefficients at a coarse resolution. Equation 15 represents the synthesis equation of 

FWT. In signal synthesis, the coarse two coefficients (scale and details coefficients) 

are first upsampled by inserting zeros between its coefficients and then filtered by two 

reconstruction filters (hs(n) and gs(n) which are low and high pass filters respectively). 

This operation also can be repetitively repeated from coarse level (j-1) to fine level j 

many times to perform multiresolution FW synthesis.  Figure 3.8 shows two stages of 

FW synthesis (Burrus, Gopinath, & Guo, 1998) (Fugal, 2009).   

 

𝐶𝑗+1(𝑘) = ∑ 𝐶𝑗(𝑚)ℎ𝑠(𝑘 − 2𝑚) + ∑ 𝑑𝑗(𝑚)𝑔𝑠(𝑘 − 2𝑚)                                      (15)

𝑚𝑚
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Figure 3.8: Two Stages of FW Synthesis (Burrus, Gopinath, & Guo, 1998). 

3.2.7 Thresholding and Denoising  

There are a lot of de-noising methods, such as time domain analysis, spectrum analysis, 

adaptive filtering, wavelet transform de-noising. Among them, the de-noising method 

based on wavelet thresholding has a good treatment effect. This method has a simple 

and small amount of calculation and it is applied more widely. Hard-threshold and 

soft-threshold method are the common de-noising methods based on wavelet 

threshold. These two methods are magnitude thresholding which is normally carried 

out to smooth the data, remove noise from a signal or to partition signals into two or 

more (and not necessarily noisy) components. They separate out the behavior of 

interest from the signal through the reduction or complete removal of the selected 

wavelet coefficients in order. Their behavior is shown schematically in Figure 3.9 

(Addison, 2017) (Golilarz & Demirel, 2017). 

 

Figure 3.9: Schematical Behavior of Magnitude Thresholding. 

In hard thresholding, wavelet coefficients will be kept if their absolute values are larger 

than the threshold value, otherwise, they will be set to zero. In soft thresholding, all 

wavelet coefficients will be shrunk by the threshold value, if their absolute values are 

dj-1 

cj-1 
cj 2 

2 
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larger than threshold value otherwise the coefficients will be zero. Hard and soft 

thresholding equations are given by (16) and (17), respectively (Yang, Deng, Chen, & 

Xu, 2014). 

 

𝑊𝑖
ℎ𝑎𝑟𝑑 = {

0                                      |𝑊𝑖| < 𝜆

𝑊𝑖                                       |𝑊𝑖| ≥ 𝜆    
                                                           (16) 

 

 

𝑊𝑖
𝑠𝑜𝑓𝑡

= {
0                                      |𝑊𝑖| < 𝜆

𝑠𝑖𝑔𝑛(𝑊𝑖)(|𝑊𝑖| − 𝑇)       |𝑊𝑖| ≥ 𝜆    
                                                           (17) 

 

where 𝜆 is the threshold value and W are the wavelet coefficients. Figure 3.10 shows 

both hard and soft thresholding schematic diagram relationship between the original 

and thresholded coefficients (Addison, 2017). Nowadays, choosing a proper threshold 

value to remove noisy coefficients from the signal to produce a clean version of the 

signal is a crucial demand for many researchers (Golilarz & Demirel, 2017).  

 

Figure 3.10: Relationship Between The Original Wavelet Coefficient And The 

Thresholded Coefficients. 

3.3 Feature Extraction  

Feature extraction techniques usually convert signal or data to reduce its dimension 

and to extract useful information from the data (Muhammad, Nauman, Hubert, & 

Shum, 2017). Data can be characterized according to its central tendency and 

dispersion. mean, median, mode, and midrange are the methods that are used to 

measure data central tendency while quartiles, interquartile range (IQR), and variance 
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are used to measure data dispersion. These statistical methods provide a helpful 

understanding of data distribution (Jiawei & Micheline, 2006).  

3.3.1 Correlation 

Correlation is a tool to measure the similarity degree between two signals. It has 

enormous applications such as sonar, radar, geology ..etc. Let x(n) and y(n) be two 

different signals so cross-correlation (rxy) of these two signal can be calculated as: 

𝑟𝑥𝑦[𝑚] = ∑ 𝑥[𝑛]𝑦[𝑛 − 𝑚]        𝑚 = 0, ±1, ±2, ….                                                   (18)

∞

−∞

 

where m is the time shift (lag) parameter and the subscripts xy of cross-correlation 

indicates the sequences being correlated. That's in equation 18, only the signal y(n) is 

shifted from right to left with respect to x(n) signal when m changes from positive to 

negative. When x(n)=y(n) which is a special case, the operation is called 

autocorrelation. Autocorrelation is defined as (Proakis, 2006): 

𝑟𝑥𝑥[𝑚] = ∑ 𝑥[𝑛]𝑥[𝑛 − 𝑚]        𝑚 = 0, ±1, ±2, ….                                                 (19)

∞

−∞

 

 In the case of a finite sequence (M) of x(n) and y(n), the cross-correlation is expressed 

as:  

𝑟𝑥𝑦[𝑚] = ∑ 𝑥[𝑖]𝑦[𝑖 − 𝑚]

𝑁−|𝑚|−1

𝑖=0

                                                                                      (20) 

where 𝑚 = [−(𝑁 − 1), −(𝑁 − 2), … . .0,1,2 … (𝑁 − 1), (𝑁 − 2)] and rxy[m] has 2M-

1 samples, if x[n] and y[n] have equal number of samples (M) (Al- Dabag & Ozkurt, 

24 October 2018) (Proakis, 2006) .  

3.3.2 Measuring the Central Tendency 

Average or arithmetic mean or simply mean is a numerical tool to measure the data 

center. Its formula is  

 

�̅� =
1

𝑁
∑ 𝑥𝑖

𝑁

𝑖=1

                                                                                                                       (21) 

where 𝑥𝑖 are the N data observations. Although, this method not always the best 

method for measuring the center of data because of its sensitivity to the outliers 

(extreme values).  
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Median is another and better tool to measure the center of data. To evaluate it, the data 

has to be sorted first. Then, if the data length is odd, the middle value of the sorted data 

is its median. Otherwise (i.e., if the data length is even), the average of the two middle 

values represents the data median. 

Mode also another method to evaluate the central tendency of the data. The mode value 

is a value that occurs most frequently in the data set. It is possible to have more than 

one mode value in a dataset. On the other hand, there may be no mode in the dataset, 

if each element occurs only one (Jiawei & Micheline, 2006).  

 

3.3.3 Measuring the Dispersion of Data 

The range of a set is defined as the difference between the largest and smallest values. 

The center, shape, and spread of data distribution can somewhat be indicated by the 

quartiles, including the median. The first quartile (Q1) is equivalent to the median of 

the first half of the sorted data while the third quartile (Q3) represents the median of 

the second half of the sorted data. The middle point between Q1 and Q2 is called 

interquartile range (IQR). The shape distribution of the data set can be summarized 

with only five numbers which are the smallest, Q1, median, Q3, and the largest values 

of the data set (Jiawei & Micheline, 2006). 

Variance and Standard Deviation are other tools to evaluate the data dispersion. The 

variance of the data set with N observations can be calculated by 

𝜎2 =
1

𝑁
∑(𝑥𝑖 − �̅�)2                                                                                          (22)

𝑁

𝑖=1

 

The standard deviation 𝜎 is the square root of the variance 𝜎2. Standard deviation 𝜎 

qualifies how much the members of a dataset differ from the mean value for that 

dataset (Jiawei & Micheline, 2006). 

 

3.4 Feature Selection  

A feature selection or reduction process can be used to eliminate the redundant terms 

in the dataset. This will reduce the set of terms to be used in classification, thus 

improving both efficiency and accuracy (Jiawei & Micheline, 2006). A smaller amount 

of features is always preferable because it yields: higher speed, higher mobility, and 
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lower the costs of implementing the BCI, and above all—higher comfort for its user 

(Izabela, 2014). Two models of feature selection exist depending on whether the 

selection is coupled with a learning scheme or not. The first one, the filter model, 

which carries out the feature subset selection and the learning (e.g., classification, 

clustering) in two separate phases, uses a measure that is simple and fast to compute. 

The second one, the wrapper method, which engages the feature selection with the 

learning algorithms in the same process to measure the accuracy of the extracted 

features (Talbi, 2009). 

Optimized, randomized, and heuristical search algorithm are three different methods 

that can be used for searching the feature subset. Randomized algorithms have two 

significant properties or at least one of them which are the fastest and simplest 

algorithms. These two properties make the randomized search algorithm suitable for 

many applications. These algorithms provide a magic solution for searching into huge 

feature search space. Unlike deterministic search algorithms, it is often used to avoid 

falling into local optima (Huan & Hiroshi, 2008). For these reasons, we have used the 

genetic algorithm for feature selection. In the next section, genetic algorithms will be 

summarized briefly. 

3.4.1 Genetic Algorithms (GA) 

Genetic algorithms are a general purpose mechanism for randomized search. There are 

four key aspects to their use: encoding, population, operators, and fitness. Figure 3.11 

summarizes the genetic algorithm into four steps. The individual states in the search 

space (chromosome) must be first encoded into some string-based format, typically 

bit-strings (Huan & Hiroshi, 2008).  The major steps of GA are illustrated in the 

following steps: 

 

Step 1: initiate: chromosome length which represents the problem variable domain, 

the population size (N), the mutation probability pm, and the crossover probability pc. 

Step 2: To evaluate each individual performance, fitness function has to be defined. 

The GA depends on this function for selecting the parent chromosomes during 

reproduction. 

Step 3: Random initialization of N chromosomes population: 

 𝑥1, 𝑥2, … . , 𝑥𝑁 

Step 4: evaluate each individual chromosome using the fitness function. 
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Step 5: from the current population, mating parent chromosomes are selected 

proportionally with their fitness cost. So, the lowest fitted chromosome has the lowest 

chance to be selected for mating and vice versa.   

Step 6: apply two GA operators (crossover and mutation) on the selected parent pairs 

to create a new offspring chromosome pairs. 

Step 7: reserve the created offspring chromosomes in the new population. 

Step 8: Repeat Step 5 until the size of the new population is equal to population size 

(N). 

Step 9: Replace the new offspring population instead of the parent chromosome 

population. 

Step 10: Go to Step 4, and repeat the process until the termination criterion is satisfied. 

 

Since, the population fitness may remain stable during the search progressing so the 

common solution is to set the termination condition with specific number of 

generations. If the GA solution does not satisfy some criteria, the GA could be restarted 

again (Michael, 2005).    

 

Figure 3.11: Steps of Genetic Algorithm (Talbi, 2009). 

3.4.1.1 Selection Methods 

The selection methods have a main principle which is to choose the better individual 

that has higher fitness. Such a selection will lead to drive better solutions. However, 
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this doesn't mean that the worst individuals has no chance to be selected. The most 

popular selection methods are roulette wheel selection and tournament selection. 

 In Roulette wheel selection, suppose each individual has a space in a pie graph 

proportional to its fitness, see Figure 3.12. The outer roulette wheel will spin N times 

(the size of the population) to select N individuals.  Each individual with a large space 

in the pie has more opportunity to be chosen.  

 

Figure 3.12 : Roulette Wheel Selection (Talbi, 2009). 

 

In tournament selection, a specific size of tournament group (k) is to be set by the user. 

First, K individuals are selected randomly and then the best individual within this 

group will be chosen. Tournament selection repeats this procedure N times to generate 

a complete population. Figure 3.13 illustrates this selection method (Talbi, 2009).   

 
Figure 3.13: Tournament Selection (Talbi, 2009). 

3.4.1.2 Crossover 

Crossover operator tries to create a new individual that are better than his parents. This 

is done if it inherits the best features from each of them. The occurrence probability of 

this operator is defined by the user. The crossover has different strategies to operate 

which includes: 
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• One point: a one crossover point is randomly selected within a chromosome then the 

two parent chromosomes interchange their segments at this point to produce two new 

offspring. See Figure 3.14. 

• Two points: a similar procedure is done, like one point crossover, but two crossover 

points are randomly selected. 

• Uniform: the interchanging occurs randomly at the gene level rather than at the 

segment level to mix the parent chromosomes and it is also done with some probability 

to generate the new offspring (Silva, Bellon, & Boyer, 2005). 

 

Figure 3.14: One Point Crossover (Michael, 2005). 

3.4.1.3 Mutation 

Mutation operator toggles a randomly selected bit in an individual string with a low 

probability. Figure 3.15 illustrates the mutation operation. This operator prevents the 

algorithm from trapping into a local optimum. It may lead the algorithm to significant 

improvement on its search, but more often mutation operator has harmful effects so it 

applied at a low probability (Michael, 2005). 

 

Figure 3.15 : Mutation Operation (Michael, 2005). 

  



 

34 

 

  

MACHINE LEARNING AND PARALLEL PROCESSING 

4.1 Introduction  

Scientists try to understand the way that human beings think and make machines act 

like humans. Many algorithms has been proposed to simulate human intelligence to 

make machines solve problems and make decisions. The crucial demands for many 

machine learning applications are accuracy and speed. Usually, these algorithms have 

huge complexity so it is hard to be executed using an ordinary machine (sequential 

computers). Parallel processing and programming provides a suitable solution for 

these kinds of algorithms.  

  

This chapter consists of two parts. The first one describes the most popular two 

machine learning algorithms which are the neural network (multilayers perceptron 

networks with backpropagation learning) and support vector machines as well as its 

evaluation methods. The second part summarizes one of the most famous parallel 

processing technique which is machine pipelining. It also gives a brief description of 

concurrent processing techniques. 

 

4.2 Machine Learning Algorithms for Classification 

This section will provide a brief description of the evaluation methods to evaluate the 

performance of a classifier. It also describes the proper situation suited for each 

evaluation method. After that, it will provide a brief description of the most two 

popular classifiers used in this thesis which are multilayer perceptron (MLP) and 

Support vector machine (SVM). 

 

4.2.1 Measuring the Classifier Accuracy  

The classifier performance evaluation is based on the counting the test tuples that 

correctly and incorrectly predicted by the classifier. The confusion matrix summarizes 

this evaluation. Table 4.1 shows the binary classification problem confusion matrix. 

The positive class is normally the utmost class to the designer and the true positive 
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(TP) is the number of correctly predicted data tuples as a positive class while the false 

negative (FP) is the number of the wrongly predicted data tuples as a positive class. 

True negative (TN) represents the number of the data tuples that are correctly predicted 

as negative class while the false negative (FN) depicts the number of the incorrect data 

tuples predicted as negative class. Although, the confusion matrix gives detail 

information about the classifier performance but summarizing this information with a 

single number would make it easy and convenient for comparing it with the other 

model performance. There are more than one method to perform this job. Accuracy is 

one of these methods which is the percentage of the data tuples that are predicted 

correctly (Tan, Streinbach, & Vipin, 2005): 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
=

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
              (1) 

      

Table 4.1: A Confusion Matrix for A Binary Classification Problem.  

  Predicted class 

  Positive class Negative class 

Actual class Positive class TP FN 

Negative class FP TN 
 

The sensitivity and specificity measurement are other methods to summarize the 

confusion matrix. Sensitivity (also called recall rate [RR] or true positive rate 

[TPR]) is the ratio of positive tuples that are predicted correctly, see equation 2. 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑙𝑦 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑎𝑠 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑐𝑙𝑎𝑠𝑠 

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑐𝑙𝑎𝑠𝑠 
=

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (2) 

 

Specificity (true negative rate [TNR ]) is the ratio of negative tuples that are 

predicted correctly, see equation 3 (Awad & Khanna, 2015) (Tan, Streinbach, & Vipin, 

2005).  

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑎𝑠 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑐𝑙𝑎𝑠𝑠

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑐𝑙𝑎𝑠𝑠
=

𝑇𝑁

𝑇𝑁 + 𝐹𝑃
(3) 

4.2.2 Evaluating the Performance of a Classifier   

There are some techniques to verify classifiers performance. These techniques 

randomly sample a given data into partitions for assessment a classifier accuracy, e.g. 

holdout, random subsampling, cross-validation, and the bootstrap. It increases the 
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overall computation time but using such techniques are useful to select an effective 

model.   

 

4.2.2.1 Holdout Method and Random Subsampling 

The holdout method splits the data randomly into two sets (training set and testing set). 

Typically, a given data is sampled randomly and partitioned into three partitions. 

Training set has two-thirds of the partitioned data and the other one-third is allocated 

for the testing set. Training the classifier is done by the training set while evaluating 

its performance is done by the testing set. Figure 4.1 illustrates the holdout estimation 

method. Random subsampling is similar to holdout method except it repeats running 

the method k times. The overall classifier accuracy is estimated by taking the average 

of the k times accuracies (Jiawei & Micheline, 2006).  

  

 

 

Figure 4.1: Holdout Method for Estimating Classifier Accuracy (Jiawei & 

Micheline, 2006). 

4.2.2.2   Cross-validation 

This method randomly samples the data into k subset (folds) in which, each element 

in a fold is not included in other folds. Each fold has approximately equal size. The 

classifier estimation is performed k times. In each estimation, one of the fold is used 

for testing and the others are used for training. The model accuracy estimation is equal 

to the average of the k iterations accuracies. This procedure (cross-validation) is 

performed whenever the available dataset is limited. 

Leave-one-out cross-validation is equivalent to k-fold cross-validation but the k is the 

number of instances (elements) in the dataset. The estimation of the model 

performance is performed in a similar way as k-fold cross validation. leave-one-out is 

used to estimate a classifier performance whenever the dataset is so limited (Jiawei & 

Micheline, 2006). 
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4.2.3 Multilayer Neural Networks 

Multilayer neural network is also called multilayer perceptron. It is a feedforward 

network so, the data flows in one direction from the input layer to the output layer. 

Typically, the network is constructed from two computational layers and the input 

layer. The computational layers are the output layer and at least one hidden layer. 

Figure 4.2 shows a multilayer perceptron network  (Michael, 2005)  .  

 

 

Figure 4.2: Mulilayer Perceptron with Hidden Layers. 

Learning these networks needs two aspects to be known which are the learning 

algorithm and the structure of the network. The learning algorithm updates the 

connection weights of the computation layers. There is a relatively simple learning 

algorithm for a predefined neural network. This algorithm is known as 

backpropagation. The following section describes this algorithm.  

4.2.3.1 Backpropagation algorithm  

The most popular learning algorithm among hundreds of different algorithms is the 

backpropagation algorithm. This algorithm has two phases. The first, the neural 

network input layer is supplied by a training set. The multilayer perceptron forwards 

the training set from layer to layer until reaching the output layer to generate the output 

pattern. In the second phase, the output pattern is compared with the desired output to 

calculate the output error. This error (if exists) is then backwarded from the output 

layer to the input layer. Through error backwarding, the weights of the network are 

updated. This procedure is repeated until the error is minimized to a specific range. 

Figure 4.3 illustrates the backpropagation learning algorithm (Michael, 2005). 
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To illustrate the back-propagation learning algorithm, consider the neural network 

consists of three-layer as shown in Figure 4.3. The neuron indices of the input, hidden 

and output layers are i, j, k respectively so the back-propagation training algorithm is: 

 

Figure 4.3: Three layer backpropagation neural network. 

Step 1: At first iteration 𝑝 = 1, weights are initialized to small random values. 

Step 2: For every training pair (training input xi, desired output ydi, where i=1,…,n), 

do step 3-4 

Step 3: Forward the input data from the input layer to output layer. 

a) The outputs of the neurons in the hidden layer are evaluated as: 

𝑦𝑗(𝑝) = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 [∑ 𝑥𝑖(𝑝) ∗ 𝑤𝑖𝑗(𝑝) − 𝜃𝑗

𝑛

𝑖=1

] 

where sigmoid is the sigmoid activation function and n is the number of 

the input of the jth neuron in the hidden layer.  

(b) The outputs of the neurons in the output layer are also evaluated as: 

𝑦𝑘(𝑝) = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 [∑ 𝑥𝑗𝑘(𝑝) ∗ 𝑤𝑗𝑘(𝑝) − 𝜃𝑘

𝑚

𝑗=1

] 

where m is the number of inputs of kth output neuron in the output layer. 

Step 4:  update the network Weights (backward error)  

(a) For each neuron in the output layer, evaluate its error as: 

𝛿𝑘(𝑝) = 𝑦𝑘(𝑝) ∗ [1 − 𝑦𝑘(𝑝)] ∗ 𝑒𝑘(𝑝) 

where 
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𝑒𝑘(𝑝) = 𝑦𝑑𝑘(𝑝) − 𝑦𝑘(𝑝) 

The evaluation of the weight corrections is done as: 

∆𝑤𝑗𝑘(𝑝) = 𝛼 ∗ 𝑦𝑗(𝑝) ∗ 𝛿𝑘(𝑝) 

The weights of the output neurons are updated as: 

𝑤𝑗𝑘(𝑝 + 1) = 𝑤𝑗𝑘(𝑝) + ∆𝑤𝑗𝑘(𝑝) 

(b) For each neuron in the hidden layer, evaluate its error: 

𝛿𝑗(𝑝) = 𝑦𝑗(𝑝) ∗ [1 − 𝑦𝑗(𝑝)] ∗ ∑ 𝛿𝑘(𝑝)

𝑖

𝑘=1

𝑤𝑗𝑘(𝑝) 

The evaluation of the weight corrections is done as: 

∆𝑤𝑖𝑗(𝑝) = 𝛼 ∗ 𝑥𝑗(𝑝) ∗ 𝛿𝑗(𝑝) 

The weights of the hidden neurons are updated as: 

𝑤𝑖𝑗(𝑝 + 1) = 𝑤𝑖𝑗(𝑝) + ∆𝑤𝑖𝑗(𝑝) 

Step 5: Increase iteration p by one, until the specified error is satisfied go back to Step 

2 (Michael, 2005) (Fausett, 1994). 

 

This algorithm modifies the weights of the network based on one of the optimization 

methods. The simplest optimization method is the gradient descent method. The 

Newton algorithm and Levenberg-Marquardt algorithm are other optimization 

methods which are developed based on the gradient descent method (Simon Haykin, 

2009). Unfortunately, this algorithm converges slowly and lacks optimality (Simon 

Haykin, 2009).   

4.2.4 Support Vector Machines 

The SVM is a supervised learning classifier. It is formulated to classify a nonlinear 

binary problem. The main objective of SVM is to construct an optimal separating plane 

(hyperplane) that has a maximum separation margin between the two classes. To 

understand the basic concepts of SVM, let's consider to classify a simple linearly 

separable training set using SVM.  This data set is formed as  

{(𝑥𝑖, 𝑑𝑖)}𝑖=1
𝑁                                                                                                                               (4) 

where xi are N-instances vector and di are its corresponding target output and di are 

represented as 
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𝑑𝑖 = {
+1         𝑖𝑓    𝑥𝑖  𝑖𝑛 𝑐𝑙𝑎𝑠𝑠 1
−1          𝑖𝑓   𝑥𝑖   𝑖𝑛 𝑐𝑙𝑎𝑠𝑠 2

                                                                                      (5) 

There are infinite hyperplanes for linearly separating these two classes but only one of 

them represents the optimal hyperplane. This hyperplane has distance as maximum as 

possible between itself and the closest points of the two classes. The optimal 

hyperplane can be represented as: 

𝑤𝑥 + 𝑏 = 0                                                                                                                             (6) 

where w is the tuning weight vector, b is the bias and x is the input vector. This 

equation represents the decision surface and can be found such that it has wx+b≥+1 

for positive class and it has wx+b≤-1 for the negative class. The combination of these 

two equations is: 

𝑑𝑖(𝑤𝑥 + 𝑏) − 1 ≥ 0                                                                                                             (7) 

The distance from the optimal hyperplane to the origin is (||b||)/(||w||), where ||w|| is the 

Euclidean norm of w. Figure 4.4 shows the optimal hyperplane with its support vectors 

(Chandaka, Chatterjee, & Munshi, 2009).  

 

Figure 4.4: The SVM for The Linearly Separable Case. 

The data points that, satisfy wx+b=±1, constitute the support vectors. These points are 

the closest points to the optimal hyperplane and represent the most difficult points to 

be classified. To accomplish this, the optimal hyperplane parameters (w0 and b0) have 

to satisfy a maximum margin of separation for a given training samples (eq. 4). 2/(||w||) 

is the distance between the two support vectors (Chandaka, Chatterjee, & Munshi, 

2009). SVM target is to maximize this distance by the following optimization problem  
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𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 {
1

2
‖𝑤‖2}                                                                                                            (8) 

Under the constraints of (7) 

However, in many empirical situations, the datasets are not linearly separable. 

Therefore, the constraint (7) need to be modified to make the algorithm more flexible. 

So, all points that fall on the wrong margin are considered to be an error points. Hence, 

a new set of variables is added to the optimization problem and these variables are 

called slack variable (see Figure 4.5 ).  

 

Figure 4.5: The Concept of The Slack Parameter. 

The modified optimization problem becomes: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 {
1

2
‖𝑤‖2} + 𝐶 ∑ 𝜉𝑖

𝑁

𝑖=1

                                                                                          (9) 

𝑑𝑖(𝑤𝑥 + 𝑏) ≥ 1 − 𝜉𝑖     𝑎𝑛𝑑 𝜉𝑖 ≥ 0  𝑖 = 1, … , 𝑁                                                           (10) 

The ∑ 𝜉𝑖  is the maximum error bound of the training errors (Sanei & Chambers, 2007). 

The variable C tunes the error bound for the misclassified training samples. A small 

value of C may lead an inappropriate large fraction of support vectors while a large 

value of C may cause overfitting (Foody & Mathur, 2004).    

An alternative solution for non-separable dataset is by using a kernel function. These 

function project the training data into higher-dimensional space to separate them 

linearly (i.e. linear hyperplane separator). This converts a simple linear classifier into 

a powerful nonlinear classifier by using kernel functions. Some of the popular SVM 

kernel functions are; Polynomial, Exponential radial basis function, Multilayer 

perceptron, and Gaussian radial basis function (Sanei & Chambers, 2007). 
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4.3 Basic Pipeline Concepts 

Pipelining is an implementation technique to improve process execution rate by 

overlapping its execution with other processes. It makes use of parallelism that exists 

among the actions needed to execute a process. Normally, every process can be 

accomplished through the execution of different distinct steps. In a non pipeline 

system, these steps must be accomplished before the next process can be issued while 

in a pipelined system, overlapped fashion is used to execute successive processes, see 

Figure 4.6.  

 

Figure 4.6: Pipeline Concepts (a) Pipeline Timing Diagram (b) Non Pipeline Timing 

Diagram. 

 To construct a pipeline, a process has to be segmented into a sequence of subtasks. 

Each subtask can be processed by a specialized processor and these processors (stages) 

operate concurrently with others in the pipe. This structure (pipeline) gives facility to 

process successive tasks in an overlapped fashion (Kai & Faye, 1984). It simulates an 

assembly line. There are many steps in an automobile assembly line, each contributing 

something to the construction of the car. Each step operates in parallel with the other 

steps but on a different car. In a computer pipeline, each step in the pipeline completes 

a part of a process. Like the assembly line, different parts of different processes are 

manipulated in parallel on each steps of the pipe. Each of these steps is called a pipe 

stage or a pipe segment. The stages are connected sequentially to form a pipe. 

 The throughput of an automobile assembly line is defined as the number of complete 

cars exit the assembly line per hour. Likewise, the process pipeline throughput is 
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measured by how often a process exits the pipeline. All the pipe stages must proceed 

synchronously because the pipe stages are hooked together, just like in an assembly 

line so processor cycle is the time required to move a process one step through the 

pipeline. For this reason, the slowest pipe stage determines the processor cycle, similar 

to an auto assembly line the advancing time in the line is restricted to the longest step. 

Balancing the processing time of pipeline stages is the goal of the pipeline designer. If 

the stages are perfectly balanced, then the time per process on the pipelined processor 

is measured by  

𝑝𝑖𝑝𝑒𝑙𝑖𝑛𝑒 𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 =
Time per process on unpipelined machine

Number of pipe stages
                 (11) 

 

The number of pipe stages determines the amount of speedup from pipelining for ideal 

conditions, just as an assembly line with n stages can ideally manufacture cars n times 

faster than nonpipeline system. However, perfectly balanced stages do not exist; 

furthermore, some overheads are involved while implementing the pipeline. Thus, the 

time per process on the pipelined processor can be close but it will not have its 

minimum possible value (John & David, 2012) . 

 

4.4 Concurrency and semaphore 

The simple basic principle of the semaphore is two or more processes can cooperate 

with each other using simple signals by which a process can be forced to stop at a 

specified condition until it has received an appropriate signal. Suitable structure of 

signals can satisfy any complex coordination requirement. Special variables called 

semaphores are used for signaling (William, 2012).  

 

4.4.1 The Producer/Consumer Problem 

In the computer science viewpoint, a classical example of the multi-process 

synchronization problem is the producer-consumer problem. Designing and 

developing of the software has an important and familiar problem which is the 

Synchronization problem. Synchronization is needed to coordinate multiple processes 

or threads to access the critical resource (Yang, Jingjun, & Dongwen, 2009). 
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In the producer/consumer problem, some type of data (records or characters) are 

produced by one or more producers and these data are placed into a buffer.  These 

items are taken out from the buffer by a single consumer. The system has to prevent 

the conflict of buffer operations. That is, accessing the buffer at any time has to occur 

by one agent (producer or consumer). It also makes sure that the producer can't add 

data into a full buffer and the consumer can't read data from an empty buffer (William, 

2012) (Yang, Jingjun, & Dongwen, 2009).  

The solution for the full buffer is to make the producer go to sleep until there is a room 

in the buffer. In the same way in an empty buffer, the consumer goes to sleep until the 

producer puts data into the buffer which makes the consumer wake up to consume the 

data (Yang, Jingjun, & Dongwen, 2009). Figure 4.7 shows the solution for the 

producer/consumer problem (Silberschatz, Galvin, & Gagne, 2018). 

 

  
A b 

Figure 4.7: Producer/Consumer Pseudo Code, (a) Producer Code (b) Consumer 

Code. 
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OFFLINE METHOLOGY AND RESULTS 

5.1 Introduction 

As discussed earlier a BCI system is constructed from stages such as data acquisition, 

preprocessing, feature extraction/selection and classification. The aim is to distinguish 

the motor discriminative features and extract it from the EEG signal. Researchers used 

a lot of methods for preprocessing stage. Some of them preferred to use a spectral 

method like Fourier transform or wavelet transform. Others used a temporal method 

such as filtering or even used a complex spatial method such as Independent 

Component Analysis (ICA) or Principal Component Analysis (PCA). 

  

In real-time BCI system, reliable statistical machine learning schemes are required for 

modeling relationships between cognitive movements and high-dimensional neuronal 

features. Such kinds of methods have to be capable of operating efficiently with the 

fastest computational time (Tim, et al., November 2015). 

 

Since, the aim of the thesis is trying to construct a real time BCI, so the tools used in 

this thesis have to be as simple as possible.  The method simplicity has a fast response 

time which is a crucial demand in real time systems. This chapter focuses on offline 

BCI system to determine a proper preprocessing scheme and a robust statistical method 

to extract reliable EEG motor features. It also tries to determine the suitable classifier 

between the two most popular classifiers (MLP and SVM). First, a brief description 

will be provided for the EEG datasets used in this thesis. Then, the proposed method 

will be explained and the results will be given. Also, a second enhanced method with 

a detail exploration of its performance and feature selection procedure with its results 

will be introduced.  

The programming language used to extract the results of this chapter is MATLAB 

R2015b operated on Lenovo laptop E550, core I7 with operation system Microsoft 

Windows 10.     
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5.2 EEG Datasets 

This section provides a brief description of the dataset used in this thesis. It will give 

some details about important issues like number of the participated subjects, EEG 

tasks, number of EEG trials ..etc.      

5.2.1 EMOTIV Dataset 

Real right/left finger movements were performed in this dataset to acquire EEG 

signals. Figure 5.1 illustrates the movement procedure. Thirteen subjects participated 

to perform these two tasks. Before data acquisition, each subject filled and signed a 

consent form explaining the aim and the experimental procedure. EEG signals are 

acquired using a standard EMOTIV EPOC+ headset.  EmotivXavierControlPanel 

software provided by EMOTIV Company was used for acquiring the EEG signal with 

sampling rate 128Hz. Microsoft Powerpoint also used to provide auditory stimuli. In 

each session, the subject relaxed in an armchair with closed eye listening to the 

auditory stimuli. These stimuli informed the subjects to start and stop their fingers.  

The duration of each movement was six seconds while the resting duration in between 

had different durations. Four movements were performed in each session. So, the size 

of the dataset is 13 subjects x 2 task x 4 trials x 14 channel x 768 sample.  Figure 5.2 

shows a sample of three seconds for EMOTIV dataset.  

 

  

Figure 5.1: EMOTIV Dataset Real Finger Movements. 
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Figure 5.2: A Sample of EMOTIV Dataset  

5.2.2 BCI Competition III Data set IVa 

University Medicine Berlin provides EEG dataset called Data set IVa. This dataset is 

one of the different datasets uploaded to the internet under the name BCI Competition 

III. The aim of publishing this dataset was to evaluate the signal processing and 

classification methods used in BCI and compare its results with the previous 

competition datasets. In this dataset, five healthy subjects participate to acquire motor 

EEG imaginary signals. Three different imaginary tasks are recorded which are 

right/left hand and left foot imaginary movement. Only right hand and left foot 

movements were released in the website. The subject sat in a comfortable armchair 

staring on a screen in front of him and relaxing their arms on the arms of the chair.  

The subject starts to perform the predefined imaginary movement whenever a visual 

cue appeared on the screen. The cues presentation was randomly suspended by periods 

from 1.75 to 2.25 s to provide relaxation intervals for the subjects. 280 are the total 

number of trials recorded from the five subjects. Two sampling rates (1000Hz and 

250Hz) is provided. In this thesis, the dataset of 1000Hz sampling rate was used. A 

standard electrode placement, called extended 10-20 electrode placement system of 

118 electrodes was used to acquiring the EEG signal. Hence, the size of the dataset is 

280 trials x 2 task x 118 channels x 3000 sample. Figure 5.3 shows three seconds 

sample of 118 channel for this dataset (Müller & Blankertz, 2004).  
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Figure 5.3: A Sample of  BCI Compitition III Dataset IVa   

5.3 Classifiers Settings  

This thesis used MLP classifier of one hidden layer using Levenberg-Marquardt 

backpropagation training algorithm with error rate set to 0.001 and mean square error 

as an evaluation function.  The output layer is constructed from a log-sigmoid transfer 

function and two output nodes. SVM used the radial base kernel function with the 

KernelScale set to auto. Since, the available EEG datasets have a limited size so, 10-

fold cross-validation was used in this chapter to evaluate the performance of both 

classifiers. 

5.4 Proposed Method 

The method consists of six stages. These stages try to extract the most discriminative 

features from the EEG motor signal and classify it. The suggested method is described 

as follows:  

 EEG subtraction: Subtract the subject EEG motionless signal from its EEG motor 

signal. 

 Channel selection: Selecting the EEG channels that are most related to the motor 

signals. Figure 5.4 shows the selected EEG motor channels. 
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(a) Selected channels of BCI 

datasets 

(b) Selected channels of EMOTIV 

datasets 

Figure 5.4: The Selected EEG Motor Channels for The Both Datasets.  

 Band extraction using DWT: Decomposing the EEG signal using DWT to extract 

the level 3 details coefficients. These coefficients represent the high Beta and 

Gamma rhythms for the analyzed datasets. 

 Cross correlation of the effective channel with right/left hemisphere: Two 

channels (F4 and F3) were selected to be the effective channels. The selection of 

these two channels is based on its anatomical locations. These locations lie upon 

the brain regions or near the brain regions that generate the EEG motor signals. In 

this stage, reference signals (RF and LF) were constructed from the two effective 

channels (F4 and F3) respectively. These reference signals are the average signals 

of the effective channels for the training trials only. Then, these two reference 

signals (RF and LF) are cross-correlated with the right/left hemisphere channels 

respectively and this was performed for the all trials in the dataset.   

 Statistical parameter calculation: Extraction of normalized features from the 

previous stage signals using by ten statistical tools (1st quartile, 3rd  quartile, 

entropy, mode, mean, median, SD, max, min, and range).  

 Classification: The extracted features were classified using two classifiers (MLP 

and SVM). 

  Figure 5.5: shows the block diagram of the proposed method (Al- Dabag & Ozkurt, 

24 October 2018).     
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Figure 5.5: The Proposed Method Structure. 

5.4.1 Experiments and Results 

The proposed method was applied using both datasets mentioned previously. The Db3 

wavelet filter is applied to signal and the detail coefficients from level 3 of DWT is 

used. This constructs Gamma and high Beta bands from BCI competition and 

EMOTIV datasets respectively. The experiments of the proposed method were 

grouped into two procedures which are called patient based classification and 

movement based classification. In the patient based classification, the classification of 

each subject was done individually. In the second procedure, the mixed features of all 

subjects are classified together to know the reaction of the proposed method whenever 

classifying the mixed features from different subjects. 

Each EEG trial in EMOTIV dataset was segmented into 6 segments of one-second so 

the total trials of each subject is 24 trial. One of a resting period was saved for EEG 

subtraction. Hence, the total size of EMOTIV dataset became 13 subject x 2 task x 24 

trial x 14 channel x 128 sample with one resting signal of 1 second.    Each trial of BCI 

competition dataset was also segmented into movement and resting signals but its 

period was left unchanged just as provided in the website (Al- Dabag & Ozkurt, 24 

October 2018). 

5.4.2 Patient-Based Classification 

In MLP classifier, the number of the neurons in the hidden layer has to be determined 

experimentally. Hence, several experiments accomplished to determine the number of 

neurons that provide the best classification rate (best accuracy with low SD.). 

EEG 
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Band 
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Cross correlation 

of the effective 
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Statistical 
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calculation 
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Figure 5.6: Patient Based Classification Experiments to Determine The Number of 

Nodes in The Hidden Layer for BCI Competition Dataset. 

In BCI competition III IVa, this was done by varying the hidden layer neurons from 

2-20 with step size of 2. Then, calculating the average of the five subject classification 

accuracies and its SD. Figure 5.6 shows the MLP performance with the different 

number of neurons in the hidden layer. This figure shows the average classification 

rates of five subjects (blue color) with SD. (red color).  Clearly, MLP with 14 nodes 

in the hidden layer has the best performance.  

For a better estimation of the proposed method, each classification was repeated 10 

times using 10-fold cross-validation method to assess both classifiers (MLP and 

SVM). MLP was reconstructed using 14 nodes in the hidden layer. According to the 

described estimation procedure, MLP had variable performance due to the nature of 

the algorithm while SVM had a stable performance trend.  Figure 5.7 shows a 

performance comparison between MLP and SVM classifications. This figure shows 

the best, the worst and the average of ten runs of MLP classifier for each subject. The 

results reflect that SVM had a better result for all subjects except for subject aa and al 

(Al- Dabag & Ozkurt, 24 October 2018).  
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Figure 5.7: Patient Based Classification of BCI Competition III VIa Dataset. 

In EMOTIV dataset, the same procedure was applied to determine the number of the 

neurons in the hidden layer of MLP. Figure 5.8 shows the performance of the MLP 

with different numbers of nodes in the hidden layer. The experiment changed the 

number of the nodes in the hidden layer from 2 to 24 with step size of 2 to determine 

the number of nodes that provides the best performance. This figure shows the SD. as 

well as the average of 13 subject classifications of each experiment. From the figure, 

it is obvious that twelve nodes in the hidden layer provided the best performance (Al- 

Dabag & Ozkurt, 24 October 2018).    

 

 

Figure 5.8 : Patient Based Classification Experiments to Determine The Number of 

Nodes in The Hidden Layer for EMOTIV Dataset. 
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The same estimation procedure was also applied to estimate the behavior of the two 

classifiers. Figure 5.9 shows both classifier performance for each subject in EMOTIV 

dataset. This figure clearly shows that the SVM classifier had for a majority the best 

classification rates (Al- Dabag & Ozkurt, 24 October 2018). 

 

Figure 5.9 : Patient Based Classification Of EMOTIV Dataset.  

For better comparison of both classifiers performance in a different dataset, the 

average of the all subject classification rates was calculated to evaluate each classifier 

performance. Figure 5.10 shows that both classifiers have classification rates above 

98% for the different dataset.  

 

Figure 5.10: The Average of All Subject Accuracies in Both Datasets for Both 

Classifiers. 
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5.4.3 Movement Based Classification 

As mentioned earlier, this procedure processed each subject individually using the 

proposed method and mixed the all subject features together and classify it.  In the BCI 

competition III dataset, 186 training and 92 testing trials available after mixing all the 

subject features. A similar experimental procedure was done to determine the number 

of nodes in the hidden layer. Figure 5.11 shows MLP experiments with different 

number of nodes in the hidden layer. It is obvious that from 10 to 20 nodes in the 

hidden layer have a competitive performance. 10 nodes was chosen because it has less 

MLP structure complicity and smaller standard deviation than the rest (Al- Dabag & 

Ozkurt, 24 October 2018).    

 

Figure 5.11 : Movement Based Classification Experiments to Determine The 

Number of Nodes in The Hidden Layer for BCI Competition Dataset. 

In the EMOTIV dataset, there were 176 training and 88 testing trials after mixing the 

features of 13 subjects. Figure 5.12 shows the experiments to determine the efficient 

MLP structure. Twenty six nodes in the hidden layer were chosen since it has the best 

performance (Al- Dabag & Ozkurt, 24 October 2018).    
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Figure 5.12: Movement Based Classification Experiments to Determine The 

Number of The Nodes in The Hidden Layer for EMOTIV Dataset.  

The holdout estimation method with ten runs were performed to estimate the 

movement based classification for both datasets. Figure 5.13 shows the two classifiers 

behavior for both datasets. This figure shows that the classifiers still give an accuracy 

of above 92% even after merging features of different subjects (Al- Dabag & Ozkurt, 

24 October 2018). 

 

Figure 5.13: The Performance of Both Classifier Using Movement Based 

Classification. 
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5.4.4 Comparison with Previous Studies 

The robustness of the proposed method was illustrated in Table 5.1. This table shows 

the classification rates using several methods compared with the proposed method and 

these methods were used the same dataset which is BCI competition III dataset IVa. 

The first method that has a competitive performance with the proposed method uses 

PCA with cross-covariance for preprocessing. The complexity of using PCA makes it 

relatively inappropriate for a real time system.  The average performance of all 

methods had smaller performance compared with our proposed method. Furthermore, 

the proposed scheme does not employ complex methods.  

Table 5.1 : Performance of Several Methods for Classifying İmaginary Motor 

EEG of BCI Competition III Dataset IVa. 

Methods Training/testing 

partition 

Classification accuracy rate (%) 

aa al av aw ay mean 

The proposed 

method MLP 

10 fold cross 

validation 10 

times  

100±0 99.8±0.31 98.3±0.8 99±1.0 99.5±1.5 99.33 

The proposed 

method SVM 

10 fold cross 

validation 
99.37 99 100 100 100 99.69 

PCA-CCOV 

based MLP, 

SVM (Zarei, 

He, Siuly, & 

Zhang, 2017) 

50/50 

99.15 100 100 100 99.15 99.66 

LA-DE-SVM 

(Bhattacharyya, 

Sengupta, 

Chakraborti, 

Konar, & 

Tibarewala, 

2013) 

10 fold cross 

validation  

97.06 100 100 100 100 99.41 

OA-NB (Siuly 

& Zhang, 2016) 

10 fold cross 

validation   
97.92 97.88 98.26 94.47 93.26 96.36 

CS-SVM 

(F.Ince, Goksu, 

H.Tewfik, & 

Arica, 2009) 

10 fold cross 

validation   
95.6 99.7 90.5 98.4 95.7 96 

CC-LS-SVM 

(Siuly & Li, 

2012) 

10 fold cross 

validation   97.88 99.17 98.73 93.43 89.36 95.72 

STFSCSP-

WNBC (Miao, 

Zeng, Wang, 

Zhao, & Liu, 

2017) 

10 fold cross 

validation 10 

times 81.25 100 65.31 93.30 92.06 86.38 
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5.5 The Enhanced Method 

Further experiments for the proposed method shows the need for a noise reduction 

step. Since the resting period may be corrupted by noise so subtracting it from the 

motor EEG signal may add noise to the signal rather than throwing out the baseline 

signal. Hence, another denoising stage is proposed.  

 

EEG signals are interfered with a lot of artifacts as mentioned in Chapter 2. The most 

harmful artifacts are the ocular and muscular movement artifacts. These artifacts have 

a large amplitude and low frequencies in contrast with the motor EEG signals. Hence, 

using traditional thresholding techniques (soft and hard thresholding) cannot be used 

in this application. The goal is to remove the large amplitude and low frequencies 

which is the opposite operation of hard and soft thresholding. The following equation 

illustrates our thresholding technique which is applied to the second level of the DWT 

details coefficients. 

 𝑥𝑑(𝑛) = {
𝑥(𝑛)                     |𝑥(𝑛)| < 𝑇
𝑇                           |𝑥(𝑛)| ≥ 𝑇

                                                                             (1)  

where T is the threshold which is equal to log(length(x)) 

DWT Symlet filter (sym8) used for decomposing the EEG motor signal. The denoising 

technique replaced the first three stages in our proposed method. 

There is also a simple modification in the fourth stage (Cross correlation of the 

effective channel with right/left hemisphere). In this stage, there is no need to construct 

a reference signal (RF and LF). Hence, the instantaneous effective channel (F4 and 

F3) of each trial are cross-correlated with the right/left hemisphere channels 

respectively. The following stages illustrate the enhanced method. 

 Normalization:  this stage scales the EEG signal to make it lie between 1 and -1 

by dividing each EEG channel by its maximum absolute value. 

 EEG artifact removal:  EEG denoising using the thresholding technique stated 

in equation 1 to denoise the second level of the DWT details coefficients.  

 Cross correlation of the effective channel with right/left hemisphere: 

emphasizing the EEG motor signal by cross-correlation of the effective channel 

(F4 and F3) of each trial with the right/left hemisphere channels.   
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 Statistical parameter calculation: the same ten statistical features (min, max, 

mean, mode, median, SD, range, entropy, 1st quartile and 3rd  quartile) are used 

to extract effective features from EEG signal.   

 Classification: MLP and SVM are used for classification the constructed features. 

Figure 5.14 shows block diagram of this the method. (Al-Dabag & Ozkurt, June 2018).  

 

 

Figure 5.14: The Enhanced Method Block Diagram. 

Figure 5.15 shows the effect of this method during its' operation on a sample of  FC5 

channel and this is shown for both tasks. Figure 5.15 (a) shows the original EEG signal 

and it is clear from the EEG signal, there is an artifacts that corrupt the both tasks. 

Figure 5.15 (b) shows the same signal after normalization. Figure 5.15 (c) shows the 

EEG signal moving around the baseline and the artifacts was removed. The effect of 

cross-correlation was shown in Figure 5.15 (d) and it obviously clear that the 

difference between the both tasks was enlarged but the both signals are also enlarged. 

The statistical stage overcome the cross-correlation stage by feature extraction and 

clearly there are more than one statistical method that discriminate the both tasks such 

as range, mode... etc., see Figure 5.15 (d) 
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(b) Normalized signal 

 

 

(c) After artifact removal 

 

(d) After cross-correlation 
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(e) After feature extraction 

Figure 5.15 : The Stages Performance of The Enhanced Method on FC5 

Channel for Both Tasks (Right/Left  Fingure Movement) 

5.5.1 Experiments and Results 

The aim of this thesis is to build real time BCI based on EMOTIV EPOC+ headset so 

the enhanced method was applied only on EMOTIV dataset. Since, other datasets were 

recorded using different amplifiers, electrodes and even in different environments so 

processing only the EMOTIV dataset will reduce the number of variables processed 

by the enhanced method. Each epoch in the dataset overlapped 32 samples with each 

other to increase the number of trials in the dataset so the size of the dataset became 

13 subject x 2 task x 86 trial x 14 channel x 128 sample. The same setting of the 

classifier was used with the same estimation method (10-fold cross-validation). The 

following sections first will explore some stages of the enhanced method to view its 

operation. Then, it will explore the classification rates before and after features 

selection. 

5.5.1.1 EEG artifacts removal 

The effect of applying the EEG artifact removal stage is shown in Figure 5.13.   

Figure 5.16 (a and c) show the power spectrum of the Alpha band before denosing and 

it is clear that there is no spectral difference between the two hemispheres.  Figure 5.16 

(b and d) show the power spectrum of the same band after denoising. In the last two 

figures, the difference between the two hemispheres after denoising is emphasized and 

this phenomenon has an opposite reaction between the two tasks (Al-Dabag & Ozkurt, 

June 2018). 
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(a) (c) 

  
(b) (d) 

Figure 5.16: EEG Topography of Alpha Band Before And After Applying Eeg 

Artifacts Removal. (a) Original EEG Right Movement. (b) Denoised EEG Right 

Movement. (c) Original EEG Left movement. (d) Denoised EEG Left Movement. 

5.5.1.2 Cross correlation stage 

The two effective channels (channels F4 & F3) cross-correlation with the right/left 

hemisphere channels enlarge the temporal magnitude difference between the two 

hemispheres, see Figure 5.17 In this figure, the left and right hemisphere channels are  

  
(a) (c) 

  
(b) (d) 

Figure 5.17: Effects of Cross Correlation Stage with Effective Channels. (a) Right 

Movements Channels Before Cross Correlation. (b) Right Movements Channels 

After Cross Correlation. (c) Left Movements Channels Before Cross Correlation. (d) 

Left Movements Channels After Cross Correlation. 

numbered as 1-7 and 8-14 respectively. Figure 5.17(a) and (b) shows the EEG signal 

before and after the cross correlation. Comparing these two figures shows that this 
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stage enlarges the signal magnitude in the left hemisphere (channels 1-7). In contrast, 

opposite behavior is observed in left finger movement (Figure 5.17 c and a). 

5.5.1.3 Classification  

The number of the hidden layer nodes of MLP have to be determined before the 

evaluation of the classification rates. Therefore, several experiments were also 

performed to determine the number of the node by varying it from 2 to 28. Figure 5.18 

shows these experiments. This figure shows that twenty nodes in the hidden layer have 

the best classification rate with less standard deviation. Hence, this number of neurons 

was adopted to reconstruct the MLP (Al-Dabag & Ozkurt, June 2018).  

 

Figure 5.18: MLP Performance Evaluation with Different Number of Nodes in The 

Hidden Layer. 

Ten runs were also used as well as 10-fold cross-validation to estimate the performance 

of the two classifiers. Figure 5.19 shows the classification rates of both classifiers for 

all subjects. This figure shows that there is a competitive behavior between the two 

classifiers. To clarify the two classifiers performance, Figure 5.20 shows the average 

classification rates of two classifiers for all subjects. It is clear these two classifiers 

have similar behavior (Al-Dabag & Ozkurt, June 2018).  
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Figure 5.19: Classification Rates of Both Classifiers for All Subjects. 

 

Figure 5.20: The Average Classification Rates of Both Classifiers for All Subjects. 

5.6 Feature selection and classification 

Genetic algorithm was used to search for the best statistical parameter calculation 

methods. The population size was chosen to be 20 since diversity is ensured and 

reducing the harmful effects of the mutation operator. The enhanced method with 

SVM were used in the GA fitness function to evaluate each GA individual. Since the 

GA cost value consists of two quantities; classification rates and the number of unused 

statistical methods. Therefore, the cost (fitness) function had 99% for the average of 

thirteen subject classification rates and 1% for the unused statistical methods. GA 

needed eight iterations to find the best statistical parameters because the classification 
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rates had good performance in advance. It is found that only three statistical methods 

(mode, max, and SD.) were enough to discriminate EEG signal properly among ten 

methods.    

After the best statistical methods were found by the GA., the amount of EEG features 

are reduced from 140 features (14 EEG channel x no. of statistical methods) to only 

42 features. Table 5.2 illustrates the percentage ratios of EEG features before and after 

feature selection (Al -Dabag, Ozkurt, & Al-Aimam, 4-6 October 2018).  

Table 5.2: EEG Features Ratios Before And After Features Selection. 

 Data Amount  140 features 42 features 

Original data 14 channels x 128 samples 7.8% 2.3% 

Cross correlated 

Data 

14 channels x 255 samples 3.9% 1.1% 

Let's examine the classifier's performances before and after features selection. First, 

the best statistical methods are used in the enhanced method with SVM to process and 

classify the EMOTIV dataset. Figure 5.21 shows the classification rates before and 

after feature selection using SVM classifier. The figure shows that the overall 

classification rates after features selection are enhanced or have similar classification 

rates before features selection except in subject seven.  

 

Figure 5.21: SVM Classification Rates Before And After Feature Selection for 13 

Subjects. 

Secondly, a similar comparison is made for MLP classification rates before and after 
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layer (20 nodes). Figure 5.22 shows this comparison. In this figure, the overall 

classification rates had similar or enhanced values especially in subjects (7 and 9) 

except in subject 6 had limited degradations (Al -Dabag, Ozkurt, & Al-Aimam, 4-6 

October 2018).  

 

Figure 5.22: MLP Classification Rates Before And After Features Selection.   

Since the number of statistical methods are reduced so let's examine its effects on the 

architecture of MLP (number of nodes in the hidden layer). Therefore, other 

experiments were performed by changing it from 2 to 20 nodes.  Figure 5.23 illustrates 

the results produced by these experiments. It is clear that 14 nodes in the hidden layer 

has better performance than others. Figure 5.24 shows the classification rates for all 

subjects using two different structures of MLP. This figure shows a similar behavior 

of the two structures of MLP but one of them has less structure complicity (14 nodes 

in the hidden layer of MLP) (Al -Dabag, Ozkurt, & Al-Aimam, 4-6 October 2018). 

 

Figure 5.23: MLP Classification Rates with SD Using Different Number of Neurons 

in The Hidden Layer. 
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Figure 5.24: MLP Performance Using Two Different Architectures. 

The average of thirteen subject classification rates for the redundant features and the 

discriminative features were calculated to summarize the performance of the two 

classifiers. Figure 5.25 illustrates the SVM performance enhancement before and after 

features selection.  Figure 5.26 also illustrates this enhancement in MLP classifier 

before and after feature selection (Al -Dabag, Ozkurt, & Al-Aimam, 4-6 October 

2018). 

 

Figure 5.25: The Average of SVM Classification Rates Before And After Features 

Selection. 
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Figure 5.26: The Average of MLP Classification Rates Before And After Feature 

Selection of Two Different MLP Structure.  

The classifier processing time is another parameter that has to be examined to help us 

for selecting the best classifier so the computation time of the enhanced method with 

the classifier has been measured before and after feature selection. Figure 5.27 

illustrates the processing time of SVM using the best features extraction methods and 

the ten statistical methods. This figure shows that getting rid of the redundant features 

has another effect which is reducing the processing time of the classifier.    

 

Figure 5.27: Processing Time of SVM Using Two Different Number of Statistical 

Methods. 
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Let's examine the behavior of different architecture of MLP described earlier. 

Figure 5.28 shows the processing times of MLP using different architectures and 

different amount of features. The figure illustrates that the processing time is also 

reduced as a consequence of classifying only the discriminative features and this 

performance had further enhanced by using the simplest MLP architecture (Al -Dabag, 

Ozkurt, & Al-Aimam, 4-6 October 2018).        

 

 Figure 5.28: MLP Processing Time of Different Architectures. 
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ONLINE METHOLOGY AND RESULTS 

6.1 Introduction 

The earlier chapters focus on the EEG analysis and artifact removal methods to classify 

the performed cognitive EEG signals. Those studies are used an offline dataset of 13 

subjects to find a simple and appropriate methodology to predict their movements.  

Building an interactive BCI is a challenging task since it should predict the performed 

task fast and accurately. Thus all stages of BCI system should be implemented 

effectively.   

 

This chapter provides an online BCI prototype that acquires, preprocesses and 

classifies EEG raw data. This online BCI is based on the enhanced method mentioned 

in the previous chapter. The proposed online BCI is a software written using two 

programming languages (C# and MATLAB). The hybrid BCI software makes use of 

the facilities provided by the two programming languages and this leads to improve its 

performance and flexibility. This chapter focuses on the challenges faced during EEG 

acquisition stage rather than other stages of BCI system. It introduces an efficient EEG 

acquisition procedure which gets EEG raw signals and delivers it to the next BCI stage 

at the real time.    

 

The next section demonstrates the experimental procedure. Then, how Matlab 

preprocessing, feature extraction and classification software is combined with 

EMOTIV data acquisition software. Section 6.4 provides the way of EMOTIV 

configuration for direct acquiring the EEG raw signal. Section 6.5 explores BCI 

software and its graphical user interface (GUI).  Finally, the last three sections explore 

the response time, the classification rates obtained in the experiments and a brief 

discussions about the result are demonstrated.   

6.2 Experimental Procedure  

The dataset was recorded using the EMOTIV EPOC+ headset with the sampling rate 

of 128Sps. Real right/left finger movements were performed by five participants. Prior 

to data acquisition, the participants were informed of the various details of the 

experiments. Then, the subjects were required to fill and sign a consent form.  



 

70 

 

The participants closed their eyes and sat in a comfortable chair wearing the headset. 

The data was acquired for the training set and for the testing individually and the 

subject knows which hand to move in each session. In the training dataset, audio 

stimuli were given to each subject to start or stop moving their fingers. The session 

starts with the resting beep and after a while, a different beep occurs for informing the 

subject to move their fingers and then the same sequence is repeated. This procedure 

was repeated ten times in each session and separated with resting periods. The 

movement duration was six seconds while the rest periods in between had two second 

duration. To enlarge the number of the movement trials, overlap window of 96 sample 

was applied and each trial was segmented to one second so the total size of the training 

set is 5 subject x 2 task x 237 trial x 14 channel x 128 sample.    In the testing set, only 

two auditory stimuli are needed to announce the beginning and the ending of the 

session. The subjects only move their fingers without resting periods. The duration of 

the testing session is 20sec. to acquire each hand finger movements. The same 

overlapping window and segmentation operation were applied to the testing set so its 

size became 5 subject x 2 task x 77 trial x 14 channel x 128 sample. Figure 6.1 

illustrates the fingers movement.   

  
Figure 6.1: Finger Movement Procedure. 

6.3 Constructing BCI platform 

This section describes the procedure used to construct online BCI platform based on 

EMOTIV EPOC+ headset. Since the EMOTIV EPOC+ is used in this thesis and the 

company providing this headset doesn't allow direct access to the headset without 

using their software and license. For this reason, we have to follow the EMOTIV 

instructions to establish a direct link to the EMOTIV headset. 

EMOTIV provides software written in different programming languages such as C, 

C++, python …etc. This software has the ability to acquire the EEG raw data directly 

and store it into CSV files. Our offline studies are implemented using MATLAB but 

unfortunately, MATLAB doesn't support multiprocessing facility which is crucial for 
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real time processing. For these reasons, our thesis has to use a programming language 

supported by the EMOTIV company for acquiring EEG data and at the same time 

makes use of the MATLAB facilities. C# was chosen due to having both abilities. 

 

The online EEG signals are processed and classified using the enhanced method 

(described in section 5.5) which is programmed using MATLAB. This algorithm was 

converted to a DLL package to avoid reprogram it using another programming 

language. MATLAB provides library compiler in the application gallery to generate 

the MATLAB DLL file. It is usually recommended not to use too complex input/output 

parameter variables such as structure variables in these DLL files. The scalar variables 

(integer, double … etc.) and no more than two-dimensional arrays are recommended 

to use as parameters for the MATLAB DLL. 

 

6.4 EMOTIV EPOC+ Configuration  

EMOTIV EPOC+ provides EEGLogger console application program for acquiring 

EEG data from the headset, do all cloud communications and store the data into CSV 

file. Real time EEG raw data acquisition is not allowed directly without installing some 

EMOTIV software and entering different secure passwords (EMOTIV, 2008). A brief 

description of this configuration is given as follows. 

The first step towards EMOTIV configuration is installing Cortex which is a new and 

versatile application programming interface API for interacting with EMOTIV 

products, including the Insight, EPOC+ and EPOC+. To install Cortex, get it from 

your EMOTIV account. Installer includes Cortex UI application and Cortex Service. 

It provides some services like electrode calibration, EMOTIV headset connection 

…etc. These facilities are provided to the users after entering their EMOTIV account 

and password. The user can make use of Cortex to create some applications, games, 

record data for experiments, and more. The Cortex protocol consists of three building 

standard blocks: WebSockets, JSON, and JSON-RPC. WebSockets provides a real-

time connection to the underlying Cortex service, designed to be easy to use in both 

desktop and web-based applications. Cortex uses a widely supported format provided 

by JSON to send and receive data. JSON-RPC is a standard way of using JSON to 

make requests and get back the results (EMOTIV, 2008). Figure 6.2 shows the 

platform of Cortex UI.   
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Figure 6.2 : EMOTIV Cortex UI Platform. 

Secondly, getting EMOTIV authorization with a client ID and secret. These two 

security keys are requested from the EMOTIV account. Then, client ID and secret are 

typed in C# class called accesscontroller. Also, you have to purchase an EMOTIV 

professional license and type it in EEGLogger class with your account name and 

password. Now, the program is configured and ready to acquire EEG raw data directly 

from the EMOTIV headset.  

6.5   GUI for Online BCI 

The real time software of this thesis consists of different panels. Figure 6.3 shows the 

platform of this software.  

 

 

 

 

 

 

 

 

Figure 6.3: Real Time Software Platform And İts Panels. 

 

Testing 

panel 
Signal save 

panel 

Task event 

panel 

EEG signal 

panel 
Training 

panel 



 

73 

 

6.5.1 Signal save panel 

This panel provides a facility to save the acquired EEG signal into a specified location. 

It also indicates which task and dataset were acquired. It has the ability to load the 

previously saved EEG signal for simulation and retrieves its previous signal and event 

setting. It also saves metadata of the processed EEG signal like testing time, training 

time…etc. Saving and loading the EEG raw data are done using the MATLAB 

workspace file to provide further offline analysis using the MATLAB facilities. 

6.5.2 Task event panel 

Synchronization between EEG recording and the actual action performance plays an 

important role in EEG classification. This panel provides this facility by generating 

auditory stimuli. It has two different modes of generating the auditory stimuli to inform 

the subject about the action timing. The first mode is the normal mode which generates 

two different stimuli (starting stimulus and ending stimulus) to record unique action 

(e.g., right hand movement). The second mode is timing mode which generates three 

different stimuli to record two different actions (movement and resting actions). The 

user can switch between the timing/normal modes by checking or unchecking the event 

enable checkbox respectively. This panel approximately provides the events to the 

subject because it depends on the EMOTIV API (EEGLogger) which deal with the 

internet.  

6.5.3 EEG signal panel 

In this panel, the user can set up the trial length, the movement (right and left), the 

shifting percentage (percentage of displacement), and view the recorded signal. The 

Training and the Testing panels make use of the trial length to segment the recorded 

data for constructing the trials of both datasets.  The (right or left) determines the task 

that will be recorded or tested. The shifting percentage specify the amount of the 

overlapping between the successive EEG trials. The following equation specifies the 

amount of the overlapping percentage: 

 

Overlapping percentage = 100 − shifting percentage                                              (1) 

 

This panel provides the ability to view the online EEG signal by pressing the EEG 

viewer button. Figure 6.4 shows the EEG viewer window. 
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Figure 6.4: EEG Viewer Window. 

  

6.5.4 Recording and training panel 

This panel has the ability to record EEG raw data. Pressing the record button will 

initiate three different procedures: acquiring EEG raw data, generating the auditory 

stimuli, and storing the acquired EEG signal. The first procedure will call the modified 

version of the EMOTIV EEGLogger class which is responsible for acquiring EEG raw 

data from the EMOTIV headset to the computer. The EEGLogger class was modified 

to acquire EEG data and store it into a C# variable instead of a CSV file. It also 

modified to acquire only 14 EEG channels (AF3-AF4) because the EMOTIV EPOC+ 

had been providing EEG raw data of 39 samples and each sample has 16 bits. The 

following shows the details of each provided EEG raw package:  

 

COUNTER INTERPOLATED AF3 F7 F3 FC5 T7 P7 O1 O2 P8 T8 FC6 F4 F8 AF4 

RAW_CQ GYROX GYROY MARKER SYNC TIME_STAMP_s TIME_STAMP_ms 

CQ_AF3 CQ_F7 CQ_F3 CQ_FC5 CQ_T7 CQ_P7 CQ_O1 CQ_O2 CQ_P8 CQ_T8 

CQ_FC6 CQ_F4 CQ_F8 CQ_AF4 CQ_CMS CQ_DRL (EMOTIV, 2008) 

 

The second procedure is to generate the auditory stimuli according to the setting of the 

Task event panel. The timing of the composition of the auditory stimuli depends on 

the reception of the data from EEGLogger class which in turn depends on the internet 

connection (EMOTIV server). As we know, the speed of the internet is dynamic so an 

approximate timing of the auditory stimuli is provided to the subjects.  This procedure 
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also creates an event variable whenever event enable checkbox checked to distinguish 

between the performed tasks (movement and rest). The last procedure assigns the 

acquired EEG data to the appropriate C# variable according to the setting of the EEG 

signal panel.  

This panel also provides the ability to train the SVM classifier with acquired EEG 

signals. The training phase starts by pressing on the train button which calls the 

MATLAB DLL. The MATLAB DLL extracts the cognitive signal from the acquired 

EEG signal and then segments it into trials according to the setting of the EEG signal 

panel (Trial length sec.). The MATLAB DLL also uses the shifting percentage 

(shifting %) to enlarge the training set by overlapping the EEG trials according to 

equation 1. After the training is completed, the training accuracy will be shown beside 

the label Train acc.   

6.5.5 Testing panel 

This panel presents an interactive online prediction to the acquired EEG raw signal. 

Since, the testing phase of the SVM manipulates only one EEG trial at a time so the 

software can show the instantaneous prediction of each EEG trial by highlighting the 

labels (Right and Left), see Figure 6.5 

 

 

 

 

 

 

 

Figure 6.5: Thesis Software on Action. 

The status bar of the BCI software reveals the training time, the testing time of the 

current trial and the total time of testing all trials. Also, all information (testing time, 

trials testing times, training set …etc.  ) are saved into the MATLAB workspace file 

during saving procedure. The tested trials have to have the similar length of the trained 

trials so this panel uses the setting of the EEG signal panel. The user only sets the 

number of the tested trials in the Test iterations.  
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Pipeline processing was simulated in this panel which is one kind of parallel 

processing. This simulation decreases the response time of the system. The pipeline 

consists of two stages. Figure 4.4 illustrates the structure of the simulated pipeline. 

 

 

Figure 6.6: The Pipeline Structure. 

The first pipeline stage is responsible for acquiring EEG raw data, storing the acquired 

data into FIFO buffer, and constructing EEG trials. The constructed trials are formed 

according to the setting of the EEG signal panel.  It also uses the shifting percentage 

to enlarge the number of the tested trials. The second stage performs the testing phase 

using the MATLAB DLL. The solution of the concurrent processing problem named 

producer/consumer was used to simulate the behavior of the pipeline by considering 

the first stage as a producer and the second stage as a consumer. The solution of the 

producer/consumer was mentioned in chapter 4. 

6.6 Processing time  

In the training phase, the user presses the train button to start training the SVM 

classifier. The real-time BCI software (C# windows application program) forwards the 

recorded EEG raw data with the event variable to the MATLAB DLL for training. The 

DLL program constructs the EEG motor epochs based on the event variable and the 

specified configurations. According to our configuration (1sec trial length, 25% 

displacement), The DLL constructed 237 training trials for each EEG task. Then, the 

DLL program starts training the SVM classifier and returns back the trained 

configuration with the training accuracy.   

In the testing phase, this section saves the processing times elapsed to test the EEG 

raw data to determine which pipeline stage is the bottleneck stage. These 

measurements were taken to test the 20sec of right/left finger movement of five 

subjects. The EEG trials were constructed to be a 1sec trial with a displacement of 

0.25sec (75% overlap window). This produced 77 overlapped trials. 

 

The most important thing for constructing the pipeline is to determine the number of 

stages in the pipeline and to determine the bottleneck stage (the stage that has the 

EEG trial 
testing 

EEG 

signal 

Prediction 

result 
Acquiring and framing 

EEG raw data 
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largest delay time). Figure 6.7 shows the processing time of the second stage for the 

pipeline (EEG trial testing stage). This figure illustrates the processing time of 77 trials 

of 5 subjects.  The pipeline total processing time of all 77trials are 39sec for every 5 

subjects. This means that the acquiring and classification of each EEG trial took about 

500milisecond and this time represents the minimum time required to trigger the 

pipeline stages. Since the second stage took only about 100milisec to process each 

EEG trial then the first pipeline stage is the bottleneck of the pipeline.  

 

 

 

 

 

 

 

 

 

 

 

Figure 6.7: The Processing Time of The Pipeline Stage Two. 

6.7 Classification rates 

The classification rates of the five subject are shown in Figure 6.8. This figure shows 

the accuracies of right/left fingers movements and also the overall accuracy. It is 

observed that the overall accuracy varies between 60% to 82% with average accuracy 

of 68%. Table 6.1 states a performance comparison with other works. It is obviously 

from the table, classification performance of the online systems are relatively lower 

than the offline studies.   

 



 

78 

 

 

Figure 6.8: Real Time Classification Rates of Five Subjects (S1-S5). 

 

Table 6.1: Performance Comparison with Other Studies  

Method  Device Task  Number 

of 

classes 

Online 

testing 

trials 

Accuracy 

Enhanced method EMOTIV 

EPOC+ 

Real 

right/left 

finger 

movement 

2 77 60%-82% 

Filtering, Interval 

type-2 fuzzy logic 

based fusion- ANFIS 

(Bhattacharyya, 

Basu, & Amit 

Konara, 2015)  

EMOTIV 

EPOC+ 

Control 

robot arm 

5 20 65%-70% 

Filtering, SVM 

(Risangtuni, 

Suprijanto, & 

Widyotriatmo, 2012) 

EMOTIV 

EPOC+ 

İmagenary 

Right/left 

hand 

movement 

2 1 60%-45% 

Thresholding and 

rhythm extraction 

using FFT (Mahajan 

& Bansal, 2017) 

EMOTIV 

EPOC+ 

Eye blink 1 0 - 

Elpha and beta 

rhythm, CSP,LDA 

(Belwafi, Romain, 

Ghaffari, Djemal, & 

Ouni, 2018)  

OpenBCI Right/Left 

hand 

movement 

2 120 75% 

71

92

82

64

57
60

68

55

61

94

62

78

64 62 63
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6.8 Discussions 

The real time classification is a challenging task because it suffers from 

synchronization issues and it deals with an extremely dynamic environment which is 

affected by noise and artifacts. The results show that the processing time (classification 

time) of each EEG trial took about 100 ms except for the first trial. This exception is 

caused by bringing the software from computer RAM to its cache since a simulation 

software is used. In nonpipelined system, this 100 msec. delay time will be 

accumulated to the system response time proportionally with the number of EEG trials. 

This means the gap between the actual movement and the system response will grow 

up during system operation. For example, the duration between the system response 

and the actual movement for the 20th EEG trial will be 2 secs and this will be getting 

worse whenever the amount of EEG trials are increased. Figure 6.9 illustrates the 

response time of nonpipelined and pipelined system for only 20 trials. As shown in the 

figure, the pipelined system has almost constant response time. The 600 msec. of the 

pipeline represents the processing time of its two stages. Comparing the delay times 

of the pipeline stages leads to the conclusion that the bottleneck stage is the acquisition 

stage.    

 

 

 

 

 

 

 

 

 

 

 

Figure 6.9: Response Time of Nonpipelined And Pipelined System. 

The shifting percentage changes the number of processed trials that are constructed 

from the acquired EEG signal.  Table 6.2 lists the number of the obtained trials from 
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different shifting percentages. Decreasing the shifting percentage will increase the 

number of trials which leads to increase the processing time and vice versa. However, 

using pipeline system makes this fact not true because it depends on parallel processing 

fashion. Therefore, it can process three different sizes of the acquired data (20, 39 and 

77 trials) at a similar time which is approximately equal to the time for data acquiring 

(20 sec.), see Figure 6.10. This figure illustrates the theoretical, and simulation 

processing times with different shifting percentage. It shows that there is a small 

difference between the theoretical and simulation processing time. This difference is 

caused by the unideal sampling rate (128 samples per second) provided by C# timer. 

The real processing times have values between (20-39 Secs). This variation between 

the theoretical and real processing time is caused by the dynamic speed of internet 

required for handshaking with the EMOTIV server. 

Table 6.2: Shifting Percentage And Its Number Of Trials 

Shifting 

percentage 

Overlapping 

Percentage  

Number of trials 

100 
0 20 

50 
50 39 

25 
75 77 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.10: Theoretical And Simulation Processing Time of Different Shifting 

Percentage. 
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In (Al-Dabag & Ozkurt, June 2018) the average of 10-folds cross-validation 

classification rate of SVM classifier for 13 subjects is 98% which, implements the 

same feature extraction and preprocessing method but it was an offline study. Similar 

cognitive EEG tasks were classified in this study but the testing duration of each task 

was 20 second. The classification rates of this study has performance degradation 

compared with the results of offline classification. However, there were two subjects 

that have classification accuracies (82-78) and the others have accuracies around 60s. 

There are a lot of reasons for this kind of performance degradation. One of them, the 

offline classification performs cross-validation method to evaluate the classifier 

performance unlike online study which uses the holdout method. The subject also get 

tired even after only 1 minute of acquiring EEG signals unlike offline classification 

which perform only 20sec. of EEG recording. This kind of pain signals are also add 

noise to the noisy signal. Bad electrode connections also add different Gaussian noise 

ratio in each EEG channel. These dynamic noise ratios are also changed in each 

recording session. 
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CONCLUSION AND FUTURE WORK 

7.1 Summary 

The main objective of this study is to design and implement an adaptive wireless brain 

computer interface system for classifying hand movements using EMOTIV EPOC+ 

headset. The study includes two main parts; offline and online studies. In the offline 

study, an effective method for classifying EEG signals based on the cross-correlation 

was proposed. The performance of the algorithm was tested both with a benchmark 

data and a newly recorded dataset (Al- Dabag & Ozkurt, 24 October 2018). Further 

modification of the algorithm was implemented by proposing an artefact removal 

algorithm in (Al-Dabag & Ozkurt, June 2018). Also, the best feature set was selected 

using a genetic algorithm (Al -Dabag, Ozkurt, & Al-Aimam, 4-6 October 2018).  

 

In the second part of the study, an online BCI system was constructed to handle the 

real time EEG data acquisition issues based on the detection algorithm proposed in the 

first part.   

 

7.2 Conclusions 

The conclusions illustrating the challenges and proposing the solutions will be given 

in this section:  

1. In the offline algorithm, to obtain more discriminative features, the left and right 

hemisphere channels are cross-correlated and statistical parameters of those vectors 

are calculated. As mentioned in Chapter 5, this method provides a better 

classification performance.The first offline algorithm uses an artifact removal 

method based on baseline subtraction. However, the baseline (resting periods) may 

suffer from noise corruption. This operation may add some noise to the motor signal 

rather than denoising and it may lower the classification performances. For this 

reason, some modifications have been made to the proposed method for 

overcoming this problem.  

2. Denoising the EEG signal plays an important role for having better classification 

rates. The enhanced method has better classification rates for both classifiers (SVM 
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and MLP) using the offline dataset, see Figures (5.19 & 5.20). This method removes 

EOG and EMG artifacts from the EEG motor signal using DWT and thresholding 

techniques.  

3. The experiments show that the examined classifiers (MLP and SVM) had 

competitive classification rates but MLP needs some experiments to find the 

number of the nodes in the hidden layer while SVM doesn't need this additional 

experiments.  

4. The genetic algorithm performed only eight rounds to find the best feature statistical 

methods. Finding the best feature statistical methods may need only limited 

iterations using GA because of using the non-deterministic searching algorithm. 

5. The most discriminative features after feature selection provides a limited 

improvement in the classification rates of both classifiers see Figures (5.25 & 5.26).  

6. The computation time of SVM is significantly less than the MLP and this fact is 

still true even after feature selection, see Figure (5.27 & 5.28). The most 

discriminative features after feature selection reduce the computation time for both 

classifiers, see Figures (5.27 & 5.28). 

7. In online BCI, using two different programming languages provides a facility to 

make use of their abilities and construct a hybrid BCI software that mixes between 

these benefits (the scientific facilities of MATLAB and the parallelism of C#) of 

two programming languages.  

8. The proposed BCI software is suitable for upgrading and improvements especially 

for the preprocessing and classification method. This operation will be 

accomplished by only replacing the MATLAB DLL file with its modified version. 

9. Dealing with online BCI systems leads to conclude that these systems have to have 

two important factors: quick and accurate.  As described in Chapter 6, both 

conditions are met by the proposed system.   

10. Parallel processing represented by pipeline parallel processing represented by 

pipeline technique provides faster manipulation with the online EEG raw data 

unlike using traditional sequential systems see Figure (6.9). The pipeline system 

has the ability to process three times of overlapped EEG data at the time of 

acquiring the actual EEG data, see Figure (6.10).  The processing time of the 

theoretical and the simulation are approximately compatible. The small difference 

between the two processing times caused by the unideal sampling rate (128 Sps) of 

the C# timer. The real processing time is equal or twice the processing time of the 
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theoretical and the simulation because the system deals with the internet to 

communicate with the EMOTIV server. However, it is still better than using 

nonpipeline system.  

11. Comparing the offline and the online classification rates show that there is a 

degradation of the classification performance. There are many factors for this kind 

of degradation. One of them is the changing of the recording software from 

EmotivXavierPure in offline system to EEGLogger C# class in the online system. 

Another factor is replacing the classifier estimation method from 10-fold cross-

validation used in the offline system with the holdout method used in the online 

case. The session duration, the bad electrode status, noise and recording 

environment are other factors that may leads to the performance degradation.   

7.3 Future Works  

Since BCI systems are expected to be commonly used in the future, the studies on this 

area will continue. Thus, it is possible to make some modifications to enhance the 

performance of the thesis. 

1  Using a better headset to have a clear electrode connection would produce a better 

performance. 

2  Dry electrodes may  avoid the problem of bad connection caused by copper-oxide.  

3  The denoising method can be enhanced to get rid of the Gaussian noise as well as 

the EOG and EMG noises. 

4  Different feature extraction and classification methods can be used to improve the 

BCI performance. 
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