

BORNOVA / İZMİR

JUNE 2020

YAŞAR UNIVERSITY

GRADUATE SCHOOL

PHD THESIS

MULTI-OBJECTIVE GREEN HYBRID

FLOWSHOP SCHEDULING PROBLEMS

HANDE ÖZTOP

THESIS ADVISOR: PROF. DR. LEVENT KANDİLLER

CO-ADVISOR: PROF. DR. MEHMET FATİH TAŞGETİREN

INDUSTRIAL ENGINEERING

PRESENTATION DATE: 15.06.2020

v

ABSTRACT

MULTI-OBJECTIVE GREEN HYBRID FLOWSHOP SCHEDULING

PROBLEMS

Öztop, Hande

Ph.D., Industrial Engineering

Advisor: Prof. Dr. Levent KANDİLLER

Co-Advisor: Prof. Dr. Mehmet Fatih TAŞGETİREN

June 2020

The hybrid flowshop scheduling problem (HFSP) has been extensively studied in the

literature with various production-efficiency related objectives. Nevertheless, studies

that consider energy consumption and environmental impacts have rather been limited

for the HFSP in the literature. This thesis addresses the trade-off between makespan

and total energy consumption objectives in hybrid flowshops, where machines can

operate at varying speed levels. In this thesis, new bi-objective mixed-integer linear

programming (MILP) and bi-objective constraint programming (CP) models are

proposed for the energy-efficient HFSP employing a speed scaling method, where both

job-based and job-machine (matrix)-based versions of the speed scaling are

considered. Since the objectives of minimizing makespan and total energy

consumption are contradicting with each other, the augmented ε-constraint method is

employed for obtaining the Pareto-optimal solutions. While close approximations for

the Pareto-optimal frontier are obtained for small instances, sets of non-dominated

solutions are found for large instances by solving the proposed MILP and CP models

under a time-limit. Since the studied problem is NP-hard, new bi-objective

metaheuristic algorithms are also proposed for both job-based and matrix-based

versions of the energy-efficient HFSP as well as a constructive heuristic. Namely, two

variants of the iterated greedy algorithm, a variable block insertion heuristic and four

variants of an ensemble of metaheuristic algorithms are proposed for the job-based

version of the problem. Furthermore, two variants of the iterated greedy algorithm, a

variable block insertion heuristic and an ensemble of metaheuristic algorithms are

proposed for the matrix-based version of the problem. This thesis also presents two

vii

 new heuristic fitness calculation approaches for the HFSP. The performances of the

proposed bi-objective metaheuristics are compared with each other as well as the

MILP and CP solutions on a well-known HFSP benchmark set in terms of cardinality,

diversity and closeness of the solutions. Initially, the performance of the metaheuristics

is tested on small instances with regard to the Pareto-optimal solutions. Subsequently,

it is shown that the proposed metaheuristics are very effective for solving large

instances in terms of both solution quality and computational time.

Key Words: hybrid flowshop scheduling, energy-efficient scheduling, multi-objective

optimization, metaheuristics, mixed-integer linear programming, constraint

programming

ix

ÖZ

ÇOK-AMAÇLI ENERJİ-VERİMLİ HİBRİD AKIŞ TİPİ ÇİZELGELEME

PROBLEMLERİ

Öztop, Hande

Doktora Tezi, Endüstri Mühendisliği

Danışman: Prof. Dr. Levent KANDİLLER

Yardımcı Danışman: Prof. Dr. Mehmet Fatih TAŞGETİREN

Haziran 2020

Literatürde, hibrid akış tipi çizelgeleme problemi çeşitli üretim verimliliği bazlı amaç

fonksiyonları düşünülerek yaygın bir şekilde çalışılmıştır. Ancak, hibrid akış tipi

çizelgeleme problemi için enerji tüketimi ve çevresel etkileri dikkate alan çalışmalar

literatürde oldukça azdır. Bu tez, makinelerin değişen hız seviyelerinde çalışabildiği

hibrid akış tipi atölyelerindeki, maksimum tamamlanma zamanı ve toplam enerji

tüketimi amaç fonksiyonları arasındaki çelişkiyi ele almaktadır. Bu tezde, enerji-

verimli hibrid akış tipi çizelgeleme problemi için, hız ölçeklendirme yöntemi

kullanılarak, özgün iki-amaçlı karma-tamsayılı doğrusal programlama ve iki-amaçlı

kısıt programlama model formülasyonları önerilmiştir. Bu tezde, hız ölçeklendirme

yönteminin hem iş-bazlı hem de iş-tezgah (matris)-bazlı versiyonları çalışılmıştır.

Maksimum tamamlanma zamanını ve toplam enerji tüketimini minimize etme amaç

fonksiyonları birbirleriyle çeliştiklerinden dolayı, Pareto-optimal çözümleri elde

etmek için genişletilmiş epsilon kısıt yöntemi kullanılmıştır. Küçük örnekler için

Pareto-optimal eğriye oldukça yakın yaklaşımlar elde edilirken, büyük örnekler için

ise önerilen karma-tamsayılı doğrusal programlama ve kısıt programlama model

formülasyonları belirli bir süre limiti altında çözülerek baskın olmayan çözüm

kümeleri elde edilmiştir. Ayrıca, çalışılan problemin NP-zor sınıfına ait bir problem

olmasından dolayı, enerji-verimli hibrid akış tipi çizelgeleme probleminin hem iş-bazlı

hem de matris-bazlı versiyonları için özgün iki-amaçlı metasezgisel algoritmalar

özgün bir yapıcı sezgisel ile birlikte önerilmiştir. Problemin iş-bazlı versiyonu için iki

tip yinelemeli açgözlü algoritma, bir değişken blok yerleştirme sezgiseli ve dört tip

bütünleşik-metasezgisel algoritmalar önerilmiştir. Ayrıca, problemin matris-bazlı

xi

versiyonu için iki tip yinelemeli açgözlü algoritma, bir değişken blok yerleştirme

sezgiseli ve bir bütünleşik-metasezgisel algoritma önerilmiştir. Bunların yanı sıra, bu

tez, hibrid akış tipi çizelgeleme problemi için iki özgün sezgisel amaç fonksiyonu

değeri hesaplama yöntemi de önermektedir. Literatürde oldukça bilinen hibrid akış tipi

çizelgeleme problemi örnekleri kullanılarak, önerilen iki-amaçlı metasezgisellerin

performansları birbirleriyle ve karma-tamsayılı doğrusal programlama ve kısıt

programlama model formülasyonlarının çözümleri ile; çözümlerin sayısallığı,

çeşitliliği ve yakınlığı açılarından kıyaslanmıştır. Öncelikle, metasezgisellerin

performansı küçük örnekler üzerinde Pareto-optimal çözümler ile kıyaslanarak test

edilmiştir. Ardından, önerilen metasezgisellerin büyük örnekleri çözmek adına hem

çözüm kalitesi hem de çözüm süresi açısından oldukça etkin olduğu gösterilmiştir.

Anahtar Kelimeler: hibrid akış tipi çizelgeleme, enerji-verimli çizelgeleme, çok-

amaçlı optimizasyon, metasezgiseller, karma-tamsayılı doğrusal programlama, kısıt

programlama

xiii

ACKNOWLEDGEMENTS

I would like to express my gratitude to my thesis advisors Prof. Dr. Levent Kandiller

and Prof. Dr. Mehmet Fatih Taşgetiren, for their guidance and motivation during this

thesis study. Firstly, I would like to express my sincere appreciation to my thesis

advisor Prof. Dr. Levent Kandiller, who has an important influence on my intellectual

development for his guidance, support and immense knowledge. His valuable

guidance significantly helped me in all the time of my graduate studies. Secondly, I

would like to express my gratitude to my thesis co-advisor Prof. Dr. Mehmet Fatih

Taşgetiren for his valuable guidance during this thesis study. His guidance and

immense knowledge helped me to improve my skills as a researcher.

I would also like to thank Prof. Dr. Deniz Türsel Eliiyi for her guidance during the

early phases of this thesis. Additionally, I would like to express my gratitude to jury

members Prof. Dr. Mehmet Cemali Dinçer, Prof. Dr. Mustafa Arslan Örnek, Prof. Dr.

Ceyda Oğuz and Prof. Dr. Bilge Bilgen for their insightful suggestions, valuable

comments and contributions.

Furthermore, and foremost, I would like to thank my family. They were always there,

supporting me and encouraging me with their best wishes. I am very grateful to them

for their patience, unfailing support and continuous encouragement.

Finally, the Department of Industrial Engineering at Yasar University was like my

second home for more than six years. I would like to appreciate faculty, colleagues and

particularly my office mates whose encouragement is always with me.

Hande Öztop

İzmir, 2020

xvii

TABLE OF CONTENTS

ABSTRACT ... v

ÖZ ... ix

ACKNOWLEDGEMENTS .. xiii

TEXT OF OATH ... xv

TABLE OF CONTENTS ... xvii

LIST OF FIGURES .. xxiii

LIST OF TABLES ... xxvii

SYMBOLS AND ABBREVIATIONS ... xxxi

CHAPTER 1 INTRODUCTION ... 1

CHAPTER 2 THE HYBRID FLOWSHOP SCHEDULING PROBLEM 5

CHAPTER 3 LITERATURE REVIEW & MOTIVATION OF THE THESIS 9

3.1 Literature Review .. 9

3.2 Motivation of the Thesis .. 18

CHAPTER 4 PROBLEM DEFINITION & MODEL FORMULATIONS 23

4.1 Mixed-Integer Linear Programming Models for EHFSP-V1 and EHFSP-V2 25

4.2 Constraint Programming Models for EHFSP-V1 and EHFSP-V2 26

4.2.1 Constraint Programming ... 26

4.2.2 CP Models for EHFSP-V1 and EHFSP-V2 .. 28

4.3 Conflicting Objectives ... 30

CHAPTER 5 MULTI-OBJECTIVE OPTIMIZATION... 33

5.1 Terminology .. 33

5.2 Solution Methods .. 34

5.3 Weighting Method ... 36

5.4 ε-Constraint and Augmented ε-Constraint Methods ... 36

CHAPTER 6 METAHEURISTIC ALGORITHMS .. 41

6.1 Solution Representation & Fitness Value Calculation .. 41

6.1.1 Standard Forward Scheduling Approach .. 41

xix

6.1.2 Heuristic Fitness Calculation Approaches .. 42

6.1.3 Solution Representation & Fitness Value Calculation for the EHFSP-V1 46

6.1.4 Solution Representation & Fitness Value Calculation for the EHFSP-V2 47

6.2 Constructive Heuristic & Single-Objective Algorithms for the HFSP with Makespan

Criterion ... 47

6.2.1 Constructive Heuristic for the HFSP with Makespan Criterion 48

6.2.2 Single-Objective Algorithms with Makespan Criterion 49

6.3 Energy-efficient Bi-Objective Metaheuristic Algorithms for the EHFSP-V1 53

6.3.1 Initial Population ... 53

6.3.2 E_IG and E_IGALL Algorithms ... 54

6.3.3 E_VBIH Algorithm .. 55

6.3.4 Ensemble of Metaheuristic Algorithms (E_EM, E_EMHFR, E_EMHFN, E_EMHFRN)

 ... 56

6.4 Energy-efficient Bi-Objective Metaheuristic Algorithms for the EHFSP-V2 58

6.4.1 Initial Population ... 58

6.4.2 E_IG2 and E_IG2ALL Algorithms... 59

6.4.3 E_VBIH2 Algorithm .. 61

6.4.4. Ensemble of Metaheuristic Algorithms (E_EM2) .. 61

6.4.5. Heuristic Fitness Calculation & Mutation Operators ... 62

6.5 Archive Set Update Procedure .. 63

CHAPTER 7 COMPUTATIONAL RESULTS ... 67

7.1 Parameter Calibration of the Algorithms .. 70

7.1.1 Parameter Calibration of the IG, IGALL and VBIH Procedures 70

7.1.2 Parameter Calibration of the HFN Approach.. 74

7.2 Comparison of Constructive Heuristics based on Cmax Criterion 78

7.3 Small Instances for the EHFSP-V1 ... 82

7.4 Medium & Large Instances for the EHFSP-V1... 88

7.5 Small Instances for the EHFSP-V2 ... 100

7.6 Medium & Large Instances for the EHFSP-V2... 101

CHAPTER 8 CONCLUSION .. 113

xxi

REFERENCES .. 121

xxiii

LIST OF FIGURES

Figure 2. 1. Hybrid Flowshop Layout ... 6

Figure 2. 2. A Gantt Chart for a HFSP Example... 7

Figure 4. 1. Pareto Frontier of a Small Problem (EHFSP-V1) ... 30

Figure 4. 2. Pareto Frontier of a Small Problem (EHFSP-V2) ... 31

Figure 5. 1. ε-Constraint Method .. 38

Figure 5. 2. Augmented ε-Constraint Method .. 39

Figure 5. 3. General Outline of the Augmented ε-Constraint Method 40

Figure 6. 1. Gantt Chart with 𝐶𝑚𝑎𝑥 = 14 ... 42

Figure 6. 2. Gantt Chart with 𝐶𝑚𝑎𝑥 = 13 ... 43

Figure 6. 3. Heuristic Fitness Calculation with Random Swap Moves 44

Figure 6. 4. Heuristic Fitness Calculation with Neighbor Swap Moves 45

Figure 6. 5. Solution Representation for the EHFSP-V1 ... 46

Figure 6. 6. Solution Representation for the EHFSP-V2 .. 47

Figure 6. 7. NEH Heuristic ... 48

Figure 6. 8. NEH_M(𝑥) Heuristic ... 49

Figure 6. 9. IG Algorithm ... 50

Figure 6. 10. First-Improvement Insertion Neighborhood Structure 51

Figure 6. 11. IGALL Algorithm .. 52

Figure 6. 12. Variable Block Insertion Algorithm ... 53

Figure 6. 13. Energy-Efficient First-Improvement Insertion Neighborhood Structure for the

EHFSP-V1 .. 55

Figure 6. 14. General Outline of the Energy-Efficient Ensemble of Metaheuristic Algorithms

for the EHFSP-V1 .. 58

Figure 6. 15. Energy-Efficient First-Improvement Insertion Neighborhood Structure for the

EHFSP-V2 .. 60

xxv

Figure 6. 16. General Outline of the Energy-Efficient Ensemble of Metaheuristic Algorithms

for the EHFSP-V2 .. 62

Figure 6. 17. Archive Set Update Procedure ... 65

Figure 7. 1. ANOVA Results for Parameters of the IG .. 71

Figure 7. 2. Main Effects Plot for Parameters of the IG ... 72

Figure 7. 3. ANOVA Results for Parameters of the IGALL ... 72

Figure 7. 4. Main Effects Plot for Parameters of the IGALL .. 73

Figure 7. 5. ANOVA Results for Parameters of the VBIH ... 74

Figure 7. 6. Main Effects Plot for Parameters of the VBIH .. 74

Figure 7. 7. ANOVA Results for Parameters of the E_IG2 ... 76

Figure 7. 8. Main Effects Plot for Parameters of the E_IG2 .. 76

Figure 7. 9. ANOVA Results for Parameters of the E_IG2ALL ... 77

Figure 7. 10. Main Effects Plot for Parameters of the E_IG2ALL .. 77

Figure 7. 11. ANOVA Results for Parameters of the E_VBIH2 .. 78

Figure 7. 12. Main Effects Plot for Parameters of the E_VBIH2 ... 78

Figure 7. 13. Comparison of Algorithms for an Instance with 5 Jobs 83

Figure 7. 14. Comparison of Algorithms for an Instance with 15 Jobs 93

xxvii

LIST OF TABLES

Table 2. 1. Common Objective Functions for the HFSP ... 8

Table 3. 1. Shop Setting and Optimization Criteria Notation ... 15

Table 3. 2. Literature Review (Other Energy Saving Strategies) .. 16

Table 3. 3. Literature Review (Speed Scaling Strategy) ... 17

Table 3. 4. Literature Review for the EHFSP with Speed Scaling Strategy 20

Table 4. 1. Problem Notation .. 24

Table 7. 1. Comparison of Constructive Heuristics .. 79

Table 7. 2. Comparison of Single-Objective Algorithms .. 81

Table 7. 3. Performance Comparison of Algorithms on Small Instances (Set 1) for the

EHFSP-V1 .. 84

Table 7. 4. Performance Comparison of Algorithms on Small Instances (Set 2) for the

EHFSP-V1 .. 86

Table 7. 5. Performance Comparison of Algorithms on Medium Instances with 10 Jobs for

the EHFSP-V1 .. 90

Table 7. 6. p-values of Wilcoxon Signed-Rank Tests for Medium Instances with 10 Jobs for

the EHFSP-V1 .. 92

Table 7. 7. Performance Comparison of Algorithms on Medium Instances with 15 Jobs for

the EHFSP-V1 .. 94

Table 7. 8. p-values of Wilcoxon Signed-Rank Tests for Medium Instances with 15 Jobs for

the EHFSP-V1 .. 96

Table 7. 9. Performance Comparison of Algorithms on Large Instances for the EHFSP-V1

 .. 98

Table 7. 10. p-values of Wilcoxon Signed-Rank Tests for Large Instances for the EHFSP-V1

 .. 100

Table 7. 11. Performance Comparison of Algorithms on Small Instances for the EHFSP-V2

 .. 101

Table 7. 12. Performance Comparison of Algorithms on Medium Instances with 10 Jobs for

the EHFSP-V2 .. 103

xxix

Table 7. 13. Results of Statistical Tests for Medium Instances with 10 Jobs for the EHFSP-

V2 ... 105

Table 7. 14. Performance Comparison of Algorithms on Medium Instances with 15 Jobs for

the EHFSP-V2 .. 107

Table 7. 15. Results of Statistical Tests for Medium Instances with 15 Jobs for the EHFSP-

V2 ... 109

Table 7. 16. Performance Comparison of Algorithms on Large Instances for the EHFSP-V2

 .. 110

Table 7. 17. Results of Statistical Tests for Large Instances for the EHFSP-V2 112

xxxi

SYMBOLS AND ABBREVIATIONS

AS Archive Set

𝐶𝑚𝑎𝑥 Maximum Completion Time (Makespan)

CH Constructive Heuristic

CMFOA Collaborative Multi-Objective Fruit Fly Optimization Algorithm

CP Constraint Programming

Cp Ratio of the Pareto-Optimal Solutions Found

DC Destruction-Construction

DS Distribution Spacing

EHFSP Energy-Efficient Hybrid Flowshop Scheduling Problem

EHFSP-V1 Energy-Efficient Hybrid Flowshop Scheduling Problem with Job-

Based Speed Scaling Strategy

EHFSP-V2 Energy-Efficient Hybrid Flowshop Scheduling Problem with Matrix-

Based Speed Scaling Strategy

EM Ensemble of Metaheuristic Algorithms

E_EM Energy-Efficient Ensemble of Metaheuristic Algorithms

E_EM2 Energy-Efficient Ensemble of Metaheuristic Algorithms for the

EHFSP-V2

E_EMHFR Energy-Efficient Ensemble of Metaheuristic Algorithms with HFR

E_EMHFN Energy-Efficient Ensemble of Metaheuristic Algorithms with HFN

E_EMHFRN Energy-Efficient Ensemble of Metaheuristic Algorithms with HFR

and HFN

E_IG Energy-Efficient Iterated Greedy

E_IG2 Energy-Efficient Iterated Greedy for the EHFSP-V2

E_IGALL Energy-Efficient Iterated Greedy with Additional Local Search

E_IG2ALL Energy-Efficient Iterated Greedy with Additional Local Search for the

EHFSP-V2

xxxiii

E_VBIH Energy-Efficient Variable Block Insertion Heuristic

E_VBIH2 Energy-Efficient Variable Block Insertion Heuristic for the EHFSP-

V2

FFSP Flexible Flowshop Scheduling Problem

GA Genetic Algorithm

GRASP Greedy Randomized Adaptive Search Procedure

HFN Heuristic Fitness Calculation with Neighbor Swap Moves

HFR Heuristic Fitness Calculation with Random Swap Moves

HFSP Hybrid Flowshop Scheduling Problem

IG Iterated Greedy

IGALL Iterated Greedy with Additional Local Search

IGD Inverted Generational Distance

MDABC Multi-Objective Discrete Artificial Bee Colony Algorithm

MIP Mixed-Integer Programming

MILP Mixed-Integer Linear Programming

MINLP Mixed-Integer Nonlinear Programming

MOBIH Multi-Objective Block Insertion Heuristic

MOEA Multi-Objective Evolutionary Algorithm

MOEA/D Multi-Objective Evolutionary Algorithm based on Decomposition

MOGA Multi-Objective Genetic Algorithm

MOIG Multi-Objective Iterated Greedy

MONEH Multi-Objective NEH Algorithm

MOP Multi-Objective Optimization Problem

MOVBIH Multi-Objective Variable Block Insertion Heuristic

MOVILS Multi-Objective Variable Iterated Local Search

xxxv

NEH_M(𝑥) Modified NEH Heuristic with 𝑥 Solutions

NSGA-II Non-dominated Sorting Genetic Algorithm II

PFSP Permutation Flowshop Scheduling Problem

PS Population Size

PSO Particle Swarm Optimization

RPD Relative Percentage Deviation

TEC Total Energy Consumption

TLBO Teaching-Learning-Based Optimization

TOU Time-of-Use

VBIH Variable Block Insertion Heuristic

1

CHAPTER 1

INTRODUCTION

Recently, green manufacturing with energy consumption consideration has gained

attention due to the scarce energy resources and a series of environmental effects. It is

commonly known that the rising amount of greenhouse gas emissions (CO2) caused

by fossil fuel consumption initiates environmental pollution and global warming.

Since energy is commonly generated through fossil fuels, effective usage of energy

will provide a considerable reduction in carbon dioxide emissions and slow down the

rapid exhaustion of fuel resources.

According to Fang et al. (2011), the energy consumption of the industrial sector is

almost 50% of the world’s total energy consumption. In the USA, the manufacturing

companies are responsible for approximately one-third of the energy consumption and

contributes to almost 28% of greenhouse gas emissions (Mouzon and Yildirim, 2008).

In Germany, the manufacturing enterprises consume approximately 47% of the total

national electricity usage, and the resultant amount of carbon dioxide emissions caused

by this electricity is 18–20% (Dai et al., 2013).

Due to increasing concerns related to environmental deterioration, the manufacturing

sector can be faced with additional taxes and regulations related to carbon footprints.

As manufacturing companies are responsible for the high energy consumption and

related carbon emissions, they are faced with pressure to reduce their energy

consumption (Fang et al., 2011; Mouzon and Yildirim, 2008). Consequently,

manufacturing enterprises have made attempts to develop energy efficient approaches

to reduce their energy consumption and carbon emissions.

One approach for minimizing energy consumption in manufacturing systems is to

install energy-efficient machines. However, the significant financial investment

needed makes it almost impracticable for most of the manufacturing sector,

particularly for small-sized companies. Instead, the current practice is to operate the

existing machinery by taking their energy consumption into consideration.

2

In this thesis, energy efficiency is studied from an operational planning perspective for

the hybrid flowshops, which arise in various manufacturing environments including

electronics (Wittrock, 1988; Liu and Chang, 2000; Jin et al., 2002), textile (Grabowski

and Pempera, 2000), steel (Pan et al., 2013) and paper (Sherali et al., 1990) industries.

Two comprehensive reviews on the hybrid flowshop scheduling problem (HFSP) can

be found in (Ruiz and Vazquez Rodriguez, 2010; Ribas et al., 2010). Due to its

practical relevance, the HFSP has been widely studied in the literature with the

objectives related to production efficiency. However, studies regarding energy

efficiency and environmental effects have been minimal.

The HFSP can be considered as a generalization of two classical scheduling problems:

the parallel machine scheduling problem and the flowshop scheduling problem. In the

HFSP, 𝑛 jobs must be processed in a series of 𝑚(𝑚 > 1) stages, optimizing a given

objective function. All jobs must be sequentially processed following the same

production order: stage 1, stage 2,…, stage 𝑚. Each job requires a nonnegative

processing time in stage 𝑘, where each stage 𝑘 has |𝐼𝑘| ≥ 1 identical parallel machines,

and in at least one of the stages |𝐼𝑘| > 1. Then, each job must be processed by one of

the machines in each stage. Since the HFSP considers both assignment and scheduling

of the jobs in each stage, the HFSP is harder to solve than the standard flowshop

scheduling problem. The HFSP has already been proven as NP-hard (Gupta, 1988) for

a hybrid flowshop with only two stages, where there is a single machine in one of the

stages.

This thesis addresses the trade-off between the makespan (𝐶𝑚𝑎𝑥) and the total energy

consumption (TEC) in a hybrid flowshop environment. Note that, makespan, well

known as maximum completion time, is the main performance criterion for increasing

the utilization of resources and obtaining a high throughput. However, the TEC

criterion is also critical to decrease fuel consumption and slow down environmental

deterioration.

In this thesis, a speed scaling strategy is proposed for the energy-efficient hybrid

flowshop scheduling problem (EHFSP), where the machines can operate at varying

speed levels. In this strategy, the speed levels create a contradiction between the

processing time and energy consumption, i.e., the energy consumption increases at

higher speed levels, while the processing time decreases. Hence, the studied EHFSP

3

in this thesis is a bi-objective optimization problem with two conflicting objectives of

minimizing makespan and minimizing TEC.

In this thesis, two variants of the speed scaling strategy are studied for the EHFSP: a

job-based speed scaling strategy (i.e., same speed level is employed for a job through

all stages) and a matrix-based speed scaling strategy (i.e., speed of a job can vary from

stages to stages). The EHFSP with job-based speed scaling strategy is denoted as

EHFSP-V1 and the EHFSP with matrix-based speed scaling strategy is denoted as

EHFSP-V2.

In this thesis, new bi-objective mixed-integer linear programming (MILP) and bi-

objective constraint programming (CP) models are proposed for the EHFSP-V1 and

EHFSP-V2. Benchmark instances are also developed by modifying the well-known

HFSP benchmarks from the literature (Carlier and Neron, 2000; Liao et al., 2012;

Öztop et al., 2019). For small instances, MILP and CP models are solved through the

augmented ε-constraint method without a time limit to obtain the Pareto-optimal

solutions. Since the problem is NP-hard (Gupta, 1988) and the solution time grows

exponentially, the sets of non-dominated solutions are obtained with augmented ε-

constraint method under a time limit for larger instances.

New bi-objective metaheuristic algorithms are also proposed for the EHFSP-V1 and

EHFSP-V2. Namely, seven bi-objective metaheuristic algorithms are proposed for the

EHFSP-V1, which are two variants of iterated greedy (IG) algorithm (Ruiz and Stützle,

2007), a variable block insertion heuristic (VBIH) and four variants of the ensemble

of metaheuristic algorithms (EM). Additionally, four bi-objective metaheuristic

algorithms are proposed for the EHFSP-V2, which are two variants of the IG

algorithm, a VBIH algorithm and an ensemble of metaheuristic algorithms.

In this thesis, a new constructive heuristic is also presented for the HFSP with the

makespan criterion by extending the NEH heuristic (Nawaz et al., 1983). Furthermore,

two new heuristic fitness calculation approaches are proposed to compensate for the

inefficiency of the standard forward scheduling approach for fitness function

calculation in HFSP.

As mentioned in Chapter 3, the EHFSP with a speed scaling strategy is scarcely studied

in the scheduling literature. Hence, this thesis contributes to the energy-efficient

scheduling literature by applying the speed scaling strategy to the HFSP, presenting

4

new bi-objective MILP and CP models for the EHFSP, developing original seven

effective bi-objective metaheuristic algorithms for the EHFSP-V1 and developing

original four effective bi-objective metaheuristic algorithms for the EHFSP-V2. To the

best of our knowledge, this thesis presents a constraint programming approach to the

EHFSP for the first time in the literature. This thesis also contributes to the hybrid

flowshop scheduling literature by presenting a new constructive heuristic and two new

heuristic fitness calculation approaches for the HFSP.

The remainder of this thesis is organized as follows. In Chapter 2, the basic HFSP and

its common variants are explained. In Chapter 3, a comprehensive literature review is

provided and the motivation of this thesis is given. Chapter 4 formally defines the

EHFSP-V1 and EHFSP-V2, and presents the proposed bi-objective MILP and CP

models. Chapter 5 explains the commonly used multi-objective optimization

techniques as well as the related terminology. The augmented ε-constraint method is

also explained in Chapter 5.

Chapter 6 presents the proposed heuristic fitness calculation approaches and bi-

objective metaheuristic algorithms for both EHFSP-V1 and EHFSP-V2, as well as the

constructive heuristic and the single-objective algorithms for the initial solution

generation. In Chapter 7, computational results are provided to evaluate the

performance of the proposed solution approaches. Finally, Chapter 8 addresses the

concluding remarks and future research directions.

5

CHAPTER 2

THE HYBRID FLOWSHOP SCHEDULING PROBLEM

In a shop scheduling problem, there is a set of n jobs where each job has m operations

corresponding to m machines. Processing times of the operations are assumed to be

known in advance. At any time, each machine can process at most one operation, and

each job can be processed on at most one machine. A job is said to be completed if all

its operations have been completed. There are three basic shop scheduling problems

due to the scheduling restrictions of operations:

• Flowshop (Fm): There are m machines in series. A set of n jobs must be processed

on these machines following the same order, i.e., each job has to be processed first

on machine 1, then on machine 2, and so on. If there is a restriction that each

machine must also process the jobs in the same order, the machine environment

is named as permutation flowshop.

• Job Shop (Jm): It is a generalization of flowshop in which each job has its own

pre-specified order to follow.

• Open shop (Om): There are no restrictions on the order of each job through the

machine environment.

The hybrid flowshop is a generalization of the flowshop and the parallel machine

environments. Hybrid flowshop has also been referred to as a flexible flowshop, multi-

processor flowshop, or flowshop with parallel machines in the literature. Instead of m

machines in series, there are m (m > 1) stages in series where each stage consists of at

least one machine in parallel, and at least one of these stages has more than one

machine. All jobs must flow through every stage in the same order, i.e., each job has

to be processed first at stage 1, then at stage 2, and so on. A hybrid flowshop layout

is shown in Figure 2.1.

6

Figure 2. 1. Hybrid Flowshop Layout

In the basic form of the hybrid flowshop scheduling problem (HFSP), there are

following assumptions: machines are identical in each stage; all jobs and machines are

available at time zero; a job is processed by only one machine at each stage; setup

times can be ignored; job preemption is not allowed; there is infinite intermediate

storage between stages, and problem data is deterministic. In most environments, the

HFSP is NP-hard, since the HFSP with only two stages is known to be NP-hard (Gupta,

1988).

In order to provide a better understanding, a feasible Gantt chart is illustrated in Figure

2.2 for a basic HFSP example that has 3 stages and 4 jobs. Both stages 1 and 3 have

two identical parallel machines, while stage 2 has one machine. The processing times

of the jobs are given as follows, where 𝑝𝑘𝑗 is the processing time of job 𝑗 at stage 𝑘:

𝑝𝑘𝑗 = [
3 4 3 2
5 2 4 4
3 4 3 5

]. As shown in Figure 2.2, the makespan (𝐶𝑚𝑎𝑥) value of this

example is 20, which is the maximum completion time of all jobs.

7

Figure 2. 2. A Gantt Chart for an HFSP Example

Different HFSP variants can be described by modifying assumptions, objectives and/or

constraints of the basic problem. The notation proposed in Vignier et al. (1999) is

generally used to identify them, which follows the three-field notation (α|β|γ) proposed

by Graham et al. (1979). The α field describes the shop configuration, and it includes

four parameters 𝛼1𝛼2, (𝛼3𝛼4
(𝑘)). 𝛼1 indicates the general structure of the shop, 𝛼2 is

the number of stages in the shop, 𝛼3 and 𝛼4 represent the characteristics of the

machines in each stage 𝑘. Particularly, 𝛼3 defines the machine type and 𝛼4 indicates

the number of machines in the stage (Ruiz and Vazquez Rodriguez, 2010). For

instance, FHm, ((𝑃𝑀(𝑘))𝑘=1
𝑚) denotes a hybrid flowshop (FH) with m stages, where

there is any number of identical parallel machines in each stage.

There are three basic machine types in shop scheduling: identical (P), uniform (Q) and

unrelated (R). In the HFSP with identical machines, all machines within each stage are

identical. Therefore, the processing time of a job in each stage does not vary from

machine to machine. In the case of uniform machines, machines have different speeds,

where each machine 𝑖 has a speed 𝑣𝑖, and job 𝑗 requires 𝑝𝑘𝑗 / 𝑣𝑖 time units when it is

assigned to machine 𝑖 of stage 𝑘. On the other hand, in the HFSP with unrelated

machines, each machine 𝑖 has a speed 𝑣𝑖𝑗 for each job 𝑗, and job 𝑗 requires 𝑝𝑘𝑗 / 𝑣𝑖𝑗

time units when it is assigned to machine 𝑖 of stage 𝑘. (Pinedo, 2002).

The 𝛽 field describes the constraints and assumptions. The most common among these

constraints are listed below (Ruiz and Vazquez Rodriguez, 2010):

8

• Release dates (rj): job j cannot start to be processed before its release time 𝑟𝑗.

• Sequence-dependent setup times (STsd): there exist sequence-dependent setup

times between jobs.

• Precedence constraints (prec): there are precedence relations between jobs.

• No-wait (no-wait): jobs are not permitted to wait between two consecutive stages.

• Blocking (block): there are limited buffers between consecutive stages. Therefore,

jobs can wait in the previous stage until an adequate area is released.

• Machine eligibility restrictions (𝑀𝑗): job j can be processed by only a subset of

machines 𝑀𝑗 at each stage.

• Preemption (prmp): job preemptions are allowed.

Finally, the 𝛾 field contains the objective function. The most common among these

objectives are listed in Table 2.1 (Ruiz and Vazquez Rodriguez, 2010). The necessary

notation is explained accordingly. Let 𝐶𝑗 be the completion time of job j in the last

stage. 𝐹𝑗 = 𝐶𝑗 – 𝑟𝑗 is the flow time of job j, which is the time job 𝑗 spends in the

system. The lateness of job 𝑗 is denoted by 𝐿𝑗 = 𝐶𝑗 – 𝑑𝑗, where 𝑑𝑗 is the due date of

job j. 𝑇𝑗 = 𝑚𝑎𝑥(𝐿𝑗, 0) is the tardiness and 𝐸𝑗 = 𝑚𝑎𝑥(𝑑𝑗 − 𝐶𝑗 , 0) is the earliness of

job 𝑗. The weight 𝑤𝑗 is a priority factor for job 𝑗.

Table 2. 1. Common Objective Functions for the HFSP

Objective Description

Makespan / Maximum completion time (Cmax) 𝑚𝑎𝑥𝑗 𝐶𝑗

Total completion time ∑𝐶𝑗

Total weighted completion time ∑𝑤𝑗𝐶𝑗

Total flow time ∑𝐹𝑗

Total weighted flow time ∑𝑤𝑗𝐹𝑗

Total tardiness ∑𝑇𝑗

Total weighted tardiness ∑𝑤𝑗𝑇𝑗

Total earliness ∑𝐸𝑗

Total weighted earliness ∑𝑤𝑗𝐸𝑗

9

CHAPTER 3

LITERATURE REVIEW & MOTIVATION OF THE THESIS

3.1 Literature Review

The HFSP has been extensively studied in the literature considering different machine

environments, constraints and objectives. Numerous exact algorithms, heuristics and

metaheuristics have been proposed for the HFSP due to its complexity and practical

relevance. Two comprehensive reviews on HFSP can be found in Ribas et al. (2010)

and Ruiz and Vazquez Rodriguez (2010).

In the HFSP literature, most of the studies deal with a single objective related to

production efficiency, where the most common among these objectives is to minimize

the makespan, total/average completion time, flow time and tardiness. Relatively

fewer studies consider several of these objectives together (Ruiz and Vazquez

Rodriguez, 2010). For instance, Jungwattanakit et al. (2008, 2009) proposed heuristic

algorithms to minimize the weighted sum of makespan and the number of tardy jobs

in a hybrid flowshop environment. Behnamian and Fatemi (2011) proposed a

metaheuristic algorithm for the HFSP with sequence-dependent setup times, which

minimizes makespan and resource allocation costs.

Even though the objectives related to production efficiency have been widely studied

in the scheduling literature, studies that regard energy-efficient scheduling have rather

been limited. A recent review of the energy-efficient scheduling problems is provided

by Gahm et al. (2016).

One of the most well-known studies is the work by Mouzon et al. (2007). The authors

pointed out that a significant amount of energy can be saved by turning the machines

off during idle times. They proposed several dispatching rules for scheduling jobs on

a single CNC machine. These rules state that the machine can be shut down if the

energy consumption for turning it on/off is less than the idle energy consumption.

However, energy savings during machine operation are not considered. In a further

study, Mouzon and Yildirim (2008) extended this strategy to the single machine

10

scheduling problem with the objectives of TEC and total tardiness. Later, Dai et al.

(2013) extended the turn-off strategy to the multi-objective flexible flowshop

scheduling problem (FFSP) with unrelated parallel machines, considering two

conflicting objectives of minimizing makespan and total energy consumption.

Recently, Che et al. (2017) studied the single-machine scheduling problem with a

power-down mechanism to minimize both total energy consumption and maximum

tardiness. They proposed a mixed-integer programming (MIP) model and an ε-

constraint method to obtain the Pareto frontier. They also developed a local search, a

preprocessing technique and valid inequalities to strengthen the ε-constraint method.

Although the turn-off strategy can provide energy savings, it may not be applicable in

certain shop floors where the machines cannot be turned off entirely during production.

Moreover, frequent use of this strategy can significantly shorten the service life of

some machines. Hence, other energy saving strategies have also been proposed in the

literature.

From the energy consumption viewpoint, another direction is to consider time-of-use

(TOU) electricity prices for scheduling problems. Under the TOU tariff system,

electricity prices depend on the time of the day and can vary from hour to hour. Hence,

the demand can be decreased during hours of high prices by shifting some operations

to hours of lower prices. Luo et al. (2013) considered TOU electricity prices and

proposed an ant colony algorithm for the HFSP with uniform machines that minimizes

makespan and electric power cost. Moon et al. (2013) also proposed a genetic

algorithm (GA) for minimizing the weighted sum of makespan and time dependent

electricity costs in an unrelated parallel machine environment. Similarly, Shrouf et al.

(2014) proposed a turn on/off strategy considering fluctuating energy prices in a day.

They proposed a mathematical model and a GA to minimize energy consumption costs

for a single machine scheduling problem.

Zhang et al. (2014) also consider TOU electricity tariffs for the flowshop scheduling

problem by proposing a time-indexed integer programming formulation that

minimizes electricity cost and the carbon footprint. Recently, Ding et al. (2016a)

studied the unrelated parallel machine scheduling problem under a TOU pricing

scheme, where the objective is to minimize the total electricity cost with a restriction

on makespan. They proposed a time-interval-based MIP formulation and a Dantzig–

Wolfe decomposition approach for the problem. More recently, Zhang et al. (2018)

11

proposed a greedy insertion heuristic for the energy efficient single machine

scheduling problem under the TOU tariff system. Wang et al. (2018) also presented a

MIP model, a constructive heuristic (CH) and an NSGA-II algorithm to solve the bi-

objective identical parallel machine scheduling problem under TOU electricity prices.

As another approach to improve energy efficiency, Fang et al. (2011) proposed a speed

scaling strategy for flowshop scheduling that minimizes peak power consumption,

carbon footprint, and makespan. They proposed a multi-objective formulation in

which operation speed is considered as an independent factor that can be changed to

affect the peak load and energy consumption. In the speed scaling strategy, it is

assumed that the machines can operate at multiple speed levels, in which the speed

levels of the machines can be tuned for the operations of the jobs. In this strategy,

speed levels create a contradiction between processing time and energy consumption,

i.e., the energy consumption increases at higher speed level, while the processing time

decreases. Thus, speed levels of the operations should be determined carefully to

improve both production and energy efficiency. As the machines can operate at

multiple speed levels in many real-life production environments, the speed-scaling

strategy has been widely adopted for scheduling problems in the energy-efficient

scheduling literature due to its practicability.

Fang et al. (2013) presented MIP formulations for the permutation flowshop

scheduling problem (PFSP) with peak power consumption constraints considering

both discrete and continuous processing speeds. Fang and Lin (2013) proposed an

integer programming formulation and several heuristics for the parallel machine

scheduling problem, where the processing speeds of the machines can be tuned during

operation. Ding et al. (2016b) also considered the same strategy for the carbon-

efficient PFSP and proposed a multi-objective NEH algorithm and a modified iterated

greedy algorithm. Furthermore, Mansouri et al. (2016) considered variable speed

levels for the two-machine sequence-dependent PFSP. They developed a multi-

objective MIP model and lower bounds with the objectives of minimizing makespan

and energy consumption. Later, Mansouri and Aktas (2016) extended the study of

Mansouri et al. (2016) by developing a heuristic algorithm and multi-objective genetic

algorithms (MOGA) for the same problem.

The energy-efficient PFSP with total flow time criterion was also studied by Öztop et

al. (2018) employing a speed scaling framework. The authors proposed a multi-

12

objective MILP model and a multi-objective IG (MOIG) algorithm to solve the

problem, where they evaluated the performance of these solution methods only on

small scale instances. Later, Öztop et al. (2020) extended the study of Öztop et al.

(2018) by presenting two new variants of the MOIG, a multi-objective VBIH

(MOVBIH) algorithm and a constructive heuristic for the same problem. In this study,

extensive computational experiments were performed to test the performance of the

MILP model, constructive heuristic and metaheuristics, employing both small and

large instances.

The speed scaling approach was also employed for the energy-efficient job shop

scheduling problems. Zhang and Chiong (2016) proposed a MOGA using a machine

speed scaling framework in order to minimize the total weighted tardiness and total

energy consumption in a job shop scheduling problem. Salido et al. (2016) also

developed an energy-efficient genetic algorithm for the job shop scheduling problem

and compared the performance of their genetic algorithm with a CP optimizer tool of

a commercial solver.

The speed scaling approach was also implemented to the energy-efficient single

machine scheduling problem with release dates and sequence-dependent setup times

by Tasgetiren et al. (2018a). Later, the energy-efficient single machine scheduling total

weighted tardiness problem with sequence-dependent setup times was also studied by

Tasgetiren et al. (2018b), where the authors proposed a MILP model, a multi-objective

block insertion heuristic (MOBIH) and a MOIG to solve the problem. Che et al. (2015)

also presented two MIP models to solve speed-scalable energy-efficient single

machine scheduling problems with bounded maximum tardiness.

Furthermore, Wu and Che (2019) presented a memetic differential evolution algorithm

for the energy-efficient unrelated parallel machine scheduling problem employing the

speed scaling strategy. Zheng and Wang (2018) also developed a collaborative multi-

objective fruit fly optimization algorithm (CMFOA) for the energy-efficient unrelated

parallel machine scheduling problem with resource constraints. Recently, Jiang and

Wang (2019) proposed a mathematical model and a multi-objective evolutionary

algorithm to solve the energy-efficient PFSP with sequence-dependent setup times.

Additionally, Lu et al. (2017) considered the energy-efficient PFSP with sequence-

dependent setup and controllable transportation time and proposed a hybrid multi-

objective backtracking search algorithm.

13

The speed scaling approach was also employed for other variants of the energy-

efficient scheduling problems. More recently, Tasgetiren et al. (2019) proposed a

multi-objective MILP model, and a multi-objective variable iterated local search

(MOVILS) algorithm and two variants of the MOGA for the energy-efficient no-idle

flowshop scheduling problem employing a speed scaling strategy. Yin et al. (2017)

also proposed a mathematical model and a MOGA for the flexible job-shop

environment that optimizes makespan, energy efficiency and noise reduction. In their

model, the machining spindle speed, which affects production time, power and noise,

is treated as an independent decision variable. The speed scaling strategy was also

employed for the distributed energy efficient flowshop scheduling problems (Jiang et

al., 2017; Deng et al., 2016; Wang et al., 2017; Wang and Wang, 2018).

As seen in the above discussions, metaheuristics are widely employed for multi-

objective optimization problems due to their complexities. In recent years, many multi-

objective evolutionary algorithms (MOEA) have been developed, where the most

well-known ones are NSGA-II (Deb et al., 2002) and multi-objective evolutionary

algorithm based on decomposition (MOEA/D) (Zhang and Li, 2007). A

comprehensive review of different types of MOEAs can also be found in Zhou et al.

(2011).

Various approaches have been reported for the energy-efficient flexible or hybrid

flowshop scheduling problems in the literature (Dai et al., 2013; Liu et al., 2008;

Bruzonne et al., 2012; Luo et al., 2013; Tang et al., 2016; Yan et al., 2016; Li et al.,

2018; Meng et al., 2019; Wu et al., 2018; Zeng et al., 2018; Zhang et al., 2019a; Liu

and Huang, 2014; Chen et al., 2018; Zhang et al., 2019b; Lei et al., 2018; Li et al.,

2019; Shen et al., 2017).

Dai et al. (2013) applied a turn-off strategy to the multi-objective FFSP by presenting

an improved genetic-simulated annealing algorithm. Liu et al. (2008) proposed a

mixed-integer nonlinear programming (MINLP) model for the HFSP that minimizes

the energy consumption and limits the makespan. Bruzonne et al. (2012) proposed a

MIP formulation for the FFSP that minimizes the weighted sum of total tardiness and

the makespan. Luo et al. (2013) considered the time-of-use electricity prices and

proposed an ant colony algorithm for the HFSP with uniform machines in which the

price of electricity depends on the time of the day. Tang et al. (2016) proposed a

particle swarm optimization (PSO) for the energy-efficient FFSP with unrelated

14

parallel machines considering dynamic factors. A multi-level approach optimization

(machine tool and shop floor levels) was proposed for the energy-efficient FFSP in

Yan et al. (2016), which integrates power models of single machine and cutting

parameters optimization into the energy-efficient scheduling problems. Recently, Li et

al. (2018) presented an energy-aware multi-objective optimization algorithm for

solving the HFSP with the objectives of makespan and energy consumption in the case

of sequence-dependent setup times. In their energy consumption calculation, they

considered three types of energy consumption, i.e., processing, standby and setup

energy consumptions.

Furthermore, Meng et al. (2019) proposed an improved genetic algorithm for the

energy-conscious HFSP with unrelated parallel machines employing a turn-off

strategy. Wu et al. (2018) presented a MIP model and a hybrid NSGA-II with a variable

local search to solve a multi-objective FFSP that considers variable processing time

due to renewable energy. In their study, there are several types of capacitated power

supply systems that lead to different processing times and different energy

consumptions. Zeng et al. (2018) proposed a MIP model and a hybrid NSGA-II for the

multi-objective FFSP with batch processing that minimizes makespan, electricity

consumption and material waste. More recently, Zhang et al. (2019a) proposed a three-

stage multi-objective approach based on decomposition for the energy-efficient HFSP

with the consideration of machines with different energy usage ratios, sequence-

dependent setups, and machine-to-machine transportation operations.

To the best of our knowledge, the speed scaling approach has been employed for the

energy-efficient HFSP/FFSP in only a few studies (Liu and Huang, 2014; Chen et al.,

2018; Zhang et al., 2019b; Lei et al., 2018; Li et al., 2019; Shen et al., 2017). The

details of these studies and the differences of this thesis between the existing studies

are explained in the following subsection (Section 3.2) as well as the motivation of

this thesis.

Although the majority of studies on shop floor scheduling so far have not considered

energy related criteria, the aforementioned attempts form a basis for a study on energy-

efficient scheduling, especially from energy saving strategy and modeling viewpoints.

Finally, Table 3.1 describes the notation that has been used to define shop setting and

optimization criteria of scheduling problems. Then, Tables 3.2 and 3.3 summarize the

15

literature review for the energy efficient scheduling problems. Table 3.2 presents the

literature review for the studies that employ other energy saving strategies (turn on/off

strategy, TOU electricity prices, etc.) except the speed scaling strategy. On the other

hand, Table 3.3 presents the literature review for the studies that employ speed scaling

strategy. In these tables, the second and third columns present the shop (machine)

setting and optimization criteria addressed in each paper. The fourth column represents

the energy saving strategy. The objective structure is also described according to two

categories (single/multi objective) in the fifth column. The category of single objective

primarily represents the approaches that consider one of the optimization criteria as a

constraint. The sixth column presents the proposed solution approaches.

Table 3. 1. Shop Setting and Optimization Criteria Notation

Shop Setting Optimization Criteria

Notation Description Notation Description

1 Single machine TEC Total energy consumption

Pm m parallel machines ∑𝐶𝑗 Total completion time

Qm m uniform parallel machines ∑𝑇𝑗 Total tardiness

Rm m unrelated parallel machines ∑𝑤𝑗𝑇𝑗 Total weighted tardiness

Fm Flowshop with m machines ∑𝐹𝑗 Total flow time

Jm Job shop with m machines Cmax Makespan

FFm Flexible flowshop with m stages Pmax Peak power consumption

FHm Hybrid flowshop with m stages Gmax Carbon footprint

FJm Flexible job shop with m stages 𝑇𝑚𝑎𝑥 Maximum tardiness

prmu Permutation

STsd Sequence-dependent setup times

prec Precedence constraints

rj Release dates

no-idle No-idle scheduling

no-wait No-wait scheduling

dyn Dynamic scheduling

Mj Machine eligibility

batch Batch processing

dist Distributed flowshop

16

Table 3. 2. Literature Review (Other Energy Saving Strategies)

Reference
Shop Setting

(Comments)
Criteria

Energy Saving

Strategy

Objective

Structure

Solution

Approach

Bruzonne et

al. (2012)
FFm Cmax,∑𝑇𝑗,Pmax Other

Objective:

Cmax + ∑𝑇𝑗

(Constraint:Pmax)

MIP

Che et al.

(2017)
1(rj) TEC and 𝑇𝑚𝑎𝑥

Turn on/off

strategy
Multi-objective

MIP, Valid

Inequalities,

Cluster Analysis

Dai et al.

(2013)
FFm (Rm) TEC and Cmax

Turn on/off

strategy
Multi-objective

MIP, Genetic-

simulated

annealing

algorithm

Ding et al.

(2016a)
Rm TEC and Cmax

TOU electricity

prices

Objective: TEC

(Constraint:Cmax)

MILP,

Dantzig– Wolfe

Decomposition

Li et al.

(2018)
FHm (STsd) TEC and Cmax Other Multi-objective Heuristics

Liu et al.

(2008)
FHm TEC and Cmax Other

Objective: TEC

(Constraint:Cmax)

MINLP, improved

GA

Luo et al.

(2013)
FHm (Qm) TEC and Cmax

TOU electricity

prices
Multi-objective

Ant colony

optimization

Meng et al.

(2019)
FHm (Rm) TEC and Cmax

Turn on/off

strategy
Single objective MIP, GA

Moon et al.

(2013)
Rm TEC and Cmax

TOU electricity

prices

Objective:

TEC + Cmax
GA

Mouzon et

al. (2007)
1 TEC and ∑𝐶𝑗

Turn on/off

strategy
Multi-objective

MIP, Dispatching

rules

Mouzon &

Yildirim

(2008)

1 TEC and ∑ 𝑇𝑗
Turn on/off

strategy
Multi-objective MINLP, GRASP

Shrouf et al.

(2014)
1 TEC

TOU electricity

prices & turn

on/off strategy

Single objective MIP, GA

Tang et al.

(2016)
FFm(Rm,dyn) TEC and Cmax Other Multi-objective MIP, PSO

Wang et al.

(2018)
Pm TEC and Cmax

TOU electricity

prices
Multi-objective

MIP, CH, NSGA-

II

Wu et al.

(2018)
FFm Cmax and Gmax Other Multi-objective

MIP, Hybrid

NSGA-II

Yan et al.

(2016)
FFm TEC and Cmax Other

Multi-objective

(weighted

objectives)

Multi-level

optimization, GA

Zeng et al.

(2018)
FFm (batch)

TEC, Cmax and

Material

Waste

Other Multi-objective
MIP, Hybrid

NSGA-II

Zhang et al.

(2014)
Fm TEC and Gmax

TOU electricity

prices
Multi-objective

Time-indexed

integer

programming

Zhang et al.

(2018)
1 TEC

TOU electricity

prices
Single-objective

MIP, Greedy

Insertion Heuristic

Zhang et al.

(2019a)
FHm (STsd) TEC and Cmax Other Multi-objective

MILP,

Decomposition

based multi-

objective

approach

17

Table 3. 3. Literature Review (Speed Scaling Strategy)

Reference
Shop Setting

(Comments)
Criteria

Energy

Saving

Strategy

Objective

Structure

Solution

Approach

Che et al.

(2015)

1(rj) TEC and 𝑇𝑚𝑎𝑥 Speed scaling Objective: TEC

(Constraint:𝑇𝑚𝑎𝑥)

MIP

Chen et al.

(2018)

FHm (Rm,

STsd, rj, Mj, lot-

streaming)

TEC and Cmax Speed scaling Multi-objective MIP, MOGA

Deng et al.

(2016)

Fm (prmu,dist) Cmax and Gmax Speed scaling Multi-objective Competitive

memetic

algorithm

Ding et al.

(2016b)

Fm (prmu) Cmax and Gmax Speed scaling Multi-objective MONEH,

MOIG

Fang et al.

(2011)

Fm Cmax, Pmax, Gmax Speed scaling Multi-Objective MIP

Fang et al.

(2013)

Fm (prmu) Cmax and Pmax Speed scaling Objective: Cmax

(Constraint:

Pmax)

MIPs, Valid

inequalities

Fang and

Lin (2013)

Pm TEC and ∑𝑤𝑗𝑇𝑗 Speed scaling Objective:

TEC + ∑𝑤𝑗𝑇𝑗

IP, Heuristics,

PSO

Jiang et al.

(2017)

Fm (prmu,dist) Cmax and Gmax Speed scaling Multi-objective MOEA/D

Jiang and

Wang

(2019)

Fm (prmu,STsd) TEC and Cmax Speed scaling

& turn on/off

strategy

Multi-objective MIP, MOEA/D

Lei et al.

(2018)

FHm (Rm) TEC and ∑𝑇𝑗 Speed scaling Multi-objective

(lexicographic

optimization)

TLBO

algorithm

Li et al.

(2019)

FHm TEC, ∑𝑇𝑗 and

Cmax

Speed scaling Multi-objective

(different

importance of

objectives)

Two-level

imperialist

competitive

algorithm

Liu &

Huang

(2014)

FH2 (batch) Pmax, Gmax,

∑𝑤𝑗𝑇𝑗

Speed scaling Multi-objective NSGA-II,

adaptive MOGA

Lu et al.

(2017)

Fm (prmu,STsd) TEC and Cmax Speed scaling

& turn on/off

strategy

Multi-objective MIP, MOGA

with

backtracking

search

Mansouri et

al. (2016)

F2 (prmu, STsd) TEC and Cmax Speed scaling Multi-objective MIP, Lower

bounds,

heuristic

Mansouri

and Aktas

(2016)

F2 (prmu, STsd) TEC and Cmax Speed scaling Multi-objective Heuristics,

MOGA

Öztop et al.

(2018)

Fm (prmu) TEC and ∑𝐹𝑗 Speed scaling Multi-objective MILP, MOIG

Öztop et al.

(2020)

Fm (prmu) TEC and ∑𝐹𝑗 Speed scaling Multi-objective MILP, MOIG,

MOVBIH, CH

18

Table 3. 3. (Cont’d) Literature Review (Speed Scaling Strategy)

Reference
Shop Setting

(Comments)
Criteria

Energy

Saving

Strategy

Objective

Structure

Solution

Approach

Salido et al.

(2016)

Jm TEC and Cmax Speed scaling Multi-objective

(weighted

objectives)

GA

Shen et al.

(2017)

FHm Cmax and Pmax Speed scaling Objective: Cmax

(Constraint:

Pmax)

MIP, Discrete

TLBO

Tasgetiren

et al.

(2018a)

1(STsd, rj) TEC and Cmax Speed scaling Multi-objective MILP,

MOVBIH

Tasgetiren

et al.

(2018b)

1(STsd) TEC and ∑𝑤𝑗𝑇𝑗 Speed scaling Multi-objective MILP, MOIG,

MOBIH

Tasgetiren

et al. (2019)

Fm (prmu, no-

idle)

TEC and Cmax Speed scaling Multi-objective MILP, MOGA,

MOVILS

Wang et al.

(2017)

Fm (no-wait,

dist)

TEC and Cmax Speed scaling Multi-objective Cooperative

heuristic

algorithm

Wang and

Wang

(2018)

Fm (prmu,dist) TEC and Cmax Speed scaling Multi-objective MIP,

Knowledge-

based

cooperative

algorithm

Wu and Che

(2019)

Rm TEC and Cmax Speed scaling Multi-objective MIP, Memetic

Differential

Evolution

Algorithm

Yin et al.

(2017)

FJm TEC, Cmax and

noise emission

Speed scaling Multi-objective MIP, MOGA

Zhang &

Chiong

(2016)

Jm TEC and ∑𝑤𝑗𝑇𝑗 Speed scaling Multi-objective MOGA

Zhang et al.

(2019b)

FHm (STsd) TEC and Cmax Speed scaling Multi-objective MIP, MDABC

based

Decomposition

Zheng and

Wang

(2018)

Rm Cmax and Gmax Speed scaling Multi-objective MIP, CMFOA

3.2 Motivation of the Thesis

This thesis addresses the trade-off between the makespan and the total energy

consumption (TEC) in the energy efficient HFSP (EHFSP) employing a speed-scaling

strategy. This problem is chosen as the thesis research subject for the following

motives.

From a practical viewpoint, hybrid flowshop setting is a common shop floor setting

and it can be seen in various real production environments, such as chemical (Deal et

19

al., 1994), ceramic tiles (Ruiz and Maroto, 2006), steel (Pan et al., 2013), paper

(Sherali et al., 1990), textile (Grabowski and Pempera, 2000) and electronics

(Wittrock, 1988; Liu and Chang, 2000; Jin et al., 2002) industries. As mentioned in

Chapter 1, makespan, is the main performance criterion for increasing the utilization

of resources and obtaining a high throughput. On the other hand, the TEC criterion is

important to decrease fuel consumption and slow down environmental deterioration.

Note that minimizing energy consumption is an important issue for manufacturing

companies due to a series of environmental effects and the increasing energy costs.

Therefore, the proposed energy-efficient scheduling techniques can be applied to

various real manufacturing environments.

The managers can make decisions considering both production and energy efficiency

by using the developed solution methods in this thesis. The proposed methods that

employ a speed scaling strategy do not require a significant financial investment from

a managerial perspective. Note that machines can operate at multiple speed levels in

many real-life production environments. Since there is no need for installing costly

energy-efficient machinery, they can also be employed by small and medium-sized

enterprises. Consequently, proposed energy-efficient scheduling approaches can

provide economic savings from energy resource consumptions as well as the

environmental benefits, without making a significant financial investment.

From an academic viewpoint, this thesis will fill the research gap that the multi-

objective energy efficient scheduling methods for the hybrid flowshop environment

have not been well explored from the perspective of speed scaling strategy. To the best

of our knowledge, the speed scaling approach has been employed for the energy-

efficient HFSP/FFSP in only a few studies (Liu and Huang, 2014; Chen et al., 2018;

Zhang et al., 2019b; Lei et al., 2018; Li et al., 2019; Shen et al., 2017), which are

explained as follows. These studies are also summarized in Table 3.4.

Liu & Huang (2014) proposed an NSGA-II and an adaptive MOGA for a very specific

two-stage hybrid flowshop, which includes a batch-processing machine followed by

two parallel-processing machines, to minimize the total weighted tardiness, carbon

footprint, and peak power. Chen et al. (2018) proposed a multi-objective MIP model

and a MOGA for the HFSP with lot streaming in order to minimize both makespan

and electric power consumption, considering sequence-dependent setup times, release

dates, unrelated machines, and machine eligibility restrictions. Recently, Zhang et al.

20

(2019b) proposed a multi-objective discrete artificial bee colony algorithm (MDABC)

based on decomposition for the energy-efficient HFSP with sequence-dependent setup

times, where there are different numbers of speed levels for the machines at different

stages. Note that, in these aforementioned studies (Liu and Huang, 2014; Chen et al.,

2018; Zhang et al., 2019b), special variants of the energy-efficient HFSP were

considered such as a particular two-stage hybrid flowshop (Liu and Huang, 2014) and

hybrid flowshops with lot streaming and sequence-dependent setup operations (Chen

et al., 2018; Zhang et al., 2019b). In this thesis, a general m-stage HFSP with makespan

and TEC criteria is considered employing a speed-scaling strategy.

Table 3. 4. Literature Review for the EHFSP with Speed Scaling Strategy

Reference
Shop Setting

(Comments)
Criteria

Energy

Saving

Strategy

Objective

Structure

Solution

Approach

Chen et al.

(2018)

FHm (Rm,

STsd, rj, Mj, lot-

streaming)

TEC and Cmax Speed scaling Multi-objective MIP, MOGA

Lei et al.

(2018)

FHm (Rm) TEC and ∑𝑇𝑗 Speed scaling Multi-objective

(lexicographic

optimization)

TLBO

algorithm

Li et al.

(2019)

FHm TEC, ∑𝑇𝑗 and

Cmax

Speed scaling Multi-objective

(different

importance of

objectives)

Two-level

imperialist

competitive

algorithm

Liu &

Huang

(2014)

FH2 (batch) Pmax, Gmax, ∑𝑤𝑗𝑇𝑗 Speed scaling Multi-objective NSGA-II,

adaptive

MOGA

Shen et al.

(2017)

FHm Cmax and Pmax Speed scaling Objective: Cmax

(Constraint:Pmax)

MIP, Discrete

TLBO

Zhang et al.

(2019b)

FHm (STsd) TEC and Cmax Speed scaling Multi-objective MIP, MDABC

based

Decomposition

Recently, Lei et al. (2018) presented a teaching-learning-based optimization (TLBO)

algorithm to solve the energy-efficient HFSP with unrelated machines employing a

speed scaling approach. They considered both total energy consumption and total

tardiness criteria and applied a lexicographical method to deal with the total tardiness

as a key objective. Li et al. (2019) also developed a two-level imperialist competitive

algorithm for the energy-efficient HFSP with total tardiness, makespan, and total

energy consumption criteria, where the energy consumption objective has lower

importance. Note that, in Lei et al. (2018) and Li et al. (2019), the tardiness objective

was considered together with a TEC criterion for the energy-efficient HFSP, where the

21

studied objectives have different importance. In this thesis, the trade-off between the

makespan and TEC is addressed for the energy-efficient HFSP by assuming that both

objectives have equal importance. As mentioned before, both makespan and TEC are

very important performance criteria for hybrid flowshop environments. Shen et al.

(2017) also proposed a MIP model and a discrete teaching-learning-based optimization

algorithm for the single-objective HFSP with the makespan criterion under the peak

power consumption constraints. Note that, a single-objective HFSP was studied in

Shen et al. (2017), where the energy-efficiency was handled with peak power

consumption constraints. In this thesis, both makespan and TEC criteria are considered

for the HFSP in a multi-objective setting.

Based on these discussions, the motivation of this thesis is to develop effective

optimization methods to address the trade-off between the makespan and the total

energy consumption in the EHFSP employing a speed-scaling strategy, which has not

been investigated very well. Lack of a fundamental model and related solution

techniques for the EHFSP with the makespan and TEC criteria that employ speed

scaling strategy are remarkable gaps in the current literature that needs to be filled.

This thesis aims to fill this research gap by presenting new exact and heuristic solution

methods for the problem.

In this thesis, two variants of the speed scaling strategy are studied for the EHFSP,

namely, a job-based speed scaling strategy (EHFSP-V1) and a matrix-based speed

scaling strategy (EHFSP-V2). New bi-objective MILP models and new bi-objective

CP models are proposed for the EHFSP-V1 and EHFSP-V2. New bi-objective

metaheuristic algorithms are also proposed for the EHFSP-V1 and EHFSP-V2.

Namely, seven bi-objective metaheuristic algorithms are proposed for the EHFSP-V1,

which are two variants of the IG, a VBIH and four variants of the ensemble of

metaheuristic algorithms. Additionally, four bi-objective metaheuristic algorithms are

proposed for the EHFSP-V2, which are two variants of the IG algorithm, a VBIH

algorithm and an ensemble of metaheuristic algorithms. In order to evaluate the

performance of the proposed methods, benchmark instances are also developed by

modifying the well-known HFSP benchmarks from the literature (Carlier and Neron,

2000; Liao et al., 2012; Öztop et al., 2019).

Furthermore, in this thesis, a new constructive heuristic is presented for the single-

objective HFSP with the makespan criterion. Two new heuristic fitness calculation

22

approaches are also proposed to compensate for the inefficiency of the standard

forward scheduling approach for fitness function calculation in HFSP.

Consequently, this thesis contributes to the energy-efficient scheduling literature by

applying the speed scaling strategy to the HFSP, presenting new bi-objective MILP

and CP models for the EHFSP, developing original seven effective bi-objective

metaheuristic algorithms for the EHFSP-V1 and developing original four effective bi-

objective metaheuristic algorithms for the EHFSP-V2. Note that, the augmented ε-

constraint method is also employed to solve the proposed bi-objective MILP and CP

models.

To the best of our knowledge, this thesis presents a constraint programming approach

to the EHFSP for the first time in the literature. As far as we know, CP is employed

for the HFSP only in the study of Jouglet et al. (2009), considering the multiprocessor

tasks. The authors presented a memetic algorithm for the HFSP with multiprocessor

tasks, where each job operation must be processed on several parallel machines

simultaneously in each stage. The authors employed a constraint programming based

branch & bound algorithm as the local search procedure of their memetic algorithm.

Consequently, this thesis also contributes to the HFSP literature by presenting a

constraint programming approach.

Furthermore, this thesis contributes to the hybrid flowshop scheduling literature by

presenting a new constructive heuristic and two new heuristic fitness calculation

approaches for the HFSP. Since the multi-objective studies on the hybrid flowshop

scheduling problem have also been limited (Ruiz and Vazquez Rodriguez, 2010), this

thesis also contributes to the literature on multi-objective hybrid flowshop scheduling.

23

CHAPTER 4

PROBLEM DEFINITION & MODEL FORMULATIONS

The HFSP can be considered as a generalization of two classical scheduling problems:

the parallel machine scheduling problem and the flowshop scheduling problem. In the

HFSP, 𝑛 jobs must be processed in a series of 𝑚(𝑚 > 1)stages, optimizing a given

objective function. All jobs must be sequentially processed following the same

production order: stage 1, stage 2,…, stage 𝑚. Each job 𝑗 ∈ 𝐽 requires a nonnegative

and uninterrupted processing time 𝑝𝑘𝑗 in stage 𝑘. Note that, processing of job j in stage

k is referred to the operation 𝑜𝑘𝑗. Each stage 𝑘 ∈ 𝑀 has |𝐼𝑘| ≥ 1 identical parallel

machines, and in at least one of the stages |𝐼𝑘| > 1. As all machines are identical at

each stage 𝑘, a job can be assigned to any machine 𝑖 ∈ 𝐼𝑘.

In this thesis, the EHFSP is studied by employing a speed scaling strategy. Unlike the

standard HFSP, the machines have variable speed levels in the EHFSP and the speed

of a machine can be easily adjusted between jobs. Therefore, the operation time of a

job may change based on the chosen speed level. It is assumed that there are three

processing speed levels for the machines: fast, normal, and slow. Increasing the speed

of a machine decreases processing time, but leads to higher energy consumption.

Hence, speed levels of the jobs should be determined carefully to improve both energy

and production efficiency. There are two conflicting objectives: minimizing the total

energy consumption (𝑇𝐸𝐶) and minimizing the makespan (𝐶𝑚𝑎𝑥). As mentioned

before, the makespan criterion is important for increasing the utilization of resources

and obtaining a high throughput. On the other hand, the 𝑇𝐸𝐶 criterion is also very

important in terms of energy-efficient scheduling.

In this thesis, two variants of speed scaling strategy are considered. In the first variant

of the EHFSP (EHFSP-V1), speed-scaling is assumed to be job-based due to its

simplicity and tractability, as proposed by Öztop et al. (2018), that is, a job must be

processed with the same speed level at all stages. Note that, in some flowshops, a single

processing speed level is defined for a job through its route for easily tracing and

managing the speed arrangements of the job on all stages/machines. Subsequently, the

24

machines process each job based on its pre-defined speed level. This type of job-based

speed scaling strategy is practical, particularly for the flowshops with a higher number

of stages/machines. In such large systems, defining a different speed level for a job on

each stage/machine can be impractical in real-life practice. On the other hand, in the

second variant of the EHFSP (EHFSP-V2), the job-based speed scaling strategy

assumption is omitted, and it is assumed that the speed of a job can vary from stages

to stages. Note that the second version of the problem is relatively more complex than

the first version of the problem. For both versions of the EHFSP, MILP and CP models

are presented in the following subsections.

The problem notation is given in Table 4.1, and further assumptions are explained as

follows: All jobs and machines are available at time zero. No job can be processed on

more than one machine at a time, and a machine can process only one operation at a

time. Job pre-emption is not allowed. Jobs can wait between stages, and the capacity

of buffers is unlimited. Travel times between consecutive stages and setup times are

included in the processing times of jobs. Changing the speed of machines does not

affect machine quality. All parameters are deterministic and known in advance. Based

on the aforementioned assumptions and objectives, the studied bi-objective EHFSP is

denoted as FHm, ((𝑃𝑀(𝑘))𝑘=1
𝑚)|| 𝐶𝑚𝑎𝑥, 𝑇𝐸𝐶 according to the notation proposed by

Vignier et al. (1999), which follows the three-field notation of Graham et al. (1979).

Table 4. 1. Problem Notation

Sets

M Set of stages {1,2,…,m}

J Set of jobs

L Set of processing speed levels {1,2,3}

Ik Set of machines at stage k ∈ M

Parameters

pkj Processing time of job j ∈ J at stage k ∈ M

vl Speed factor of processing speed level l ∈ L

λl Conversion factor for processing speed level l ∈ L

αki Conversion factor for idle time on the machine i ∈ 𝐼𝑘 at stage k ∈ M

βki Power of machine i ∈ 𝐼𝑘 at stage k ∈ M

Q A very large number

25

4.1 Mixed-Integer Linear Programming Models for EHFSP-V1 and

EHFSP-V2

Decision variables are listed below for the MILP models of EHFSP-V1 and EHFSP-

V2:

𝑠𝑘𝑗: Starting time of job j at stage k

𝑥𝑘𝑗𝑖
𝑙 : 1 if job j is processed by machine i at stage k with speed level l, 0 otherwise

𝑦𝑘𝑗𝑟: 1 if job j precedes job r at stage k, 0 otherwise

𝜃𝑘𝑖: Idle time on machine i at stage k

𝐶𝑚𝑎𝑥: Maximum completion time (makespan)

TEC: Total energy consumption

The MILP model is given below for the EHFSP-V1:

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐶𝑚𝑎𝑥 (4-1)

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑇𝐸𝐶 (4-2)

Subject to:

∑ 𝑥𝑘𝑗𝑖
𝑙

𝑖∈𝐼𝑘 = ∑ 𝑥𝑘+1,𝑗,𝑖
𝑙

𝑖∈𝐼𝑘+1
 ∀(𝑘, 𝑘 + 1) ∈ 𝑀, 𝑗 ∈ 𝐽, 𝑙 ∈ 𝐿 (4-3)

𝑠𝑚𝑗 + ∑ ∑
𝑝𝑚𝑗

𝑣𝑙
𝑙∈𝐿𝑖∈𝐼𝑚 𝑥𝑚𝑗𝑖

𝑙 ≤ 𝐶𝑚𝑎𝑥 ∀𝑗 ∈ 𝐽 (4-4)

∑ ∑ 𝑥𝑘𝑗𝑖
𝑙

𝑙∈𝐿𝑖∈𝐼𝑘 = 1 ∀𝑗 ∈ 𝐽, 𝑘 ∈ 𝑀 (4-5)

𝑠𝑘+1,𝑗 − 𝑠𝑘𝑗 ≥ ∑ ∑
𝑝𝑘𝑗

𝑣𝑙
𝑙∈𝐿𝑖∈𝐼𝑘 𝑥𝑘𝑗𝑖

𝑙 ∀𝑗 ∈ 𝐽, (𝑘, 𝑘 + 1) ∈ 𝑀 (4-6)

𝑠𝑘𝑗 − (𝑠𝑘𝑟 + ∑
𝑝𝑘𝑟

𝑣𝑙
𝑙∈𝐿 𝑥𝑘𝑟𝑖

𝑙) + 𝑄(2 + 𝑦𝑘𝑗𝑟 − ∑ 𝑥𝑘𝑗𝑖
𝑙

𝑙∈𝐿 − ∑ 𝑥𝑘𝑟𝑖
𝑙

𝑙∈𝐿) ≥ 0

∀𝑗, 𝑟 ∈ 𝐽: 𝑗 < 𝑟, 𝑘 ∈ 𝑀, 𝑖 ∈ 𝐼𝑘 (4-7)

𝑠𝑘𝑟 − (𝑠𝑘𝑗 + ∑
𝑝𝑘𝑗

𝑣𝑙
𝑙∈𝐿 𝑥𝑘𝑗𝑖

𝑙) + 𝑄(3 − 𝑦𝑘𝑗𝑟 − ∑ 𝑥𝑘𝑗𝑖
𝑙

𝑙∈𝐿 − ∑ 𝑥𝑘𝑟𝑖
𝑙

𝑙∈𝐿) ≥ 0

∀𝑗, 𝑟 ∈ 𝐽: 𝑗 < 𝑟, 𝑘 ∈ 𝑀, 𝑖 ∈ 𝐼𝑘 (4-8)

𝜃𝑘𝑖 = 𝐶𝑚𝑎𝑥 − ∑ ∑
𝑝𝑘𝑗

𝑣𝑙
𝑙∈𝐿 𝑥𝑘𝑗𝑖

𝑙
𝑗∈𝐽 ∀𝑘 ∈ 𝑀, 𝑖 ∈ 𝐼𝑘 (4-9)

𝑇𝐸𝐶 = ∑ ∑ ∑ ∑
𝛽𝑘𝑖𝑝𝑘𝑗𝜆𝑙

60𝑣𝑙
𝑙∈𝐿𝑖∈𝐼𝑘𝑘∈𝑀𝑗∈𝐽 𝑥𝑘𝑗𝑖

𝑙 + ∑ ∑
𝛼𝑘𝑖𝛽𝑘𝑖

60𝑖∈𝐼𝑘𝑘∈𝑀 𝜃𝑘𝑖 (4-10)

26

𝑠𝑘𝑗 ≥ 0 ∀𝑘 ∈ 𝑀, 𝑗 ∈ 𝐽, 𝑦𝑘𝑗𝑟 ∈ {0,1} ∀𝑗, 𝑟 ∈ 𝐽, 𝑘 ∈ 𝑀

𝑥𝑘𝑗𝑖
𝑙 ∈ {0,1} ∀𝑘 ∈ 𝑀, 𝑗 ∈ 𝐽, 𝑖 ∈ 𝐼𝑘, 𝑙 ∈ 𝐿 (4-11)

The objective functions (4-1) and (4-2) minimize the makespan (𝐶𝑚𝑎𝑥) and the 𝑇𝐸𝐶,

respectively. Constraint set (4-3) imposes a single speed level for a job through the

stages. Constraint set (4-4) determines the maximum completion time. Constraint set

(4-5) ensures that each job passes through all stages and is assigned to exactly one

machine at every stage. Through constraint set (4-6), the next operation of a job can

be started after its preceding operation is completed. Constraint sets (4-7) and (4-8)

determine the sequence of the jobs on each machine, where 𝑄 is a large integer. For

two jobs assigned to the same machine, the next job can only be started after the

preceding job is processed. Constraint set (4-9) computes the idle time on each

machine, while constraint set (4-10) calculates the total energy consumption in

kilowatt-hours, as proposed in (Mansouri et al., 2016). Both the processing time and

the idle time energy consumption are reflected in the calculation of 𝑇𝐸𝐶. Finally, the

constraint set (4-11) defines the decision variables.

The MILP model of the EHFSP-V2, in which the speed of a job can change from stages

to stages, is given below. This model is identical to the above one except that the

constraint set (4-3), which imposes a single speed level for a job through the stages, is

omitted.

Minimize (4-1) and (4-2)

Subject to:

(4-4) - (4-11).

4.2 Constraint Programming Models for EHFSP-V1 and EHFSP-V2

In this subsection, the CP models are presented for the EHFSP-V1 and EHFSP-V2.

Before presenting the CP models, a brief introduction to the constraint programming

technique is provided in the following subsection (Section 4.2.1). Then, the CP models

are provided in Section 4.2.2.

4.2.1 Constraint Programming

Constraint programming is an efficient approach for modeling and solving

combinatorial optimization problems. CP employs global constraints as well as the

27

traditional mathematical programming constraints. Global constraints are more

effective than the traditional constraints, as they express the relations between

variables more easily and employ specialized filtering algorithms due to the problem’s

structure.

The variables and global constraints used in this thesis are formally defined as below

(IBM ILOG CPLEX, 2017):

Variables:

Interval Variable: It denotes an interval of time whose position in a schedule is not

pre-determined. An interval is symbolized by a starting time, an ending time, and a

duration. Interval variables can be optional, meaning that the existence of them in the

final solution schedule is part of the decisions in the problem. The optional concept is

very useful when activities can be performed on several different resources.

Sequence Variable: A sequence variable indicates a sequence for a set of interval

variables. For a given set of interval variables {𝑡1, 𝑡2, 𝑡3, 𝑡4}, the value of the sequence

variable can be (𝑡1, 𝑡3, 𝑡4, 𝑡2).

Global Constraints:

𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒 (𝑎, {𝑏1, . . , 𝑏𝑛}): This constraint selects an exclusive alternative from a set

of optional interval variables {𝑏1, . . , 𝑏𝑛}. If interval 𝑎 exists, then exactly one of

intervals {𝑏1, . . , 𝑏𝑛} exists, and 𝑎 starts and finishes together with the selected one. If

𝑎 does not exist, then all 𝑏 intervals do not exist. This constraint is generally useful to

model the choice of one resource among a set of candidate resources and to model

alternative performing modes for activities.

𝑛𝑜𝑂𝑣𝑒𝑟𝑙𝑎𝑝 (𝑝): This constraint is used to prevent overlapping of intervals in a

sequence variable 𝑝. It assures that the sequence is formed by a series of non-

overlapping intervals, i.e., any interval in the sequence is finished before the starting

time of the next interval in the sequence. This constraint is generally used for

formulating disjunctive resources.

𝑒𝑛𝑑𝐵𝑒𝑓𝑜𝑟𝑒𝑆𝑡𝑎𝑟𝑡(𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟, 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟): This constraint ensures that, if both

interval variables 𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟 and 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟 exist, then 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟 cannot start

before 𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟 has been finished.

28

4.2.2 CP Models for EHFSP-V1 and EHFSP-V2

The CP models are presented for the EHFSP-V1 and EHFSP-V2, using the OPL API

of CP Optimizer. Interval variables are defined for representing the operations of the

jobs in each stage. Furthermore, optional interval variables represent the performing

of job j in stage k on machine i ∈ 𝐼𝑘 with speed level l. The model also declares several

sequence variables associated with each machine i in stage k. Each sequence constraint

gathers all the optional interval variables associated with a specific machine. Decision

variables are listed below for the proposed CP model:

𝑡𝑘𝑗 : Interval variable for the operation of job j in stage k

𝑧𝑖𝑗𝑘
𝑙 : Optional interval variable for the operation of job j in stage k on machine i ∈ 𝐼𝑘

with speed level l and duration of (
𝑝𝑘𝑗

𝑣𝑙
⁄)

𝑚𝑠𝑖𝑘: Sequence variable for machine i ∈ 𝐼𝑘 in stage k over {𝑧𝑖𝑗𝑘
𝑙 | 𝑗 ∈ 𝐽, 𝑙 ∈ 𝐿}

The calculations of 𝐶𝑚𝑎𝑥, 𝑇𝐸𝐶 and 𝜃𝑘𝑖 (idle time on the machine i at stage k) are

handled by defining below expressions:

𝐶𝑚𝑎𝑥 = 𝑚𝑎𝑥𝑗∈𝐽 (𝑒𝑛𝑑𝑂𝑓 (𝑡𝑚𝑗))

𝜃𝑘𝑖 = 𝐶𝑚𝑎𝑥 - ∑ ∑
𝑝𝑘𝑗

𝑣𝑙
𝑙∈𝐿𝑗∈𝐽 𝑝𝑟𝑒𝑠𝑒𝑛𝑐𝑒𝑂𝑓(𝑧𝑖𝑗𝑘

𝑙)

𝑇𝐸𝐶 = ∑ ∑ ∑ ∑
𝛽𝑘𝑖𝑝𝑘𝑗𝜆𝑙

60𝑣𝑙
𝑙∈𝐿𝑖∈𝐼𝑘𝑘∈𝑀𝑗∈𝐽 𝑝𝑟𝑒𝑠𝑒𝑛𝑐𝑒𝑂𝑓(𝑧𝑖𝑗𝑘

𝑙) + ∑ ∑
𝛼𝑘𝑖𝛽𝑘𝑖

60
𝜃𝑘𝑖𝑖∈𝐼𝑘𝑘∈𝑀

Then, the CP model is given below for the EHFSP-V1:

Minimize 𝐶𝑚𝑎𝑥 (4-12)

Minimize 𝑇𝐸𝐶 (4-13)

Subject to:

𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒 (𝑡𝑘𝑗 , 𝑎𝑙𝑙 (𝑖 𝑖𝑛 𝐼𝑘 , 𝑙 𝑖𝑛 𝐿)𝑧𝑖𝑗𝑘
𝑙) ∀𝑗 ∈ 𝐽, 𝑘 ∈ 𝑀 (4-14)

𝑛𝑜𝑂𝑣𝑒𝑟𝑙𝑎𝑝(𝑚𝑠𝑖𝑘) ∀𝑘 ∈ 𝑀, 𝑖 ∈ 𝐼𝑘 (4-15)

𝑒𝑛𝑑𝐵𝑒𝑓𝑜𝑟𝑒𝑆𝑡𝑎𝑟𝑡(𝑡𝑘𝑗, 𝑡𝑘+1,𝑗) ∀𝑗 ∈ 𝐽, (𝑘, 𝑘 + 1) ∈ 𝑀 (4-16)

∑ 𝑝𝑟𝑒𝑠𝑒𝑛𝑐𝑒𝑂𝑓(𝑧𝑖𝑗𝑘
𝑙)𝑖∈𝐼𝑘 = ∑ 𝑝𝑟𝑒𝑠𝑒𝑛𝑐𝑒𝑂𝑓(𝑧𝑖𝑗,𝑘+1

𝑙)𝑖∈𝐼𝑘+1

 ∀𝑗 ∈ 𝐽, (𝑘, 𝑘 + 1) ∈ 𝑀, 𝑙 ∈ 𝐿 (4-17)

29

The objective functions (4-12) and (4-13) minimize the makespan (𝐶𝑚𝑎𝑥) and the 𝑇𝐸𝐶,

respectively. Constraint set (4-14) ensures that each operation of job j is assigned to

exactly one machine at each stage, and one speed level is chosen for each operation.

Constraint set (4-15) states that each machine can perform only one operation at a time.

For two jobs assigned to the same machine, the next job can be started after the

preceding job is completed. Through constraint set (4-16), the next operation of a

certain job in stage 𝑘 + 1 can be started after its preceding operation in stage 𝑘 is

finished. Constraint set (4-17) imposes a single speed level for a job through the stages.

The CP model of the EHFSP-V2, in which the speed of a job can vary from stages to

stages, is given below. This model is identical to the above one except that the

constraint set (4-17) is omitted.

Minimize (4-12) and (4-13)

Subject to:

(4-14) - (4-16).

The processing times (𝑝𝑘𝑗) are defined as integer values in this thesis. However, when

a processing time 𝑝𝑘𝑗 is divided by a speed factor 𝑣𝑙, the resulting duration can be a

floating number. As mentioned in Chapter 7, there are three processing speed levels

for the machines in this thesis, and the corresponding processing speed factors are

𝑣𝑙 = {1.2, 1.0, 0.8}. In OPL API of CP Optimizer, interval variables cannot have a

duration with a floating value. Hence, a transformation procedure has been applied to

define integer processing times for interval variables. Note that the operations in Eq.

(4-18) are equivalent. Namely dividing the processing times (𝑝𝑘𝑗) by 𝑣𝑙 =

 {1.2, 1.0, 0.8} is equivalent to multiply them by 𝑣𝑙
′ = {

10

12
,
12

12
,
15

12
}. Hence, we can

obtain integer processing time values by multiplying the processing time (𝑝𝑘𝑗/𝑣𝑙)

expressions by a constant value 12, i.e., multiplying the processing times (𝑝𝑘𝑗) by the

𝑣𝑐𝑙 ={10, 12, 15}. Accordingly, each (𝑝𝑘𝑗/𝑣𝑙) expression in the above formulation is

replaced by an expression (𝑝𝑘𝑗 ∗ 𝑣𝑐𝑙).

 (𝑙 = 1)
𝑝𝑘𝑗

1.2
= 𝑝𝑘𝑗 ∗

10

12
, (𝑙 = 2)

𝑝𝑘𝑗

1.0
= 𝑝𝑘𝑗 ∗

12

12
, (𝑙 = 3)

𝑝𝑘𝑗

0.8
= 𝑝𝑘𝑗 ∗

15

12
 (4-18)

Consequently, the resulting interval variable 𝑧𝑖𝑗𝑘
𝑙 is defined as below:

30

𝑧𝑖𝑗𝑘
𝑙 : Optional interval variable for the operation of job j in stage k on machine i ∈ 𝐼𝑘

with speed level l and duration of (𝑝𝑘𝑗 ∗ 𝑣𝑐𝑙)

Since the original processing time (𝑝𝑘𝑗/𝑣𝑙) expressions are multiplied by 12 during

the transformation procedure, the resulting 𝐶𝑚𝑎𝑥 and 𝑇𝐸𝐶 values will be 12 times the

original 𝐶𝑚𝑎𝑥 and 𝑇𝐸𝐶 values. Therefore, the 𝐶𝑚𝑎𝑥, 𝑇𝐸𝐶 and 𝜃𝑘𝑖 expressions are also

modified by dividing them 12, as follows:

𝐶𝑚𝑎𝑥 = (𝑚𝑎𝑥𝑗∈𝐽 (𝑒𝑛𝑑𝑂𝑓 (𝑡𝑚𝑗)))/12

𝜃𝑘𝑖 = 𝐶𝑚𝑎𝑥 - ∑ ∑
𝑝𝑘𝑗∗𝑣𝑐𝑙

12𝑙∈𝐿𝑗∈𝐽 𝑝𝑟𝑒𝑠𝑒𝑛𝑐𝑒𝑂𝑓(𝑧𝑖𝑗𝑘
𝑙)

𝑇𝐸𝐶 = ∑ ∑ ∑ ∑
𝛽𝑘𝑖𝜆𝑙(𝑝𝑘𝑗∗𝑣𝑐𝑙)

60∗12𝑙∈𝐿𝑖∈𝐼𝑘𝑘∈𝑀𝑗∈𝐽 𝑝𝑟𝑒𝑠𝑒𝑛𝑐𝑒𝑂𝑓(𝑧𝑖𝑗𝑘
𝑙) + ∑ ∑

𝛼𝑘𝑖𝛽𝑘𝑖

60
𝜃𝑘𝑖𝑖∈𝐼𝑘𝑘∈𝑀

4.3 Conflicting Objectives

In order to show the conflict between minimizing 𝐶𝑚𝑎𝑥 and 𝑇𝐸𝐶, the Pareto frontiers

are obtained for a small problem with five jobs and five stages. For the same instance,

Figure 4.1 demonstrates the Pareto frontier for the EHFSP-V1 and Figure 4.2 shows

the Pareto frontier for the EHFSP-V2. As seen from the figures, the number of Pareto-

optimal solutions in EHFSP-V2 is much more than the number of Pareto-optimal

solutions in EHFSP-V1. Therefore, the EHFSP-V2 is relatively more complex to solve

than the EHFSP-V1.

Figure 4. 1. Pareto Frontier of a Small Problem (EHFSP-V1)

31

As shown in Figures 4.1 and 4.2, the two objectives are conflicting, and they cannot

be optimized concurrently. Hence, multi-objective optimization techniques should be

employed to solve the bi-objective EHFSP. The multi-objective optimization

technique employed in this thesis is explained in Chapter 5 as well as the related

terminology.

Figure 4. 2. Pareto Frontier of a Small Problem (EHFSP-V2)

32

33

CHAPTER 5

MULTI-OBJECTIVE OPTIMIZATION

In this section, common solution techniques to solve multi-objective optimization

problems are explained as well as the related terminology. Then, the multi-objective

optimization method used in this thesis is explained in detail.

5.1 Terminology

A multi-objective optimization problem (MOP) includes several conflicting objective

functions to be optimized simultaneously. As these objective functions conflict with

each other, i.e., improvement of one objective function may cause to worsening of

another, there is no single optimal solution for these problems. In this case, a set of

most preferred solutions, namely Pareto-optimal solutions, is important for the

decision-maker. Therefore, the optimality concept is replaced with the concept of

Pareto-optimality for the MOPs. The Pareto-optimality and the dominance relation

concepts are formally defined for a minimization MOP as follows (Okabe et al. 2003):

MOP: minimize F(x) = (𝑓1(x), . . . , 𝑓𝑐(x))C

 s.t. x ∈Ω,

Dominance: A solution 𝑥𝑖 dominates another solution 𝑥𝑗 if the two following

conditions are satisfied (denoted as 𝑥𝑖 ≺ 𝑥𝑗):

• ∀𝑐 ∈ 1, . . , 𝐶; 𝑓𝑐(𝑥𝑖) ≤ 𝑓𝑐(𝑥𝑗)

• ∃𝑐 ∈ 1, . . , 𝐶; 𝑓𝑐(𝑥𝑖) < 𝑓𝑐(𝑥𝑗)

Weakly Dominance: A solution 𝑥𝑖 weakly dominates another solution 𝑥𝑗 (denoted as

𝑥𝑖 ≼ 𝑥𝑗) if :

• ∀𝑐 ∈ 1, . . , 𝐶; 𝑓𝑐(𝑥𝑖) ≤ 𝑓𝑐(𝑥𝑗)

34

Pareto-Optimality: A solution x is named as Pareto-optimal (efficient) if ∄ 𝑦 ∈ Ω; y ≺

x.

Pareto-Optimal Frontier (Pareto-Optimal Set): The union of all Pareto optimal

solutions x ∈ Ω is called as Pareto-optimal frontier (Ptrue).

Pareto-Optimal Solution Set: A finite number of Pareto-optimal solutions that belong

to Ptrue, are named as Pareto Optimal Solution Set (P), where P ⊆ Ptrue. As it is

generally impossible to obtain Ptrue, P is commonly used as an approximation to Ptrue.

Solution Set and Non-dominated Solution Set: The set of solutions obtained by an

algorithm is named as Solution Set (S). The solutions in S that are not dominated by

others in the set form the Non-dominated Solution Set (SN). As only non-dominated

solutions are generated in S for most of the cases, SN is usually defined with S.

Reference Set: In general, the Pareto optimal set is unknown for most of the cases. In

these cases, the desired reference set (R) is designed with pre-defined solutions. This

reference set is usually formed by combining the best-known solutions from several

algorithms.

5.2 Solution Methods

As mentioned in Chapter 4, the studied EHFSP in this thesis is a bi-objective

optimization problem. Hence, no single optimal solution exists due to the conflict

between 𝑇𝐸𝐶 and 𝐶𝑚𝑎𝑥 objectives. Yet, a set of Pareto-optimal solutions can be found

by handling the trade-off between these objectives. As mentioned above, a Pareto-

optimal solution cannot be improved in one objective without deteriorating the other

one, and it is not dominated by any other feasible solution. Since the two objectives of

the EHFSP are conflicting and cannot be optimized concurrently, multi-objective

solution methods must be employed, which are explained as follows.

Generally, the solution methods for solving MOPs are divided into three main

categories due to the impact of the decision-maker (Mavrotas, 2009):

Priori methods:

At the beginning of the solution process, the decision-maker defines its preferences by

either determining goals or weights for the objective functions. In the former one, a

certain numeric goal is determined for each objective, and the (weighted) sum of

35

deviations of the objective functions from their respective goals is minimized. In the

latter one, weights are defined for each objective, and the weighted combination of the

objectives is optimized. The drawback of these methods is that it is hard to define the

decision maker’s preferences precisely in terms of goals or weights in advance.

Interactive methods:

The decision-maker is involved in the whole solution process interactively, meaning

that he/she gradually lead the process with his/her preferences to the most preferred

solution. The disadvantage of this method is that the decision-maker never knows the

Pareto-optimal solution set and the most preferred solution is chosen among the

solutions obtained so far.

Posteriori (generation) methods:

The non-dominated solutions are obtained at the beginning, and then the decision-

maker selects the one solution among them. The disadvantage of these methods is that

they require high computational effort. Nevertheless, they also have advantages. They

are preferable whenever the decision-maker is not available, as they find all possible

alternatives in advance. Furthermore, the confidence of the decision-maker on these

methods is generally high, as they are able to find all potential solutions.

The most commonly used generation methods are the weighting method and the ε-

constraint method. It is known that the ε-constraint method has several advantages as

compared with the weighting method (Mavrotas, 2009). In this thesis, we use the

augmented ε-constraint method to solve the proposed bi-objective MILP and CP

models. The augmented ε-constraint method is an extension of the well-known ε-

constraint method, and it avoids obtaining weakly Pareto-optimal solutions (Mavrotas,

2009). Note that, one main disadvantage of the traditional ε-constraint method is about

the generation of the weakly Pareto-optimal solutions. In order to overcome this

shortcoming, the augmented ε-constraint method was proposed by Mavrotas (2009).

Similar to the ε-constraint method, one of the objective functions is optimized in the

augmented ε-constraint method employing the other objective functions as constraints.

Then, a series of single-objective models are optimally solved by systematically

changing the right-hand side values of the objective function constraints. However, in

the augmented ε-constraint method, the objective function constraints are transformed

into equalities by including the appropriate slack/surplus variables. Then, these

36

slack/surplus variables are used as a second term in the objective function with lower

weights in a lexicographic manner, to ensure that only Pareto-optimal solutions are

generated. Consequently, the augmented ε-constraint method can be used to obtain an

exact Pareto-optimal solution set by appropriately conducting a parametric search on

the right-hand side values of the objective function constraints, since it guarantees the

Pareto-optimality of the obtained solutions. The details of the weighting method, ε-

constraint method, and augmented ε-constraint method are explained in the following

subsections.

5.3 Weighting Method

In the weighting method, a weight (𝑤𝑐) is assigned to each objective function c and

the weighted sum of the objectives is minimized. Several objective functions are

combined into a single objective function as follows, where ∑ 𝑤𝑐
𝐶
𝑐=1 = 1:

minimize ∑ 𝑤𝑐
𝐶
𝑐=1 𝑓𝑐(𝑥) s.t. x ∈Ω,

In this approach, non-dominated solutions are obtained by trying different weights for

the objectives. The weighting method is also extended as a weighting method with

normalization. In this case, the objective functions are normalized and they take values

between 0 and 1.

As pointed out by Mavrotas (2009), there can be many redundant runs in the weighting

method, as there can be a lot of combinations of weights that generate the same

efficient solution. Furthermore, in the weighting method, the scaling of the objective

functions may affect the results. Thus, the objective functions should be normalized

before defining the weighted sum. However, in the ε -constraint method, this is not

required. Moreover, the number of generated Pareto-optimal solutions can be

controlled in the ε-constraint method by defining a proper ε level. On the other hand,

it is not easy to control this number in the weighting method.

5.4 ε-Constraint and Augmented ε-Constraint Methods

In the ε-constraint method, one of the objectives is optimized and the other objective

functions are defined as constraints. Therefore, the aforementioned minimization MOP

is reformulated as follows:

37

minimize 𝑓1(x)

s.t.

𝑓2(x) ≤ 𝑒2, 𝑓3(x) ≤ 𝑒3, …, 𝑓𝑐(x) ≤ 𝑒𝑐

x ∈Ω

Using this reformulation, solutions are obtained by parametrical changes on the right

side of the constrained objective functions (𝑒𝑐). To properly apply the 𝜀-constraint

method, the range of each objective function must be obtained. The most widely used

approach for obtaining these ranges is to use payoff tables that include the results from

the individual optimization of each objective function. In the construction of these

tables, it must be guaranteed that the obtained solutions from the individual

optimization of the objective functions are certainly Pareto-optimal solutions. In the

presence of alternative optimal solutions, the obtained solution may not be a Pareto-

optimal solution. In order to handle this issue, lexicographic optimization is commonly

employed for each objective function. In lexicographic optimization, objectives are

optimized lexicographically. Namely, the primary objective function is initially

optimized, and then among the alternative optimal solutions, the second important

objective is optimized with the optimal value of the primary objective, and so on.

However, in the standard ε-constraint method, obtained solutions are usually not

Pareto-optimal solutions. In order to overcome this shortcoming of the standard ε-

constraint method, the augmented ε-constraint method is proposed by Mavrotas

(2009). The augmented ε-constraint method is an extended version of the well-known

ε-constraint method, and it avoids obtaining weakly Pareto-optimal solutions

(Mavrotas, 2009). Similar to the ε-constraint method, one of the objective functions is

optimized using the other objective functions as constraints. However, in this method,

the objective function constraints are transformed into equalities by including the

appropriate slack/surplus variables. These slack/surplus variables are used as a second

term in the objective function with a lower weight in a lexicographic manner, to ensure

that only Pareto-optimal solutions are generated. In order to avoid any scaling

problems, slack/surplus variables are normalized in the objective function by dividing

them into the ranges of the respective objective functions. The details of this method

can be found in Mavrotas (2009). The formulation of the MOP based on this method

38

is given below, where eps is a sufficiently small number and 𝑟𝑐 is range of the objective

function c.

minimize 𝑓1(x)- eps (
𝑠2

𝑟2
+

𝑠3

𝑟3
+ ⋯+

𝑠𝑐

𝑟𝑐
)

s.t.

𝑓2(x) + 𝑠2 = 𝑒2, 𝑓3(x) + 𝑠3 = 𝑒3, …, 𝑓𝑐(x) + 𝑠𝑐 = 𝑒𝑐

x ∈Ω

The performances of the ε-constraint and the augmented ε-constraint methods (with

and without lexicographic optimization in construction of payoff tables) are shown

with an illustrative example below. In this bi-objective example (𝑓1 = 𝑥2, 𝑓2 =

4𝑥1 − 𝑥2), the range of the second objective function is divided into six equal intervals

and a constant ε level is determined. Then, the 𝑒2value is gradually decreased using

this constant ε level. In both Figures 5.1 and 5.2, Pareto-optimal points are marked

with a red square.

As shown in Figure 5.1, the ε-constraint method finds 2 Pareto-optimal solutions

without lexicographic optimization, while it finds 4 Pareto-optimal solutions with

lexicographic optimization. In the former one, 5 points are dominated by other points

(B, C, D, and E), while in the latter one, 3 points are dominated by other points (B, C,

and D).

 a) without lexicographic optimization b) with lexicographic optimization

Figure 5. 1. ε-Constraint Method

10 20 30 40 50 60 70 80

10

20

30

40

50

60

70

80

x1

x
2

A

B

C

D

E

10 20 30 40 50 60 70 80

10

20

30

40

50

60

70

80 A

B

C

D

E

x
1

x
2

39

As shown in Figure 5.2, the augmented ε-constraint method finds 6 Pareto-optimal

solutions without lexicographic optimization, while it finds 7 Pareto-optimal solutions

with lexicographic optimization. In the former one, point E is obtained twice, while in

the latter one, a different Pareto-optimal solution is obtained in each iteration.

 a) without lexicographic optimization b) with lexicographic optimization

Figure 5. 2. Augmented ε-Constraint Method

As shown in the above example, the augmented ε-constraint method with

lexicographic optimization is an efficient way to generate only Pareto-optimal

solutions. Therefore, in this thesis, this combined method is employed to solve bi-

objective MILP and CP models for the EHFSP.

The general outline of the augmented ε-constraint method with lexicographic

optimization is provided in Figure 5.3 for a bi-objective minimization problem. As

shown in Figure 5.3, minimizing 𝑓1 is considered as the objective and the second

objective function 𝑓2 is defined as a constraint. Initially, the lexicographic optimization

is used for each objective function in order to obtain the payoff table with only Pareto-

optimal solutions. Then, starting with an upper bound (𝑓2
𝑚𝑎𝑥) on 𝑓2, which is found

from the payoff table, the single-objective model is iteratively solved optimally by

systematically decreasing the right-hand side value (𝑒2) of the constraint on 𝑓2 with a

predetermined ε level, until the minimum value (𝑓2
𝑚𝑖𝑛) of 𝑓2 is reached.

10 20 30 40 50 60 70 80

10

20

30

40

50

60

70

80

B

C

D

E

A

x
1

x
2

10 20 30 40 50 60 70 80

10

20

30

40

50

60

70

80

B

C

D

E

A

x
1

x
2

40

Construct the payoff table using lexicographic optimization for each objective function:

 Payoff Table= [
𝑓1

𝑚𝑖𝑛 𝑓2
𝑚𝑎𝑥

𝑓1
𝑚𝑎𝑥 𝑓2

𝑚𝑖𝑛
]

 where 𝑓1
𝑚𝑖𝑛 = min{𝑓1(𝑥)} , 𝑓2

𝑚𝑖𝑛 = min{𝑓2(𝑥)},

 𝑓1
𝑚𝑎𝑥 = min{𝑓1(𝑥): 𝑓2(𝑥) = 𝑓2

𝑚𝑖𝑛} , 𝑓2
𝑚𝑎𝑥 = min{𝑓2(𝑥): 𝑓1(𝑥) = 𝑓1

𝑚𝑖𝑛}.

Add (𝑓1
𝑚𝑖𝑛, 𝑓2

𝑚𝑎𝑥) to the Pareto-optimal solution set

Calculate the range 𝑟2 of the second objective function from the payoff table

𝑒2 = 𝑓2
𝑚𝑎𝑥 − 𝜀

While (𝑒2 ≥ 𝑓2
𝑚𝑖𝑛)do

 Solve the single-objective problem (SOP) optimally:

 SOP: minimize 𝑓1(x)- eps (
𝑠2

𝑟2
)

 s.t.

 𝑓2(x) + 𝑠2 = 𝑒2

 x ∈Ω

 Add the optimal solution value (𝑓1
∗, 𝑓2

∗) of the SOP to the Pareto-optimal solution set

 𝑒2 = 𝑒2 − 𝜀

EndWhile

Report the Pareto-optimal solution set

Figure 5.3. General Outline of the Augmented ε-Constraint Method

41

CHAPTER 6

METAHEURISTIC ALGORITHMS

Since the HFSP is known to be NP-hard (Gupta, 1988) even for the single-objective,

the studied bi-objective EHFSP in this thesis is also NP-hard. Hence, energy-efficient

bi-objective metaheuristic algorithms are also proposed for the EHFSP in this thesis.

In this section, the proposed seven energy-efficient bi-objective metaheuristic

algorithms; namely, two variants of the IG algorithm (E_IG, E_IGALL), a VBIH

algorithm (E_VBIH) and four variants of the ensemble of metaheuristic algorithms

(E_EM, E_EMHFR, E_EMHFN, E_EMHFRN) are explained for the EHFSP-V1. Then, the

proposed four energy-efficient bi-objective metaheuristic algorithms; namely, two

variants of the IG algorithm (E_IG2, E_IG2ALL), a VBIH algorithm (E_VBIH2), and an

ensemble of metaheuristic algorithms (E_EM2) are explained for the EHFSP-V2.

6.1 Solution Representation & Fitness Value Calculation

In this thesis, permutation-based encoding is used for fitness value calculation by

employing a forward scheduling approach, which is commonly used in the HFSP

literature. Initially, the standard forward scheduling approach is explained for the

single-objective version of the problem with the makespan criterion in Section 6.1.1.

Then, the proposed heuristic fitness calculation approaches are presented in Section

6.1.2 to compensate for the inefficiency of the standard forward scheduling approach.

Afterward, the energy-efficient (bi-objective) extensions of the fitness calculation

approaches are explained in Sections 6.1.3 and 6.1.4, as well as the solution

representations for the EHFSP-V1 and EHFSP-V2.

6.1.1 Standard Forward Scheduling Approach

The permutation-based encoding is an indirect encoding scheme, where the jobs are

assigned to the most available machine at the first stage according to the initial

permutation π. Then, for the remaining stages, the forward scheduling approach is used

to decode a solution, where the jobs are assigned to machines according to their earliest

42

release times at the previous stage. Namely, in each following stage, the jobs are

ordered with respect to their release (completion) times from the previous stage and

assigned to the most available machine according to that order. In this way, a complete

schedule can be obtained for a given initial permutation.

Given an instance in which there are two machines in each stage with processing times

𝑝𝑘𝑗 = (4 3 5 2 1
5 4 5 1 4

) and an initial permutation 𝜋 = {1, 2, 3, 4, 5}, a complete schedule can

be generated as follows: At the first stage, the jobs are assigned to the machines

through the initial permutation 𝜋. In the second stage, the jobs are ordered with respect

to their release times from the first stage, thus resulting in another permutation 𝜋1 =

{2, 1, 4, 5, 3}. Then, the jobs are assigned in this order to the machines in the second

stage. The Gantt chart for the initial permutation 𝜋 is illustrated in Figure 6.1 with a

makespan (Cmax) = 14.

Figure 6. 1. Gantt Chart with 𝐶𝑚𝑎𝑥 = 14

6.1.2 Heuristic Fitness Calculation Approaches

The aforementioned standard forward scheduling approach is generally an efficient

way to obtain a complete schedule. However, some solutions may be unexplored in

this approach due to its greedy fashion. In this thesis, two new swap move-based

heuristic fitness calculation approaches are proposed, to compensate for the

inefficiency of the standard forward scheduling approach and to further enhance the

performance of the algorithms. Namely, the standard forward scheduling approach is

modified by employing swap moves on the job permutations of some stages, in which

43

jobs are ordered according to their completion times at the previous stage. The aim is

to explore the neighboring schedules for a given initial permutation 𝜋. Note that,

employing a swap move on the job permutation of a stage can lead to a different

complete schedule with a different fitness function value.

Consider the above example with 𝑝𝑘𝑗 = (4 3 5 2 1
5 4 5 1 4

) and an initial permutation 𝜋 =

{1, 2, 3, 4, 5}. As mentioned above, after the jobs have been assigned to the most

available machine in the first stage, the resulting permutation is 𝜋1 = {2, 1, 4, 5, 3}

when the jobs are sorted in increasing order of their release times from the first stage.

Consequently, by employing the standard forward scheduling approach, we obtain the

job sequences {2, 4, 5} and {1, 3} on machine 1 and 2, respectively. The complete

Gantt chart for the standard forward scheduling approach is shown in Figure 6.1 and

the makespan value is 14.

As can be seen from Figure 6.1, both jobs 3 and 5 are ready to be processed, when job

4 is completed on machine 1 of stage 2. The standard forward scheduling approach

chooses job 5, as its release time is shorter than job 3. However, job 3 can also be

selected without increasing the idle time of the machine. Thus, the positions of jobs 5

and 3 are swapped in the permutation 𝜋1 = {2, 1, 4, 𝟓, 𝟑} and a new permutation 𝜋1 =

{2, 1, 4, 𝟑, 𝟓} is generated for stage 2. When the forward scheduling method is applied

to stage 2 according to this new permutation, the resulting complete schedule has a

smaller makespan, which is equal to 13 as shown in Figure 6.2.

Figure 6. 2. Gantt Chart with 𝐶𝑚𝑎𝑥 = 13

44

The drawback of the standard forward scheduling approach has also been addressed

by Pan et al. (2014), and a local search procedure has been proposed for a given

complete solution with the forward scheduling approach. In the local search procedure

of Pan et al. (2014), starting from the second stage, several exchange moves are

employed on the permutation of jobs at each stage. Namely, at each stage, each job in

the permutation is exchanged with all possible jobs that are ready to be processed,

where the complete schedule is computed with a forward scheduling approach for each

exchange move. Since the local search procedure of Pan et al. (2014) evaluates the

complete schedules for all exchange moves, it requires high computational time.

Hence, the authors only applied this local search procedure to the best solution found

by their discrete artificial bee colony algorithm. In this thesis, two simple heuristic

fitness calculation approaches are proposed by employing only a single swap move in

at most 𝑚 − 1 stages. As the proposed heuristic fitness calculation approaches do not

evaluate the complete schedule at each iteration, they are very fast in terms of

computational time.

In the first heuristic fitness calculation approach, namely, heuristic fitness calculation

with random swap moves (HFR), a random stage number 𝑝𝑡 is chosen from the set of

stages {2, 3,…, m}. Note that, the first stage is not included in this selection as the

swap move is not applied to the first stage. For each stage k, which is greater than or

equal to 𝑝𝑡 (𝑘 ≥ 𝑝𝑡), a single swap operation is employed on the resulting permutation

of jobs from stage 𝑘 − 1 (𝜋𝑘−1), in which jobs are ordered according to their

completion times at stage 𝑘 − 1. Namely, for each stage 𝑘 (𝑘 ≥ 𝑝𝑡), after we swap

two jobs randomly in the resulting permutation 𝜋𝑘−1, we employ this new permutation

at stage k to apply the forward scheduling method. The outline of the HFR procedure

is given in Figure 6.3.

𝐻𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐 𝐹𝑖𝑡𝑛𝑒𝑠𝑠 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑤𝑖𝑡ℎ 𝑅𝑎𝑛𝑑𝑜𝑚 𝑆𝑤𝑎𝑝 𝑀𝑜𝑣𝑒𝑠

𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒 𝑡ℎ𝑒 𝑗𝑜𝑏𝑠 𝑎𝑡 𝑓𝑖𝑟𝑠𝑡 𝑠𝑡𝑎𝑔𝑒 𝑎𝑐𝑐𝑜𝑟𝑑𝑖𝑛𝑔 𝑡𝑜 𝑡ℎ𝑒 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑝𝑒𝑟𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛 𝜋

𝑝𝑡 = 𝑟𝑎𝑛𝑑𝑜𝑚 𝑠𝑡𝑎𝑔𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑓𝑟𝑜𝑚 {2, 3, … ,𝑚}

𝑓𝑜𝑟 (𝑘 = 2 𝑡𝑜 𝑚) 𝑑𝑜

𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒 𝑡ℎ𝑒 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑜𝑓 𝑗𝑜𝑏𝑠 𝜋𝑘−1 𝑎𝑐𝑐𝑜𝑟𝑑𝑖𝑛𝑔 𝑡𝑜 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑗𝑜𝑏𝑠 𝑎𝑡 𝑠𝑡𝑎𝑔𝑒 𝑘-1

 𝑖𝑓 (𝑝𝑡 ≤ 𝑘) 𝑑𝑜

 𝑠𝑤𝑎𝑝 𝑡𝑤𝑜 𝑗𝑜𝑏𝑠 𝑟𝑎𝑛𝑑𝑜𝑚𝑙𝑦 𝑖𝑛 𝜋𝑘−1

 𝑒𝑛𝑑 𝑖𝑓

 𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒 𝑡ℎ𝑒 𝑗𝑜𝑏𝑠 𝑎𝑡 𝑠𝑡𝑎𝑔𝑒 𝑘 𝑎𝑐𝑐𝑜𝑟𝑑𝑖𝑛𝑔 𝑡𝑜 𝑡ℎ𝑒 𝑜𝑟𝑑𝑒𝑟 𝜋𝑘−1

𝑒𝑛𝑑 𝑓𝑜𝑟

Figure 6. 3. Heuristic Fitness Calculation with Random Swap Moves

45

In the second heuristic fitness calculation approach, namely, heuristic fitness

calculation with neighbor swap moves (HFN), a swapping probability 𝑠𝑝 is defined to

decide whether or not to apply swap operation on the permutation. Then, if it is decided

to apply a swap operation, the swap operation is employed only on the neighboring

jobs in the permutation. Namely, for each stage k (𝑘 ≥ 2), we employ a swap operation

on the resulting permutation of jobs from stage 𝑘 − 1 (𝜋𝑘−1) according to the given

swapping probability 𝑠𝑝. We generate a uniform random number 𝑟 between 0 and 1,

and, if 𝑟 ≤ 𝑠𝑝, we employ a swap operation on the permutation. Furthermore, in order

to apply the swap operation, we choose the two closest neighbor job pairs in the

permutation, based on their release times from the previous stage 𝑘 − 1. Then, we

choose one of these pairs to apply swap operation with a probability 𝑛𝑝. That is, we

generate another uniform random number 𝑞 between 0 and 1, and, if 𝑞 ≤ 𝑛𝑝, we

employ the swap operation on the job pair, which has the minimum difference between

the release times at stage 𝑘 − 1. In the case of 𝑞 > 𝑛𝑝, we employ the swap operation

on the second closest job pair. After the swap operation on permutation 𝜋𝑘−1, we

employ the new permutation at stage k to apply a forward scheduling method. The

outline of the HFN procedure is provided in Figure 6.4.

𝐻𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐 𝐹𝑖𝑡𝑛𝑒𝑠𝑠 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑤𝑖𝑡ℎ 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟 𝑆𝑤𝑎𝑝 𝑀𝑜𝑣𝑒𝑠

𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒 𝑡ℎ𝑒 𝑗𝑜𝑏𝑠 𝑎𝑡 𝑓𝑖𝑟𝑠𝑡 𝑠𝑡𝑎𝑔𝑒 𝑎𝑐𝑐𝑜𝑟𝑑𝑖𝑛𝑔 𝑡𝑜 𝑡ℎ𝑒 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑝𝑒𝑟𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛 𝜋

𝑓𝑜𝑟 (𝑘 = 2 𝑡𝑜 𝑚) 𝑑𝑜

 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒 𝑡ℎ𝑒 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑜𝑓 𝑗𝑜𝑏𝑠 𝜋𝑘−1 𝑎𝑐𝑐𝑜𝑟𝑑𝑖𝑛𝑔 𝑡𝑜 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑗𝑜𝑏𝑠 𝑎𝑡 𝑠𝑡𝑎𝑔𝑒 𝑘-1

 𝑖𝑓 (𝑟~𝑈(0,1) ≤ 𝑠𝑝) 𝑡ℎ𝑒𝑛 𝑑𝑜

 𝑐ℎ𝑜𝑜𝑠𝑒 𝑡ℎ𝑒 𝑡𝑤𝑜 𝑐𝑙𝑜𝑠𝑒𝑠𝑡 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 𝑗𝑜𝑏 𝑝𝑎𝑖𝑟𝑠 𝑖𝑛 𝜋𝑘−1

 𝑖𝑓 (𝑞~𝑈(0,1) ≤ 𝑛𝑝) 𝑡ℎ𝑒𝑛 𝑑𝑜

 𝑒𝑚𝑝𝑙𝑜𝑦 𝑡ℎ𝑒 𝑠𝑤𝑎𝑝 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑛 𝑡ℎ𝑒 𝒄𝒍𝒐𝒔𝒆𝒔𝒕 𝑗𝑜𝑏 𝑝𝑎𝑖𝑟 𝑖𝑛 𝜋𝑘−1

 𝑒𝑙𝑠𝑒

 𝑒𝑚𝑝𝑙𝑜𝑦 𝑡ℎ𝑒 𝑠𝑤𝑎𝑝 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑛 𝑡ℎ𝑒 𝒔𝒆𝒄𝒐𝒏𝒅 𝒄𝒍𝒐𝒔𝒆𝒔𝒕 𝑗𝑜𝑏 𝑝𝑎𝑖𝑟 𝑖𝑛 𝜋𝑘−1

 𝑒𝑛𝑑 𝑖𝑓

 𝑒𝑛𝑑 𝑖𝑓

 𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒 𝑡ℎ𝑒 𝑗𝑜𝑏𝑠 𝑎𝑡 𝑠𝑡𝑎𝑔𝑒 𝑘 𝑎𝑐𝑐𝑜𝑟𝑑𝑖𝑛𝑔 𝑡𝑜 𝑡ℎ𝑒 𝑜𝑟𝑑𝑒𝑟 𝜋𝑘−1

𝑒𝑛𝑑 𝑓𝑜𝑟

Figure 6. 4. Heuristic Fitness Calculation with Neighbor Swap Moves

Suppose that, the job permutation for stage 𝑘 is 𝜋𝑘−1 ={3, 1, 2, 4, 5} with release

times {10, 12, 13, 16, 19} from stage 𝑘 − 1. In HFR, two jobs are swapped randomly

in the current permutation, say jobs 2 and 4. Then, the resulting new permutation will

be 𝜋𝑘−1 ={3, 1, 4, 2, 5}. On the other hand, in HFN, two closest neighbor job pairs

are defined for the permutation, based on release times, where the first closest pair is

46

{1,2} and the second closest pair is {3,1}. Then, one of these pairs is selected

according to a given probability 𝑛𝑝, say the job pair {3,1} is chosen, and the jobs in

this pair are swapped. Consequently, the resulting job permutation will be 𝜋𝑘−1 ={1,

3, 2, 4, 5}.

6.1.3 Solution Representation & Fitness Value Calculation for the EHFSP-

V1

As mentioned in Chapter 4, a job-based speed scaling strategy is employed in the

EHFSP-V1, where the same speed level is used for a job in all stages. For this purpose,

a multi-chromosome structure is used for the proposed bi-objective metaheuristics for

the EHFSP-V1, which is composed of a permutation of 𝑛 jobs (𝜋) and a speed vector

of three levels (𝜓). Note that, the three speed levels refer to fast, normal and slow

speeds, respectively. The solution representation for an individual 𝑠 is given in Figure

6.5, where 𝜋𝑗 ∈ 𝐽 represents the job at position 𝑗 and 𝜓𝑗 ∈ 𝐿 represents the speed level

for the job at position j.

𝒔(𝝅,𝝍)
 𝝅 𝜋1 𝜋2 𝜋3 𝜋4 𝜋5 … 𝜋𝑛

𝝍 𝜓1 𝜓2 𝜓3 𝜓4 𝜓5 … 𝜓𝑛

Figure 6. 5. Solution Representation for the EHFSP-V1

Since the standard forward scheduling approach is also very effective, the standard

forward scheduling approach is employed in all proposed algorithms for the EHFSP-

V1. HFR and HFN approaches are only employed in E_EMHFR, E_EMHFN, E_EMHFRN

algorithms in order to further improve the performance of the algorithms, as described

in Section 6.3.4.

In the energy-efficient version of the HFSP, there are also speed levels for the jobs.

Hence, these speed levels should also be considered in the forward scheduling

approach. Namely, processing times of the jobs should be calculated according to their

speed levels; i.e., processing times of the jobs should be divided by their corresponding

speed factors. Furthermore, when the jobs are sorted based on their release times from

the previous stages, the corresponding speed levels of the jobs should also be sorted

accordingly. Similarly, in the heuristic fitness calculation approaches (HFR and HFN),

when two jobs are swapped with each other, their speed levels should also be swapped.

47

Finally, the 𝑇𝐸𝐶 value should be computed for the complete schedule, as explained in

Chapter 4 as well as the makespan value.

6.1.4 Solution Representation & Fitness Value Calculation for the EHFSP-

V2

As mentioned in Chapter 4, a matrix-based speed scaling strategy is employed in the

EHFSP-V2, where the speed of a job can vary from stages to stages. Thus, a multi-

chromosome structure is used for the proposed bi-objective metaheuristic algorithms

for the EHFSP-V2, which is composed of a permutation of 𝑛 jobs (𝜋) and a speed

matrix of three levels (𝜓). The solution representation for an individual 𝑠 is given in

Figure 6.6, where 𝜋𝑗 ∈ 𝐽 represents the job at position 𝑗 and 𝜓𝑘𝑗 ∈ 𝐿 represents the

speed level for the operation of the job at position j in stage 𝑘 ∈ 𝑀.

𝒔(𝝅,𝝍)

 𝝅 𝜋1 𝜋2 𝜋3 𝜋4 𝜋5 … 𝜋𝑛

𝝍

𝜓11 𝜓12 𝜓13 𝜓14 𝜓15 … 𝜓1𝑛

𝜓21 𝜓22 𝜓23 𝜓24 𝜓25 … 𝜓2𝑛

𝜓31 𝜓32 𝜓33 𝜓34 𝜓35 … 𝜓3𝑛

⋮ ⋮ ⋮ ⋮ ⋮ … ⋮

𝜓𝑚1 𝜓𝑚2 𝜓𝑚3 𝜓𝑚4 𝜓𝑚5 … 𝜓𝑚𝑛

Figure 6. 6. Solution Representation for the EHFSP-V2

In the proposed bi-objective metaheuristic algorithms for the EHFSP-V2, the standard

forward scheduling approach is employed for the fitness value calculation. HFR and

HFN approaches are employed only as a local search to further improve the

performance of the algorithms, as described in Section 6.4.5. As mentioned in the

previous subsection, in the EHFSP, there are also speed levels for the jobs. Hence,

these speed levels should also be considered in the forward scheduling approach and

heuristic fitness calculation approaches (HFR and HFN), as explained in Section 6.1.3.

Finally, the 𝑇𝐸𝐶 value should be computed for the complete schedule, as explained in

Chapter 4 as well as the makespan value.

6.2 Constructive Heuristic & Single-Objective Algorithms for the HFSP

with Makespan Criterion

In the proposed energy-efficient bi-objective metaheuristics for the EHFSP-V1 and

EHFSP-V2, single-objective versions of the IG, IGALL, and VBIH algorithms with only

48

makespan criterion are initially employed to obtain a good starting solution, i.e., a job

permutation. Then, the initial population is formed by assigning speed levels to each

job of the starting solution. Hence, in this section, the single-objective versions of the

IG, IGALL, and VBIH algorithms with only makespan criterion are explained as well

as a proposed constructive heuristic.

6.2.1 Constructive Heuristic for the HFSP with Makespan Criterion

In this thesis, a new constructive heuristic NEH_M(x), i.e., a modified NEH heuristic

with 𝑥 solutions, is proposed for the HFSP with the makespan criterion, modifying the

well-known NEH heuristic (Nawaz et al., 1983). The pseudo-code of the NEH

heuristic is given in Figure 6.7. Initially, the sum of the processing times on all stages

(𝑃𝑗) is calculated for each job 𝑗 ∈ 𝐽 and jobs are sorted in decreasing order of 𝑃𝑗. Then,

the first job in 𝜌 (𝜌1) is chosen to obtain a partial solution with a size one.

Consequently, the remaining jobs in 𝜌 are sequentially inserted into the partial solution

one by one until a complete solution with n jobs is obtained.

𝑁𝐸𝐻 𝐻𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐

∀𝑗 ∈ 𝐽, 𝑃𝑗 = ∑ 𝑝𝑘𝑗
𝑚
𝑘=1

Step1. 𝜌 = 𝑆𝑜𝑟𝑡 𝑡ℎ𝑒 𝑗𝑜𝑏𝑠 𝑖𝑛 𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔 𝑜𝑟𝑑𝑒𝑟 𝑜𝑓 𝑃𝑗

Step2. 𝜋 = {𝜌1}

 𝑓𝑜𝑟 (𝑖 = 2 𝑡𝑜 𝑛) 𝑑𝑜

 𝑇𝑎𝑘𝑒 𝑗𝑜𝑏 𝜌𝑖 𝑓𝑟𝑜𝑚 𝜌

 𝑇𝑒𝑠𝑡 𝑗𝑜𝑏 𝜌𝑖 𝑖𝑛 𝑎𝑙𝑙 𝑜𝑓 𝑡ℎ𝑒 𝑖 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠 𝑜𝑓 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝜋

 𝐼𝑛𝑠𝑒𝑟𝑡 𝑗𝑜𝑏 𝜌𝑖 𝑡𝑜 𝑡ℎ𝑒 𝑏𝑒𝑠𝑡 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑖𝑛 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝜋 𝑤𝑖𝑡ℎ 𝑡ℎ𝑒 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝑣𝑎𝑙𝑢𝑒

 𝑒𝑛𝑑 𝑓𝑜𝑟

𝑟𝑒𝑡𝑢𝑟𝑛 𝜋

Figure 6. 7. NEH Heuristic

The proposed NEH_M(x) procedure is given in Figure 6.8. Similar to the NEH, jobs

are initially sorted in decreasing order of 𝑃𝑗 to define the initial order (𝜋0). As the first

job has an impact on the waiting time of other jobs and the total idle time, the first job

of the partial solution should be defined carefully. In NEH_M(x), 𝑥 new solutions are

generated from the same initial order 𝜋0, by choosing a different job as the first job.

Namely, in the hth iteration, the job at position ℎ is chosen as the first job of the initial

partial solution, and then, the NEH insertion procedure is applied to this initial partial

solution, where ℎ = 1, … , 𝑥. As shown in Figure 6.8, initially, the first job of the initial

order (𝜋1
0) is defined as the first job, and the NEH insertion procedure is applied to

49

generate a new solution (𝜋1). Next, the second job of the initial order (𝜋2
0) is defined

as the first job, and the NEH insertion procedure is employed to generate another new

solution (𝜋2). This process is repeated 𝑥 times to obtain 𝑥 new solutions. Finally, the

best one of these 𝑥 solutions is selected as the final solution. In this thesis, we define

𝑥 = 𝑛.

𝑁𝐸𝐻_𝑀(𝑥) 𝐻𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐

∀𝑗 ∈ 𝐽, 𝑃𝑗 = ∑ 𝑝𝑘𝑗
𝑚
𝑘=1

Step1. 𝜋0 = 𝑆𝑜𝑟𝑡 𝑡ℎ𝑒 𝑗𝑜𝑏𝑠 𝑖𝑛 𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔 𝑜𝑟𝑑𝑒𝑟 𝑜𝑓 𝑃𝑗

Step2. 𝑓𝑜𝑟 (ℎ = 1 𝑡𝑜 𝑥) 𝑑𝑜

 𝜋′ = 𝜋0

 𝑡𝑎𝑘𝑒 𝜋ℎ
′ 𝑎𝑠 𝑡ℎ𝑒 𝑓𝑖𝑟𝑠𝑡 𝑗𝑜𝑏:

 𝑟𝑒𝑚𝑜𝑣𝑒 𝜋ℎ
′ 𝑎𝑛𝑑 𝑖𝑛𝑠𝑒𝑟𝑡 𝑖𝑡 𝑡𝑜 𝑡ℎ𝑒 𝑓𝑖𝑟𝑠𝑡 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑜𝑓 𝜋′

 𝜋′′ = 𝐴𝑝𝑝𝑙𝑦 𝑁𝐸𝐻 𝑖𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛 𝑝𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑒, 𝑎𝑠 𝑓𝑜𝑙𝑙𝑜𝑤𝑠:

 𝜋′′ = {𝜋1
′ }

 𝑓𝑜𝑟 (𝑖 = 2 𝑡𝑜 𝑛) 𝑑𝑜

𝑇𝑎𝑘𝑒 𝑗𝑜𝑏 𝜋𝑖
′ 𝑓𝑟𝑜𝑚 𝜋′

𝑇𝑒𝑠𝑡 𝑗𝑜𝑏 𝜋𝑖
′ 𝑖𝑛 𝑎𝑙𝑙 𝑜𝑓 𝑡ℎ𝑒 𝑖 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠 𝑜𝑓 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝜋′′

𝐼𝑛𝑠𝑒𝑟𝑡 𝑗𝑜𝑏 𝜋𝑖
′ 𝑡𝑜 𝑡ℎ𝑒 𝑏𝑒𝑠𝑡 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑖𝑛 𝜋′′

 𝑒𝑛𝑑 𝑓𝑜𝑟

 𝜋ℎ = 𝜋′′

 𝑒𝑛𝑑 𝑓𝑜𝑟

Step3. 𝑅𝑒𝑡𝑢𝑟𝑛 𝑡ℎ𝑒 𝑏𝑒𝑠𝑡 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑎𝑚𝑜𝑛𝑔 {𝜋1, 𝜋2, … , 𝜋𝑥}

Figure 6. 8. NEH_M(𝑥) Heuristic

6.2.2 Single-Objective Algorithms with Makespan Criterion

In this section, the single-objective IG, IGALL, and VBIH algorithms with only

makespan minimization are explained. As mentioned before, these algorithms are

employed in the proposed bi-objective metaheuristics to obtain a good initial solution.

The IG algorithm is developed by Ruiz and Stützle (2007). The IG algorithm has four

main parts: the initial solution, destruction-construction (DC) procedure, local search,

and the acceptance criterion. The initial solution is generated by a constructive

heuristic. Then, the DC procedure is employed to generate new solutions. The

destruction phase removes 𝜅 jobs randomly from the current solution. Then, these 𝜅

jobs are reinserted into partial solutions in the construction phase. A local search is

applied to the complete solution after the DC procedure. Consequently, an acceptance

criterion is used to accept the new solution after the local search. These steps are

repeated until a stopping criterion is met.

50

The proposed IG algorithm in this thesis is outlined in Figure 6.9, where 𝑟𝑎𝑛𝑑 is a

uniform random number between 0 and 1. As shown in Figure 6.9, NEH_M(x) is

employed as a constructive heuristic in the proposed IG algorithm. Note that, the NEH

heuristic is used for this purpose in the original IG algorithm (Ruiz and Stützle, 2007).

Then, in the destruction step, 𝜅 jobs are randomly chosen and removed from the

solution 𝜋0. This procedure results in two partial solutions: the partial solution 𝜋𝑐 with

n - 𝜅 jobs and the partial solution 𝜋𝑑 with 𝜅 jobs. Note that, 𝜋𝑑 includes the jobs that

will be reinserted into 𝜋𝑐, in the order in which they were removed from 𝜋0. The

construction process begins with a partial solution 𝜋𝑐 and applies 𝜅 steps, in which the

jobs in 𝜋𝑑 are reinserted into 𝜋𝑐. That is, it starts with 𝜋𝑐 and inserts the first job of

𝜋𝑑(𝜋1
𝑑) into all possible 𝑛 − 𝜅 + 1 positions of 𝜋𝑐. Then, the best position for 𝜋1

𝑑 ,

which has the minimum makespan, is chosen and 𝜋1
𝑑 is inserted in that position of 𝜋𝑐.

These steps are repeated for all jobs in 𝜋𝑑 until 𝜋𝑑 is empty. The complete solution is

obtained once the last removed job is inserted into 𝑛 positions, and the best insertion

is chosen.

𝑃𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑒 𝐼𝐺 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚(𝜅, 𝜏𝑃)

𝜋0 = 𝑁𝐸𝐻_𝑀(𝑛), 𝜋𝑏𝑒𝑠𝑡 = 𝜋0

𝑤ℎ𝑖𝑙𝑒 (𝑡𝑖𝑚𝑒 𝑙𝑖𝑚𝑖𝑡 𝑖𝑠 𝑛𝑜𝑡 𝑒𝑥𝑐𝑒𝑒𝑑𝑒𝑑) 𝑑𝑜

 𝜋𝑑 , 𝜋𝑐 = 𝐷𝑒𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 (𝜋0, 𝜅)

 𝜋1 = 𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 (𝜋𝑑 , 𝜋𝑐)

 𝜋2 = 𝐹𝑖𝑟𝑠𝑡 − 𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 𝐼𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑 (𝜋1) %local search to the complete solution

 𝑖𝑓 𝑓(𝜋2) < 𝑓(𝜋0) 𝑡ℎ𝑒𝑛

 𝜋0 = 𝜋2

 𝑖𝑓 𝑓(𝜋2) < 𝑓(𝜋𝑏𝑒𝑠𝑡) 𝑡ℎ𝑒𝑛

 𝜋𝑏𝑒𝑠𝑡 = 𝜋2

 𝑒𝑛𝑑 𝑖𝑓

 𝑒𝑙𝑠𝑒 𝑖𝑓 (𝑟𝑎𝑛𝑑 < 𝑒𝑥𝑝{−(𝑓(𝜋2) − 𝑓(𝜋0))/𝑇}) 𝑡ℎ𝑒𝑛

 𝜋0 = 𝜋2

 𝑒𝑛𝑑 𝑖𝑓

𝑒𝑛𝑑 𝑤ℎ𝑖𝑙𝑒

𝑟𝑒𝑡𝑢𝑟𝑛 𝜋𝑏𝑒𝑠𝑡 𝑎𝑛𝑑 𝑓(𝜋𝑏𝑒𝑠𝑡)

Figure 6. 9. IG Algorithm

The first-improvement insertion neighborhood structure is used as a local search, after

the construction phase of the IG algorithm. As shown in Figure 6.10, job 𝜋𝑘 at position

k is randomly chosen from the current solution 𝜋 without repetition and inserted into

all possible positions of the solution. When the best insertion position is found by

improving the makespan, the job 𝜋𝑘 is inserted into that position. This procedure is

51

repeated for all jobs. This insertion local search procedure is named as first-

improvement insertion neighborhood structure since it employs a first-improvement

type pivoting rule for updating the solution. According to this rule, after inserting the

removed job into the best position of the current solution that leads to the smallest

makespan, the current solution is replaced with the new one if there is an improvement,

without testing the other jobs at all possible positions. Then, this updated solution is

used for the next iteration to test another job. Namely, at any iteration, after performing

the best insertion for the chosen job, the current solution is updated if there is an

improvement, before testing the other jobs at all positions.

𝐹𝑖𝑟𝑠𝑡 − 𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 𝐼𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑 (𝜋)

𝑓𝑜𝑟 𝑖 = 1 𝑡𝑜 𝑛 𝑑𝑜

 𝑟𝑒𝑚𝑜𝑣𝑒 𝑗𝑜𝑏 𝜋𝑘 𝑓𝑟𝑜𝑚 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝜋 𝑟𝑎𝑛𝑑𝑜𝑚𝑙𝑦 (𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑟𝑒𝑝𝑒𝑡𝑖𝑡𝑖𝑜𝑛)

 𝜋∗ = 𝐼𝑛𝑠𝑒𝑟𝑡 𝑗𝑜𝑏 𝜋𝑘 𝑖𝑛 𝑏𝑒𝑠𝑡 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑜𝑓 𝜋

 𝑖𝑓 (𝑓(𝜋∗) < 𝑓(𝜋)) 𝑡ℎ𝑒𝑛 𝑑𝑜

 𝜋 = 𝜋∗

 𝑒𝑛𝑑 𝑖𝑓

𝑒𝑛𝑑 𝑓𝑜𝑟

𝑟𝑒𝑡𝑢𝑟𝑛 𝜋 𝑎𝑛𝑑 𝑓(𝜋)

Figure 6. 10. First-Improvement Insertion Neighborhood Structure

After the local search step, it is decided whether to accept the new solution as the

incumbent solution for the next iteration or not. If the new solution is better than the

current one, the IG algorithm always accepts the new solution as the incumbent

solution. However, if the new solution is worse than the current one, it accepts the new

solution with a probability. For this purpose, a simple simulated annealing-type

acceptance criterion is used with a constant temperature, which is suggested by Osman

and Potts (1989):

𝑇 =
∑ ∑ 𝑝𝑘𝑗

𝑚
𝑘=1

𝑛
𝑗=1

10𝑛𝑚
× 𝜏𝑃, (6-1)

where n is the number of jobs, m is the number of stages and 𝜏𝑃 is a parameter to be

adjusted.

Recently, a new version of the IG algorithm, namely IGALL, is presented in the

literature for the permutation flowshop with the makespan criterion (Dubois-Lacoste

et al., 2017). The difference between the two algorithms is that IGALL applies an

additional local search to partial solutions after the destruction in order to enhance

solution quality. The proposed IGALL algorithm outlined in Figure 6.11 employs

52

NEH_M(x) as a constructive heuristic. Note that, IGALL applies the first-improvement

neighborhood structure to the partial solutions with n - 𝜅 jobs before the construction

phase, and if any improvement has been found, the local search is applied again until

a local optimum is obtained. The rest of the procedure is the same as the

aforementioned IG algorithm.

𝑃𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑒 𝐼𝐺𝐴𝐿𝐿 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚(𝜅, 𝜏𝑃)

𝜋0 = 𝑁𝐸𝐻_𝑀(𝑛), 𝜋𝑏𝑒𝑠𝑡 = 𝜋0

𝑤ℎ𝑖𝑙𝑒 (𝑡𝑖𝑚𝑒 𝑙𝑖𝑚𝑖𝑡 𝑖𝑠 𝑛𝑜𝑡 𝑒𝑥𝑐𝑒𝑒𝑑𝑒𝑑) 𝑑𝑜

 𝜋𝑑, 𝜋𝑐 = 𝐷𝑒𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 (𝜋0, 𝜅)

 𝜋𝑐 = 𝐹𝑖𝑟𝑠𝑡 − 𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 𝐼𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑 (𝜋𝑐) %local search to the partial solution

 𝜋1 = 𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 (𝜋𝑑, 𝜋𝑐)

 𝜋2 = 𝐹𝑖𝑟𝑠𝑡 − 𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 𝐼𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑 (𝜋1) %local search to the complete solution

 𝑖𝑓 𝑓(𝜋2) < 𝑓(𝜋0) 𝑡ℎ𝑒𝑛

 𝜋0 = 𝜋2

 𝑖𝑓 𝑓(𝜋2) < 𝑓(𝜋𝑏𝑒𝑠𝑡) 𝑡ℎ𝑒𝑛

 𝜋𝑏𝑒𝑠𝑡 = 𝜋2

 𝑒𝑛𝑑 𝑖𝑓

 𝑒𝑙𝑠𝑒 𝑖𝑓 (𝑟𝑎𝑛𝑑 < 𝑒𝑥𝑝{−(𝑓(𝜋2) − 𝑓(𝜋0))/𝑇}) 𝑡ℎ𝑒𝑛

 𝜋0 = 𝜋2

 𝑒𝑛𝑑 𝑖𝑓

𝑒𝑛𝑑 𝑤ℎ𝑖𝑙𝑒

𝑟𝑒𝑡𝑢𝑟𝑛 𝜋𝑏𝑒𝑠𝑡 𝑎𝑛𝑑 𝑓(𝜋𝑏𝑒𝑠𝑡)

Figure 6. 11. IGALL Algorithm

A block move is proposed by Xu et al. (2014), where a block with 𝑏𝑠 consecutive jobs

is removed from the solution and inserted into another position. Based on this idea,

VBIH algorithms are proposed by Tasgetiren et al. (2016, 2017), where the block size

𝑏𝑠 changes during the procedure. In this thesis, a similar VBIH algorithm is developed,

as outlined in Figure 6.12. Note that NEH_M(x) heuristic is used in the construction

of the initial solution, as in the proposed IG algorithms. As shown in Figure 6.12, a

block of jobs with size 𝑏𝑠 is initially removed from the current solution, where 𝑏𝑠 is set

in between a minimum block size (𝑏𝑠𝑚𝑖𝑛) and a maximum block size (𝑏𝑠𝑚𝑎𝑥). Then,

as in IGALL, the first-improvement neighborhood structure is employed on the partial

solution with n - 𝑏𝑠 jobs; and if any improvement has been found, the local search is

applied again until a local optimum is reached. Afterward, the best block insertion is

performed by testing the removed block in all possible positions of the partial solution.

Then, the first-improvement neighborhood structure is employed on the obtained

complete solution. Finally, the acceptance criterion given in Eq. (6-1) is employed. This

process is iterated until the 𝑏𝑠 attains the 𝑏𝑠𝑚𝑎𝑥.

53

𝑃𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑒 𝑉𝐵𝐼𝐻 (𝑏𝑠𝑚𝑎𝑥 , 𝜏𝑃)

𝜋0 = 𝑁𝐸𝐻_𝑀(𝑛), 𝜋𝑏𝑒𝑠𝑡 = 𝜋0 , 𝑏𝑠𝑚𝑖𝑛 = 2

𝑤ℎ𝑖𝑙𝑒 (𝑡𝑖𝑚𝑒 𝑙𝑖𝑚𝑖𝑡 𝑖𝑠 𝑛𝑜𝑡 𝑒𝑥𝑐𝑒𝑒𝑑𝑒𝑑) 𝑑𝑜

𝑏𝑠 = 𝑏𝑠𝑚𝑖𝑛

𝑑𝑜{

 𝜋1 = 𝑅𝑒𝑚𝑜𝑣𝑒 𝑎 𝑏𝑙𝑜𝑐𝑘 𝑤𝑖𝑡ℎ 𝑠𝑖𝑧𝑒 𝑏𝑠 𝑓𝑟𝑜𝑚 𝜋0

 𝜋2 = 𝐹𝑖𝑟𝑠𝑡 − 𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 𝐼𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑 (𝜋1) %local search to the partial solution

 𝜋3 = 𝐼𝑛𝑠𝑒𝑟𝑡 𝑡ℎ𝑒 𝑏𝑙𝑜𝑐𝑘 𝑖𝑛𝑡𝑜 𝑡ℎ𝑒 𝑏𝑒𝑠𝑡 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑖𝑛 𝜋2

 𝜋4 = 𝐹𝑖𝑟𝑠𝑡 − 𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 𝐼𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑 (𝜋3) %local search to the complete solution

 𝑖𝑓 (𝑓(𝜋4) < 𝑓(𝜋0)) 𝑡ℎ𝑒𝑛 𝑑𝑜

 𝜋0 = 𝜋4

 𝑖𝑓 (𝑓(𝜋4) < 𝑓(𝜋𝑏𝑒𝑠𝑡)) 𝑡ℎ𝑒𝑛 𝑑𝑜

 𝜋𝑏𝑒𝑠𝑡 = 𝜋4

 𝑒𝑛𝑑𝑖𝑓

 𝑒𝑙𝑠𝑒

 𝑖𝑓 (𝑟𝑎𝑛𝑑 < 𝑒𝑥𝑝{−(𝑓(𝜋4) − 𝑓(𝜋0))/𝑇})

 𝜋0 = 𝜋4

 𝑒𝑛𝑑𝑖𝑓

 𝑒𝑛𝑑𝑖𝑓

 𝑏𝑠 = 𝑏𝑠 + 1

}𝑤ℎ𝑖𝑙𝑒(𝑏𝑠 ≤ 𝑏𝑠𝑚𝑎𝑥)

𝑒𝑛𝑑𝑤ℎ𝑖𝑙𝑒

Figure 6. 12. Variable Block Insertion Algorithm

6.3 Energy-efficient Bi-Objective Metaheuristic Algorithms for the

EHFSP-V1

In this section, the proposed seven energy-efficient bi-objective metaheuristic

algorithms; namely, two variants of the IG algorithm (E_IG, E_IGALL), a VBIH

algorithm (E_VBIH) and four variants of the ensemble of metaheuristic algorithms

(E_EM, E_EMHFR, E_EMHFN, E_EMHFRN) are explained for the EHFSP-V1.

6.3.1 Initial Population

As mentioned in Section 6.2, in the proposed energy-efficient bi-objective

metaheuristics for the EHFSP-V1, single-objective versions of the IG, IGALL, and

VBIH algorithms with only makespan criterion are initially employed to obtain a good

starting solution, i.e., a job permutation. Then, the initial population is formed by

assigning a random speed level to each job of the starting solution. Namely, the initial

population with size 𝑃𝑆 is constructed as follows: Firstly, an initial solution is obtained

by the NEH_M(x) constructive heuristic, which is explained in Section 6.2.1. Then,

the resulting solution is taken as the initial solution for the single-objective IG, IGALL,

54

or VBIH algorithms for the makespan minimization, which is explained in Section

6.2.2. In order to start with a good job permutation, 25% of the total CPU time is

devoted to the following: the single-objective IG in E_IG, E_EM, E_EMHFR,

E_EMHFN, E_EMHFRN algorithms; the single-objective IGALL in E_IGALL algorithm;

and the single-objective VBIH in the E_VBIH algorithm. Once the best solution

𝜋𝑏𝑒𝑠𝑡 is found by one of these single-objective algorithms, the first three individuals

in the population are generated by assigning fast, normal and slow speed levels to all

jobs in 𝜋𝑏𝑒𝑠𝑡. The rest of the individuals in the population are constructed by assigning

a random speed level to each job in 𝜋𝑏𝑒𝑠𝑡. The archive set (𝐴𝑆) is initially empty and

filled with non-dominated solutions from the initial population.

6.3.2 𝐄_𝐈𝐆 and 𝐄_𝐈𝐆𝐀𝐋𝐋 Algorithms

As mentioned in Section 6.3.1, the initial population is formed in E_IG using the good

starting solution found by the single-objective IG algorithm with only makespan

criterion, whereas the single-objective IGALL algorithm with makespan criterion is

used for the initial population generation in E_IGALL algorithm. After the generation of

the initial population, in E_IG and E_IGALL algorithms, destruction-construction and

local search procedures are applied to each individual in the population, while the time

limit is not exceeded. Note that, these procedures are similar to the procedures in

single-objective IG algorithms; except that, in E_IG and E_IGALL algorithms, speed

levels are also regarded and the solutions are assessed according to the dominance

rules due to the bi-objective nature of the EHFSP. Namely, in the destruction step, 𝜅

jobs are randomly removed from the solution as well as their speed levels, and random

speed levels are assigned to these removed 𝜅 jobs. Before the construction, in the

E_IGALL algorithm, the energy-efficient first-improvement insertion neighborhood

structure (Figure 6.13) is applied to the partial solution regarding the speed levels,

while it is not applied in the E_IG algorithm. Then, these 𝜅 jobs are reinserted into the

partial solution with their respective speed levels following the best insertion policy,

in the order they were removed, until a complete solution of 𝑛 jobs is established. As

the problem is bi-objective, the dominance rule (≺) is used when two solutions are

compared, where the partial solutions are assessed based on the partial dominance rule.

After the destruction-construction procedures, the energy-efficient first-improvement

insertion neighborhood structure is applied to the complete solution, as shown in

55

Figure 6.13. Job 𝜋𝑖 and speed 𝜓𝑖 are removed from position 𝑖 of solution 𝑠, and a new

speed level is randomly assigned to this job. Then, the local search inserts this job-

speed pair (𝜋𝑖, 𝜓𝑖) into all possible positions of the incumbent solution 𝑠(𝜋, 𝜓). After

the best insertion position is found, (𝜋𝑖 , 𝜓𝑖) is inserted into that position. If the new

solution 𝑠∗ dominates the incumbent solution 𝑠, then the current solution is updated.

This is repeated for all job-speed pairs. In the case of an improving solution, the local

search is repeated until no more improving solutions can be obtained. Note that, the

archive set 𝐴𝑆 is also updated during the procedure, whenever a new non-dominated

solution is found.

𝑖𝑚𝑝𝑟𝑜𝑣𝑒 = 𝑡𝑟𝑢𝑒

𝑤ℎ𝑖𝑙𝑒 (𝑖𝑚𝑝𝑟𝑜𝑣𝑒 = 𝑡𝑟𝑢𝑒) 𝑑𝑜

 𝑖𝑚𝑝𝑟𝑜𝑣𝑒 = 𝑓𝑎𝑙𝑠𝑒

 𝑓𝑜𝑟 𝑘 = 1 𝑡𝑜 𝑛 𝑑𝑜

 (𝜋𝑖 , 𝜓𝑖) =

 𝑅𝑒𝑚𝑜𝑣𝑒 𝑗𝑜𝑏 𝜋𝑖 𝑎𝑛𝑑 𝑖𝑡𝑠 𝑠𝑝𝑒𝑒𝑑 𝑙𝑒𝑣𝑒𝑙 𝜓𝑖 𝑓𝑟𝑜𝑚 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑠(𝜋, 𝜓) 𝑟𝑎𝑛𝑑𝑜𝑚𝑙𝑦(𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑟𝑒𝑝𝑒𝑡𝑖𝑡𝑖𝑜𝑛)

 𝜓𝑖 = 𝑎𝑠𝑠𝑖𝑔𝑛 𝑎 𝑟𝑎𝑛𝑑𝑜𝑚 𝑠𝑝𝑒𝑒𝑑 𝑙𝑒𝑣𝑒𝑙 𝑓𝑟𝑜𝑚 {1,2,3}

 𝑠∗(𝜋∗, 𝜓∗) = 𝐼𝑛𝑠𝑒𝑟𝑡 𝑗𝑜𝑏 (𝜋𝑖 , 𝜓𝑖) 𝑖𝑛𝑡𝑜 𝑏𝑒𝑠𝑡 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑜𝑓𝑠(𝜋, 𝜓)

 𝑖𝑓 (𝑠∗ ≺ 𝑠) 𝑡ℎ𝑒𝑛 𝑑𝑜

 𝑠 = 𝑠∗

 𝑖𝑚𝑝𝑟𝑜𝑣𝑒 = 𝑡𝑟𝑢𝑒

 𝑒𝑛𝑑 𝑖𝑓

 𝑒𝑛𝑑 𝑓𝑜𝑟

𝑒𝑛𝑑 𝑤ℎ𝑖𝑙𝑒

Figure 6. 13. Energy-Efficient First-Improvement Insertion Neighborhood Structure

for the EHFSP-V1

6.3.3 𝐄_𝐕𝐁𝐈𝐇 Algorithm

As mentioned in Section 6.3.1, the initial population is generated for the E_VBIH

algorithm using the good starting solution found by the single-objective VBIH

algorithm with only a makespan criterion. After the generation of the initial population,

in the E_VBIH algorithm, block insertion and local search procedures are applied to

each individual in the population, while the time limit is not exceeded. Note that these

procedures are similar to the procedures in the single-objective VBIH algorithm,

except that, in the E_VBIH algorithm, speed levels are also considered and the solutions

are assessed according to the dominance rules. That is, a block of jobs with size 𝑏𝑠 is

randomly removed from the solution together with their speeds, where 𝑏𝑠 is in between

a minimum block size (𝑏𝑠𝑚𝑖𝑛 = 2) and a maximum block size (𝑏𝑠𝑚𝑎𝑥). Random

speed levels are assigned to these removed jobs. Then, the energy-efficient first-

56

improvement insertion neighborhood structure (Figure 6.13) is applied to the partial

solution considering the speed levels. Afterward, the block of jobs with size 𝑏𝑠 is

inserted into all possible positions of the partial solution with their respective speeds,

and the best block insertion is realized.

After the block insertion procedure, the energy-efficient first-improvement insertion

neighborhood structure is applied to the complete solution, as shown in Figure 6.13.

The archive set 𝐴𝑆 is also updated during this procedure, in the case of a new non-

dominated solution is found. Note that, as in E_IG algorithms, the dominance rule is

used to evaluate solutions, where the partial solutions are evaluated based on the partial

dominance rule. This process is repeated until the 𝑏𝑠 reaches the 𝑏𝑠𝑚𝑎𝑥.

6.3.4 Ensemble of Metaheuristic Algorithms

(𝐄_𝐄𝐌, 𝐄_𝐄𝐌𝐇𝐅𝐑, 𝐄_𝐄𝐌𝐇𝐅𝐍, 𝐄_𝐄𝐌𝐇𝐅𝐑𝐍)

In order to improve solution quality, the aforementioned E_IG, E_IGALL and E_VBIH

algorithms are combined in an energy-efficient ensemble of metaheuristic algorithms

(E_EM). Note that, the ensemble idea in heuristic optimization, which combines

several heuristic procedures effectively, is initially presented in (Mallipedi et al., 2011;

Tasgetiren et al., 2010; Mallipedi and Suganthan, 2010). After the generation of the

initial population, in the E_EM algorithm, a random algorithm strategy is assigned to

each individual in the population. In this way, a different algorithm is applied to each

individual according to the assigned strategy, while the time limit is not exceeded.

There are four algorithmic strategies in the E_EM algorithm: E_IG algorithm, E_IGALL

algorithm, E_VBIH algorithm, and crossover local search. Note that, the crossover local

search is also included in the E_EM algorithm as one of the strategies since it enhances

the solution quality (Öztop et al., 2018; Tasgetiren et al., 2018b).

The crossover local search initially employs a uniform crossover operator only on

speed levels while keeping the permutation the same. For an individual 𝑠𝑝 in the

population, another individual 𝑠𝑞 is selected from the population randomly. Then, a

new solution is generated by taking the speed levels either from 𝑠𝑝 or 𝑠𝑞, depending

on the crossover probability 𝐶𝑅. Namely, for each position 𝑗 in 𝑠𝑝, a uniform random

number 𝑟𝑗 is generated between 0 and 1, and if 𝑟𝑗 < 𝐶𝑅, speed level at position j in 𝑠𝑝

is kept the same. In the case of 𝑟𝑗 ≥ 𝐶𝑅, the speed level at position j in 𝑠𝑝 is replaced

57

by the speed level at the same position in individual 𝑠𝑞. Note that, the crossover

probability 𝐶𝑅 is drawn from the uniform distribution between 0.4 and 0.6. After the

crossover, the energy-efficient first-improvement insertion neighborhood structure

(Figure 6.13) is applied to the solution on hand. The archive set 𝐴𝑆 is updated during

the procedure, whenever a new non-dominated solution is found.

In order to enhance the performance of the E_EM algorithm and to avoid the

shortcomings of the standard forward scheduling approach as mentioned in Section

6.1.2, HFR and HFN heuristic fitness calculation approaches are also employed on

each individual in the population. Namely, the complete schedule is re-computed for

each individual in the population by employing HFR and HFN approaches, in order to

explore the neighboring schedules. As mentioned in Section 6.1.2, HFR and HFN

approaches employ swap moves on the job permutations of some stages, during

forward scheduling procedure. Note that, employing a swap move on the job

permutation of a stage can lead to a different complete schedule with different fitness

function values.

Consequently, after implementing the E_EM algorithm, the HFR approach is

employed on each individual in the population in the E_EMHFR algorithm, while the

HFN approach is employed in E_EMHFN algorithm. Furthermore, as a fourth variant

of the E_EM algorithm, both HFR and HFN approaches are employed with an equal

probability in the E_EMHFRN algorithm. Note that, HFR and HFN approaches are

applied ⌊𝑛/2⌋ times to each individual in E_EMHFR, E_EMHFN and E_EMHFRN

algorithms. As mentioned in Section 6.1.3, speed levels of the jobs are also regarded

in the heuristic fitness calculation approaches. The archive set 𝐴𝑆 is updated during

the procedure if a new non-dominated solution is found.

The general outline of the energy-efficient ensemble of metaheuristic algorithms

(E_EM, E_EMHFRN, E_EMHFR, E_EMHFN) is provided in Figure 6.14, where 𝑟 is a

uniform random number between 0 and 1. Note that, as mentioned in Section 6.3.1,

the initial population is generated for the ensemble of metaheuristic algorithms using

the good starting solution found by the single-objective IG algorithm with only the

makespan criterion.

58

𝑷𝒓𝒐𝒄𝒆𝒅𝒖𝒓𝒆 𝑬_𝑬𝑴,𝑬_𝑬𝑴𝑯𝑭𝑹, 𝑬_𝑬𝑴𝑯𝑭𝑵, 𝑬_𝑬𝑴𝑯𝑭𝑹𝑵

𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒 𝑡ℎ𝑒 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑤𝑖𝑡ℎ 𝑠𝑖𝑧𝑒 𝑃𝑆:

• 𝐴𝑝𝑝𝑙𝑦 𝑡ℎ𝑒 𝑠𝑖𝑛𝑔𝑙𝑒 𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝐼𝐺 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 𝑢𝑠𝑖𝑛𝑔 𝑁𝐸𝐻_𝑀(𝑥) 𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑣𝑒 ℎ𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐

𝑓𝑜𝑟 25% 𝑜𝑓 𝑡ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 𝑡𝑖𝑚𝑒 𝑏𝑢𝑑𝑔𝑒𝑡 𝑡𝑜 𝑓𝑖𝑛𝑑 𝜋𝑏𝑒𝑠𝑡

• 𝐹𝑜𝑟𝑚 𝑡ℎ𝑒 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑢𝑠𝑖𝑛𝑔 𝜋𝑏𝑒𝑠𝑡

𝑓𝑜𝑟 𝑝 = 1 𝑡𝑜 𝑃𝑆

𝐴𝑠𝑠𝑖𝑔𝑛 𝑎 𝑟𝑎𝑛𝑑𝑜𝑚 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦 𝑠𝑡𝑟𝑝 𝑡𝑜 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝑠𝑝

𝑒𝑛𝑑 𝑓𝑜𝑟

𝑤ℎ𝑖𝑙𝑒 (𝑡𝑖𝑚𝑒 𝑙𝑖𝑚𝑖𝑡 𝑖𝑠 𝑛𝑜𝑡 𝑒𝑥𝑐𝑒𝑒𝑑𝑒𝑑) 𝑑𝑜

𝑓𝑜𝑟 𝑝 = 1 𝑡𝑜 𝑃𝑆

𝑖𝑓 (𝑠𝑡𝑟𝑝 = 1) 𝐴𝑝𝑝𝑙𝑦 𝐸_𝐼𝐺 𝑡𝑜 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝑠𝑝 (𝐷𝑒𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛-𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 & 𝐿𝑜𝑐𝑎𝑙 𝑆𝑒𝑎𝑟𝑐ℎ)

𝑒𝑙𝑠𝑒 𝑖𝑓 (𝑠𝑡𝑟𝑝 = 2) 𝐴𝑝𝑝𝑙𝑦 𝐸_𝐼𝐺𝐴𝐿𝐿 𝑡𝑜 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝑠𝑝 (𝐷𝑒𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛-𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 & 𝐿𝑜𝑐𝑎𝑙 𝑆𝑒𝑎𝑟𝑐ℎ)

𝑒𝑙𝑠𝑒 𝑖𝑓 (𝑠𝑡𝑟𝑝 = 3) 𝐴𝑝𝑝𝑙𝑦 𝐸_𝑉𝐵𝐼𝐻 𝑡𝑜 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝑠𝑝 (𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝐵𝑙𝑜𝑐𝑘 𝐼𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛 & 𝐿𝑜𝑐𝑎𝑙 𝑆𝑒𝑎𝑟𝑐ℎ)

𝑒𝑙𝑠𝑒 𝑖𝑓 (𝑠𝑡𝑟𝑝 = 4) 𝐴𝑝𝑝𝑙𝑦 𝑐𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟 𝑙𝑜𝑐𝑎𝑙 𝑠𝑒𝑎𝑟𝑐ℎ 𝑡𝑜 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝑠𝑝

𝑒𝑛𝑑 𝑖𝑓

 % HFR & HFN approaches (only in 𝐸_𝐸𝑀𝐻𝐹𝑅 , 𝐸_𝐸𝑀𝐻𝐹𝑁 , 𝐸_𝐸𝑀𝐻𝐹𝑅𝑁 algorithms)

 𝑓𝑜𝑟 𝑘 = 1 𝑡𝑜 ⌊𝑛/2⌋

 (𝐄_𝐄𝐌𝐇𝐅𝐑): 𝑟𝑒𝑐𝑜𝑚𝑝𝑢𝑡𝑒 𝑡ℎ𝑒 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒 𝑓𝑜𝑟 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝑠𝑝 𝑢𝑠𝑖𝑛𝑔 𝐻𝐹𝑅 𝑎𝑝𝑝𝑟𝑜𝑎𝑐ℎ

 (𝐄_𝐄𝐌𝐇𝐅𝐍): 𝑟𝑒𝑐𝑜𝑚𝑝𝑢𝑡𝑒 𝑡ℎ𝑒 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒 𝑓𝑜𝑟 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝑠𝑝 𝑢𝑠𝑖𝑛𝑔 𝐻𝐹𝑁 𝑎𝑝𝑝𝑟𝑜𝑎𝑐ℎ

 (𝐄_𝐄𝐌𝐇𝐅𝐑𝐍):

 𝑖𝑓 (𝑟~𝑈(0,1) ≤ 0.5)

 𝑟𝑒𝑐𝑜𝑚𝑝𝑢𝑡𝑒 𝑡ℎ𝑒 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒 𝑓𝑜𝑟 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝑠𝑝 𝑢𝑠𝑖𝑛𝑔 𝐻𝐹𝑅 𝑎𝑝𝑝𝑟𝑜𝑎𝑐ℎ

 𝑒𝑙𝑠𝑒

 𝑟𝑒𝑐𝑜𝑚𝑝𝑢𝑡𝑒 𝑡ℎ𝑒 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒 𝑓𝑜𝑟 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝑠𝑝 𝑢𝑠𝑖𝑛𝑔 𝐻𝐹𝑁 𝑎𝑝𝑝𝑟𝑜𝑎𝑐ℎ

 𝑒𝑛𝑑 𝑖𝑓

 𝑒𝑛𝑑 𝑓𝑜𝑟

𝑒𝑛𝑑 𝑓𝑜𝑟

𝑒𝑛𝑑 𝑤ℎ𝑖𝑙𝑒

Figure 6. 14. General Outline of the Energy-Efficient Ensemble of Metaheuristic

Algorithms for the EHFSP-V1

6.4 Energy-efficient Bi-Objective Metaheuristic Algorithms for the

EHFSP-V2

In this section, the proposed four energy-efficient bi-objective metaheuristic

algorithms; namely, two variants of the IG algorithm (E_IG2, E_IG2ALL), a VBIH

algorithm (E_VBIH2), and an ensemble of metaheuristic algorithms (E_EM2) are

explained for the EHFSP-V2.

6.4.1 Initial Population

In the proposed bi-objective metaheuristic algorithms for the EHFSP-V2, the initial

population with size 𝑃𝑆 is constructed as follows: Firstly, an initial solution is obtained

by the NEH_M(𝑥) constructive heuristic, which is explained in Section 6.2.1. Then,

59

the resulting solution is taken as the initial solution for the single-objective IG, IGALL

or VBIH algorithms for makespan minimization, which is explained in Section 6.2.2.

In order to start with a good job permutation, 𝐼𝑛𝑝% of the total CPU time is devoted

to the following: the single-objective IG in E_IG2 and E_EM2 algorithms; the single-

objective IGALL in the E_IG2ALL algorithm; and the single-objective VBIH in the

E_VBIH2 algorithm, where 𝐼𝑛𝑝% is 20% for large instances and 𝐼𝑛𝑝% is 10% for

small and medium instances.

Once the best solution 𝜋𝑏𝑒𝑠𝑡 is found by one of these single-objective algorithms, the

first individual in the population is generated by assigning fast speed levels to all

operations of the jobs in 𝜋𝑏𝑒𝑠𝑡. The rest of the individuals in the population are

constructed by assigning slow and normal speed levels randomly to the operations of

jobs in 𝜋𝑏𝑒𝑠𝑡. The archive set (𝐴𝑆) is initially empty and filled with non-dominated

solutions from the initial population. In order to start with more energy-efficient

solutions, a mutation strategy is also applied to each individual in the population.

Namely, for each individual 𝑠𝑝(𝜋, 𝜓) ∈ 𝑃𝑆, we mutate the speed level 𝜓𝑘𝑗 of each

operation of a job by assigning a slow or normal speed level randomly. Then, the

archive set 𝐴𝑆 is updated after mutating the speed level 𝜓𝑘𝑗 of each operation of a job,

in the case of a new non-dominated solution is found.

6.4.2 𝐄_𝐈𝐆𝟐 and 𝐄_𝐈𝐆𝟐𝐀𝐋𝐋 Algorithms

E_IG2 and E_IG2ALL algorithms are very similar to the E_IG and E_IGALL algorithms

in Section 6.3.2. Namely, E_IG2 is the extended version of the E_IG and E_IG2ALL is

the extended version of the E_IGALL to the matrix-based speed scaling strategy. Similar

to the E_IG and E_IGALL algorithms, after the generation of the initial population;

destruction, construction and local search procedures are applied to each individual in

E_IG2 and E_IG2ALL algorithms. However, when applying these procedures, a job is

removed/inserted from/into the solution as well as its speed column (speed levels of

its all operations) in the E_IG2 and E_IG2ALL algorithms due to the matrix-based speed

scaling structure. Additionally, when changing the speed levels of a removed job,

random speed levels are assigned to all operations. Namely, in the destruction phase,

𝜅 jobs are randomly removed from the solution as well as their speed levels, and

random speed levels are assigned to the operations of these removed 𝜅 jobs. Before

the construction, in the E_IG2ALL algorithm, the energy-efficient first-improvement

60

insertion neighborhood structure (Figure 6.15) is applied to the partial solution, while

it is not applied in the E_IG2 algorithm. Then, these 𝜅 jobs are reinserted into the partial

solution with their respective speed levels following the best insertion policy, in the

order of removal.

𝑖𝑚𝑝𝑟𝑜𝑣𝑒 = 𝑡𝑟𝑢𝑒

𝑤ℎ𝑖𝑙𝑒 (𝑖𝑚𝑝𝑟𝑜𝑣𝑒 = 𝑡𝑟𝑢𝑒) 𝑑𝑜

 𝑖𝑚𝑝𝑟𝑜𝑣𝑒 = 𝑓𝑎𝑙𝑠𝑒

 𝑓𝑜𝑟 𝑞 = 1 𝑡𝑜 𝑛 𝑑𝑜

 (𝜋𝑖 , 𝜓𝑖
⃗⃗ ⃗) =

 𝑅𝑒𝑚𝑜𝑣𝑒 𝑗𝑜𝑏 𝜋𝑖 𝑎𝑛𝑑 𝑖𝑡𝑠 𝑠𝑝𝑒𝑒𝑑 𝑐𝑜𝑙𝑢𝑚𝑛 𝜓𝑖
⃗⃗ ⃗ 𝑓𝑟𝑜𝑚 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑠(𝜋, 𝜓) 𝑟𝑎𝑛𝑑𝑜𝑚𝑙𝑦(𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑟𝑒𝑝𝑒𝑡𝑖𝑡𝑖𝑜𝑛)

 𝑓𝑜𝑟 𝑘 = 1 𝑡𝑜 𝑚 𝑑𝑜

 𝜓𝑖
⃗⃗ ⃗ = 𝑎𝑠𝑠𝑖𝑔𝑛 𝑎 𝑟𝑎𝑛𝑑𝑜𝑚 𝑠𝑝𝑒𝑒𝑑 𝑙𝑒𝑣𝑒𝑙 𝑓𝑟𝑜𝑚 {1,2,3} 𝑡𝑜 𝑒𝑎𝑐ℎ 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑘 𝑜𝑓 𝑗𝑜𝑏 𝜋𝑖

 𝑒𝑛𝑑 𝑓𝑜𝑟

 𝑠∗(𝜋∗, 𝜓∗) = 𝐼𝑛𝑠𝑒𝑟𝑡 𝑗𝑜𝑏 (𝜋𝑖 , 𝜓𝑖
⃗⃗ ⃗) 𝑖𝑛𝑡𝑜 𝑏𝑒𝑠𝑡 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑜𝑓𝑠(𝜋, 𝜓)

 𝑖𝑓 (𝑠∗ ≺ 𝑠) 𝑡ℎ𝑒𝑛 𝑑𝑜

 𝑠 = 𝑠∗

 𝑖𝑚𝑝𝑟𝑜𝑣𝑒 = 𝑡𝑟𝑢𝑒

 𝑒𝑛𝑑 𝑖𝑓

 𝑒𝑛𝑑 𝑓𝑜𝑟

𝑒𝑛𝑑 𝑤ℎ𝑖𝑙𝑒

Figure 6. 15. Energy-Efficient First-Improvement Insertion Neighborhood Structure

for the EHFSP-V2

After destruction-construction procedures, the energy-efficient first-improvement

insertion neighborhood structure is applied to the complete solution, as shown in

Figure 6.15. Note that, this local search (Figure 6.15) is the extended version of the

local search in Figure 6.13 to the matrix-based speed scaling strategy. Namely, job 𝜋𝑖

and its speed column 𝜓𝑖
⃗⃗ ⃗ (i.e., speed levels of all operations of the job 𝜋𝑖) are removed

from position 𝑖 of solution 𝑠, and new speed levels are randomly assigned to the

operations of this removed job. Then, the local search inserts this job-speed column

pair (𝜋𝑖 , 𝜓𝑖
⃗⃗ ⃗) into all possible positions of the incumbent solution 𝑠(𝜋, 𝜓), and chooses

the best insertion. If the new solution 𝑠∗ dominates the incumbent solution 𝑠, then the

current solution is updated. This is repeated for all job-speed column pairs. In the case

of an improving solution, the local search is restarted until no more improving

solutions can be obtained. The archive set 𝐴𝑆 is also updated during the procedure,

whenever a new non-dominated solution is found.

61

Unlike the E_IG and E_IGALL algorithms, after implementing the aforementioned E_IG2

and E_IG2ALL procedures, a mutation strategy and heuristic fitness calculation

approaches are also employed on each individual, as explained in Section 6.4.5.

6.4.3 𝐄_𝐕𝐁𝐈𝐇𝟐 Algorithm

E_VBIH2 algorithm is very similar to the E_VBIH algorithm in Section 6.3.3. Namely,

E_VBIH2 is the extended version of the E_VBIH algorithm to the matrix-based speed

scaling strategy. Similar to the E_VBIH algorithm, after the generation of the initial

population, block insertion and local search procedures are applied to each individual

in the E_VBIH2 algorithm. However, when applying these procedures, a job is

removed/inserted from/into the solution as well as its speed column (speed levels of

its all operations) due to the matrix-based speed scaling structure. Furthermore, when

changing the speed levels of a removed job, random speed levels are assigned to its all

operations. Namely, a block of jobs with size 𝑏𝑠 is randomly removed from the

solution together with their speed levels, where 𝑏𝑠𝑚𝑖𝑛 ≤ 𝑏𝑠 ≤ 𝑏𝑠𝑚𝑎𝑥, and random

speed levels are assigned to the operations of these removed jobs. Note that, we set

𝑏𝑠𝑚𝑖𝑛= 2. Then, the energy-efficient first-improvement insertion neighborhood

structure (Figure 6.15) is applied to the partial solution. Afterward, the removed block

of jobs is inserted into all possible positions of the partial solution with their respective

speeds, and the best block insertion is realized. After block insertion procedure, the

energy-efficient first-improvement insertion neighborhood structure is applied to the

complete solution, as shown in Figure 6.15. The archive set 𝐴𝑆 is also updated during

this procedure, in the case of a new non-dominated solution is found. This process is

repeated until the 𝑏𝑠 reaches the 𝑏𝑠𝑚𝑎𝑥.

Unlike the E_VBIH algorithm, after implementing the aforementioned E_VBIH2

procedures, a mutation strategy and heuristic fitness calculation approaches are also

employed on each individual, as explained in Section 6.4.5.

6.4.4. Ensemble of Metaheuristic Algorithms (𝐄_𝐄𝐌𝟐)

As a fourth algorithm, the aforementioned E_IG2, E_IG2ALL and E_VBIH2 algorithms

are combined in an energy-efficient ensemble of metaheuristic algorithms (E_EM2).

After the generation of the initial population, in the E_EM2 algorithm, a random

algorithm strategy is assigned to each individual in the population. There are three

62

algorithmic strategies in the E_EM2 algorithm: E_IG2 algorithm, E_IG2ALL algorithm

and E_VBIH2 algorithm. In this way, a different algorithm is applied to each individual

according to the assigned strategy similar to the E_EM algorithm described in Section

6.3.4. The general outline of the energy-efficient ensemble of metaheuristic algorithms

(E_EM2) is provided in Figure 6.16, where 𝑟 is a uniform random number between 0

and 1. As shown in Figure 6.16, after implementing the E_EM2 procedures, a mutation

strategy and heuristic fitness calculation approaches are also employed on each

individual, as explained in Section 6.4.5.

𝑷𝒓𝒐𝒄𝒆𝒅𝒖𝒓𝒆 𝑬_𝑬𝑴𝟐

𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒 𝑡ℎ𝑒 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑤𝑖𝑡ℎ 𝑠𝑖𝑧𝑒 𝑃𝑆:

• 𝐴𝑝𝑝𝑙𝑦 𝑡ℎ𝑒 𝑠𝑖𝑛𝑔𝑙𝑒 𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝐼𝐺 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 𝑢𝑠𝑖𝑛𝑔 𝑁𝐸𝐻_𝑀(𝑥) 𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑣𝑒 ℎ𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐

𝑓𝑜𝑟 𝐼𝑛𝑝% 𝑜𝑓 𝑡ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 𝑡𝑖𝑚𝑒 𝑏𝑢𝑑𝑔𝑒𝑡 𝑡𝑜 𝑓𝑖𝑛𝑑 𝜋𝑏𝑒𝑠𝑡

• 𝐹𝑜𝑟𝑚 𝑡ℎ𝑒 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑢𝑠𝑖𝑛𝑔 𝜋𝑏𝑒𝑠𝑡

• 𝐴𝑝𝑝𝑙𝑦 𝑎 𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛 𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦 𝑜𝑛 𝑠𝑝𝑒𝑒𝑑 𝑙𝑒𝑣𝑒𝑙𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛

𝑓𝑜𝑟 𝑝 = 1 𝑡𝑜 𝑃𝑆

𝐴𝑠𝑠𝑖𝑔𝑛 𝑎 𝑟𝑎𝑛𝑑𝑜𝑚 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦 𝑠𝑡𝑟𝑝 𝑡𝑜 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝑠𝑝

𝑒𝑛𝑑 𝑓𝑜𝑟

𝑤ℎ𝑖𝑙𝑒 (𝑡𝑖𝑚𝑒 𝑙𝑖𝑚𝑖𝑡 𝑖𝑠 𝑛𝑜𝑡 𝑒𝑥𝑐𝑒𝑒𝑑𝑒𝑑) 𝑑𝑜

𝑓𝑜𝑟 𝑝 = 1 𝑡𝑜 𝑃𝑆

𝑖𝑓 (𝑠𝑡𝑟𝑝 = 1) 𝐴𝑝𝑝𝑙𝑦 𝐸_𝐼𝐺2 𝑡𝑜 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝑠𝑝 (𝐷𝑒𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛-𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 & 𝐿𝑜𝑐𝑎𝑙 𝑆𝑒𝑎𝑟𝑐ℎ)

𝑒𝑙𝑠𝑒 𝑖𝑓(𝑠𝑡𝑟𝑝 = 2)𝐴𝑝𝑝𝑙𝑦 𝐸_𝐼𝐺2𝐴𝐿𝐿 𝑡𝑜 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝑠𝑝 (𝐷𝑒𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛-𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 & 𝐿𝑜𝑐𝑎𝑙 𝑆𝑒𝑎𝑟𝑐ℎ)

𝑒𝑙𝑠𝑒 𝑖𝑓(𝑠𝑡𝑟𝑝 = 3)𝐴𝑝𝑝𝑙𝑦 𝐸_𝑉𝐵𝐼𝐻2 𝑡𝑜 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝑠𝑝 (𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝐵𝑙𝑜𝑐𝑘 𝐼𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛 & 𝐿𝑜𝑐𝑎𝑙 𝑆𝑒𝑎𝑟𝑐ℎ)

𝑒𝑛𝑑 𝑖𝑓

 𝐴𝑝𝑝𝑙𝑦 𝑎 𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛 𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦 𝑜𝑛 𝑡ℎ𝑒 𝑠𝑝𝑒𝑒𝑑 𝑙𝑒𝑣𝑒𝑙𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝑠𝑝

 𝑓𝑜𝑟 𝑘 = 1 𝑡𝑜 𝑛

 𝑖𝑓 (𝑟~𝑈(0,1) ≤ 0.5)

 𝑟𝑒𝑐𝑜𝑚𝑝𝑢𝑡𝑒 𝑡ℎ𝑒 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒 𝑓𝑜𝑟 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝑠𝑝 𝑢𝑠𝑖𝑛𝑔 𝐻𝐹𝑅 𝑎𝑝𝑝𝑟𝑜𝑎𝑐ℎ

 𝑒𝑙𝑠𝑒

 𝑟𝑒𝑐𝑜𝑚𝑝𝑢𝑡𝑒 𝑡ℎ𝑒 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒 𝑓𝑜𝑟 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝑠𝑝 𝑢𝑠𝑖𝑛𝑔 𝐻𝐹𝑁 𝑎𝑝𝑝𝑟𝑜𝑎𝑐ℎ

 𝑒𝑛𝑑 𝑖𝑓

 𝑒𝑛𝑑 𝑓𝑜𝑟

𝑒𝑛𝑑 𝑓𝑜𝑟

𝑒𝑛𝑑 𝑤ℎ𝑖𝑙𝑒

Figure 6. 16. General Outline of the Energy-Efficient Ensemble of Metaheuristic

Algorithms for the EHFSP-V2

6.4.5. Heuristic Fitness Calculation & Mutation Operators

As mentioned in Section 6.1.4, the standard forward scheduling approach is employed

in all proposed bi-objective metaheuristic algorithms for the EHFSP-V2, since the

standard forward scheduling approach is very effective. HFR and HFN approaches are

employed only as a local search to further improve the performance of the algorithms.

63

So as to obtain more energy-efficient solutions, a mutation strategy is also applied to

each individual in the population, after the aforementioned E_IG2, E_IG2ALL,

E_VBIH2, and E_EM2 algorithms. Namely, for each individual, we mutate the speed

level 𝜓𝑘𝑗 of each operation of a job by assigning a slow or normal speed level randomly.

Then, the archive set 𝐴𝑆 is updated after mutating the speed level 𝜓𝑘𝑗 of each operation

of a job, in the case of a new non-dominated solution is found.

In order to enhance the performance of the aforementioned E_IG2, E_IG2ALL, E_VBIH2

and E_EM2 algorithms further and to avoid the shortcomings of the standard forward

scheduling approach as mentioned in Section 6.1.2, HFR and HFN heuristic fitness

calculation approaches are also employed on each individual in the population, as a

local search. Namely, the complete schedule is re-computed for each individual in the

population by employing HFR and HFN approaches, in order to explore the

neighboring schedules. As mentioned in Section 6.1.2, HFR and HFN approaches

employ swap moves on the job permutations of some stages, during the forward

scheduling procedure. Consequently, after implementing the E_IG2, E_IG2ALL,

E_VBIH2 or E_EM2 algorithm, both HFR and HFN approaches are employed on each

individual with an equal probability. Note that, HFR and HFN approaches are applied

n times to each individual. As mentioned in Section 6.1.4, speed levels of the jobs are

also regarded in the heuristic fitness calculation approaches. The archive set 𝐴𝑆 is

updated during the procedure if a new non-dominated solution is found.

6.5 Archive Set Update Procedure

In all aforementioned energy efficient bi-objective metaheuristic algorithms for both

EHFSP-V1 and EHFSP-V2, an archive set 𝐴𝑆 is used to store non-dominated

solutions. When a new non-dominated solution found, it is included in the archive set

𝐴𝑆 and any member dominated by the new non-dominated solution is removed. In

order to update the archive set 𝐴𝑆, an effective update procedure is employed, which

is proposed by Pan et al. (2009), as shown in Figure 6.17.

For including a new non-dominated solution x to the archive set AS, a straightforward

way is to compare it with each solution in the AS to check whether it is dominated by

any solution in the AS. Since this straightforward method makes comparisons with all

solutions in the set, it requires a high computational time. However, the update

procedure of Pan et al. (2009) employs a faster update procedure without evaluating

64

all comparisons, using the storage structure of AS. Basically, it finds the most suitable

position for the new solution x to be inserted in a smarter way regarding the storage

structure of the AS. Note that, the non-dominated solutions in 𝐴𝑆 are stored in

increasing order of their first objective function values, where their second objective

function values will be in decreasing order.

As shown in Figure 6.17, when comparing 𝑓1(𝑥) with 𝑓1(𝜗𝑗), following cases may

arise:

Case 1. If 𝑓1(𝑥) = 𝑓1(𝜗𝑗) and if 𝑓2(𝑥) < 𝑓2(𝜗𝑗), x is a new non-dominated solution

and it dominates the solution 𝜗𝑗. Therefore, x should be inserted to position j (pos=j)

and 𝜗𝑗 should be replaced by x. Otherwise, if 𝑓1(𝑥) = 𝑓1(𝜗𝑗) and if 𝑓2(𝑥) ≥ 𝑓2(𝜗𝑗), x

is dominated by 𝜗𝑗 or has the same objective function values as 𝜗𝑗.

Case 2. If 𝑓1(𝑥) < 𝑓1(𝜗𝑗):

 If 𝑗 = 1, x is a new non-dominated solution; it should be inserted to the first

position (pos=j) in AS and the archive size u should be incremented by one.

 If 𝑗 > 1 and if 𝑓2(𝑥) < 𝑓2(𝜗𝑗−1), x is a new non-dominated solution; it

should be inserted to the position j (pos=j) and the archive size u should be incremented

by one. Otherwise, if 𝑗 > 1 and if 𝑓2(𝑥) ≥ 𝑓2(𝜗𝑗−1), x is dominated by 𝜗𝑗−1.

Case 3. If 𝑓1(𝑥) > 𝑓1(𝜗𝑗) and if 𝑓2(𝑥) < 𝑓2(𝜗𝑗), x is a new non-dominated solution;

it should be inserted to the position j+1 (pos=j+1) and the archive size u should be

incremented by one. Otherwise, if 𝑓1(𝑥) > 𝑓1(𝜗𝑗) and if 𝑓2(𝑥) ≥ 𝑓2(𝜗𝑗), x is

dominated by 𝜗𝑗.

If any of the above cases is met, the solution 𝑥 is added to position 𝑝𝑜𝑠 and all solutions

dominated by 𝑥 in 𝐴𝑆 are removed as explained in Figure 6.17.

65

1. Archive size is 𝑢 = |𝐴𝑆| and 𝐴𝑆 = {𝜗1, 𝜗2, . . , 𝜗𝑢}. Initially, 𝐴𝑆 is empty and the first non-

dominated solution 𝑥 will be added to the first position in 𝐴𝑆. Let 𝑘 = 1.

2. Find a most suitable position 𝑝𝑜𝑠 for the next individual 𝑥 in the archive set 𝐴𝑆 as follows:

𝑑𝑜{

 𝑗 = ⌊(𝑘 + 𝑢)/2⌋

 𝑖𝑓 (𝑓1(𝑥) = 𝑓1(𝜗𝑗)) 𝑡ℎ𝑒𝑛 𝑗 = 𝑗, 𝑏𝑟𝑒𝑎𝑘

 𝑒𝑙𝑠𝑒𝑖𝑓 (𝑓1(𝑥) < 𝑓1(𝜗𝑗)) 𝑡ℎ𝑒𝑛 𝑢 = 𝑗 − 1

 𝑒𝑙𝑠𝑒 𝑘 = 𝑗 + 1

𝑤ℎ𝑖𝑙𝑒(𝑘 ≤ 𝑢)

3. When comparing 𝑓1(𝑥) with 𝑓1(𝜗𝑗), following cases may arise:

𝐶𝑎𝑠𝑒 1. 𝑖𝑓 (𝑓1(𝑥) = 𝑓1(𝜗𝑗)) 𝑎𝑛𝑑 𝑖𝑓 (𝑓2(𝑥) < 𝑓2(𝜗𝑗)) 𝑡ℎ𝑒𝑛 𝑝𝑜𝑠 = 𝑗

 𝐶𝑎𝑠𝑒 2. 𝑖𝑓 (𝑓1(𝑥) < 𝑓1(𝜗𝑗))

 𝑖𝑓 𝑗 = 1 𝑡ℎ𝑒𝑛 𝑝𝑜𝑠 = 𝑗 𝑎𝑛𝑑 𝑢 = 𝑢 + 1

 𝑖𝑓 𝑗 > 1 𝑎𝑛𝑑 𝑖𝑓 (𝑓2(𝑥) < 𝑓2(𝜗𝑗−1)) 𝑡ℎ𝑒𝑛 𝑝𝑜𝑠 = 𝑗 𝑎𝑛𝑑 𝑢 = 𝑢 + 1

 𝐶𝑎𝑠𝑒 3. 𝑖𝑓 (𝑓1(𝑥) > 𝑓1(𝜗𝑗)) 𝑎𝑛𝑑 𝑖𝑓 (𝑓2(𝑥) < 𝑓2(𝜗𝑗)) 𝑡ℎ𝑒𝑛 𝑝𝑜𝑠 = 𝑗 + 1 𝑎𝑛𝑑 𝑢 = 𝑢 + 1

If any of the above cases is met, the solution 𝑥 is added to position 𝑝𝑜𝑠 and all solutions dominated by

𝑥 in 𝐴𝑆 are removed. The below procedure removes the dominated solutions from 𝐴𝑆:

Step 1. 𝐼𝑓 (𝑝𝑜𝑠 = 𝑢) 𝑡ℎ𝑒𝑛 𝑔𝑜 𝑡𝑜 𝑆𝑡𝑒𝑝 4

Step 2. 𝐿𝑒𝑡 𝑝𝑜𝑠 = 𝑝𝑜𝑠 + 1. 𝐼𝑓 𝑓2(𝜗𝑝𝑜𝑠) ≥ 𝑓2(𝑥) 𝑡ℎ𝑒𝑛 𝑟𝑒𝑚𝑜𝑣𝑒 𝜗𝑝𝑜𝑠; 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 𝑔𝑜 𝑡𝑜 𝑆𝑡𝑒𝑝 4

Step 3. 𝑖𝑓(𝑝𝑜𝑠 < 𝑢) 𝑡ℎ𝑒𝑛 𝑔𝑜 𝑡𝑜 𝑆𝑡𝑒𝑝 2

Step 4. 𝐴𝑆 = 𝑟𝑒𝑝𝑜𝑟𝑡 𝑛𝑜𝑛 − 𝑑𝑜𝑚𝑖𝑛𝑎𝑡𝑒𝑑 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠

Figure 6. 17. Archive Set Update Procedure

66

67

CHAPTER 7

COMPUTATIONAL RESULTS

For evaluating the performance of the proposed solution approaches, the well-known

HFSP benchmark set (Carlier and Neron, 2000; Liao et al., 2012; Öztop et al., 2019)

is modified, where each instance is represented by the number of jobs, the number of

stages and the machine layout at the stages.

The machine layout is defined by the letters a, b, c, and d:

a: There is a single machine in the middle stage, and there are three machines in other

stages.

b: There is a single machine in the first stage, and there are 3 machines in other stages.

c: There are two machines in the middle stage, and three machines in other stages.

d: There are three machines in all stages.

For example, the notation j10c5b1 indicates a problem with 10 jobs (j10), 5 stages (c5)

and b type layout, where the last number 1 is the problem index for a specific type.

Originally, there are 77 instances in the benchmark set (Carlier and Neron, 2000),

where the number of jobs is either 10 or 15 and the number of stages is either 5 or 10.

Furthermore, additional 40 large instances with 30, 40, 50 and 60 jobs and 5 stages are

proposed in (Liao et al., 2012; Öztop et al., 2019), where the number of machines in

each stage is randomly generated between 3 and 5, and the processing times of jobs

are uniform in the range [1,100]. The instances for the bi-objective EHFSP are

generated by adding energy-related parameters to these benchmarks. Due to the

computationally challenging nature of the bi-objective EHFSP, additional small

instances with 5 jobs & 5 stages are also created by truncating the instances with 10

jobs & 5 stages and 15 jobs & 5 stages. Consequently, 47 small instances (j5c5), 77

medium instances (23 j10c5 instances, 24 j15c5 instances, 18 j10c10 instances, 12

j15c10 instances) and 40 large instances (10 j30c5e instances, 10 j40c5e instances, 10

j50c5e instances, 10 j60c5e instances) are generated for the EHFSP-V1 by adding

energy-related parameters to the HFSP benchmarks.

68

Due to the complex nature of the EHFSP-V2, only 12 small instances with 5 jobs & 5

stages are used, which are created by truncating the instances with 10 jobs & 5 stages.

Actually, there are 23 instances with 10 jobs & 5 stages. However, the Pareto-optimal

solutions can be obtained for the EHFSP-V2 only for the truncated versions of the first

12 of these instances in reasonable computational time. Hence, only the truncated

versions of the first 12 of these 23 instances are employed for the EHFSP-V2.

Consequently, 12 small instances (j5c5), 77 medium instances (23 j10c5 instances, 24

j15c5 instances, 18 j10c10 instances, 12 j15c10 instances) and 40 large instances (10

j30c5e instances, 10 j40c5e instances, 10 j50c5e instances, 10 j60c5e instances) are

generated for the EHFSP-V2 by adding energy-related parameters to the HFSP

benchmarks.

In the calculation of 𝑇𝐸𝐶, the speed and energy parameters proposed by Mansouri et

al. (2016) are used. As mentioned before, there are three processing speed levels for

the machines: fast, normal and slow, and the corresponding processing speed factors

are 𝑣𝑙 = {1.2, 1.0, 0.8}. The conversion factors, which are used to estimate the energy

consumption during processing are 𝜆𝑙 = {1.5, 1.0, 0.6} for fast, normal and slow

processing speeds, respectively. It is assumed that the machines have the same power

(𝛽𝑘𝑖 = 60 𝑘𝑊 ∀ 𝑖 ∈ 𝐼𝑘,𝑘 ∈ 𝑀) with the same conversion factor for idle times

(𝛼𝑘𝑖 = 0.05 ∀ 𝑖 ∈ 𝐼𝑘, 𝑘 ∈ 𝑀).

As mentioned in Section 5.4, the augmented ε-constraint method is used to solve the

proposed bi-objective MILP and CP models. All instances are solved through the

augmented ε-constraint method using IBM ILOG CPLEX 12.8 on a Core i5, 2.80 GHz,

8 GB RAM computer. Note that, CP Optimizer suite of IBM ILOG CPLEX 12.8 is

used to solve the CP model. Minimizing 𝐶𝑚𝑎𝑥 is considered as the objective and 𝑇𝐸𝐶

as a constraint. The lexicographic optimization is used for each objective function in

order to obtain the payoff table with only Pareto-optimal solutions. Starting with an

upper bound on 𝑇𝐸𝐶, which is found from the payoff table, the single-objective model

is iteratively solved optimally by decreasing the constraint on 𝑇𝐸𝐶 with a

predetermined ε level, until the minimum value of 𝑇𝐸𝐶 is reached.

In general, it is impossible to find all solutions on the continuous Pareto-optimal

frontiers. Therefore, the Pareto-optimal frontiers are approximated for the small-sized

instances using a very small ε level (10-3). These finite number of Pareto-optimal

solutions are referred to Pareto-optimal solution set (P). In order to avoid redundant

69

iterations, the information about the objective space is used as soon as it is available.

At any iteration, when the slack variable is larger than the ε level, it indicates that the

same solution will be found in the next iteration, with the only difference being the

slack variable. Therefore, a jump strategy is employed at each iteration by decreasing

the constraint on 𝑇𝐸𝐶 to the 𝑇𝐸𝐶 value of the optimal solution found in the previous

iteration. The Pareto-optimal solution sets are obtained for every small-sized instance

using the augmented ε-constraint method with this acceleration strategy.

For medium instances, non-dominated solution sets are found by dividing the range of

𝑇𝐸𝐶 objective function to 20 equal intervals and using this value as ε level. Due to the

exponentially increasing solution times of the single-objective model, a 9-minute time

limit is set for each iteration (3 hours time limit in total). Since the optimality of the

solution is not guaranteed in each iteration, the aforementioned acceleration strategy

is not used during this search process.

The proposed algorithms are coded in C++ programming language on Microsoft

Visual Studio 2012 and all instances are solved on a Core i5, 2.80 GHz, 8 GB RAM

computer. For the EHFSP-V1, thirty replications are carried out for each instance. In

each replication, the algorithm is run for 25𝑛𝑚 milliseconds for small instances,

50𝑛𝑚 milliseconds for medium instances and 100𝑛𝑚 milliseconds for large instances,

where n denotes the number of jobs and m represents the number of stages. For the

EHFSP-V2, twenty replications are carried out for each instance, where the algorithm

is run for 100𝑛𝑚 milliseconds in each replication. The population size of 𝑃𝑆=100 is

employed in all algorithms for the EHFSP-V1 (E_IG, E_IGALL, E_VBIH,

E_EM, E_EMHFR, E_EMHFN, E_EMHFRN). The population size of 𝑃𝑆=30 is employed in

all algorithms for the EHFSP-V2 (E_IG2, E_IG2ALL, E_VBIH2, E_EM2).

According to Okabe et al. (2003), there are three main aspects to assess the quality of

a non-dominated solution set: the cardinality (i.e., the number of solutions), the

convergence (i.e., the closeness to the Pareto-optimal frontier) and the diversity (i.e.,

the distribution and spread of the solutions). The performances of the proposed

algorithms are evaluated with respect to these three main aspects in the following

subsections.

Since very close approximations to Pareto-optimal frontiers (P) are obtained for small

instances, the below performance metrics are used to assess the quality of the non-

70

dominated solution set (S) found by a metaheuristic algorithm, together with the

cardinality metric (number of non-dominated solutions found).

• Ratio of the Pareto-optimal solutions found (Cp) = |S∩P| / |P|

• Inverted Generational Distance (IGD) =
∑ 𝑑(𝑣,𝑆)𝑣∈𝑃

|𝑃|
,

where d(v,S) denotes the minimum Euclidean distance between v and the points in

S. Lower IGD value is required to ensure that the set S is very close to the set P

(Coello et al., 2007).

• Distribution Spacing (DS) (Tan et al., 2006)

DS(S) =
[

1

|𝑆|
∑ (𝑑𝑖−�̅�)2𝑖∈𝑆]

1
2⁄

�̅�
, where �̅� =

∑ 𝑑𝑖𝑖∈𝑆

|𝑆|

and di denotes the minimum Euclidean distance between solution i and its nearest

neighbor in S. The smaller value of spacing indicates that the solutions in S are more

evenly distributed.

For medium and large instances, the non-dominated solution sets of time-limited

MILP, time-limited CP and metaheuristic algorithms are compared with each other in

terms of the aforementioned cardinality, Cp, IGD and DS metrics. As the Pareto-

optimal solution sets (P) are not known for these instances, the reference sets (R) are

used in Cp and IGD metrics. Note that the reference set includes only the high-quality

non-dominated solutions, which are obtained by selecting all the non-dominated

solutions found by the metaheuristic algorithms, time-limited MILP and CP

approaches.

7.1 Parameter Calibration of the Algorithms

7.1.1 Parameter Calibration of the IG, IGALL and VBIH Procedures

In order to calibrate the parameters of the algorithms, a design of experiment (DOE)

(Montgomery, 2008) is carried out for the IG, IGALL and VBIH algorithms with the

makespan criterion. For this purpose, random instances with 5 stages are generated

using the same methodology proposed in (Liao et al., 2012; Öztop et al., 2019), where

the number of machines in each stage is randomly generated between 3 and 5 and the

processing times of the jobs are uniform in the range [1,100]. Consequently, instances

with 30, 40, 50 and 60 jobs are generated, each size having 5 instances, summing up

71

to 20 instances. Both algorithms are coded in C++ programming language on

Microsoft Visual Studio 2012, and a full factorial design of experiments is carried out

for each algorithm on a Core i7, 2.60 GHz, 8 GB RAM computer.

The IG algorithm has two parameters; the destruction size (𝜅) and the temperature

adjustment parameter (𝜏𝑃). After pilot experiments, we set 𝜅 to three levels as 𝜅 ∈

(2,3,4); and 𝜏𝑃 to three levels as 𝜏𝑃 ∈ (0.1, 0.3, 0.5) resulting in 9 treatments. There

are 20 instances, and each instance is run for 9 treatments with a maximum CPU time

𝑇𝑚𝑎𝑥 = 20 × 𝑛 × 𝑚 milliseconds. The relative percentage deviation (RPD) is

computed as a response variable of the experiment. Namely, we calculate the RPD for

each instance-treatment pair as follows:

𝑅𝑃𝐷(𝐶𝑚𝑎𝑥
𝑖) = (

𝐶𝑚𝑎𝑥
𝑖 −𝐶𝑚𝑎𝑥

𝑚𝑖𝑛

𝐶𝑚𝑎𝑥
𝑚𝑖𝑛) ∗ 100 (7-1)

where 𝐶𝑚𝑎𝑥
𝑖 is the 𝐶𝑚𝑎𝑥 value generated by a given heuristic in treatment i, and 𝐶𝑚𝑎𝑥

𝑚𝑖𝑛 is

the minimum 𝐶𝑚𝑎𝑥 found among 9 treatments for that instance.

An ANOVA procedure is performed after determining the RPD values for each

instance, and the results are given in Figure 7.1. As shown in Figure 7.1, different

levels for the 𝜅 and 𝜏𝑃 parameters do not result in statistically significant differences

in the RPD values, as the p -values of these parameters are greater than the significance

level, α= 0.05. This indicates that the IG performs rather robustly with respect to

various levels of these parameters. Furthermore, no statistically significant interaction

effect exists between parameters as the p-value of the parameter interaction effect is

higher than the significance level.

𝑺𝒐𝒖𝒓𝒄𝒆 𝑫𝑭 𝑺𝒆𝒒 𝑺𝑺 𝑨𝒅𝒋 𝑺𝑺 𝑨𝒅𝒋 𝑴𝑺 𝑭 − 𝑹𝒂𝒕𝒊𝒐 𝒑 − 𝒗𝒂𝒍𝒖𝒆

𝜅 2 0.08558 0.08558 0.04279 0.53 0.588

𝑡𝑃 2 0.26988 0.26988 0.13494 1.68 0.189

𝜅 ∗ 𝑡𝑃 4 0.26735 0.26735 0.06684 0.83 0.506

𝐸𝑟𝑟𝑜𝑟 171 13.72465 13.72465 0.08026

𝑇𝑜𝑡𝑎𝑙 179 14.34746

Figure 7. 1. ANOVA Results for Parameters of the IG

As there is no significant interaction effect, the main effects plots of the parameters

are also provided in Figure 7.2. Even though there is no statistically significant

difference between various levels of 𝜅 and 𝜏𝑃 parameters, the plots demonstrate that

settings of 𝜅=4 and 𝜏𝑃 = 0.5 provide better RPD value than others. As shown in the

figure, small 𝜏𝑃 levels result in worse RPD values and decreased algorithm

72

performance, i.e., a higher setting of 𝜏𝑃 value provides better results. Note that,

according to the detailed design of the experiments of Ruiz and Stützle (2007) for the

original IG algorithm, 𝜅=4 setting was also provided better performance than the other

𝜅 values between 2 and 8. Consequently, we set 𝜅=4 for the IG, E_IG, and E_IG2

algorithms; and 𝜏𝑃=0.5 in IG.

Figure 7. 2. Main Effects Plot for Parameters of the IG

Similar to the IG, a full factorial design is conducted for the parameter settings of

IGALL. The IGALL algorithm has two parameters; the destruction size (𝜅) and the

temperature adjustment parameter (𝜏𝑃). We set 𝜅 to three levels as 𝜅 ∈ (2,3,4); and

𝜏𝑃 to three levels as 𝜏𝑃 ∈ (0.1, 0.3, 0.5) resulting in 9 treatments, similar to the IG.

The RPD values are determined by employing the same method mentioned above, and

the ANOVA results are given in Figure 7.3.

𝑺𝒐𝒖𝒓𝒄𝒆 𝑫𝑭 𝑺𝒆𝒒 𝑺𝑺 𝑨𝒅𝒋 𝑺𝑺 𝑨𝒅𝒋 𝑴𝑺 𝑭 − 𝑹𝒂𝒕𝒊𝒐 𝒑 − 𝒗𝒂𝒍𝒖𝒆

𝜅 2 0.05038 0.05038 0.02519 0.39 0.675

𝑡𝑃 2 0.02959 0.02959 0.0148 0.23 0.794

𝜅 ∗ 𝑡𝑃 4 0.06477 0.06477 0.01619 0.25 0.907

𝐸𝑟𝑟𝑜𝑟 171 10.9311 10.9311 0.06392

𝑇𝑜𝑡𝑎𝑙 179 11.07584

Figure 7. 3. ANOVA Results for Parameters of the IGALL

As shown in Figure 7.3, different levels for the 𝜅 and 𝜏𝑃 parameters do not result in

statistically significant differences in the RPD values for the IGALL, as the p -values of

these parameters are greater than the significance level α= 0.05. This states that the

IGALL performs rather robustly with respect to various levels of these parameters.

73

Additionally, no statistically significant interaction effect exists between parameters

as the p-value of the parameter interaction effect is higher than the significance level.

Figure 7. 4. Main Effects Plot for Parameters of the IGALL

Since there is no significant interaction effect, the main effects plots of the parameters

for the IGALL are also provided in Figure 7.4. Even though there is no statistically

significant difference between various levels of 𝜅 and 𝜏𝑃 parameters, the plots

demonstrate that settings of 𝜅=2 and 𝜏𝑃 = 0.5 provide better RPD value than others.

As shown in the figure, a higher setting of 𝜏𝑃 value provides better results, similar to

the IG. Furthermore, as shown in the figure, high 𝜅 levels result in worse RPD values

and decreased algorithm performance. Note that, according to the comprehensive

experimental parameter tunings of Dubois-Lacoste et al. (2017) for the original IGALL

algorithm, 𝜅=2 setting also provided better performance than the other 𝜅 values.

Consequently, we set 𝜅=2 for the IGALL, E_IGALL and E_IG2ALL algorithms; and

𝜏𝑃=0.5 in IGALL.

Similarly, a full factorial design is also conducted for the parameter settings of VBIH.

The VBIH algorithm has two parameters; the maximum block size (𝑏𝑠𝑚𝑎𝑥) and the

temperature adjustment parameter (𝜏𝑃). We set 𝑏𝑠𝑚𝑎𝑥 to three levels as 𝑏𝑠𝑚𝑎𝑥 ∈

(2,3,4); and 𝜏𝑃 to three levels as 𝜏𝑃 ∈ (0.1, 0.3, 0.5) resulting in 9 treatments. The

RPD values are determined by employing the same method mentioned above, and the

ANOVA results are given in Figure 7.5.

74

𝑺𝒐𝒖𝒓𝒄𝒆 𝑫𝑭 𝑺𝒆𝒒 𝑺𝑺 𝑨𝒅𝒋 𝑺𝑺 𝑨𝒅𝒋 𝑴𝑺 𝑭 − 𝑹𝒂𝒕𝒊𝒐 𝒑 − 𝒗𝒂𝒍𝒖𝒆

𝑏𝑠𝑚𝑎𝑥 2 0.03153 0.03153 0.01576 0.16 0.849

𝑡𝑃 2 0.39535 0.39535 0.19767 2.05 0.131

𝑏𝑠𝑚𝑎𝑥 ∗ 𝑡𝑃 4 0.09013 0.09013 0.02253 0.23 0.919

𝐸𝑟𝑟𝑜𝑟 171 16.46368 16.46368 0.09628

𝑇𝑜𝑡𝑎𝑙 179 16.98068

Figure 7. 5. ANOVA Results for Parameters of the VBIH

As shown in Figure 7.5, different levels for the 𝑏𝑠𝑚𝑎𝑥 and 𝜏𝑃 parameters do not result

in statistically significant differences in the RPD values for the VBIH, as the p -values

of these parameters are greater than the significance level, α= 0.05. This indicates that

the VBIH performs rather robustly with respect to various levels of these parameters.

Furthermore, no statistically significant interaction effect exists between parameters.

Since there is no significant interaction effect, the main effects plots of the parameters

for the VBIH are also provided in Figure 7.6. Even though there is no statistically

significant difference between various levels of 𝑏𝑠𝑚𝑎𝑥 and 𝜏𝑃 parameters, the plots

demonstrate that settings of 𝑏𝑠𝑚𝑎𝑥= 3 and 𝜏𝑃 = 0.5 provide better RPD value than

others. As shown in the figure, a higher setting of 𝜏𝑃 value provides better results,

similar to the IG and IGALL algorithms. Consequently, we set 𝑏𝑠𝑚𝑎𝑥= 3 for the VBIH,

E_VBIH and E_VBIH2 algorithms; and 𝜏𝑃=0.5 in VBIH.

Figure 7. 6. Main Effects Plot for Parameters of the VBIH

7.1.2 Parameter Calibration of the HFN Approach

The HFN approach is employed in only two extensions of the E_EM algorithm for the

EHFSP-V1, i.e., E_EMHFN and E_EMHFRN algorithms. Therefore, according to the

75

preliminary experiments, we set the following parameters for the HFN approach of the

E_EMHFN and E_EMHFRN algorithms: 𝑠𝑝 = 0.60 and 𝑛𝑝 = 0.60 for small and

medium instances, 𝑠𝑝 = 0.40 and 𝑛𝑝 = 0.60 for large instances.

On the other hand, the HFN approach is employed in all algorithms for the EHFSP-

V2 due to the more complex nature of the problem. Consequently, in order to calibrate

the 𝑠𝑝 and 𝑛𝑝 parameters of the algorithms for the EHFSP-V2, a design of experiment

(DOE) is carried out for the E_IG2, E_IG2ALL and E_VBIH2 algorithms. For this

purpose, random instances with 5 stages are generated using the same methodology

proposed in (Liao et al., 2012; Öztop et al., 2019), where the number of machines in

each stage is randomly generated between 3 and 5 and the processing times of the jobs

are uniform in the range [1,100]. Consequently, instances with 30, 40, 50 and 60 jobs

are generated, each size having 4 instances, summing up to 16 instances. Both

algorithms are coded in C++ programming language on Microsoft Visual Studio 2012,

and a full factorial design of experiments is carried out for each algorithm on a Core

i7, 2.60 GHz, 8 GB RAM computer.

The HFN approach has two parameters; the swapping probability 𝑠𝑝 and the neighbor

selection probability 𝑛𝑝. After pilot experiments, we set 𝑠𝑝 to three levels as 𝑠𝑝 ∈

(0.4,0.6,08); and 𝑛𝑝 to three levels as 𝑛𝑝 ∈ (0.4,0.6,08) resulting in 9 treatments.

Each instance is run for 9 treatments with a maximum CPU time 𝑇𝑚𝑎𝑥 = 100 × 𝑛 × 𝑚

milliseconds. The IGD metric is computed as a response variable of the experiment.

Namely, we calculate the IGD for each instance-treatment pair as follows:

IGD (𝑆𝑖) =
∑ 𝑑(𝑣,𝑆𝑖)𝑣∈𝑃

|𝑃|
, (7-2)

where 𝑆𝑖 is the non-dominated solution set generated by a given heuristic in treatment

i, 𝑃 is the reference set obtained from 9 treatments for that instance, and d(v, 𝑆𝑖)

denotes the minimum Euclidean distance between v and the points in 𝑆𝑖. Note that, the

reference set includes only the high-quality non-dominated solutions, which are

obtained by selecting all the non-dominated solutions found by the heuristic under all

9 treatments. A full factorial design of experiments is carried out for each algorithm

using this methodology.

ANOVA results are given for the E_IG2 algorithm in Figure 7.7. As shown in Figure

7.7, different levels for the 𝑠𝑝 and 𝑛𝑝 parameters do not result in statistically

significant differences in the IGD values, as the p -values of these parameters are

76

greater than the significance level, α= 0.05. It can be said that the E_IG2 performs

rather robustly with respect to various levels of these parameters. Furthermore, no

statistically significant interaction effect exists between parameters as the p-value of

the parameter interaction effect is higher than the significance level.

𝑺𝒐𝒖𝒓𝒄𝒆 𝑫𝑭 𝑺𝒆𝒒 𝑺𝑺 𝑨𝒅𝒋 𝑺𝑺 𝑨𝒅𝒋 𝑴𝑺 𝑭 − 𝑹𝒂𝒕𝒊𝒐 𝒑 − 𝒗𝒂𝒍𝒖𝒆

𝑠𝑝 2 92.3 92.3 46.2 0.37 0.691

𝑛𝑝 2 444.3 444.3 222.1 1.78 0.172

𝑠𝑝 ∗ 𝑛𝑝 4 353.1 353.1 88.3 0.71 0.587

𝐸𝑟𝑟𝑜𝑟 135 16816.8 16816.8 124.6

𝑇𝑜𝑡𝑎𝑙 143 17706.4

Figure 7. 7. ANOVA Results for Parameters of the 𝐸_𝐼𝐺2

Since there is no significant interaction effect, the main effects plots of the parameters

are also provided in Figure 7.8. Even though there is no statistically significant

difference between various levels of 𝑠𝑝 and 𝑛𝑝 parameters, the plots demonstrate that

settings of 𝑠𝑝=0.6 and 𝑛𝑝 = 0.6 provide better IGD value than others. As shown in the

figure, 𝑛𝑝=0.4 and 𝑛𝑝=0.8 settings have similar IGD values, but, the 𝑛𝑝=0.6 setting

provides better IGD value than these settings. Consequently, we set 𝑠𝑝=0.6 and 𝑛𝑝 =

0.6 for the HFN procedure of the E_IG2 algorithm.

Figure 7. 8. Main Effects Plot for Parameters of the 𝐸_𝐼𝐺2

ANOVA results are given for the E_IG2ALL algorithm in Figure 7.9. The results show

that the 𝑠𝑝 parameter is very significant at the significance level, α=0.05. However,

different levels for the 𝑛𝑝 parameter do not result in statistically significant differences

in the IGD values, as the p-value of this parameter is greater than the significance level,

α= 0.05. It can be said that the E_IG2ALL performs rather robustly with respect to

77

various levels of the 𝑛𝑝 parameter. Furthermore, no statistically significant interaction

effect exists between parameters as the p-value of the parameter interaction effect is

higher than the significance level.

𝑺𝒐𝒖𝒓𝒄𝒆 𝑫𝑭 𝑺𝒆𝒒 𝑺𝑺 𝑨𝒅𝒋 𝑺𝑺 𝑨𝒅𝒋 𝑴𝑺 𝑭 − 𝑹𝒂𝒕𝒊𝒐 𝒑 − 𝒗𝒂𝒍𝒖𝒆

𝑠𝑝 2 1434 1434 717 5.15 0.007

𝑛𝑝 2 401.3 401.3 200.6 1.44 0.240

𝑠𝑝 ∗ 𝑛𝑝 4 547.6 547.6 136.9 0.98 0.418

𝐸𝑟𝑟𝑜𝑟 135 18776.9 18776.9 139.1

𝑇𝑜𝑡𝑎𝑙 143 21159.8

Figure 7. 9. ANOVA Results for Parameters of the 𝐸_𝐼𝐺2𝐴𝐿𝐿

Since there is no significant interaction effect, the main effects plots of the parameters

are provided in Figure 7.10. As shown in the figure, 𝑠𝑝=0.6 setting has the minimum

IGD value, where 𝑠𝑝=0.8 setting has the worst IGD value. Even though there is no

statistically significant difference between various levels of the 𝑛𝑝 parameter, the plot

demonstrates that settings of 𝑛𝑝 = 0.4 and 𝑛𝑝 = 0.6 provide better IGD value than the

other one. Consequently, we set 𝑠𝑝=0.6 and 𝑛𝑝 = 0.6 for the HFN procedure of the

E_IG2ALL algorithm.

Figure 7. 10. Main Effects Plot for Parameters of the 𝐸_𝐼𝐺2𝐴𝐿𝐿

ANOVA results are given for the E_VBIH2 algorithm in Figure 7.11. As shown in

Figure 7.11, different levels for the 𝑠𝑝 and 𝑛𝑝 parameters do not result in statistically

significant differences in the IGD values, as the p-values of these parameters are

greater than the significance level, α = 0.05. It can be said that the E_VBIH2 performs

rather robustly with respect to various levels of these parameters. Furthermore, no

78

statistically significant interaction effect exists between parameters as the p-value of

the parameter interaction effect is higher than the significance level.

𝑺𝒐𝒖𝒓𝒄𝒆 𝑫𝑭 𝑺𝒆𝒒 𝑺𝑺 𝑨𝒅𝒋 𝑺𝑺 𝑨𝒅𝒋 𝑴𝑺 𝑭 − 𝑹𝒂𝒕𝒊𝒐 𝒑 − 𝒗𝒂𝒍𝒖𝒆

𝑠𝑝 2 298.4 298.4 149.2 0.57 0.569

𝑛𝑝 2 519.4 519.4 259.7 0.99 0.376

𝑠𝑝 ∗ 𝑛𝑝 4 214.3 214.3 53.6 0.20 0.936

𝐸𝑟𝑟𝑜𝑟 135 35535.4 35535.4 263.2

𝑇𝑜𝑡𝑎𝑙 143 36567.4

Figure 7. 11. ANOVA Results for Parameters of the 𝐸_𝑉𝐵𝐼𝐻2

As there is no significant interaction effect, the main effects plots of the parameters

are also provided in Figure 7.12. Even though there is no statistically significant

difference between various levels of 𝑠𝑝 and 𝑛𝑝 parameters, the plots demonstrate that

settings of 𝑠𝑝=0.6 and 𝑛𝑝 = 0.6 provide better IGD value than others. Consequently,

we set 𝑠𝑝=0.6 and 𝑛𝑝 = 0.6 for the HFN procedure of the E_VBIH2 algorithm. Since

the E_EM2 algorithm is the combined version of E_IG2, E_IG2ALL and E_VBIH2

algorithms, we also set 𝑠𝑝=0.6 and 𝑛𝑝 = 0.6 for the HFN procedure of the E_EM2

algorithm.

Figure 7. 12. Main Effects Plot for Parameters of the 𝐸_𝑉𝐵𝐼𝐻2

7.2 Comparison of Constructive Heuristics based on Cmax Criterion

Before proceeding to the computational results for the bi-objective EHFSP, the impact

of the proposed NEH_M(x) heuristic is initially analyzed on the solution quality. As

mentioned before, all proposed algorithms in this thesis employ NEH_M(x) to generate

the initial solution. In this section, the performance of NEH_M(x) is compared with

79

the well-known NEH heuristic in order to demonstrate its efficiency. For evaluating

the performances of these two constructive heuristics, the large instances proposed by

(Liao et al., 2012; Öztop et al., 2019) with 30, 40, 50 and 60 jobs and 5 stages are used.

All constructive heuristics are run for these instances on a Core i7, 2.60 GHz, 8 GB

RAM computer. Note that, the comparisons are made considering only the makespan

objective.

Table 7. 1. Comparison of Constructive Heuristics

Instance

NEH NEH_M(x)

Instance

NEH NEH_M(x)

RPD (%)
CPU

(ms)
 RPD (%)

CPU

(ms)
 RPD (%)

CPU

(ms)
 RPD (%)

CPU

(ms)

j30c5e1 6.28 0 3.90 63 j50c5e1 2.37 0 1.34 234

j30c5e2 6.49 0 2.27 47 j50c5e2 2.41 15 0.40 219

j30c5e3 8.94 0 4.22 31 j50c5e3 6.03 0 1.94 234

j30c5e4 9.41 0 5.15 31 j50c5e4 2.20 16 0.77 250

j30c5e5 4.67 0 1.83 47 j50c5e5 3.80 0 2.24 235

j30c5e6 9.67 0 3.83 31 j50c5e6 8.81 0 2.38 250

j30c5e7 7.67 0 3.51 32 j50c5e7 4.74 15 0.75 235

j30c5e8 12.31 0 5.49 31 j50c5e8 2.80 0 1.17 250

j30c5e9 5.14 15 4.52 31 j50c5e9 8.73 16 4.44 250

j30c5e10 17.28 0 7.68 31 j50c5e10 6.19 0 2.48 266

j40c5e1 3.63 0 1.31 110 j60c5e1 6.16 16 1.23 500

j40c5e2 3.52 0 2.48 109 j60c5e2 5.65 0 3.26 531

j40c5e3 8.24 0 2.25 109 j60c5e3 4.92 15 1.99 516

j40c5e4 7.36 0 3.81 110 j60c5e4 5.58 0 3.30 562

j40c5e5 10.52 16 3.93 109 j60c5e5 3.48 16 2.45 516

j40c5e6 3.20 0 0.77 94 j60c5e6 5.92 16 1.91 547

j40c5e7 2.86 0 0.95 109 j60c5e7 0.90 0 0.57 484

j40c5e8 4.36 0 0.75 110 j60c5e8 1.26 15 0.00 500

j40c5e9 3.10 16 0.95 93 j60c5e9 0.61 0 0.17 485

j40c5e10 6.59 0 3.49 94 j60c5e10 3.91 16 0.87 515

 Average 5.69 5.08 2.42 225.03

Table 7.1 reports the results for each constructive heuristic. In the table, the relative

percentage deviation (RPD) between the solution 𝐶𝑚𝑎𝑥 and 𝐵𝐶𝑀𝑎𝑥 is computed as

follows:

RPD =
𝐶𝑚𝑎𝑥 −𝐵𝐶𝑀𝑎𝑥

𝐵𝐶𝑀𝑎𝑥
∗ 100, (7-3)

where 𝐵𝐶𝑀𝑎𝑥 is the best-known solution reported by Öztop et al. (2019). For each

constructive heuristic, the total CPU time is also reported for each instance. Note that

zero values in CPU times indicate negligible solution times.

As shown in Table 7.1, NEH is very fast, with a 5.08 ms average CPU time. However,

its average RPD is 5.69%. Although NEH_M(x) takes 225.03 ms on average, its

80

average RPD is 2.42% from the best-known solutions reported in Öztop et al. (2019).

It is clear from Table 7.1 that NEH_M(x) significantly outperforms the NEH heuristic.

In order to further analyze the effect of the proposed NEH_M(x) constructive heuristic

on the solution quality, we also run the single-objective algorithms (IG, IGALL and

VBIH) for the two different versions depending on the initial solution generation.

Namely, the initial solution is generated with the standard NEH in the first version of

the algorithms, whereas the proposed NEH_M(x) is used for the initial solution

generation in the second version of the algorithms. For evaluating the performances of

these two versions of the single-objective algorithms, the aforementioned 40 large

instances are used. All single-objective algorithms are run for these instances on a Core

i7, 2.60 GHz, 8 GB RAM computer considering only the makespan criterion. For each

algorithm, 15 independent replications are carried out for each instance. All algorithms

are run for 20nm milliseconds in each replication, where n denotes the number of jobs

and m represents the number of stages.

Table 7.2 reports the RPD results for each version of the algorithms, where RPD values

are computed for each instance with respect to the best-known solutions as in Eq. (7-

3). The average RPD values over 15 replications are reported for each algorithm, as

well as the maximum and the minimum values.

As shown in Table 7.2, the second version of each algorithm (with NEH_M(𝑥))

outperforms the first version of that algorithm (with NEH) in terms of both the average,

minimum and maximum RPDs. Particularly, in terms of average RPDs, using the

NEH_M(𝑥) heuristic to generate the initial solution instead of NEH, improves the

performance of the IG, IGALL and VBIH algorithms by 0.07%, 0.09% and 0.09%

respectively, on the overall average.

In terms of minimum RPDs, IG_NEH_M(𝑥) (0.15%), IGALL_NEH_M(𝑥) (0.19%) and

VBIH_ NEH_M(𝑥) (0.17%) perform much better than IG_NEH (0.28%), IGALL_NEH

(0.29%) and VBIH_NEH (0.27%). Similarly, in terms of maximum RPDs,

IG_NEH_M(𝑥) (0.40%), IGALL_NEH_M(𝑥) (0.43%) and VBIH_ NEH_M(𝑥) (0.43%)

perform much better than IG_NEH (0.54%), IGALL_NEH (0.62%) and VBIH_NEH

(0.67%). Consequently, it can be said that employing NEH_M(𝑥) as a constructive

heuristic significantly improves the performance of the algorithms.

81

Table 7. 2. Comparison of Single-Objective Algorithms

Instance

IG_NEH IG_NEH_M(𝒙) IGALL_NEH IGALL_NEH_M(𝒙) VBIH_NEH VBIH_NEH_M(𝒙)

RPD (%) RPD (%) RPD (%) RPD (%) RPD (%) RPD (%)

Avg Min Max Avg Min Max Avg Min Max Avg Min Max Avg Min Max Avg Min Max

j30c5e1 1.46 1.30 1.73 1.10 0.87 1.30 1.24 1.08 1.52 1.20 0.87 1.30 1.34 1.08 1.73 1.00 0.65 1.30

j30c5e2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

j30c5e3 0.93 0.84 1.01 0.87 0.51 1.01 0.93 0.84 1.01 0.89 0.67 1.01 0.97 0.84 1.18 0.83 0.51 1.01

j30c5e4 1.18 0.89 1.42 1.05 0.71 1.24 1.29 1.07 1.60 1.09 0.89 1.24 1.09 0.89 1.42 0.94 0.53 1.24

j30c5e5 0.62 0.50 0.83 0.56 0.33 0.67 0.67 0.50 0.83 0.59 0.50 0.83 0.74 0.50 1.00 0.64 0.50 0.83

j30c5e6 0.70 0.50 1.00 0.52 0.17 0.83 0.79 0.50 1.17 0.51 0.17 0.83 0.83 0.50 1.17 0.56 0.17 0.83

j30c5e7 0.09 0.00 0.16 0.04 0.00 0.16 0.11 0.00 0.32 0.05 0.00 0.16 0.11 0.00 0.32 0.03 0.00 0.16

j30c5e8 0.36 0.15 0.74 0.22 0.00 0.30 0.40 0.30 0.59 0.28 0.00 0.45 0.40 0.15 0.59 0.17 0.00 0.45

j30c5e9 0.54 0.47 0.78 0.57 0.16 0.78 0.62 0.47 0.78 0.52 0.16 0.78 0.63 0.47 0.93 0.58 0.47 0.78

j30c5e10 1.70 1.57 1.92 1.40 0.52 1.75 1.68 1.57 2.09 1.55 1.22 1.92 1.59 1.22 2.09 1.37 1.05 1.57

j40c5e1 0.15 0.15 0.15 0.14 0.00 0.15 0.15 0.15 0.15 0.14 0.00 0.15 0.15 0.15 0.15 0.15 0.15 0.15

j40c5e2 0.19 0.13 0.39 0.10 0.00 0.13 0.19 0.13 0.52 0.10 0.00 0.26 0.16 0.13 0.26 0.10 0.00 0.26

j40c5e3 0.05 0.00 0.25 0.00 0.00 0.00 0.07 0.00 0.25 0.00 0.00 0.00 0.05 0.00 0.25 0.03 0.00 0.25

j40c5e4 0.45 0.27 0.68 0.37 0.14 0.68 0.48 0.27 0.68 0.37 0.14 0.54 0.39 0.14 0.68 0.27 0.00 0.54

j40c5e5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

j40c5e6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

j40c5e7 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.15 0.14 0.41 0.14 0.14 0.14

j40c5e8 0.19 0.12 0.25 0.16 0.00 0.25 0.21 0.12 0.25 0.22 0.12 0.25 0.22 0.12 0.25 0.20 0.12 0.25

j40c5e9 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.12 0.00 0.00 0.00 0.02 0.00 0.12 0.00 0.00 0.00

j40c5e10 0.48 0.39 0.65 0.40 0.26 0.52 0.49 0.39 0.65 0.44 0.13 0.65 0.54 0.39 0.78 0.53 0.26 0.65

j50c5e1 0.24 0.10 0.31 0.21 0.00 0.31 0.26 0.21 0.31 0.20 0.10 0.31 0.32 0.21 0.62 0.19 0.00 0.31

j50c5e2 0.07 0.00 0.20 0.02 0.00 0.10 0.16 0.00 0.40 0.05 0.00 0.20 0.14 0.00 0.20 0.11 0.00 0.20

j50c5e3 0.43 0.29 0.68 0.37 0.19 0.49 0.43 0.29 0.87 0.41 0.29 0.58 0.52 0.29 1.07 0.36 0.19 0.49

j50c5e4 0.01 0.00 0.11 0.00 0.00 0.00 0.04 0.00 0.22 0.00 0.00 0.00 0.01 0.00 0.22 0.01 0.00 0.11

j50c5e5 0.40 0.29 0.58 0.18 0.10 0.29 0.48 0.19 0.88 0.25 0.10 0.39 0.45 0.19 0.78 0.25 0.00 0.39

j50c5e6 0.36 0.36 0.36 0.36 0.36 0.36 0.39 0.36 0.60 0.37 0.36 0.48 0.49 0.36 0.71 0.43 0.36 0.60

j50c5e7 0.11 0.11 0.11 0.10 0.00 0.11 0.14 0.11 0.43 0.09 0.00 0.11 0.14 0.11 0.54 0.10 0.00 0.11

j50c5e8 0.03 0.00 0.12 0.00 0.00 0.00 0.02 0.00 0.12 0.03 0.00 0.12 0.02 0.00 0.12 0.02 0.00 0.12

j50c5e9 0.86 0.61 1.23 0.71 0.31 1.07 0.98 0.77 1.23 0.64 0.31 0.92 1.05 0.77 1.68 0.66 0.31 0.92

j50c5e10 0.21 0.00 0.41 0.10 0.00 0.31 0.37 0.10 1.14 0.15 0.00 0.31 0.33 0.10 1.34 0.09 0.00 0.21

j60c5e1 0.11 0.09 0.18 0.09 0.09 0.09 0.12 0.09 0.26 0.09 0.09 0.09 0.13 0.09 0.18 0.07 0.00 0.09

j60c5e2 1.01 0.76 1.30 0.81 0.43 0.98 0.96 0.76 1.20 0.77 0.54 0.98 0.83 0.65 1.09 0.75 0.43 0.98

j60c5e3 0.00 0.00 0.00 0.00 0.00 0.00 0.15 0.00 0.69 0.06 0.00 0.35 0.34 0.00 1.47 0.14 0.00 0.35

j60c5e4 0.85 0.51 2.03 0.60 0.38 0.89 0.90 0.63 1.27 0.58 0.38 0.76 0.84 0.63 1.40 0.62 0.38 0.76

j60c5e5 0.30 0.19 0.47 0.12 0.00 0.28 0.35 0.09 0.56 0.19 0.00 0.38 0.31 0.19 0.47 0.21 0.00 0.47

j60c5e6 0.41 0.29 0.67 0.38 0.19 0.57 0.45 0.29 0.95 0.40 0.29 0.48 0.43 0.29 0.76 0.45 0.19 0.57

j60c5e7 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.24 0.00 0.00 0.00 0.03 0.00 0.24 0.00 0.00 0.00

j60c5e8 0.02 0.00 0.10 0.00 0.00 0.00 0.05 0.00 0.10 0.00 0.00 0.00 0.05 0.00 0.10 0.00 0.00 0.00

j60c5e9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

j60c5e10 0.30 0.22 0.65 0.22 0.22 0.22 0.25 0.22 0.65 0.22 0.22 0.22 0.28 0.22 0.65 0.22 0.22 0.22

Average 0.37 0.28 0.54 0.30 0.15 0.40 0.40 0.29 0.62 0.31 0.19 0.43 0.40 0.27 0.67 0.31 0.17 0.43

82

7.3 Small Instances for the EHFSP-V1

In the following tables, 𝐸𝐻𝐹𝑅𝑁, 𝐸𝐻𝐹𝑅, 𝐸𝐻𝐹𝑁, 𝐸, 𝐼𝐺, 𝐼𝐺𝐴𝐿𝐿 and 𝑉𝐵𝐼𝐻 represent

E_EMHFRN, E_EMHFR, E_EMHFN, E_EM, E_IG, E_IGALL and E_VBIH algorithms,

respectively. Table 7.3 reports the results of Cp, IGD and DS performance metrics for

each metaheuristic algorithm on the first set of small instances, which are obtained by

truncating the instances with 10 jobs and 5 stages. E_EMHFRN finds 85%; E_EMHFR

finds 83%; E_EMHFN finds 80%; E_EM, E_IG, E_IGALL and E_VBIH find 64% of the

Pareto-optimal solutions on the overall average. Note that, E_EMHFRN and E_EMHFN

find all Pareto-optimal solutions for 10 out of 23 instances, where E_EMHFR finds all

Pareto-optimal solutions for 9 instances; E_EM, E_IG, E_IGALL and E_VBIH find all

Pareto-optimal solutions for 5 instances. In terms of convergence, E_EMHFRN is the

best performer with 0.23 IGD value in overall average whereas E_EMHFR also has a

very small (0.27) IGD value. However, it can be said that all algorithms provide very

close approximations to the Pareto-optimal solution set P, as the maximum of their

average IGD values is 0.85. In terms of distribution spacing, solutions obtained by the

metaheuristic algorithms are evenly distributed due to their low DS values.

Table 7.4 reports the results of Cp, IGD and DS performance metrics for each

metaheuristic algorithm on the second set of small instances, which are obtained by

truncating the instances with 15 jobs and 5 stages. As shown in the table, E_EMHFRN

finds 88%; E_EMHFR finds 87%; E_EMHFN finds 82%; E_EM, E_IG, E_IGALL and

E_VBIH find 70% of the Pareto-optimal solutions in the overall average. E_EMHFRN

finds all Pareto-optimal solutions for 14 out of 24 instances, where E_EMHFR finds all

Pareto-optimal solutions for 13 instances; E_EMHFN finds all Pareto-optimal solutions

for 8 instances; E_EM, E_IG, E_IGALL and E_VBIH find all Pareto-optimal solutions for

7 instances. In terms of IGD values, E_EMHFRN (0.21) and E_EMHFR (0.23) are the best

performer ones on the overall average, whereas E_EMHFN also has a very small (0.33)

IGD value. All algorithms provide very close approximations to the Pareto-optimal

solution set P, as the maximum of their average IGD values is 0.58. In terms of the

spread of the solutions, solutions obtained by the metaheuristic algorithms are evenly

distributed, as they have very low DS values.

Finally, as the ensembles of metaheuristic algorithms with HFR/HFN approaches have

higher Cp and lower IGD values, it can be said that HFR and HFN approaches

83

substantially improve the solution quality for these small instances. When the

ensembles of metaheuristic algorithms are compared with each other, it can be said

that E_EMHFRN and E_EMHFR perform slightly better.

In order to visualize the performance of the algorithms, the Pareto frontiers obtained

by the algorithms are provided for an instance with five jobs and five stages in Figure

7.13. As shown in Figure 7.13, the ensembles of metaheuristic algorithms with

HFR/HFN approaches (E_EMHFRN, E_EMHFR, E_EMHFN) outperform the other

metaheuristics (E_EM, E_IG, E_IGALL and E_VBIH), as they provide better

approximations to the Pareto-optimal frontier. Note that, E_EMHFRN and E_EMHFR

perform slightly better than the E_EMHFN algorithm, as seen in Figure 7.13.

Figure 7. 13. Comparison of Algorithms for an Instance with 5 Jobs

84

Table 7. 3. Performance Comparison of Algorithms on Small Instances (Set 1) for

the EHFSP-V1

 Cardinality Ratio of Pareto-optimal Solutions Found (Cp)

Instance EHFRN EHFR EHFN E IG IGALL VBIH EHFRN EHFR EHFN E IG IGALL VBIH

1_j5c5a2 24 24 25 24 24 24 24 0.55 0.59 0.50 0.23 0.23 0.23 0.23

1_j5c5a3 26 25 23 21 21 21 21 0.48 0.48 0.48 0.38 0.38 0.38 0.38

1_j5c5a4 18 19 14 18 18 18 18 0.47 0.53 0.35 0.35 0.35 0.35 0.35

1_j5c5a5 17 17 21 15 15 15 15 0.68 0.74 0.21 0.00 0.00 0.00 0.00

1_j5c5a6 25 25 25 24 24 24 24 0.96 0.96 1.00 0.88 0.88 0.88 0.88

1_j5c5b1 25 25 25 24 24 24 24 1.00 1.00 1.00 0.96 0.96 0.96 0.96

1_j5c5b2 18 18 18 17 17 17 17 1.00 1.00 1.00 0.94 0.94 0.94 0.94

1_j5c5b3 23 23 23 23 23 23 23 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1_j5c5b4 20 20 20 22 22 22 22 1.00 0.95 1.00 0.90 0.90 0.90 0.90

1_j5c5b5 29 29 29 29 29 29 29 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1_j5c5b6 14 14 14 14 14 14 14 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1_j5c5c1 17 17 17 15 15 15 15 0.88 0.88 0.88 0.82 0.82 0.82 0.82

1_j5c5c2 22 21 20 22 22 22 22 0.67 0.63 0.63 0.21 0.21 0.21 0.21

1_j5c5c3 15 15 14 16 16 16 16 0.93 0.93 0.87 0.60 0.60 0.60 0.60

1_j5c5c4 13 13 13 13 13 13 13 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1_j5c5c5 16 16 17 20 20 20 20 0.61 0.50 0.44 0.17 0.17 0.17 0.17

1_j5c5c6 13 14 14 16 16 16 16 0.83 0.58 0.75 0.42 0.42 0.42 0.42

1_j5c5d1 13 13 13 12 12 12 12 1.00 1.00 1.00 0.69 0.69 0.69 0.69

1_j5c5d2 18 17 18 15 15 15 15 0.95 0.79 0.84 0.53 0.53 0.53 0.53

1_j5c5d3 16 17 16 16 16 16 16 0.67 0.72 0.72 0.61 0.61 0.61 0.61

1_j5c5d4 21 20 24 21 21 21 21 0.91 0.87 0.78 0.65 0.65 0.65 0.65

1_j5c5d5 21 21 19 19 19 19 19 1.00 1.00 0.90 0.38 0.38 0.38 0.38

1_j5c5d6 13 13 13 13 13 13 13 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Average 19.00 18.96 18.91 18.65 18.65 18.65 18.65 0.85 0.83 0.80 0.64 0.64 0.64 0.64

85

Table 7. 3. (Cont’d) Performance Comparison of Algorithms on Small Instances

(Set 1) for the EHFSP-V1

 IGD Distribution Spacing (DS)

Instance EHFRN EHFR EHFN E IG IGALL VBIH EHFRN EHFR EHFN E IG IGALL VBIH

1_j5c5a2 0.88 0.78 1.06 2.01 2.01 2.01 2.01 0.63 0.78 0.49 0.56 0.56 0.56 0.56

1_j5c5a3 0.69 0.69 0.67 0.92 0.92 0.92 0.92 1.27 1.35 1.18 1.15 1.15 1.15 1.15

1_j5c5a4 0.95 0.87 1.17 1.88 1.88 1.88 1.88 0.93 0.99 0.66 0.93 0.93 0.93 0.93

1_j5c5a5 0.60 0.62 2.69 5.93 5.93 5.93 5.93 0.55 0.48 0.76 0.66 0.66 0.66 0.66

1_j5c5a6 0.01 0.01 0.00 0.14 0.14 0.14 0.14 0.52 0.52 0.52 0.53 0.53 0.53 0.53

1_j5c5b1 0.00 0.00 0.00 0.01 0.01 0.01 0.01 1.07 1.07 1.07 0.97 0.97 0.97 0.97

1_j5c5b2 0.00 0.00 0.00 0.04 0.04 0.04 0.04 1.07 1.07 1.07 0.95 0.95 0.95 0.95

1_j5c5b3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.83 0.83 0.83 0.83 0.83 0.83 0.83

1_j5c5b4 0.00 0.07 0.00 0.14 0.14 0.14 0.14 0.80 0.79 0.80 1.02 1.02 1.02 1.02

1_j5c5b5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.88 0.88 0.88 0.88 0.88 0.88 0.88

1_j5c5b6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.71 0.71 0.71 0.71 0.71 0.71 0.71

1_j5c5c1 0.09 0.09 0.09 0.15 0.15 0.15 0.15 1.17 1.17 1.17 0.95 0.95 0.95 0.95

1_j5c5c2 0.41 0.40 0.44 1.17 1.17 1.17 1.17 1.00 1.03 1.00 1.06 1.06 1.06 1.06

1_j5c5c3 0.02 0.02 0.19 0.37 0.37 0.37 0.37 0.59 0.59 0.57 0.64 0.64 0.64 0.64

1_j5c5c4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.54 0.54 0.54 0.54 0.54 0.54 0.54

1_j5c5c5 0.30 0.49 0.60 1.89 1.89 1.89 1.89 0.86 0.97 1.01 1.15 1.15 1.15 1.15

1_j5c5c6 0.66 0.91 0.53 1.22 1.22 1.22 1.22 0.40 0.40 0.38 0.46 0.46 0.46 0.46

1_j5c5d1 0.00 0.00 0.00 0.19 0.19 0.19 0.19 0.85 0.85 0.85 0.76 0.76 0.76 0.76

1_j5c5d2 0.11 0.40 0.28 1.09 1.09 1.09 1.09 0.71 0.71 0.68 0.61 0.61 0.61 0.61

1_j5c5d3 0.58 0.38 0.40 0.61 0.61 0.61 0.61 0.94 0.92 0.83 0.93 0.93 0.93 0.93

1_j5c5d4 0.04 0.43 0.39 0.79 0.79 0.79 0.79 0.73 0.73 0.87 0.86 0.86 0.86 0.86

1_j5c5d5 0.00 0.00 0.22 0.96 0.96 0.96 0.96 0.97 0.97 0.91 0.90 0.90 0.90 0.90

1_j5c5d6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.59 0.59 0.59 0.59 0.59 0.59 0.59

Average 0.23 0.27 0.38 0.85 0.85 0.85 0.85 0.81 0.82 0.80 0.81 0.81 0.81 0.81

86

Table 7. 4. Performance Comparison of Algorithms on Small Instances (Set 2) for

the EHFSP-V1

 Cardinality Ratio of Pareto-optimal Solutions Found (Cp)

Instance EHFRN EHFR EHFN E IG IGALL VBIH EHFRN EHFR EHFN E IG IGALL VBIH

2_j5c5a1 14 14 13 15 15 15 15 0.87 0.87 0.87 0.73 0.73 0.73 0.73

2_j5c5a2 20 20 20 20 20 20 20 1.00 1.00 1.00 1.00 1.00 1.00 1.00

2_j5c5a3 20 20 23 19 19 19 19 0.40 0.40 0.27 0.00 0.00 0.00 0.00

2_j5c5a4 28 25 27 23 23 23 23 0.14 0.21 0.03 0.00 0.00 0.00 0.00

2_j5c5a5 37 38 37 35 35 35 35 0.83 0.67 0.64 0.28 0.28 0.28 0.28

2_j5c5a6 16 16 16 16 16 16 16 0.62 0.57 0.29 0.19 0.19 0.19 0.19

2_j5c5b1 30 30 31 29 29 29 29 1.00 1.00 0.97 0.77 0.77 0.77 0.77

2_j5c5b2 23 23 23 24 24 24 24 1.00 1.00 0.96 0.87 0.87 0.87 0.87

2_j5c5b3 21 21 21 21 21 21 21 1.00 1.00 1.00 1.00 1.00 1.00 1.00

2_j5c5b4 18 18 18 18 18 18 18 1.00 1.00 1.00 1.00 1.00 1.00 1.00

2_j5c5b5 47 47 47 47 47 47 47 1.00 1.00 1.00 1.00 1.00 1.00 1.00

2_j5c5b6 28 28 28 28 28 28 28 1.00 1.00 1.00 1.00 1.00 1.00 1.00

2_j5c5c1 18 18 17 17 17 17 17 1.00 1.00 0.94 0.78 0.78 0.78 0.78

2_j5c5c2 18 17 16 16 16 16 16 0.89 0.84 0.84 0.58 0.58 0.58 0.58

2_j5c5c3 20 20 20 21 21 21 21 0.90 0.90 0.90 0.86 0.86 0.86 0.86

2_j5c5c4 17 17 19 18 18 18 18 0.67 0.67 0.61 0.50 0.50 0.50 0.50

2_j5c5c5 12 12 12 11 11 11 11 0.92 0.92 0.92 0.77 0.77 0.77 0.77

2_j5c5c6 16 16 16 16 16 16 16 1.00 1.00 0.94 0.75 0.75 0.75 0.75

2_j5c5d1 19 19 19 19 19 19 19 1.00 1.00 1.00 1.00 1.00 1.00 1.00

2_j5c5d2 13 13 13 13 13 13 13 1.00 1.00 1.00 1.00 1.00 1.00 1.00

2_j5c5d3 15 15 14 15 15 15 15 0.88 0.81 0.63 0.31 0.31 0.31 0.31

2_j5c5d4 19 19 18 17 17 17 17 1.00 0.95 0.84 0.74 0.74 0.74 0.74

2_j5c5d5 15 15 15 16 16 16 16 1.00 1.00 0.93 0.73 0.73 0.73 0.73

2_j5c5d6 23 23 23 23 23 23 23 1.00 1.00 1.00 0.96 0.96 0.96 0.96

Average 21.13 21.00 21.08 20.71 20.71 20.71 20.71 0.88 0.87 0.82 0.70 0.70 0.70 0.70

87

Table 7. 4. (Cont’d) Performance Comparison of Algorithms on Small Instances

(Set 2) for the EHFSP-V1

 IGD Distribution Spacing (DS)

Instance EHFRN EHFR EHFN E IG IGALL VBIH EHFRN EHFR EHFN E IG IGALL VBIH

2_j5c5a1 0.10 0.10 0.12 0.24 0.24 0.24 0.24 0.92 0.92 0.75 0.96 0.96 0.96 0.96

2_j5c5a2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.93 0.93 0.93 0.93 0.93 0.93 0.93

2_j5c5a3 1.15 1.15 1.38 3.12 3.12 3.12 3.12 0.71 0.72 0.73 0.69 0.69 0.69 0.69

2_j5c5a4 2.32 2.17 2.92 3.57 3.57 3.57 3.57 0.83 0.77 0.90 0.59 0.59 0.59 0.59

2_j5c5a5 0.22 0.47 0.44 1.35 1.35 1.35 1.35 0.89 0.95 0.92 1.13 1.13 1.13 1.13

2_j5c5a6 0.48 0.59 0.86 1.69 1.69 1.69 1.69 0.84 0.86 0.86 0.82 0.82 0.82 0.82

2_j5c5b1 0.00 0.00 0.02 0.23 0.23 0.23 0.23 1.38 1.38 1.44 1.32 1.32 1.32 1.32

2_j5c5b2 0.00 0.00 0.02 0.10 0.10 0.10 0.10 1.00 1.00 0.97 1.00 1.00 1.00 1.00

2_j5c5b3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.27 1.27 1.27 1.27 1.27 1.27 1.27

2_j5c5b4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.08 1.08 1.08 1.08 1.08 1.08 1.08

2_j5c5b5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.17 1.17 1.17 1.17 1.17 1.17 1.17

2_j5c5b6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.73 0.73 0.73 0.73 0.73 0.73 0.73

2_j5c5c1 0.00 0.00 0.01 0.16 0.16 0.16 0.16 0.96 0.96 0.86 0.87 0.87 0.87 0.87

2_j5c5c2 0.19 0.27 0.32 0.64 0.64 0.64 0.64 0.86 0.83 0.79 0.86 0.86 0.86 0.86

2_j5c5c3 0.03 0.03 0.03 0.06 0.06 0.06 0.06 0.81 0.81 0.81 0.83 0.83 0.83 0.83

2_j5c5c4 0.29 0.32 0.34 0.60 0.60 0.60 0.60 0.99 0.91 1.21 1.08 1.08 1.08 1.08

2_j5c5c5 0.08 0.08 0.08 0.17 0.17 0.17 0.17 0.41 0.41 0.41 0.05 0.05 0.05 0.05

2_j5c5c6 0.00 0.00 0.01 0.28 0.28 0.28 0.28 0.72 0.72 0.72 0.77 0.77 0.77 0.77

2_j5c5d1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.24 1.24 1.24 1.24 1.24 1.24 1.24

2_j5c5d2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.41 0.41 0.41 0.41 0.41 0.41 0.41

2_j5c5d3 0.27 0.28 1.18 1.17 1.17 1.17 1.17 0.60 0.68 0.53 0.56 0.56 0.56 0.56

2_j5c5d4 0.00 0.03 0.19 0.26 0.26 0.26 0.26 0.94 0.94 0.97 0.92 0.92 0.92 0.92

2_j5c5d5 0.00 0.00 0.01 0.17 0.17 0.17 0.17 0.74 0.74 0.75 0.80 0.80 0.80 0.80

2_j5c5d6 0.00 0.00 0.00 0.07 0.07 0.07 0.07 1.34 1.34 1.34 1.28 1.28 1.28 1.28

Average 0.21 0.23 0.33 0.58 0.58 0.58 0.58 0.91 0.91 0.91 0.89 0.89 0.89 0.89

88

7.4 Medium & Large Instances for the EHFSP-V1

As mentioned in the beginning of Section 7, for medium and large instances, the non-

dominated solution sets of time-limited MILP, time-limited CP and metaheuristic

algorithms are compared with each other in terms of the aforementioned cardinality,

Cp, IGD and DS metrics. As the Pareto-optimal solution sets (P) are not known for

these instances, the reference sets (R) are used in Cp and IGD metrics. Note that the

reference set includes only the high-quality non-dominated solutions, which are

obtained by selecting all the non-dominated solutions found by the seven metaheuristic

algorithms, time-limited MILP and CP approaches.

In order to make the computational results statistically convincing, a series of

Wilcoxon signed-rank tests is also conducted at the significance level of 𝛼 = 0.05.

Note that, Wilcoxon signed-rank test is a non-parametric test to compare two related

groups, which is based on the differences between paired observations. This test is

employed to decide whether there is a statistically significant difference between the

two solution approaches in terms of a certain performance metric. Let 𝑚𝐷 denotes the

median of the difference between two different algorithms for a certain metric, the null

hypothesis is defined by 𝐻0: 𝑚𝐷 = 0 indicating that there is no difference between

the two algorithms in terms of that metric, whereas the alternative hypothesis is defined

by 𝐻1: 𝑚𝐷 ≠ 0 indicating that there is a difference between the two algorithms. For

each pair of the algorithms, the p-value results of the Wilcoxon signed-rank tests are

reported for all performance metrics. Note that there is a statistically significant

difference between the two algorithms in terms of a certain performance metric if the

corresponding p-value is smaller than 𝛼 = 0.05.

Table 7.5 reports the performances of the time-limited MILP (MILP), time-limited CP

(CP), E_EMHFRN(𝐸𝐻𝐹𝑅𝑁), E_EMHFR (𝐸𝐻𝐹𝑅), E_EMHFN (𝐸𝐻𝐹𝑁), E_EM(𝐸), E_IG (𝐼𝐺),

E_IGALL (𝐼𝐺𝐴𝐿𝐿) and E_VBIH (𝑉𝐵𝐼𝐻) algorithms on medium instances with 10 jobs.

Furthermore, Table 7.6 reports the p-value results of the Wilcoxon signed-rank tests

for these instances. As shown in Table 7.5, each metaheuristic algorithm finds

approximately three times as many non-dominated solutions as the time-limited MILP

and CP, in exceptionally fewer computation times. The statistical results reported in

Table 7.6 also confirm that all metaheuristics perform significantly better than the

MILP and CP in terms of the cardinality metric. Note that there is no statistically

89

significant difference between the metaheuristics in terms of cardinality. As shown in

Table 7.5, E_EMHFRN and E_EMHFN find 69%, E_EMHFR finds 67%; E_EM, E_IGALL

and E_VBIH find 62%; E_IG finds 61%; time-limited CP finds 27%, and time-limited

MILP finds 14% of the reference solutions on the overall average. Note that, E_EMHFN

finds all reference solutions for 12 out of 41 instances, where E_VBIH finds all

reference solutions for 7 instances; E_EMHFRN, E_EMHFR, E_EM, E_IGALL and E_IG

find all reference solutions for 8 instances. According to the p-value results reported

in Table 7.6, all metaheuristics perform significantly and statistically better than the

MILP and CP in terms of 𝐶𝑝 metric. Note that, E_EMHFRN and E_EMHFN algorithms

are statistically equivalent in terms of 𝐶𝑝 metric and they perform statistically better

than the other metaheuristics. There is no statistically significant difference between

E_EM, E_IG, E_IGALL and E_VBIH algorithms in terms of 𝐶𝑝 metric.

In terms of convergence, E_EMHFRN (0.48), E_EMHFR (0.50) and E_EMHFN (0.49)

are the best performer ones on the overall average, whereas other metaheuristic

algorithms also have small IGD values around 0.59. In terms of IGD metric, all

metaheuristic algorithms outperform the time-limited MILP and CP, while ensembles

of metaheuristic algorithms with HFR/HFN approaches slightly outperform the other

metaheuristic algorithms. This statement is also consistent with the Wilcoxon signed-

rank test results reported in Table 7.6. As shown in Table 7.6, E_EMHFRN, E_EMHFR

and E_EMHFN algorithms are statistically equivalent in terms of IGD metric, and they

perform statistically better than the other solution approaches. Note that, there is no

statistically significant difference between E_EM, E_IG, E_IGALL and E_VBIH

algorithms in terms of IGD metric, except the E_IG vs. E_VBIH pair.

For the comparison of distribution spacing metric, time-limited MILP and CP

approaches have smaller DS values than the metaheuristic algorithms, which implies

that the solutions generated by MILP and CP approaches are spread more uniformly

in their own discovered frontiers. This statement is also consistent with the Wilcoxon

signed-rank test results reported in Table 7.6. This result is expected, as a constant ε

level is used through the augmented ε-constraint method in the time-limited MILP and

CP approaches. Nevertheless, the metaheuristic algorithms also have low DS values,

indicating even dispersions.

90

Table 7. 5. Performance Comparison of Algorithms on Medium Instances with 10

Jobs for the EHFSP-V1

 Cardinality Ratio of Reference Solutions Found (Cp)

Instance MILP CP EHFRN EHFR EHFN E IG IGALL VBIH MILP CP EHFRN EHFR EHFN E IG IGALL VBIH

j10c5a2 21 21 79 79 79 79 79 79 79 0.27 0.27 0.99 0.99 1.00 1.00 1.00 1.00 1.00

j10c5a3 21 21 88 89 89 89 89 89 87 0.24 0.24 0.99 1.00 1.00 1.00 1.00 1.00 0.98

j10c5a4 21 21 98 98 98 98 98 98 98 0.21 0.21 1.00 1.00 1.00 1.00 1.00 1.00 1.00

j10c5a5 21 21 118 118 118 118 118 118 118 0.18 0.18 1.00 1.00 1.00 1.00 1.00 1.00 1.00

j10c5a6 21 21 85 82 87 81 82 83 83 0.24 0.24 0.84 0.75 0.78 0.66 0.62 0.74 0.62

j10c5b1 21 21 77 77 77 77 77 77 77 0.27 0.27 1.00 1.00 1.00 1.00 1.00 1.00 1.00

j10c5b2 21 21 72 72 73 72 72 72 72 0.29 0.29 0.99 0.99 1.00 0.99 0.99 0.99 0.99

j10c5b3 21 21 91 91 91 93 93 93 93 0.21 0.23 0.99 0.99 0.99 0.93 0.93 0.93 0.93

j10c5b4 21 21 89 89 89 89 89 89 89 0.24 0.24 1.00 1.00 1.00 0.98 0.98 0.98 0.98

j10c5b5 21 21 96 96 96 96 96 96 96 0.22 0.22 1.00 1.00 1.00 1.00 1.00 1.00 1.00

j10c5b6 21 21 97 97 97 97 97 97 97 0.22 0.22 1.00 1.00 1.00 1.00 1.00 1.00 1.00

j10c5c1 20 21 68 71 71 68 76 62 71 0.10 0.36 0.51 0.36 0.49 0.41 0.24 0.32 0.36

j10c5c2 19 21 78 72 71 82 69 73 66 0.09 0.36 0.31 0.34 0.38 0.34 0.33 0.29 0.38

j10c5c3 19 21 75 75 81 71 73 76 75 0.10 0.51 0.34 0.32 0.39 0.27 0.22 0.24 0.27

j10c5c4 20 18 55 61 56 59 60 59 60 0.02 0.20 0.67 0.60 0.70 0.62 0.50 0.47 0.48

j10c5c5 19 20 71 75 67 75 71 78 70 0.07 0.33 0.46 0.41 0.48 0.30 0.28 0.36 0.34

j10c5c6 15 21 67 71 69 64 69 64 69 0.07 0.30 0.57 0.52 0.58 0.48 0.39 0.48 0.43

j10c5d1 21 21 54 55 57 60 54 59 67 0.09 0.30 0.48 0.45 0.41 0.45 0.35 0.42 0.33

j10c5d2 17 21 64 58 65 70 54 68 64 0.03 0.19 0.48 0.58 0.50 0.41 0.39 0.39 0.45

j10c5d3 18 21 66 68 63 68 63 73 71 0.03 0.11 0.49 0.51 0.53 0.36 0.47 0.40 0.36

j10c5d4 19 19 63 68 66 70 71 65 66 0.00 0.08 0.40 0.45 0.50 0.32 0.36 0.33 0.37

j10c5d5 19 19 61 58 65 55 58 56 53 0.02 0.11 0.43 0.46 0.52 0.41 0.29 0.25 0.43

j10c5d6 20 21 57 54 54 61 57 52 53 0.04 0.24 0.56 0.49 0.56 0.36 0.40 0.47 0.44

j10c10a1 18 21 63 52 55 58 56 59 61 0.26 0.42 0.42 0.48 0.34 0.44 0.42 0.44 0.44

j10c10a2 21 21 81 81 88 76 77 86 82 0.12 0.36 0.33 0.31 0.26 0.17 0.28 0.17 0.21

j10c10a3 21 21 68 68 74 76 76 76 73 0.19 0.29 0.55 0.54 0.58 0.52 0.46 0.54 0.49

j10c10a4 20 21 51 49 48 40 46 37 48 0.35 0.81 0.27 0.27 0.27 0.27 0.31 0.27 0.23

j10c10a5 19 21 58 67 60 56 63 59 54 0.22 0.46 0.46 0.52 0.50 0.39 0.46 0.52 0.57

j10c10a6 19 21 57 64 58 53 59 61 54 0.39 0.51 0.59 0.56 0.61 0.51 0.49 0.56 0.56

j10c10b1 21 21 86 86 86 86 86 86 86 0.24 0.24 1.00 1.00 1.00 1.00 1.00 1.00 1.00

j10c10b2 21 21 59 59 59 60 60 60 60 0.27 0.38 0.96 0.91 0.95 0.89 0.89 0.89 0.89

j10c10b3 21 21 96 95 96 95 95 95 95 0.15 0.22 0.99 0.99 1.00 0.99 0.99 0.99 0.99

j10c10b4 20 20 78 81 78 81 81 81 81 0.06 0.23 0.99 0.95 0.99 0.95 0.95 0.95 0.95

j10c10b5 20 21 81 80 80 82 82 82 82 0.13 0.26 0.97 0.92 0.96 0.92 0.92 0.92 0.92

j10c10b6 21 21 64 64 64 64 64 64 64 0.23 0.33 1.00 0.98 1.00 0.98 0.98 0.97 0.98

j10c10c1 17 20 57 60 57 56 52 57 59 0.00 0.13 0.59 0.49 0.56 0.31 0.36 0.43 0.46

j10c10c2 16 18 59 62 56 65 75 64 63 0.02 0.25 0.41 0.34 0.41 0.34 0.23 0.25 0.27

j10c10c3 19 19 54 54 56 57 59 55 65 0.00 0.12 0.57 0.48 0.48 0.53 0.32 0.42 0.42

j10c10c4 16 18 50 54 56 49 49 53 55 0.00 0.07 0.46 0.41 0.48 0.21 0.30 0.31 0.33

j10c10c5 19 18 57 54 58 54 58 60 53 0.03 0.19 0.53 0.43 0.40 0.29 0.40 0.41 0.29

j10c10c6 14 20 49 52 49 53 55 56 55 0.02 0.15 0.56 0.50 0.58 0.44 0.50 0.48 0.38

Average 19.51 20.46 71.63 72.10 72.12 72.02 72.15 72.37 72.29 0.14 0.27 0.69 0.67 0.69 0.62 0.61 0.62 0.62

91

Table 7. 5. (Cont’d) Performance Comparison of Algorithms on Medium Instances

with 10 Jobs for the EHFSP-V1

 IGD Distribution Spacing (DS)

Instance MILP CP EHFRN EHFR EHFN E IG IGALL VBIH MILP CP EHFRN EHFR EHFN E IG IGALL VBIH

j10c5a2 2.05 2.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.20 0.20 1.01 1.01 1.01 1.01 1.01 1.01 1.01

j10c5a3 1.80 1.80 0.02 0.00 0.00 0.00 0.00 0.00 0.05 0.21 0.21 1.24 1.23 1.23 1.23 1.23 1.23 1.31

j10c5a4 2.50 2.57 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.12 0.12 1.17 1.17 1.17 1.17 1.17 1.17 1.17

j10c5a5 2.38 2.38 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.11 0.11 1.44 1.44 1.44 1.44 1.44 1.44 1.44

j10c5a6 2.57 2.52 0.11 0.16 0.17 0.28 0.27 0.23 0.26 0.18 0.16 1.07 1.03 1.07 1.01 1.05 1.05 1.02

j10c5b1 2.32 2.32 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.08 0.08 1.09 1.09 1.09 1.09 1.09 1.09 1.09

j10c5b2 2.06 2.06 0.03 0.03 0.00 0.03 0.03 0.03 0.03 0.11 0.11 1.29 1.29 1.27 1.29 1.29 1.29 1.29

j10c5b3 2.03 1.98 0.01 0.01 0.01 0.02 0.02 0.02 0.02 0.14 0.20 1.05 1.05 1.05 1.04 1.04 1.04 1.04

j10c5b4 2.62 2.59 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.24 0.20 1.00 1.00 1.00 1.00 1.00 1.00 1.00

j10c5b5 2.53 2.53 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.13 0.13 1.14 1.14 1.14 1.14 1.14 1.14 1.14

j10c5b6 2.20 2.20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.10 1.55 1.55 1.55 1.55 1.55 1.55 1.55

j10c5c1 2.99 1.91 0.47 0.60 0.47 0.56 0.80 0.65 0.61 0.54 0.27 1.10 1.09 1.10 1.27 1.37 1.08 1.33

j10c5c2 3.50 1.15 0.52 0.60 0.51 0.66 0.67 0.65 0.59 0.34 0.09 1.49 1.68 1.46 1.46 1.56 1.55 1.37

j10c5c3 2.80 1.53 0.78 0.81 0.76 1.16 1.09 1.16 1.10 0.36 0.33 1.00 0.99 1.07 0.89 1.04 0.89 0.93

j10c5c4 3.50 3.29 0.40 0.34 0.39 0.42 0.44 0.51 0.59 0.47 0.47 0.83 0.79 0.89 0.84 0.79 0.85 0.82

j10c5c5 3.35 1.85 0.42 0.51 0.55 0.65 0.71 0.64 0.64 0.15 0.13 0.75 0.79 0.85 0.81 1.09 0.97 0.88

j10c5c6 4.75 1.88 0.43 0.35 0.43 0.49 0.62 0.58 0.55 0.42 0.26 0.86 1.00 0.89 0.74 1.06 0.96 0.98

j10c5d1 2.74 2.06 0.54 0.53 0.90 0.82 0.99 0.62 0.68 0.32 0.23 0.83 0.72 1.10 0.92 1.16 1.04 1.02

j10c5d2 4.91 3.12 0.59 0.59 0.64 0.56 0.87 0.93 0.65 0.52 0.28 1.18 1.23 1.22 1.28 1.04 1.35 1.31

j10c5d3 4.00 2.92 0.52 0.41 0.44 0.53 0.61 0.53 0.51 0.30 0.45 1.02 1.05 1.04 0.96 1.43 1.08 1.07

j10c5d4 4.28 3.28 0.68 0.54 0.51 0.59 0.58 0.70 0.62 0.19 0.37 1.51 1.05 1.61 1.23 1.21 1.71 0.97

j10c5d5 4.07 3.62 0.67 0.62 0.60 0.83 0.84 0.97 0.65 0.29 0.29 1.44 1.54 1.61 1.48 1.60 1.50 1.16

j10c5d6 3.61 2.76 0.45 0.59 0.53 0.62 0.69 0.70 0.62 0.40 0.46 0.98 1.23 1.19 1.27 1.29 1.29 1.20

j10c10a1 6.12 2.96 1.18 1.27 1.66 1.60 1.64 1.38 1.27 0.34 0.24 1.00 0.99 0.90 1.01 1.11 1.14 0.99

j10c10a2 4.14 4.19 1.76 1.84 1.89 1.98 1.89 1.96 2.12 0.14 0.10 0.97 0.99 1.25 0.89 0.99 1.10 1.11

j10c10a3 4.37 3.83 0.90 0.99 0.77 0.90 1.04 0.91 0.96 0.13 0.16 0.96 1.00 0.95 0.94 1.01 1.04 0.95

j10c10a4 4.25 0.74 3.06 2.59 2.78 2.84 3.04 2.94 3.12 0.33 0.31 1.53 1.55 1.55 1.24 1.55 1.21 1.51

j10c10a5 4.45 2.15 1.10 0.86 0.89 1.13 1.13 1.02 0.84 0.25 0.25 1.28 1.40 1.23 1.39 1.44 1.36 1.34

j10c10a6 2.89 1.98 1.14 1.34 1.18 1.25 1.50 1.57 1.34 0.23 0.20 0.95 1.05 1.08 1.12 1.00 1.15 1.21

j10c10b1 3.67 3.62 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.31 0.30 1.78 1.78 1.78 1.78 1.78 1.78 1.78

j10c10b2 3.54 2.68 0.07 0.13 0.08 0.15 0.15 0.15 0.15 0.27 0.20 1.32 1.32 1.34 1.35 1.35 1.35 1.35

j10c10b3 5.16 3.23 0.00 0.01 0.00 0.01 0.01 0.01 0.01 0.29 0.18 1.68 1.68 1.68 1.68 1.68 1.68 1.68

j10c10b4 7.21 3.71 0.01 0.04 0.01 0.04 0.04 0.04 0.04 0.34 0.27 2.05 2.12 2.05 2.12 2.12 2.12 2.12

j10c10b5 5.81 2.80 0.03 0.08 0.05 0.09 0.09 0.09 0.09 0.27 0.30 1.93 1.90 1.93 1.94 1.94 1.94 1.94

j10c10b6 4.30 3.68 0.00 0.02 0.00 0.03 0.03 0.04 0.03 0.29 0.40 1.14 1.14 1.14 1.14 1.14 1.13 1.14

j10c10c1 8.08 6.43 0.50 0.64 0.53 1.04 0.79 0.69 0.61 0.29 0.56 1.34 1.38 1.37 1.39 1.30 1.32 1.38

j10c10c2 10.81 4.70 1.08 1.26 1.12 1.42 1.31 1.26 1.41 0.72 0.42 1.50 1.47 1.50 1.39 1.65 1.46 1.68

j10c10c3 7.85 6.25 0.58 0.92 0.71 0.67 0.82 0.95 0.75 0.23 0.50 1.33 1.81 1.63 1.39 1.50 1.85 1.48

j10c10c4 8.90 8.16 0.56 0.64 0.43 0.85 0.77 0.68 0.69 0.29 0.71 1.61 1.74 1.75 1.58 1.62 1.67 1.64

j10c10c5 6.85 6.76 0.59 0.72 0.71 0.84 0.80 0.88 0.86 0.30 0.28 1.53 1.64 1.58 1.55 1.65 1.74 1.48

j10c10c6 9.28 3.26 0.48 0.62 0.42 0.73 0.57 0.58 0.72 0.30 0.11 1.53 1.66 1.59 1.53 1.65 1.77 1.69

Average 4.32 3.06 0.48 0.50 0.49 0.58 0.61 0.59 0.57 0.27 0.26 1.26 1.29 1.30 1.26 1.32 1.32 1.28

92

Table 7. 6. p-values of Wilcoxon Signed-Rank Tests for Medium Instances with 10

Jobs for the EHFSP-V1

Pairs of Algorithms Cardinality Cp IGD DS Pairs of Algorithms Cardinality Cp IGD DS

MILP vs CP 0.00 0.00 0.00 0.33 EHFRN vs IG 0.59 0.00 0.00 0.00

MILP vs EHFRN 0.00 0.00 0.00 0.00 EHFRN vs IGALL 0.15 0.00 0.00 0.00

MILP vs EHFR 0.00 0.00 0.00 0.00 EHFRN vs VBIH 0.27 0.00 0.00 0.04

MILP vs EHFN 0.00 0.00 0.00 0.00 EHFR vs EHFN 0.98 0.01 0.19 1.00

MILP vs E 0.00 0.00 0.00 0.00 EHFR vs E 0.89 0.00 0.00 0.16

MILP vs IG 0.00 0.00 0.00 0.00 EHFR vs IG 0.83 0.00 0.00 0.12

MILP vs IGALL 0.00 0.00 0.00 0.00 EHFR vs IGALL 0.55 0.00 0.00 0.12

MILP vs VBIH 0.00 0.00 0.00 0.00 EHFR vs VBIH 0.78 0.00 0.00 0.99

CP vs EHFRN 0.00 0.00 0.00 0.00 EHFN vs E 0.99 0.00 0.00 0.05

CP vs EHFR 0.00 0.00 0.00 0.00 EHFN vs IG 0.94 0.00 0.00 0.35

CP vs EHFN 0.00 0.00 0.00 0.00 EHFN vs IGALL 0.56 0.00 0.00 0.18

CP vs E 0.00 0.00 0.00 0.00 EHFN vs VBIH 0.77 0.00 0.00 0.91

CP vs IG 0.00 0.00 0.00 0.00 E vs IG 0.54 0.44 0.16 0.00

CP vs IGALL 0.00 0.00 0.00 0.00 E vs IGALL 0.48 0.65 0.86 0.00

CP vs VBIH 0.00 0.00 0.00 0.00 E vs VBIH 0.42 0.97 0.86 0.09

EHFRN vs EHFR 0.28 0.01 0.05 0.02 IG vs IGALL 0.76 0.08 0.33 0.85

EHFRN vs EHFN 0.30 0.53 0.76 0.00 IG vs VBIH 0.78 0.15 0.04 0.06

EHFRN vs E 0.44 0.00 0.00 0.73 IGALL vs VBIH 0.70 0.82 0.23 0.13

Table 7.7 reports the results for each solution approach on the medium instances with

15 jobs. Table 7.8 also reports the p-value results of the Wilcoxon signed-rank tests

for these instances. As shown in Table 7.7, each metaheuristic algorithm finds

approximately seven times as many non-dominated solutions as the time-limited MILP

and CP, in very short computation times. The p-value results reported in Table 7.8 also

verify that all metaheuristics perform significantly better than the MILP and CP in

terms of the cardinality metric. Note that, there is no statistically significant difference

between the E_EMHFRN, E_EMHFR and E_EMHFN algorithms in terms of cardinality.

As shown in Table 7.7, E_IG finds 49%; E_EMHFR finds 46%; E_EMHFN finds 45%;

E_EMHFRN finds 44%; E_EM finds 37%; E_VBIH finds 35%; E_IGALL finds 30%; time-

limited CP finds 9% and time-limited MILP finds 3% of the reference solutions on the

overall average. As it can be seen in Table 7.8, all metaheuristics perform significantly

and statistically better than the MILP and CP in terms of 𝐶𝑝 metric, where E_IG,

E_EMHFR, E_EMHFN and E_EMHFRN algorithms outperform the other metaheuristics.

Note that, all the pairwise differences are statistically significant at the 𝛼 = 0.05 level

in terms of cardinality and 𝐶𝑝 metrics, except E_EMHFRN vs E_EMHFR, E_EMHFRN vs

E_EMHFN, E_EMHFR vs E_EMHFN and E_EM vs. E_VBIH pairs.

93

In terms of proximity to the reference frontier, E_IG (0.64), E_EMHFN (0.67), E_EMHFR

(0.67) and E_EMHFRN (0.69) are the closest ones in overall average, whereas other

metaheuristic algorithms also have small IGD values. Similar to the results on

instances with 10 jobs, all metaheuristic algorithms outperform the time-limited MILP

and CP approaches in terms of IGD metric. These statements are also consistent with

the Wilcoxon signed-rank test results reported in Table 7.8. Note that, there is no

statistically significant difference between E_EMHFRN, E_EMHFR, E_EMHFN and E_IG

algorithms in terms of IGD metric, except the E_EMHFRN vs. E_IG pair. In terms of the

spread of the solutions, even though metaheuristic algorithms have low DS values,

time-limited MILP and CP approaches have smaller DS values than these algorithms

due to the usage of a constant ε level, which is also confirmed by the Wilcoxon signed-

rank test results reported in Table 7.8. In order to visualize the performance of the

algorithms, the Pareto frontiers obtained by the algorithms are provided for an instance

with 15 jobs and 5 stages in Figure 7.14. As seen in Figure 7.14, the metaheuristic

algorithms outperform the time-limited MILP and CP approaches in terms of both

cardinality and convergence, where the time-limited CP performs better than the time-

limited MILP.

Figure 7. 14. Comparison of Algorithms for an Instance with 15 Jobs

Consequently, it is clear from Tables 7.5 and 7.7, ensembles of metaheuristic

algorithms with HFR/HFN approaches perform better than the other metaheuristic

algorithms for the medium instances, due to their higher Cp and lower IGD values.

Note that, E_IG also performs very well for the instances with 15 jobs. Nevertheless,

94

all metaheuristic algorithms perform much better than the time-limited MILP and CP

approaches, in terms of both cardinality and proximity to the reference set.

Table 7. 7. Performance Comparison of Algorithms on Medium Instances with 15

Jobs for the EHFSP-V1

 Cardinality Ratio of Reference Solutions Found (Cp)

Instance MILP CP EHFRN EHFR EHFN E IG IGALL VBIH MILP CP EHFRN EHFR EHFN E IG IGALL VBIH

j15c5a1 21 21 201 202 174 192 199 180 195 0.03 0.09 0.29 0.32 0.36 0.23 0.32 0.25 0.22

j15c5a2 19 21 206 214 221 207 217 181 212 0.03 0.08 0.56 0.58 0.57 0.41 0.73 0.35 0.51

j15c5a3 20 21 149 156 160 147 160 134 146 0.08 0.12 0.40 0.47 0.50 0.39 0.55 0.33 0.33

j15c5a4 19 21 158 156 171 147 171 146 146 0.04 0.10 0.55 0.41 0.52 0.35 0.58 0.27 0.33

j15c5a5 21 21 167 164 159 164 184 160 151 0.07 0.11 0.48 0.52 0.45 0.40 0.63 0.35 0.42

j15c5a6 21 21 187 198 207 189 207 177 191 0.04 0.10 0.58 0.56 0.48 0.43 0.66 0.32 0.44

j15c5b1 20 21 243 256 255 232 244 218 227 0.05 0.07 0.86 0.87 0.86 0.79 0.91 0.57 0.74

j15c5b2 17 21 247 247 241 239 245 227 223 0.06 0.08 0.85 0.89 0.86 0.83 0.88 0.54 0.64

j15c5b3 21 21 197 200 201 203 198 190 195 0.08 0.10 0.89 0.91 0.90 0.85 0.90 0.68 0.86

j15c5b4 18 21 140 142 138 143 137 134 141 0.04 0.14 0.94 0.92 0.90 0.73 0.85 0.78 0.67

j15c5b5 19 21 223 222 218 216 221 204 212 0.01 0.09 0.87 0.80 0.88 0.67 0.92 0.57 0.62

j15c5b6 21 21 239 236 230 224 241 232 236 0.06 0.07 0.87 0.89 0.89 0.71 0.88 0.56 0.66

j15c5c1 17 19 93 77 99 91 88 79 93 0.00 0.13 0.14 0.21 0.19 0.17 0.20 0.17 0.13

j15c5c2 19 22 86 90 78 87 86 95 84 0.00 0.22 0.12 0.14 0.19 0.14 0.17 0.12 0.23

j15c5c3 17 20 95 98 97 90 107 87 93 0.00 0.09 0.19 0.18 0.21 0.11 0.10 0.14 0.18

j15c5c4 18 21 82 90 88 101 102 86 80 0.00 0.12 0.15 0.16 0.15 0.08 0.13 0.13 0.19

j15c5c5 19 17 75 66 68 74 68 80 75 0.00 0.04 0.28 0.17 0.23 0.15 0.21 0.11 0.19

j15c5c6 18 20 87 83 95 93 93 96 93 0.01 0.12 0.24 0.22 0.14 0.11 0.24 0.10 0.19

j15c5d1 20 21 179 187 196 183 184 184 176 0.06 0.09 0.62 0.72 0.67 0.55 0.81 0.43 0.43

j15c5d2 15 19 79 85 88 88 82 84 84 0.00 0.04 0.17 0.21 0.20 0.19 0.16 0.18 0.12

j15c5d3 16 17 79 73 81 81 81 84 71 0.00 0.04 0.17 0.20 0.19 0.14 0.14 0.18 0.17

j15c5d4 14 17 76 78 79 85 82 89 83 0.00 0.06 0.11 0.22 0.19 0.14 0.13 0.18 0.17

j15c5d5 16 21 74 81 86 87 78 83 83 0.00 0.06 0.18 0.19 0.19 0.13 0.27 0.19 0.14

j15c5d6 15 18 87 74 75 77 86 84 84 0.00 0.04 0.07 0.16 0.17 0.21 0.15 0.12 0.20

j15c10a1 20 21 252 254 243 237 262 214 243 0.05 0.08 0.81 0.79 0.75 0.63 0.78 0.41 0.55

j15c10a2 19 21 138 144 134 140 154 133 131 0.02 0.13 0.38 0.37 0.45 0.35 0.51 0.23 0.26

j15c10a3 18 21 176 176 183 166 191 174 177 0.02 0.08 0.43 0.37 0.32 0.27 0.51 0.25 0.20

j15c10a4 21 21 217 219 207 192 229 170 190 0.02 0.07 0.49 0.54 0.48 0.43 0.63 0.31 0.31

j15c10a5 17 21 124 123 117 112 122 118 117 0.02 0.12 0.37 0.43 0.45 0.27 0.42 0.26 0.23

j15c10a6 17 21 147 136 140 137 133 130 132 0.03 0.12 0.42 0.58 0.50 0.38 0.61 0.30 0.30

j15c10b1 19 21 172 150 150 134 152 146 148 0.04 0.05 0.34 0.34 0.33 0.28 0.39 0.25 0.28

j15c10b2 20 21 114 127 114 104 120 103 116 0.02 0.11 0.55 0.44 0.45 0.38 0.44 0.23 0.30

j15c10b3 18 21 146 131 148 129 152 121 118 0.03 0.11 0.48 0.43 0.48 0.40 0.60 0.39 0.43

j15c10b4 20 21 149 168 155 149 175 133 156 0.04 0.09 0.46 0.57 0.48 0.31 0.51 0.28 0.33

j15c10b5 20 20 150 138 132 140 132 126 139 0.01 0.05 0.30 0.29 0.23 0.26 0.30 0.20 0.18

j15c10b6 21 21 143 148 134 136 153 135 133 0.02 0.08 0.37 0.31 0.33 0.29 0.39 0.19 0.34

Average 18.64 20.42 149.36 149.69 148.94 144.89 153.78 139.36 143.72 0.03 0.09 0.44 0.46 0.45 0.37 0.49 0.30 0.35

95

Table 7. 7. (Cont’d) Performance Comparison of Algorithms on Medium Instances

with 15 Jobs for the EHFSP-V1

 IGD Distribution Spacing (DS)

Instance MILP CP EHFRN EHFR EHFN E IG IGALL VBIH MILP CP EHFRN EHFR EHFN E IG IGALL VBIH

j15c5a1 4.46 4.28 0.55 0.53 0.49 0.63 0.49 0.67 0.64 0.15 0.17 1.15 1.07 1.12 1.14 1.06 1.10 1.11

j15c5a2 4.68 3.68 0.23 0.21 0.21 0.33 0.14 0.37 0.28 0.32 0.20 1.17 1.29 1.27 1.25 1.20 1.17 1.28

j15c5a3 4.22 3.52 0.44 0.37 0.33 0.49 0.30 0.54 0.55 0.25 0.25 1.06 1.13 1.15 1.11 1.13 1.08 1.05

j15c5a4 4.53 3.92 0.29 0.46 0.44 0.56 0.32 0.73 0.53 0.32 0.20 0.98 1.02 1.03 0.92 1.02 0.95 0.97

j15c5a5 4.39 4.38 0.47 0.39 0.46 0.53 0.28 0.54 0.55 0.16 0.19 1.15 1.13 1.18 1.28 1.26 1.13 1.20

j15c5a6 4.47 4.10 0.23 0.23 0.30 0.34 0.18 0.52 0.35 0.16 0.14 1.08 1.14 1.14 1.07 1.24 1.05 1.05

j15c5b1 4.53 4.08 0.08 0.06 0.06 0.11 0.06 0.23 0.13 0.19 0.16 1.32 1.42 1.29 1.27 1.36 1.26 1.25

j15c5b2 5.39 3.46 0.05 0.04 0.07 0.07 0.04 0.19 0.14 0.31 0.17 1.47 1.48 1.50 1.42 1.50 1.46 1.40

j15c5b3 3.89 3.85 0.05 0.03 0.05 0.07 0.03 0.17 0.09 0.19 0.18 1.38 1.41 1.40 1.44 1.39 1.30 1.43

j15c5b4 5.09 4.12 0.04 0.05 0.06 0.18 0.06 0.13 0.22 0.32 0.20 1.21 1.24 1.24 1.24 1.15 1.16 1.22

j15c5b5 5.48 3.62 0.06 0.07 0.05 0.15 0.03 0.25 0.19 0.22 0.14 1.41 1.41 1.35 1.31 1.36 1.30 1.32

j15c5b6 4.09 4.03 0.05 0.05 0.05 0.15 0.05 0.24 0.18 0.23 0.26 1.43 1.43 1.46 1.42 1.45 1.48 1.44

j15c5c1 9.13 4.51 1.31 1.25 1.07 1.19 1.38 1.51 1.35 0.43 0.22 0.99 0.89 1.00 1.11 1.11 1.01 0.95

j15c5c2 7.36 3.81 1.77 1.77 1.62 1.70 1.66 1.75 1.45 0.27 0.24 1.17 1.05 1.07 1.07 1.11 0.98 1.07

j15c5c3 9.31 4.10 1.13 1.03 1.18 1.26 1.23 1.61 1.18 0.28 0.39 1.22 1.02 1.24 1.07 1.14 1.13 1.01

j15c5c4 5.65 3.58 1.32 1.29 1.63 1.56 1.46 1.63 1.47 0.30 0.15 0.62 0.93 0.89 1.14 0.83 0.75 0.77

j15c5c5 8.01 5.76 1.12 1.43 1.16 1.23 1.27 1.62 1.35 0.44 0.44 1.03 1.00 0.96 0.91 0.93 1.21 1.03

j15c5c6 6.05 3.95 1.09 1.21 1.25 1.32 0.95 1.24 1.20 0.27 0.32 1.12 1.17 1.19 1.13 1.16 1.09 1.24

j15c5d1 4.44 3.85 0.25 0.17 0.21 0.25 0.12 0.34 0.35 0.12 0.10 0.97 1.03 1.01 0.94 0.95 0.94 0.94

j15c5d2 9.69 5.74 1.33 1.15 1.11 1.24 1.45 1.19 1.33 0.66 0.32 0.94 0.99 0.91 1.09 0.95 1.11 0.99

j15c5d3 9.39 5.89 1.38 1.51 1.23 1.97 1.44 1.55 1.74 0.31 0.32 1.09 1.03 0.93 1.11 0.97 0.97 0.85

j15c5d4 10.15 5.56 1.63 1.54 1.23 1.65 1.53 1.46 1.51 0.33 0.25 0.80 1.10 0.85 1.13 0.96 1.00 1.08

j15c5d5 10.35 4.10 1.50 1.36 1.11 1.42 1.27 1.42 1.54 0.88 0.17 0.84 0.90 0.99 0.86 0.82 1.09 0.88

j15c5d6 9.97 5.24 1.19 1.28 1.42 1.42 1.02 1.47 1.13 0.52 0.34 0.84 1.00 1.00 0.88 0.97 1.05 1.10

j15c10a1 9.04 7.53 0.11 0.22 0.19 0.28 0.16 0.51 0.35 0.25 0.19 1.66 1.70 1.62 1.64 1.71 1.64 1.81

j15c10a2 10.96 7.47 0.86 0.68 0.69 0.87 0.54 1.18 1.03 0.24 0.24 1.67 1.58 1.54 1.42 1.71 1.55 1.48

j15c10a3 12.50 7.53 0.70 0.73 0.79 0.88 0.51 1.11 1.17 0.34 0.15 1.35 1.27 1.25 1.33 1.35 1.24 1.23

j15c10a4 7.94 7.08 0.45 0.38 0.39 0.40 0.28 0.57 0.65 0.24 0.18 1.78 1.69 1.63 1.46 1.79 1.48 1.49

j15c10a5 17.59 7.50 1.17 0.75 0.75 1.21 0.94 1.26 1.39 0.55 0.24 1.45 1.42 1.35 1.29 1.58 1.42 1.26

j15c10a6 12.02 7.12 0.47 0.43 0.50 0.59 0.41 0.78 0.77 0.42 0.23 1.68 1.65 1.73 1.76 1.62 1.59 1.59

j15c10b1 9.10 7.15 0.59 0.64 0.72 0.78 0.60 0.99 0.80 0.31 0.17 1.64 1.64 1.58 1.52 1.68 1.82 1.58

j15c10b2 10.58 6.82 0.31 0.44 0.41 0.53 0.46 0.76 0.69 0.33 0.24 1.71 1.93 1.90 1.77 1.88 1.80 1.91

j15c10b3 10.79 7.88 0.53 0.59 0.65 0.75 0.43 0.79 0.69 0.19 0.20 1.60 1.65 1.79 1.60 1.75 1.69 1.54

j15c10b4 10.38 7.61 0.47 0.27 0.42 0.62 0.42 0.70 0.57 0.22 0.23 1.49 1.83 1.60 1.57 1.67 1.31 1.61

j15c10b5 10.38 9.53 0.97 0.95 0.96 1.29 0.92 1.31 1.17 0.34 0.19 1.58 1.60 1.42 1.48 1.51 1.40 1.49

j15c10b6 8.69 6.99 0.64 0.59 0.77 0.90 0.55 0.96 0.77 0.19 0.18 1.40 1.39 1.31 1.41 1.46 1.37 1.38

Average 7.91 5.37 0.69 0.67 0.67 0.80 0.64 0.90 0.82 0.31 0.22 1.26 1.30 1.27 1.27 1.30 1.25 1.25

96

Table 7. 8. p-values of Wilcoxon Signed-Rank Tests for Medium Instances with 15

Jobs for the EHFSP-V1

Pairs of Algorithms Cardinality Cp IGD DS Pairs of Algorithms Cardinality Cp IGD DS

MILP vs CP 0.00 0.00 0.00 0.00 EHFRN vs IG 0.01 0.00 0.02 0.05

MILP vs EHFRN 0.00 0.00 0.00 0.00 EHFRN vs IGALL 0.00 0.00 0.00 0.41

MILP vs EHFR 0.00 0.00 0.00 0.00 EHFRN vs VBIH 0.00 0.00 0.00 0.47

MILP vs EHFN 0.00 0.00 0.00 0.00 EHFR vs EHFN 0.68 0.37 0.63 0.16

MILP vs E 0.00 0.00 0.00 0.00 EHFR vs E 0.01 0.00 0.00 0.09

MILP vs IG 0.00 0.00 0.00 0.00 EHFR vs IG 0.01 0.02 0.06 0.96

MILP vs IGALL 0.00 0.00 0.00 0.00 EHFR vs IGALL 0.00 0.00 0.00 0.06

MILP vs VBIH 0.00 0.00 0.00 0.00 EHFR vs VBIH 0.00 0.00 0.00 0.01

CP vs EHFRN 0.00 0.00 0.00 0.00 EHFN vs E 0.03 0.00 0.00 0.35

CP vs EHFR 0.00 0.00 0.00 0.00 EHFN vs IG 0.02 0.01 0.24 0.15

CP vs EHFN 0.00 0.00 0.00 0.00 EHFN vs IGALL 0.00 0.00 0.00 0.09

CP vs E 0.00 0.00 0.00 0.00 EHFN vs VBIH 0.01 0.00 0.00 0.09

CP vs IG 0.00 0.00 0.00 0.00 E vs IG 0.00 0.00 0.00 0.11

CP vs IGALL 0.00 0.00 0.00 0.00 E vs IGALL 0.00 0.00 0.00 0.40

CP vs VBIH 0.00 0.00 0.00 0.00 E vs VBIH 0.43 0.13 0.38 0.48

EHFRN vs EHFR 0.57 0.24 0.28 0.20 IG vs IGALL 0.00 0.00 0.00 0.01

EHFRN vs EHFN 0.90 0.57 0.76 0.64 IG vs VBIH 0.00 0.00 0.00 0.04

EHFRN vs E 0.02 0.00 0.00 0.86 IGALL vs VBIH 0.04 0.00 0.00 0.97

Table 7.9 reports the results for E_EMHFRN (𝐸𝐻𝐹𝑅𝑁), E_EMHFR (𝐸𝐻𝐹𝑅),

E_EMHFN (𝐸𝐻𝐹𝑁), E_EM (𝐸), E_IG (𝐼𝐺), E_IGALL(𝐼𝐺𝐴𝐿𝐿) and E_VBIH (𝑉𝐵𝐼𝐻)

algorithms on large instances. Table 7.10 also reports the p-value results of the

Wilcoxon signed-rank tests for these instances. As shown in Table 7.9, ensembles of

metaheuristic algorithms generate more non-dominated solutions than E_IG, E_IGALL

and E_VBIH algorithms, which is also confirmed by the Wilcoxon signed-rank test

results reported in Table 7.10. Furthermore, E_EMHFRN finds 18%; E_EMHFN,

E_EMHFR and E_IG find 17%; E_VBIH finds 15%; E_EM finds 13%; and E_IGALL finds

10% of the reference solutions on the overall average. According to the p-value results

reported in Table 7.10, there is no statistically significant difference between the

E_EMHFRN, E_EMHFR , E_EMHFN and E_IG algorithms in terms of 𝐶𝑝 metric and they

perform statistically better than the E_EM and E_IGALL algorithms.

In terms of convergence, E_EMHFRN has the lowest IGD value in overall average,

whereas E_EMHFR, E_EMHFN, and E_EM also have small IGD values. It can be said

that ensembles of metaheuristic algorithms with HFR/HFN approaches outperform the

other metaheuristic algorithms in terms of IGD metric. This statement is also

97

consistent with the Wilcoxon signed-rank test results reported in Table 7.10. Note that,

E_EMHFRN, E_EMHFR and E_EMHFN algorithms are statistically equivalent in terms of

IGD metric. For the comparison between E_IG and E_EM algorithms on 𝐶𝑝 and IGD

metrics, the results are quite interesting. The E_IG algorithm outperforms the E_EM

algorithm in the Cp metric while the E_EM algorithm outperforms E_IG in the IGD

metric. This result indicates that the solution set of E_EM is closer to the reference

frontier while the E_IG algorithm has more reference solutions in its own frontier. In

terms of distribution spacing metric, all metaheuristic algorithms have low DS values,

which indicates even dispersions. Note that, in terms of DS metric, there is a

statistically significant difference between only E_EMHFRN vs. E_IG, E_EMHFRN vs.

E_IGALL, E_EMHFR vs. E_IG, E_EMHFN vs. E_EM, E_EMHFN vs. E_IG and E_EMHFN vs.

E_IGALL pairs.

98

Table 7. 9. Performance Comparison of Algorithms on Large Instances for the

EHFSP-V1

 Cardinality Ratio of Reference Solutions Found (Cp)

Instance EHFRN EHFR EHFN E IG IGALL VBIH EHFRN EHFR EHFN E IG IGALL VBIH

j30c5e1 129 124 124 119 99 107 103 0.12 0.14 0.07 0.17 0.24 0.13 0.12

j30c5e2 123 119 124 114 94 91 123 0.10 0.17 0.16 0.07 0.20 0.05 0.29

j30c5e3 128 137 137 111 115 115 127 0.18 0.15 0.14 0.14 0.21 0.15 0.15

j30c5e4 143 131 131 150 134 96 123 0.13 0.14 0.18 0.24 0.10 0.11 0.12

j30c5e5 140 133 130 117 119 122 130 0.12 0.17 0.16 0.13 0.24 0.19 0.07

j30c5e6 156 162 152 158 149 150 149 0.16 0.19 0.13 0.24 0.11 0.09 0.15

j30c5e7 147 152 111 117 139 142 151 0.11 0.09 0.34 0.15 0.17 0.02 0.19

j30c5e8 138 141 150 147 151 147 148 0.24 0.16 0.19 0.15 0.13 0.05 0.15

j30c5e9 136 144 159 140 137 119 144 0.11 0.15 0.12 0.13 0.24 0.12 0.12

j30c5e10 106 92 109 108 119 93 95 0.17 0.24 0.15 0.15 0.16 0.09 0.14

j40c5e1 152 141 150 137 147 131 130 0.15 0.12 0.12 0.13 0.21 0.08 0.26

j40c5e2 168 164 168 168 146 119 156 0.33 0.12 0.16 0.11 0.10 0.10 0.18

j40c5e3 148 165 150 154 124 112 140 0.23 0.13 0.22 0.20 0.07 0.09 0.12

j40c5e4 163 152 134 134 145 128 136 0.12 0.10 0.19 0.12 0.22 0.08 0.20

j40c5e5 157 118 153 147 130 100 142 0.18 0.22 0.11 0.12 0.22 0.11 0.12

j40c5e6 169 157 134 110 135 125 138 0.11 0.17 0.15 0.10 0.25 0.04 0.24

j40c5e7 147 164 139 157 137 102 138 0.17 0.13 0.11 0.12 0.12 0.08 0.32

j40c5e8 180 177 168 179 156 136 153 0.25 0.06 0.19 0.08 0.31 0.05 0.15

j40c5e9 214 220 185 205 194 180 182 0.21 0.19 0.21 0.06 0.16 0.06 0.19

j40c5e10 170 185 178 164 153 146 158 0.19 0.17 0.13 0.11 0.10 0.15 0.17

j50c5e1 194 200 237 214 167 166 160 0.15 0.40 0.22 0.08 0.07 0.09 0.07

j50c5e2 227 231 229 206 156 158 170 0.15 0.15 0.29 0.05 0.11 0.27 0.05

j50c5e3 218 223 229 206 186 174 191 0.21 0.16 0.18 0.09 0.20 0.08 0.11

j50c5e4 220 214 212 205 155 157 148 0.26 0.19 0.16 0.02 0.13 0.14 0.16

j50c5e5 194 177 197 164 165 123 151 0.23 0.20 0.22 0.08 0.17 0.11 0.08

j50c5e6 203 204 213 209 196 141 160 0.14 0.19 0.26 0.05 0.25 0.14 0.06

j50c5e7 171 185 168 150 131 127 131 0.22 0.29 0.18 0.17 0.06 0.09 0.14

j50c5e8 155 174 173 165 155 108 172 0.21 0.21 0.20 0.10 0.23 0.13 0.05

j50c5e9 185 166 140 142 139 99 116 0.18 0.15 0.31 0.10 0.13 0.13 0.10

j50c5e10 154 136 145 127 135 125 117 0.30 0.30 0.17 0.19 0.03 0.10 0.08

j60c5e1 243 203 206 203 136 145 164 0.20 0.19 0.21 0.15 0.17 0.05 0.18

j60c5e2 213 206 194 226 150 150 159 0.16 0.20 0.11 0.22 0.14 0.07 0.25

j60c5e3 169 185 154 190 154 114 123 0.19 0.13 0.27 0.14 0.08 0.05 0.23

j60c5e4 172 169 184 153 128 127 144 0.10 0.06 0.19 0.12 0.21 0.07 0.26

j60c5e5 205 198 211 206 192 148 152 0.19 0.12 0.11 0.11 0.25 0.13 0.15

j60c5e6 170 174 156 181 124 140 126 0.29 0.20 0.10 0.10 0.19 0.01 0.20

j60c5e7 210 200 194 202 171 182 169 0.14 0.14 0.16 0.28 0.15 0.07 0.07

j60c5e8 159 172 165 168 122 122 125 0.18 0.20 0.12 0.19 0.19 0.04 0.22

j60c5e9 185 169 171 200 175 109 141 0.16 0.16 0.12 0.14 0.24 0.11 0.13

j60c5e10 210 200 199 208 176 137 164 0.07 0.24 0.14 0.17 0.19 0.07 0.15

Average 171.78 169.10 166.58 164.03 145.90 130.33 143.73 0.18 0.17 0.17 0.13 0.17 0.10 0.15

99

Table 7. 9. (Cont’d) Performance Comparison of Algorithms on Large Instances for

the EHFSP-V1

 IGD Distribution Spacing (DS)

Instance EHFRN EHFR EHFN E IG IGALL VBIH EHFRN EHFR EHFN E IG IGALL VBIH

j30c5e1 11.07 12.94 12.23 12.85 17.15 22.49 27.78 0.95 0.94 0.84 1.03 0.95 1.04 1.57

j30c5e2 12.50 13.69 12.63 15.90 19.28 20.65 12.19 0.99 1.05 1.12 0.84 1.31 0.94 0.88

j30c5e3 12.20 11.08 13.82 15.11 13.85 23.81 16.23 1.04 0.99 1.09 0.80 1.09 1.23 1.41

j30c5e4 9.99 10.96 10.62 10.13 20.04 24.34 15.86 1.05 0.92 0.74 0.96 0.95 1.20 0.95

j30c5e5 11.64 12.15 11.65 14.14 11.93 14.12 17.88 0.86 1.02 0.87 0.96 0.98 0.99 1.04

j30c5e6 8.58 8.15 10.31 7.70 10.52 13.65 9.10 0.88 0.95 0.90 0.89 1.15 0.99 1.15

j30c5e7 10.98 10.30 9.18 11.85 11.86 22.61 10.04 0.94 0.90 0.85 0.91 0.95 1.23 1.07

j30c5e8 8.54 11.21 10.76 10.58 10.52 15.63 16.81 0.90 1.08 0.94 0.94 1.07 0.98 1.11

j30c5e9 11.12 11.26 11.16 12.02 8.97 22.00 13.07 0.93 0.85 1.09 1.10 1.09 0.98 0.92

j30c5e10 14.58 16.48 16.49 18.68 16.69 29.51 29.03 0.90 1.24 1.06 1.42 1.32 1.08 1.02

j40c5e1 12.32 13.07 13.04 17.90 27.43 55.86 46.43 1.05 0.89 0.84 1.36 1.43 1.15 1.85

j40c5e2 11.11 16.02 11.63 15.21 20.83 67.88 41.17 1.01 0.96 0.93 0.98 1.39 0.98 1.08

j40c5e3 17.68 18.21 17.71 14.26 50.68 74.46 36.52 1.09 1.31 1.13 1.09 1.30 1.02 1.13

j40c5e4 12.44 16.74 17.55 16.31 45.62 52.26 32.37 0.90 1.08 1.14 0.91 1.38 1.08 0.98

j40c5e5 16.05 17.63 14.10 16.02 25.85 51.32 42.65 1.18 0.88 0.95 1.02 0.97 1.30 1.04

j40c5e6 16.33 21.34 17.89 28.66 40.63 71.31 38.33 0.87 1.10 0.85 1.15 1.03 0.98 2.53

j40c5e7 20.83 14.24 17.15 18.34 42.21 71.72 28.55 0.91 1.11 1.01 1.12 1.08 0.92 0.93

j40c5e8 12.97 14.21 14.35 13.74 28.54 70.71 48.05 1.11 1.14 1.10 1.01 1.02 1.14 1.02

j40c5e9 8.74 10.40 9.93 12.25 22.93 59.20 35.53 0.94 1.05 0.90 0.97 1.12 1.07 1.16

j40c5e10 11.41 12.22 11.24 16.13 23.76 52.87 32.88 1.02 1.07 0.99 1.51 1.15 0.96 0.95

j50c5e1 13.99 9.58 15.59 20.33 95.16 85.08 82.35 1.02 1.07 1.16 1.20 0.99 1.10 1.02

j50c5e2 18.42 13.39 20.67 29.67 137.75 96.39 102.49 1.12 0.99 1.21 1.07 1.01 1.36 0.90

j50c5e3 19.93 14.76 14.80 31.44 65.90 114.85 68.21 1.09 0.98 1.05 1.19 1.02 1.21 0.94

j50c5e4 14.15 14.28 18.39 21.63 72.88 103.27 87.69 1.15 1.11 1.03 1.03 1.33 1.00 1.16

j50c5e5 19.41 13.01 20.27 23.93 61.70 110.27 85.25 1.02 0.89 1.00 1.53 1.25 1.31 1.11

j50c5e6 26.69 18.77 11.26 16.88 72.09 121.70 55.06 1.09 0.95 1.04 0.93 1.01 0.90 1.61

j50c5e7 19.70 15.01 25.48 16.34 90.44 114.15 107.11 1.01 1.02 0.96 1.01 1.02 1.12 0.98

j50c5e8 19.50 13.52 20.22 30.42 43.24 115.51 83.42 1.07 0.83 1.01 1.11 1.08 1.64 1.01

j50c5e9 13.67 17.91 13.29 28.28 100.02 115.39 121.56 1.19 1.05 1.07 1.70 1.13 1.35 1.03

j50c5e10 14.89 24.18 24.37 26.12 93.84 111.61 120.49 1.12 0.98 1.31 1.38 1.12 1.06 0.99

j60c5e1 18.57 26.54 19.95 38.96 152.46 146.75 123.07 0.88 0.95 0.94 0.95 1.27 1.18 1.10

j60c5e2 16.60 23.76 36.67 24.57 143.06 155.25 160.80 1.13 0.96 1.33 1.15 1.15 1.72 1.04

j60c5e3 38.24 27.19 39.02 28.43 139.23 250.27 225.73 0.90 1.40 0.87 1.09 1.26 0.76 1.00

j60c5e4 20.54 43.49 29.58 29.37 138.26 175.03 114.48 1.09 1.20 0.99 1.09 0.93 1.70 0.94

j60c5e5 16.56 22.46 22.85 26.17 107.62 172.91 157.29 1.13 1.03 0.98 1.22 0.99 1.12 1.03

j60c5e6 35.60 28.28 29.98 33.97 146.84 175.70 136.55 1.08 1.15 1.10 0.96 1.46 0.93 0.89

j60c5e7 25.25 20.14 26.18 24.24 139.38 188.07 168.53 1.03 0.92 1.02 1.00 1.41 1.15 1.09

j60c5e8 48.14 24.08 42.17 29.49 157.37 202.05 136.32 1.04 1.49 1.17 1.40 0.91 1.14 1.03

j60c5e9 28.89 54.61 26.65 27.60 87.17 211.01 176.90 1.78 1.12 1.07 1.02 1.21 0.95 1.38

j60c5e10 25.00 22.88 22.80 27.78 153.75 218.97 182.05 1.60 1.73 1.24 1.13 1.10 0.97 2.21

Average 17.62 18.00 18.59 20.84 66.69 95.52 76.15 1.05 1.06 1.02 1.10 1.13 1.12 1.16

100

Table 7. 10. p-values of Wilcoxon Signed-Rank Tests for Large Instances for the

EHFSP-V1

Pairs of Algorithms Cardinality Cp IGD DS Pairs of Algorithms Cardinality Cp IGD DS

EHFRN vs EHFR 0.34 0.56 0.79 0.86 EHFN vs E 0.30 0.01 0.01 0.05

EHFRN vs EHFN 0.07 0.69 0.08 0.53 EHFN vs IG 0.00 0.89 0.00 0.00

EHFRN vs E 0.02 0.00 0.00 0.14 EHFN vs IGALL 0.00 0.00 0.00 0.01

EHFRN vs IG 0.00 0.86 0.00 0.02 EHFN vs VBIH 0.00 0.28 0.00 0.10

EHFRN vs IGALL 0.00 0.00 0.00 0.01 E vs IG 0.00 0.03 0.00 0.51

EHFRN vs VBIH 0.00 0.11 0.00 0.25 E vs IGALL 0.00 0.00 0.00 0.81

EHFR vs EHFN 0.39 0.89 0.61 0.29 E vs VBIH 0.00 0.10 0.00 0.87

EHFR vs E 0.07 0.01 0.00 0.44 IG vs IGALL 0.00 0.00 0.00 0.61

EHFR vs IG 0.00 0.79 0.00 0.01 IG vs VBIH 0.64 0.40 0.04 0.31

EHFR vs IGALL 0.00 0.00 0.00 0.17 IGALL vs VBIH 0.00 0.00 0.00 0.67

EHFR vs VBIH 0.00 0.33 0.00 0.23

7.5 Small Instances for the EHFSP-V2

Table 7.11 reports the results of Cp, IGD and DS performance metrics for each

metaheuristic algorithm on the small-sized instances, where 𝐸2, 𝐼𝐺2, 𝐼𝐺2𝐴𝐿𝐿 and

𝑉𝐵𝐼𝐻2 represent E_EM2, E_IG2, E_IG2ALL and E_VBIH2 algorithms, respectively. As

shown in the table, E_IG2ALL finds 48%; E_VBIH2 finds 47%; E_EM2 finds 46%

and E_IG2 finds 43% of the Pareto-optimal solutions on the overall average. In terms

of convergence, E_IG2ALL is the best performer with 0.64 IGD value in overall average

whereas E_VBIH2 and E_EM2 also have very small (around 0.69) IGD values.

However, it can be said that all algorithms provide very close approximations to the

Pareto-optimal solution set P, as the maximum of their average IGD values is 0.78. In

terms of distribution spacing, solutions obtained by the metaheuristic algorithms are

evenly distributed due to their low DS values. Note that, E_VBIH2 has a slightly lower

DS value than the other algorithms. Finally, as the E_IG2ALL algorithm has higher Cp

and lower IGD values, it can be said that E_IG2ALL performs slightly better than the

other algorithms for these small instances.

101

Table 7. 11. Performance Comparison of Algorithms on Small Instances for the

EHFSP-V2

Instance

Cardinality
Ratio of Pareto-Optimal

 Solutions Found (Cp)
IGD Distribution Spacing (DS)

E2 IG2 IG2ALL VBIH2 E2 IG2 IG2ALL VBIH2 E2 IG2 IG2ALL VBIH2 E2 IG2 IG2ALL VBIH2

j5c5a2 74 73 74 76 0.16 0.17 0.21 0.18 0.90 1.03 1.08 0.98 4.19 3.05 5.26 3.53

j5c5a3 88 90 96 105 0.58 0.49 0.62 0.67 0.49 0.46 0.40 0.49 1.62 1.88 3.22 1.17

j5c5a4 102 99 103 108 0.56 0.55 0.57 0.59 0.45 0.56 0.45 0.43 1.26 2.36 0.89 0.56

j5c5a5 70 71 64 53 0.00 0.01 0.01 0.01 3.02 2.96 2.64 2.80 1.10 1.64 1.06 1.22

j5c5a6 103 96 101 96 0.80 0.77 0.81 0.74 0.17 0.25 0.15 0.25 0.59 1.43 1.22 1.06

j5c5b1 128 125 139 114 0.55 0.54 0.58 0.54 0.45 0.59 0.40 0.55 0.72 0.82 1.14 1.07

j5c5b2 114 104 107 105 0.54 0.48 0.55 0.52 0.50 0.66 0.38 0.48 2.42 1.10 1.25 0.85

j5c5b3 103 113 104 101 0.35 0.31 0.36 0.36 0.69 0.82 0.54 0.71 3.34 3.54 2.42 3.00

j5c5b4 104 96 103 108 0.48 0.47 0.48 0.52 0.48 0.58 0.46 0.44 0.91 0.93 0.79 0.91

j5c5b5 123 113 123 121 0.76 0.69 0.78 0.73 0.30 0.43 0.23 0.31 0.87 0.83 0.97 1.06

j5c5b6 115 103 123 117 0.46 0.42 0.46 0.47 0.48 0.67 0.47 0.47 0.94 1.24 1.35 0.90

j5c5c1 86 84 85 85 0.32 0.28 0.31 0.28 0.44 0.40 0.44 0.37 1.55 0.76 1.36 1.88

Average 100.83 97.25 101.83 99.08 0.46 0.43 0.48 0.47 0.70 0.78 0.64 0.69 1.63 1.63 1.74 1.43

7.6 Medium & Large Instances for the EHFSP-V2

As mentioned in the beginning of Section 7, for medium and large instances, the non-

dominated solution sets of time-limited MILP, time-limited CP and metaheuristic

algorithms are compared with each other in terms of the aforementioned cardinality,

Cp, IGD and DS metrics. As the Pareto-optimal solution sets (P) are not known for

these instances, the reference sets (R) are used in Cp and IGD metrics. Note that the

reference set includes only the high-quality non-dominated solutions, which are

obtained by selecting all the non-dominated solutions found by the four metaheuristic

algorithms, time-limited MILP and CP approaches.

In order to make the computational results statistically convincing, a series of Kruskal

Wallis tests is also conducted at the significance level of 𝛼 = 0.05. The Kruskal Wallis

test is a non-parametric test to determine if there are statistically significant differences

between two or more groups, i.e., there is a statistically significant difference between

at least one pair of groups. This test is employed to decide whether there is a

statistically significant difference between at least two solution approaches in terms of

a certain performance metric. Following a Kruskal Wallis test, the Dunn test is also

carried out on each pair of algorithms as a post-hoc analysis procedure. Namely, the

Dunn test is employed to make multiple pairwise comparisons, if there is a statistically

significant Kruskal Wallis result. For each pair of the algorithms, the results of the

Kruskal Wallis and Dunn tests are reported for all performance metrics.

102

Table 7.12 reports the results for the time-limited MILP (MILP), time-limited CP (CP),

E_EM2(𝐸2), E_IG2 (𝐼𝐺2), E_IG2ALL (𝐼𝐺2𝐴𝐿𝐿) and E_VBIH2 (𝑉𝐵𝐼𝐻2) algorithms on

medium instances with 10 jobs. Furthermore, Table 7.13 reports the results of

statistical tests for these instances. As shown in Table 7.12, each metaheuristic

algorithm finds approximately six times as many non-dominated solutions than the

time-limited MILP and CP, in exceptionally fewer computation times. The results of

statistical tests reported in Table 7.13 also confirm that all metaheuristics perform

significantly better than the MILP and CP in terms of the cardinality metric. Note that

there is no statistically significant difference between the metaheuristics in terms of

cardinality.

As shown in Table 7.12, E_IG2ALL finds 41%; E_IG2 finds 35%; E_EM2 and E_VBIH2

find 33%; time-limited CP finds 22%, and the time limited MILP finds 16% of the

reference solutions on the overall average. Note that, E_IG2ALL finds more than 80%

of the reference solutions for 10 out of 41 instances, where E_VBIH2 and E_EM2 find

at least 80% of the reference solutions for 8 instances; E_IG2 finds more than 80% of

the reference solutions for 5 instances. According to the results of statistical tests

reported in Table 7.13, there is a statistically significant difference between only pairs

of MILP-E_EM2, MILP-E_IG2 and MILP-E_IG2ALL in terms of 𝐶𝑝 metric.

In terms of convergence, E_IG2 (3.43) and E_EM2 (3.47) are the best performer ones

on the overall average, whereas other metaheuristic algorithms also have small IGD

values around 3.57. According to the results of the statistical tests reported in Table

7.13, there is no statistically significant difference between the solution methods in

terms of IGD metric for these instances with 10 jobs. For the comparison of

distribution spacing metric, time-limited MILP and CP approaches have smaller DS

values than the metaheuristic algorithms, which implies that the solutions generated

by MILP and CP approaches are spread more uniformly in their own discovered

frontiers. This statement is also consistent with the results of the statistical tests

reported in Table 7.13. This result is expected, as a constant ε level is used through the

augmented ε-constraint method in the time-limited MILP and CP approaches.

Nevertheless, the metaheuristic algorithms also have low DS values, indicating even

dispersions.

103

Table 7. 12. Performance Comparison of Algorithms on Medium Instances with 10

Jobs for the EHFSP-V2

Instance

Cardinality Ratio of Reference Solutions Found (Cp)

MILP CP E2 IG2 IG2ALL VBIH2 MILP CP E2 IG2 IG2ALL VBIH2

j10c5a2 18 19 139 120 130 117 0.09 0.17 0.80 0.77 0.80 0.81

j10c5a3 7 19 159 157 158 173 0.05 0.13 0.83 0.83 0.83 0.87

j10c5a4 21 20 158 164 166 168 0.14 0.13 0.82 0.79 0.88 0.86

j10c5a5 4 18 165 163 179 163 0.02 0.11 0.86 0.83 0.92 0.83

j10c5a6 21 19 141 140 144 146 0.16 0.15 0.84 0.82 0.86 0.85

j10c5b1 21 19 176 178 187 178 0.12 0.11 0.88 0.86 0.92 0.81

j10c5b2 5 21 143 144 151 148 0.04 0.17 0.79 0.78 0.82 0.86

j10c5b3 8 18 157 146 157 159 0.05 0.13 0.80 0.77 0.80 0.78

j10c5b4 19 21 147 149 155 150 0.13 0.15 0.76 0.68 0.75 0.68

j10c5b5 21 21 195 200 210 186 0.11 0.11 0.88 0.87 0.92 0.85

j10c5b6 20 20 155 160 159 160 0.13 0.13 0.79 0.79 0.83 0.76

j10c5c1 15 17 90 85 73 96 0.07 0.19 0.33 0.35 0.38 0.36

j10c5c2 14 15 85 88 87 86 0.06 0.15 0.23 0.21 0.32 0.37

j10c5c3 17 18 93 88 93 88 0.10 0.22 0.19 0.10 0.33 0.24

j10c5c4 16 16 74 80 65 73 0.06 0.17 0.30 0.30 0.47 0.36

j10c5c5 15 14 78 85 95 89 0.09 0.12 0.31 0.29 0.46 0.31

j10c5c6 15 16 83 90 78 69 0.08 0.17 0.16 0.19 0.41 0.30

j10c5d1 15 15 78 79 84 69 0.12 0.16 0.25 0.24 0.28 0.22

j10c5d2 16 16 68 82 67 69 0.13 0.18 0.15 0.17 0.27 0.27

j10c5d3 16 15 82 85 81 83 0.09 0.15 0.16 0.35 0.18 0.19

j10c5d4 16 20 92 97 83 87 0.08 0.23 0.30 0.44 0.21 0.17

j10c5d5 15 14 81 85 72 89 0.11 0.17 0.33 0.36 0.41 0.28

j10c5d6 16 15 76 74 73 75 0.06 0.15 0.21 0.32 0.37 0.26

j10c10a1 13 7 43 57 53 47 0.55 0.20 0.10 0.15 0.00 0.05

j10c10a2 14 11 70 66 63 63 0.41 0.59 0.00 0.00 0.00 0.00

j10c10a3 12 6 63 64 55 60 0.38 0.17 0.00 0.08 0.17 0.25

j10c10a4 11 8 40 49 50 59 0.33 0.17 0.04 0.21 0.25 0.04

j10c10a5 6 9 50 44 42 38 0.12 0.36 0.08 0.16 0.12 0.20

j10c10a6 16 5 54 53 42 60 0.65 0.13 0.17 0.09 0.00 0.00

j10c10b1 16 15 59 62 62 55 0.36 0.54 0.00 0.04 0.11 0.04

j10c10b2 9 14 74 83 83 65 0.06 0.40 0.00 0.11 0.31 0.17

j10c10b3 11 12 55 63 66 65 0.32 0.50 0.00 0.00 0.18 0.05

j10c10b4 9 11 72 83 56 71 0.08 0.42 0.17 0.25 0.08 0.00

j10c10b5 9 16 91 86 72 73 0.11 0.43 0.03 0.00 0.43 0.03

j10c10b6 15 10 61 79 77 65 0.39 0.39 0.17 0.04 0.00 0.04

j10c10c1 14 17 106 100 114 108 0.08 0.17 0.19 0.27 0.04 0.27

j10c10c2 15 15 94 88 71 92 0.02 0.26 0.04 0.15 0.45 0.08

j10c10c3 14 14 102 99 103 109 0.11 0.12 0.09 0.33 0.31 0.10

j10c10c4 15 16 116 106 92 101 0.08 0.13 0.27 0.20 0.27 0.05

j10c10c5 16 17 104 100 100 92 0.10 0.11 0.21 0.25 0.32 0.02

j10c10c6 18 19 87 105 100 93 0.15 0.30 0.15 0.09 0.26 0.04

Average 14.24 15.32 98.93 100.63 98.73 98.46 0.16 0.22 0.33 0.35 0.41 0.33

104

Table 7. 12. (Cont’d) Performance Comparison of Algorithms on Medium Instances

with 10 Jobs for the EHFSP-V2

Instance

IGD Distribution Spacing (DS)

MILP CP E2 IG2 IG2ALL VBIH2 MILP CP E2 IG2 IG2ALL VBIH2

j10c5a2 1.18 1.28 0.49 0.50 0.47 0.41 0.44 0.68 3.98 2.28 1.03 0.91

j10c5a3 3.84 1.19 0.35 0.39 0.32 0.35 0.71 0.49 8.16 2.80 1.56 1.24

j10c5a4 0.98 1.22 0.34 0.43 0.35 0.32 0.35 0.51 2.86 8.00 1.86 3.18

j10c5a5 6.25 1.62 0.23 0.30 0.19 0.27 0.31 0.75 2.89 4.39 2.00 1.66

j10c5a6 0.96 1.55 0.55 0.72 0.55 0.50 0.38 0.68 1.09 1.50 1.54 1.75

j10c5b1 0.96 1.60 0.27 0.26 0.24 0.33 0.30 0.70 1.40 6.40 8.52 3.48

j10c5b2 6.01 1.05 0.58 0.62 0.48 0.59 0.53 0.42 2.61 3.02 3.13 2.74

j10c5b3 5.55 1.96 0.68 0.68 0.65 0.68 0.60 0.51 2.37 3.13 2.09 3.85

j10c5b4 1.90 1.84 1.16 1.34 1.17 1.14 0.47 0.46 2.15 2.15 2.33 1.96

j10c5b5 1.13 1.13 0.30 0.33 0.28 0.30 0.29 0.29 8.26 2.06 1.07 7.49

j10c5b6 1.08 1.32 0.74 0.85 0.71 0.94 0.40 0.67 3.06 2.71 2.16 2.57

j10c5c1 3.41 2.71 1.31 1.50 2.52 1.13 1.32 0.45 1.80 1.42 1.20 1.59

j10c5c2 4.55 2.68 1.52 1.37 1.60 1.40 1.35 0.37 0.85 1.26 1.54 0.89

j10c5c3 4.31 2.59 2.25 1.96 2.77 2.65 1.01 0.47 1.14 1.01 1.11 1.24

j10c5c4 5.04 4.17 1.41 1.84 2.86 1.96 0.95 0.38 1.26 0.97 0.84 1.02

j10c5c5 4.08 2.91 0.97 1.01 1.06 0.98 0.40 0.43 1.09 1.46 1.81 1.13

j10c5c6 3.39 3.56 1.50 1.80 1.72 2.00 0.46 0.51 1.49 1.01 1.35 1.30

j10c5d1 3.28 3.55 2.50 2.17 2.75 2.42 0.10 0.42 0.82 0.98 1.48 1.07

j10c5d2 4.39 3.38 3.61 1.81 2.58 2.50 1.13 0.74 1.12 1.83 1.01 0.94

j10c5d3 4.17 2.56 1.72 1.61 1.81 1.91 1.09 0.54 1.25 0.81 1.86 1.13

j10c5d4 5.85 2.33 2.24 1.71 2.30 1.78 1.02 0.47 0.81 0.89 1.73 1.76

j10c5d5 4.64 4.59 1.54 1.49 2.69 2.11 0.80 0.11 1.14 0.99 1.12 1.08

j10c5d6 4.14 3.45 1.42 1.24 1.60 1.68 1.07 0.60 1.31 1.82 1.44 1.21

j10c10a1 1.69 6.28 6.02 6.11 7.63 6.40 0.32 0.77 2.60 2.61 1.55 1.53

j10c10a2 2.21 3.08 11.21 11.63 11.92 11.46 0.87 0.87 1.10 0.82 1.50 2.03

j10c10a3 4.40 8.75 7.39 6.32 6.28 6.04 0.81 1.38 2.35 1.45 1.35 0.98

j10c10a4 6.56 7.91 7.12 6.16 6.38 6.99 1.31 1.16 1.06 1.75 1.19 1.18

j10c10a5 6.54 5.84 5.85 6.29 5.92 5.41 0.66 1.09 1.40 2.07 1.27 1.10

j10c10a6 0.70 8.61 9.26 10.07 9.90 9.88 0.79 1.28 1.47 1.17 1.97 2.19

j10c10b1 1.91 2.90 10.97 10.87 10.02 11.17 0.68 1.53 1.71 2.19 1.80 1.57

j10c10b2 9.73 5.50 4.92 5.15 5.01 5.21 0.75 0.95 1.88 2.17 2.04 1.52

j10c10b3 3.59 3.01 7.86 8.17 7.98 7.80 0.34 0.71 1.62 2.68 1.66 2.21

j10c10b4 6.25 4.96 4.93 4.38 5.01 5.27 0.28 0.50 1.84 1.75 1.57 1.86

j10c10b5 5.89 5.14 5.88 5.56 4.81 5.47 0.25 0.73 2.13 2.06 1.94 1.60

j10c10b6 2.69 3.79 7.60 7.82 8.36 8.05 0.68 0.60 2.28 1.77 1.93 1.90

j10c10c1 13.25 6.11 2.91 3.03 4.29 3.42 0.92 0.74 1.37 1.32 1.27 1.24

j10c10c2 10.39 7.50 5.18 4.16 3.60 4.75 1.19 0.41 1.38 2.08 1.47 1.60

j10c10c3 11.17 10.15 3.79 3.61 5.43 5.45 0.98 0.86 1.41 1.58 1.01 1.00

j10c10c4 14.33 7.49 3.16 2.86 3.46 3.97 0.87 0.86 1.50 1.39 1.39 1.22

j10c10c5 11.36 7.70 4.40 3.27 2.86 3.59 1.29 0.70 1.12 2.00 1.58 2.33

j10c10c6 8.38 3.12 6.17 9.43 7.49 6.31 1.01 0.38 2.30 1.13 1.62 1.29

Average 4.93 3.95 3.47 3.43 3.61 3.54 0.72 0.66 2.03 2.07 1.75 1.79

105

Table 7. 13. Results of Statistical Tests for Medium Instances with 10 Jobs for the

EHFSP-V2

 Cardinality Cp IGD DS

p-value of Kruskal Wallis Test 0.00 0.00 0.09 0.00

Pairwise Comparisons

MILP vs CP N N - N

MILP vs E2 Y Y - Y

MILP vs IG2 Y Y - Y

MILP vs IG2ALL Y Y - Y

MILP vs VBIH2 Y N - Y

CP vs E2 Y N - Y

CP vs IG2 Y N - Y

CP vs IG2ALL Y N - Y

CP vs VBIH2 Y N - Y

E2 vs IG2 N N - N

E2 vs IG2ALL N N - N

E2 vs VBIH2 N N - N

IG2 vs IG2ALL N N - N

IG2 vs VBIH2 N N - N

IG2ALL vs VBIH2 N N - N

Y: significant (p-value ≤ 0.05) N: not significant (p-value > 0.05)

Table 7.14 reports the results for each solution approach on the medium instances with

15 jobs. Furthermore, Table 7.15 reports the results of statistical tests for these

instances. As shown in Table 7.14, each metaheuristic algorithm finds approximately

eight times as many non-dominated solutions than the time-limited MILP and CP, in

very short computation times. The statistical results reported in Table 7.15 also

confirm that all metaheuristics perform significantly better than the MILP and CP in

terms of the cardinality metric.

As shown in Table 7.14, E_IG2ALL finds 48%; E_IG2 finds 47%; E_EM2 finds 44%;

E_VBIH2 finds 34%; time-limited CP finds 17%, and the time limited MILP finds 6%

of the reference solutions on the overall average. Note that, E_IG2ALL, E_IG2 and

E_EM2 find more than 80% of the reference solutions for 12 out of 36 instances, where

E_VBIH2 finds at least 80% of the reference solutions for 9 instances. According to

the results of statistical tests reported in Table 7.15, all metaheuristics perform

significantly and statistically better than the MILP in terms of 𝐶𝑝 metric. Note that,

E_IG2ALL and E_IG2 algorithms are statistically equivalent in terms of 𝐶𝑝 metric and

they perform statistically better than the MILP, CP and E_VBIH2.

106

In terms of proximity to the reference frontier, E_IG2 (3.01), E_EM2 (3.15) and

E_IG2ALL (3.26) are the closest ones in overall average, whereas E_VBIH2 also has

small IGD value (3.73). According to the results of statistical tests reported in Table

7.15, all metaheuristic algorithms outperform the time limited MILP and CP

approaches statistically in terms of IGD metric. Note that all metaheuristic algorithms

are statistically equivalent in terms of IGD metric for these instances with 15 jobs. In

terms of the spread of the solutions, even though metaheuristic algorithms have low

DS values, time-limited MILP and CP approaches have smaller DS values than these

algorithms due to the usage of a constant ε level. This statement is also consistent with

the results of statistical tests reported in Table 7.15.

Consequently, it is clear from Tables 7.12 and 7.14, E_IG2ALL and E_IG2 perform

better than the other metaheuristic algorithms for these medium instances, due to their

higher Cp and lower IGD values. Nevertheless, all metaheuristic algorithms perform

much better than the time-limited MILP and CP approaches, in terms of both

cardinality and proximity to the reference set, as expected.

107

Table 7. 14. Performance Comparison of Algorithms on Medium Instances with 15

Jobs for the EHFSP-V2

Instance

Cardinality Ratio of Reference Solutions Found (Cp)

MILP CP E2 IG2 IG2ALL VBIH2 MILP CP E2 IG2 IG2ALL VBIH2

j15c5a1 20 18 229 224 226 214 0.09 0.08 0.82 0.79 0.82 0.79

j15c5a2 20 18 214 219 222 219 0.08 0.09 0.88 0.88 0.90 0.87

j15c5a3 21 16 181 171 178 168 0.11 0.10 0.83 0.83 0.84 0.77

j15c5a4 15 17 201 201 207 200 0.05 0.09 0.86 0.83 0.83 0.77

j15c5a5 22 19 215 219 213 216 0.11 0.09 0.87 0.86 0.92 0.85

j15c5a6 4 20 227 215 233 222 0.01 0.09 0.86 0.88 0.92 0.83

j15c5b1 20 21 222 229 220 214 0.07 0.10 0.85 0.86 0.89 0.82

j15c5b2 20 20 192 205 205 200 0.08 0.11 0.85 0.84 0.86 0.84

j15c5b3 6 21 206 207 203 203 0.03 0.12 0.83 0.80 0.88 0.80

j15c5b4 11 8 179 189 186 188 0.05 0.05 0.81 0.84 0.84 0.82

j15c5b5 14 20 203 207 212 194 0.04 0.12 0.80 0.81 0.87 0.83

j15c5b6 20 21 215 226 219 219 0.09 0.10 0.85 0.85 0.88 0.84

j15c5c1 15 15 102 101 94 83 0.05 0.19 0.44 0.21 0.13 0.11

j15c5c2 15 13 88 100 95 94 0.04 0.19 0.00 0.26 0.54 0.00

j15c5c3 13 14 98 102 98 91 0.00 0.14 0.48 0.21 0.25 0.10

j15c5c4 14 14 100 90 109 81 0.08 0.09 0.14 0.32 0.34 0.14

j15c5c5 16 16 94 98 79 91 0.00 0.17 0.24 0.28 0.28 0.28

j15c5c6 16 18 106 125 111 109 0.09 0.23 0.33 0.23 0.31 0.18

j15c5d1 18 16 223 239 233 220 0.06 0.05 0.76 0.81 0.77 0.75

j15c5d2 14 15 94 104 96 87 0.03 0.17 0.23 0.37 0.23 0.11

j15c5d3 13 19 89 79 95 77 0.00 0.15 0.32 0.45 0.01 0.13

j15c5d4 16 17 101 107 83 92 0.03 0.15 0.23 0.15 0.39 0.13

j15c5d5 16 17 102 105 87 89 0.00 0.18 0.28 0.33 0.31 0.08

j15c5d6 16 18 84 85 88 86 0.03 0.15 0.14 0.35 0.30 0.07

j15c10a1 10 10 67 57 47 52 0.15 0.77 0.00 0.00 0.08 0.00

j15c10a2 7 9 72 85 74 79 0.05 0.41 0.00 0.32 0.23 0.00

j15c10a3 10 8 67 72 70 64 0.05 0.36 0.09 0.23 0.14 0.14

j15c10a4 6 4 53 69 67 73 0.00 0.19 0.14 0.19 0.48 0.00

j15c10a5 6 7 76 63 81 74 0.05 0.15 0.15 0.35 0.30 0.03

j15c10a6 9 5 74 78 73 76 0.00 0.24 0.05 0.24 0.52 0.00

j15c10b1 8 6 47 46 53 49 0.15 0.19 0.26 0.22 0.19 0.00

j15c10b2 7 5 59 52 43 30 0.07 0.18 0.29 0.29 0.14 0.07

j15c10b3 5 3 40 42 40 37 0.06 0.09 0.16 0.38 0.22 0.13

j15c10b4 6 3 42 44 53 39 0.11 0.07 0.15 0.26 0.41 0.04

j15c10b5 6 6 55 61 63 62 0.05 0.16 0.54 0.08 0.19 0.00

j15c10b6 6 5 52 53 60 53 0.09 0.15 0.24 0.45 0.06 0.00

Average 12.81 13.39 124.14 126.92 125.44 120.69 0.06 0.17 0.44 0.47 0.48 0.34

108

Table 7. 14. (Cont’d) Performance Comparison of Algorithms on Medium Instances

with 15 Jobs for the EHFSP-V2

Instance

IGD Distribution Spacing (DS)

MILP CP E2 IG2 IG2ALL VBIH2 MILP CP E2 IG2 IG2ALL VBIH2

j15c5a1 1.85 2.61 0.78 0.83 0.83 0.77 0.36 0.71 2.94 2.27 2.25 1.65

j15c5a2 1.55 2.34 0.35 0.39 0.33 0.33 0.28 0.75 1.87 1.33 2.33 1.13

j15c5a3 1.01 2.88 0.55 0.61 0.54 0.51 0.37 0.79 2.37 1.84 2.48 1.70

j15c5a4 2.46 3.52 0.56 0.61 0.57 0.58 0.71 1.07 3.29 2.08 2.22 3.68

j15c5a5 1.23 2.06 0.39 0.45 0.33 0.42 0.38 0.70 2.23 2.45 1.93 2.22

j15c5a6 9.85 1.66 0.35 0.33 0.34 0.40 0.34 0.46 2.11 2.47 2.15 2.35

j15c5b1 1.50 1.32 0.62 0.63 0.53 0.64 0.39 0.32 2.67 2.53 2.41 2.76

j15c5b2 1.73 1.73 0.83 0.85 0.75 0.85 0.50 0.55 3.09 2.09 2.39 2.92

j15c5b3 8.79 1.50 0.76 0.81 0.69 0.82 0.90 0.40 2.68 8.11 2.35 2.40

j15c5b4 3.18 5.74 0.54 0.55 0.54 0.54 1.06 0.69 1.94 3.44 2.56 2.73

j15c5b5 2.41 2.58 0.94 0.95 0.86 0.87 0.36 0.63 3.14 2.77 2.65 1.70

j15c5b6 1.56 1.41 0.81 0.87 0.72 0.78 0.35 0.35 4.18 2.37 3.00 2.35

j15c5c1 8.84 4.46 2.01 3.35 3.16 3.39 0.68 0.58 1.53 1.34 0.80 1.12

j15c5c2 8.75 5.89 3.43 3.18 2.72 3.31 0.94 0.74 1.31 0.94 1.18 1.22

j15c5c3 10.62 4.87 2.42 1.37 2.11 1.62 1.45 1.47 1.58 1.41 1.05 1.59

j15c5c4 9.92 4.48 2.70 2.57 2.84 2.76 0.68 1.27 1.23 1.01 1.34 1.53

j15c5c5 8.32 4.85 1.46 1.16 1.91 1.46 0.80 1.04 1.05 0.98 1.09 1.42

j15c5c6 5.79 4.07 3.51 4.34 3.16 4.90 0.93 1.19 1.00 1.12 1.63 1.24

j15c5d1 1.68 6.28 0.45 0.44 0.45 0.39 0.33 1.51 1.79 1.29 2.30 1.91

j15c5d2 9.41 5.12 2.24 1.66 2.96 2.72 0.79 0.97 1.14 2.00 1.13 0.65

j15c5d3 11.83 4.01 2.01 2.13 2.88 2.32 0.76 0.77 1.44 1.05 1.31 1.54

j15c5d4 10.43 4.34 1.96 1.80 1.89 2.39 1.29 0.75 0.86 1.10 1.39 0.88

j15c5d5 10.67 3.83 2.07 1.85 2.35 2.80 1.25 0.70 1.09 1.53 1.14 0.73

j15c5d6 10.26 4.20 2.79 2.81 2.31 2.20 1.27 0.87 1.26 1.21 0.95 0.99

j15c10a1 6.86 1.80 22.10 21.74 20.31 22.95 0.50 1.74 1.57 1.63 1.29 1.50

j15c10a2 17.46 7.79 9.34 8.41 7.76 10.66 1.62 0.48 1.36 1.51 1.74 2.03

j15c10a3 14.92 8.66 6.94 6.32 7.30 8.26 1.81 0.48 1.58 1.27 1.99 1.58

j15c10a4 13.46 13.46 5.69 4.60 4.12 7.55 1.77 0.31 1.46 1.64 1.63 1.55

j15c10a5 14.53 8.73 3.83 3.20 3.09 5.43 1.43 0.56 1.77 1.73 2.26 1.64

j15c10a6 20.45 13.35 4.71 4.28 3.76 5.67 1.03 0.30 1.61 1.21 1.59 1.78

j15c10b1 11.04 16.27 5.70 4.94 7.34 7.85 0.64 0.69 1.28 1.25 1.54 1.15

j15c10b2 18.92 17.06 3.71 3.84 5.61 6.10 0.73 0.56 1.13 2.62 2.29 0.97

j15c10b3 18.61 24.18 3.02 3.07 3.04 4.62 0.63 0.79 1.20 1.18 1.19 2.33

j15c10b4 14.61 21.28 3.64 3.27 2.65 4.42 1.38 0.64 0.98 1.70 1.24 1.04

j15c10b5 19.19 23.13 6.46 6.52 10.65 6.91 0.79 1.43 1.66 2.19 1.12 2.27

j15c10b6 20.29 14.97 3.83 3.68 5.99 6.04 1.49 0.44 1.56 2.24 1.44 0.80

Average 9.28 7.12 3.15 3.01 3.26 3.73 0.86 0.77 1.80 1.91 1.76 1.70

109

Table 7. 15. Results of Statistical Tests for Medium Instances with 15 Jobs for the

EHFSP-V2

 Cardinality Cp IGD DS

p-value of Kruskal Wallis Test 0.00 0.00 0.00 0.00

Pairwise Comparisons

MILP vs CP N Y N N

MILP vs E2 Y Y Y Y

MILP vs IG2 Y Y Y Y

MILP vs IG2ALL Y Y Y Y

MILP vs VBIH2 Y Y Y Y

CP vs E2 Y Y Y Y

CP vs IG2 Y Y Y Y

CP vs IG2ALL Y Y Y Y

CP vs VBIH2 Y N Y Y

E2 vs IG2 N N N N

E2 vs IG2ALL N N N N

E2 vs VBIH2 N N N N

IG2 vs IG2ALL N N N N

IG2 vs VBIH2 N Y N N

IG2ALL vs VBIH2 N Y N N

Y: significant (p-value ≤ 0.05) N: not significant (p-value > 0.05)

Table 7.16 reports the results for E_EM2 (𝐸2), E_IG2 (𝐼𝐺2), E_IG2ALL(𝐼𝐺2𝐴𝐿𝐿) and

E_VBIH2 (𝑉𝐵𝐼𝐻2) algorithms on large instances. Furthermore, Table 7.17 reports the

results of statistical tests for these instances. As shown in Table 7.16, E_IG2 and

E_EM2 algorithms generate more non-dominated solutions than E_IG2ALL and

E_VBIH2 algorithms. According to the results of statistical tests reported in Table 7.17,

E_IG2 outperforms the E_IG2ALL and E_VBIH2 algorithms statistically in terms of

cardinality. Furthermore, E_IG2 finds 48%; E_IG2ALL finds 20%; E_EM2 finds 17%,

and E_VBIH2 finds 16% of the reference solutions on the overall average. According

to the results of statistical tests reported in Table 7.17, E_IG2 outperforms the other

metaheuristics statistically in terms of 𝐶𝑝 metric.

In terms of convergence, E_IG2 has the lowest IGD value in overall average, whereas

E_IG2ALL and E_EM2 also have small IGD values. As shown in Table 7.17, all the

pairwise differences are statistically significant at the 𝛼 = 0.05 level in terms of IGD

metric, except the E_IG2ALL - E_EM2 pair. It can be said that the E_IG2 algorithm

outperforms the other metaheuristic algorithms in terms of both Cp and IGD metrics.

In terms of distribution spacing metric, all metaheuristic algorithms have low DS

values, which indicates even dispersions. This statement is also consistent with the

results of the statistical tests reported in Table 7.17.

110

Table 7. 16. Performance Comparison of Algorithms on Large Instances for the

EHFSP-V2

Instance

Cardinality Ratio of Reference Solutions Found (Cp)

E2 IG2 IG2ALL VBIH2 E2 IG2 IG2ALL VBIH2

j30c5e1 123 124 124 121 0.18 0.72 0.07 0.04

j30c5e2 99 111 103 94 0.17 0.54 0.24 0.05

j30c5e3 111 130 116 111 0.08 0.36 0.48 0.08

j30c5e4 134 141 136 136 0.08 0.57 0.15 0.22

j30c5e5 113 145 106 93 0.11 0.65 0.15 0.13

j30c5e6 144 151 133 117 0.19 0.72 0.02 0.06

j30c5e7 127 140 142 132 0.19 0.44 0.20 0.19

j30c5e8 135 151 133 110 0.19 0.61 0.12 0.11

j30c5e9 147 161 149 135 0.12 0.62 0.14 0.12

j30c5e10 151 158 121 127 0.15 0.59 0.17 0.10

j40c5e1 123 139 120 100 0.12 0.55 0.26 0.08

j40c5e2 117 149 135 126 0.15 0.39 0.26 0.21

j40c5e3 89 120 119 108 0.19 0.51 0.20 0.12

j40c5e4 145 154 119 136 0.11 0.44 0.35 0.11

j40c5e5 132 147 101 106 0.07 0.64 0.21 0.07

j40c5e6 123 157 142 119 0.28 0.39 0.22 0.11

j40c5e7 145 147 152 145 0.05 0.79 0.06 0.10

j40c5e8 138 164 139 140 0.09 0.55 0.21 0.16

j40c5e9 157 176 146 140 0.10 0.68 0.14 0.12

j40c5e10 136 169 118 131 0.23 0.55 0.07 0.14

j50c5e1 199 197 182 174 0.12 0.58 0.11 0.20

j50c5e2 183 158 160 181 0.21 0.41 0.25 0.15

j50c5e3 196 202 211 172 0.12 0.45 0.35 0.09

j50c5e4 193 187 156 159 0.07 0.32 0.41 0.20

j50c5e5 128 166 133 137 0.23 0.42 0.17 0.18

j50c5e6 160 186 145 140 0.16 0.34 0.23 0.28

j50c5e7 148 154 142 122 0.18 0.31 0.32 0.20

j50c5e8 128 155 114 135 0.26 0.46 0.24 0.07

j50c5e9 144 140 133 142 0.25 0.46 0.27 0.05

j50c5e10 101 122 112 106 0.15 0.26 0.36 0.25

j60c5e1 135 124 116 136 0.36 0.42 0.08 0.14

j60c5e2 189 212 196 201 0.21 0.63 0.09 0.08

j60c5e3 116 135 106 112 0.28 0.20 0.27 0.28

j60c5e4 146 200 158 173 0.13 0.50 0.18 0.19

j60c5e5 195 159 153 147 0.08 0.55 0.24 0.15

j60c5e6 106 117 128 138 0.14 0.23 0.14 0.50

j60c5e7 127 140 143 100 0.41 0.30 0.15 0.15

j60c5e8 145 134 134 130 0.30 0.24 0.10 0.36

j60c5e9 134 139 130 123 0.11 0.55 0.13 0.21

j60c5e10 194 182 180 169 0.14 0.31 0.22 0.33

Average 141.40 153.58 137.15 133.10 0.17 0.48 0.20 0.16

111

Table 7. 16. (Cont’d) Performance Comparison of Algorithms on Large Instances

for the EHFSP-V2

Instance

IGD Distribution Spacing (DS)

E2 IG2 IG2ALL VBIH2 E2 IG2 IG2ALL VBIH2

j30c5e1 12.28 5.36 15.83 22.45 1.09 1.10 1.50 1.57

j30c5e2 16.77 9.89 10.94 22.18 1.24 1.90 1.18 0.92

j30c5e3 20.45 13.37 10.44 25.70 1.33 1.18 0.97 1.19

j30c5e4 12.77 11.39 19.05 10.40 1.43 1.10 1.58 1.25

j30c5e5 19.46 7.80 16.07 27.05 1.37 1.30 1.40 1.16

j30c5e6 11.25 5.31 16.68 18.52 1.40 1.20 1.69 1.50

j30c5e7 12.38 10.04 11.46 20.32 1.22 2.04 1.40 1.33

j30c5e8 14.32 5.10 15.27 23.11 1.01 1.58 1.01 1.30

j30c5e9 11.52 7.17 12.46 15.43 1.05 1.26 1.83 1.32

j30c5e10 13.68 7.74 17.44 18.11 1.61 1.92 1.97 1.25

j40c5e1 19.11 8.45 14.06 33.67 1.35 1.67 1.38 1.14

j40c5e2 15.11 11.27 11.85 16.14 1.01 1.15 0.97 1.49

j40c5e3 28.19 8.90 22.13 28.32 1.63 1.47 1.80 1.33

j40c5e4 29.40 11.15 29.16 24.82 1.29 1.30 1.40 1.54

j40c5e5 20.57 5.45 25.36 32.98 1.59 1.37 1.19 1.20

j40c5e6 12.26 7.67 13.15 19.02 1.22 1.46 1.22 1.13

j40c5e7 22.72 4.86 19.73 26.28 1.08 1.52 1.22 1.22

j40c5e8 20.87 8.73 17.71 30.57 1.12 1.25 1.27 1.45

j40c5e9 20.61 6.62 34.76 30.17 1.27 1.25 1.49 1.21

j40c5e10 15.65 8.76 24.15 28.22 1.04 1.20 0.93 1.11

j50c5e1 19.72 3.91 21.81 21.50 1.07 1.13 1.23 1.08

j50c5e2 12.85 13.66 22.69 18.89 1.03 1.93 0.97 1.24

j50c5e3 18.56 16.71 11.39 28.85 1.33 0.96 1.18 1.07

j50c5e4 15.69 13.94 16.56 23.27 0.93 1.12 1.44 1.42

j50c5e5 31.49 16.07 24.35 39.41 1.05 1.48 1.42 0.93

j50c5e6 21.98 11.81 21.38 25.90 1.60 1.34 0.95 0.87

j50c5e7 23.55 16.51 19.12 49.40 1.22 1.58 0.99 1.03

j50c5e8 19.35 10.45 19.65 24.49 1.05 1.30 1.34 1.15

j50c5e9 16.37 11.52 19.23 29.32 1.33 1.15 1.30 1.34

j50c5e10 19.86 16.29 36.87 42.95 1.36 1.21 0.85 1.09

j60c5e1 24.98 12.91 32.24 36.28 0.97 1.36 1.82 1.13

j60c5e2 21.54 5.60 16.88 25.22 1.34 1.05 1.00 1.35

j60c5e3 17.86 22.54 19.99 24.57 1.28 0.93 1.17 0.95

j60c5e4 29.99 9.13 16.24 24.37 1.02 1.32 1.03 1.10

j60c5e5 21.25 9.14 15.28 25.92 1.03 1.24 1.28 1.03

j60c5e6 36.09 28.42 22.98 18.15 0.92 1.00 1.14 1.91

j60c5e7 13.14 15.86 18.98 49.27 1.25 1.23 1.27 1.15

j60c5e8 27.18 20.78 23.80 32.69 1.26 1.15 1.04 1.27

j60c5e9 27.15 9.02 24.59 57.56 1.21 1.11 1.12 1.09

j60c5e10 18.72 14.92 18.06 21.48 1.11 1.12 1.30 1.29

Average 19.67 11.11 19.49 27.32 1.22 1.32 1.28 1.23

112

Table 7. 17. Results of Statistical Tests for Large Instances for the EHFSP-V2

 Cardinality Cp IGD DS

p-value of Kruskal Wallis Test 0.00 0.00 0.00 0.38

Pairwise Comparisons

E2 vs IG2 N Y Y -

E2 vs IG2ALL N N N -

E2 vs VBIH2 N N Y -

IG2 vs IG2ALL Y Y Y -

IG2 vs VBIH2 Y Y Y -

IG2ALL vs VBIH2 N N Y -

Y: significant (p-value ≤ 0.05) N: not significant (p-value > 0.05)

113

CHAPTER 8

CONCLUSION

Hybrid flowshop is a well-known extension of the basic flowshop layout, where there

exist several parallel machines in certain stages. Hybrid flowshop layout is widely used

in real-life production environments since it increases the total manufacturing capacity

by decreasing the impact of bottleneck stages. For hybrid flowshops, makespan is the

most common and main performance criterion to increase the utilization of resources

and obtain high throughput. However, minimizing energy consumption is also an

important issue for manufacturing companies due to a series of environmental effects

and increasing energy costs. Hence, in this thesis, the energy-efficient hybrid flowshop

scheduling problem was addressed to minimize the makespan and the total energy

consumption.

In this thesis, energy efficiency was studied from an operational planning perspective

for the hybrid flowshops by employing a speed-scaling strategy. In many real-life

production environments, machines can operate at multiple speed levels. Hence, the

speed-scaling strategy operates the existing machinery regarding their energy

consumption by simply adjusting the machine speeds for job operations. Since there

is no need for installing additional expensive energy-efficient machinery, the speed

scaling strategy is applicable to many real-life production environments, including

small and medium-sized enterprises. Incorporating energy efficiency into the hybrid

flowshop scheduling in such a way can directly help to decrease the total energy

consumption during the manufacturing process and reduce the resulting environmental

effects.

Consequently, the motivation of this thesis is to develop effective optimization

methods to address the trade-off between the two important performance criteria, i.e.,

the makespan and the total energy consumption, in the hybrid flowshop environments

by employing a practical speed-scaling strategy. Lack of fundamental mathematical

models and related solution methods for the problem are remarkable gaps in the current

literature that needs to be filled. This thesis aims to fill this research gap by presenting

114

new exact and heuristic solution methods for the EHFSP with the makespan and TEC

criteria that employs speed scaling strategy.

In this thesis, two practical variants of the speed scaling strategy were considered. In

the first variant of the EHFSP (EHFSP-V1), speed-scaling is taken to be job-based due

to its simplicity and tractability; that is, the same speed level is employed for a certain

job through all stages. On the other hand, in the second variant of the EHFSP (EHFSP-

V2), the job-based speed scaling strategy assumption is relaxed, and it is assumed that

the speed of a job can vary from stages to stages. Since the speed levels create a

contradiction between the makespan and energy consumption criteria, bi-objective

exact and heuristic solution methods were proposed for these two variants of the

problem in this thesis. Namely, a new bi-objective MILP model, a new bi-objective

CP model and seven new bi-objective metaheuristics were proposed for the EHFSP-

V1 that employs a job-based speed scaling strategy. Then, these solution methods were

extended with several modifications for the EHFSP-V2 that employs a matrix-based

speed scaling strategy. Subsequently, a new bi-objective MILP model, a new bi-

objective CP model and four new bi-objective metaheuristics were proposed for the

EHFSP-V2.

In this thesis, new benchmark instances were also developed for the EHFSP by

modifying the well-known HFSP benchmark set from the literature (Carlier and Neron,

2000; Liao et al., 2012; Öztop et al., 2019). Then, the performance evaluation of the

proposed solution methods was made using this extensive set of benchmarks in terms

of cardinality, diversity and closeness of the generated solutions.

As mentioned above, this thesis introduced new bi-objective MILP and CP models for

both EHFSP-V1 and EHFSP-V2 to provide fundamental mathematical models for the

studied problem. Then, the augmented ε-constraint method was used to solve the

proposed bi-objective MILP and CP models, as an exact solution methodology.

Namely, for small instances, the proposed MILP and CP models were solved through

the augmented ε-constraint method without a time limit to obtain the Pareto-optimal

solutions. Since the problem is NP-hard and the solution time grows exponentially, the

sets of non-dominated solutions were obtained with augmented ε-constraint method

under a time limit for larger instances. The computational results in Chapter 7

demonstrated that the exact Pareto-optimal solution sets could be obtained for small

115

instances in reasonable computational times, by employing the proposed bi-objective

MILP and CP models, especially for the EHFSP-V1.

To the best of our knowledge, this thesis presented a constraint programming approach

to the EHFSP for the first time in the literature. In the literature, CP has been

successfully applied to various single-objective scheduling problems, and it has

become an important competitor to the state-of-the-art MILP technique. This thesis

further applied the CP technique to the HFSP in a multi-objective optimization

framework. The results in Chapter 7 showed that the CP performs much better than

the MILP for both EHFSP-V1 and EHFSP-V2 in terms of the solution quality. Hence,

this thesis also revealed the effectiveness of CP for solving such a complex bi-

objective hybrid flowshop scheduling problem.

As mentioned above, due to the NP-hard nature of the problem, seven bi-objective

metaheuristics were proposed for the EHFSP-V1, which are two variants of the IG

algorithm (E_IG, E_IGALL), a VBIH algorithm (E_VBIH) and four variants of the

ensemble of metaheuristic algorithms (E_EM, E_EMHFR, E_EMHFN, E_EMHFRN).

Similarly, four bi-objective metaheuristics were also proposed for the EHFSP-V2,

which are two variants of the IG algorithm (E_IG2, E_IG2ALL), a VBIH algorithm

(E_VBIH2), and an ensemble of metaheuristic algorithms (E_EM2).

Furthermore, in this thesis, a new constructive heuristic NEH_M(x) was presented for

the HFSP with the makespan criterion by modifying the well-known NEH heuristic.

As mentioned in Chapter 6, all proposed bi-objective metaheuristics in this thesis

employ NEH_M(x) to generate the initial solution. Consequently, the results in Section

7.2 showed that the proposed NEH_M(𝑥) heuristic significantly outperforms the well-

known NEH heuristic for the HFSP with the makespan criterion, since the average

RPD of the NEH_M(𝑥) is 2.42% from the best-known solutions reported in Öztop et

al. (2019). Additionally, the results showed that employing NEH_M(𝑥), as a

constructive heuristic instead of NEH, significantly improves the performance of the

single-objective (IG, IGALL and VBIH) algorithms with the makespan criterion.

In this thesis, two new heuristic fitness calculation approaches were also proposed to

compensate for the inefficiency of the standard forward scheduling approach for

fitness function calculation in HFSP. Then, these heuristic fitness calculation

approaches, i.e., HFR and HFN, were employed in the proposed bi-objective

116

metaheuristics (E_EMHFR, E_EMHFN, E_EMHFRN, E_IG2, E_IG2ALL, E_VBIH2 and

E_EM2). The computational results in Chapter 7 revealed that the HFR and HFN

approaches substantially improve the solution quality of the proposed metaheuristic

algorithms.

Extensive computational experiments were also conducted for both EHFSP-V1 and

EHFSP-V2. Initially, the performance of the proposed bi-objective metaheuristics was

assessed on small instances using the Pareto-optimal solution sets. Then, the

performances of the proposed bi-objective metaheuristics were compared with each

other as well as the time-limited MILP and CP solutions for larger instances.

Comprehensive statistical analyses were also performed to verify the computational

results statistically.

The computational results of the EHFSP-V1 showed that all proposed metaheuristic

algorithms are able to find more than 67% of the Pareto-optimal solutions on the

average over 47 instances. Especially, E_EMHFRN and E_EMHFR algorithms are able to

find approximately 86% of the Pareto-optimal solutions, which indicates an

outstanding performance for small instances. The results on medium instances also

showed that all of the metaheuristic algorithms outperform the time-limited MILP and

CP in terms of quality and cardinality of the Pareto frontier. It can also be said that

ensembles of metaheuristic algorithms with the HFR/HFN approach perform superbly

for all instances of the EHFSP-V1 in terms of high ratio of reference solutions found

and closeness to the reference set, as compared the other solution approaches.

The computational results of the EHFSP-V2 showed that all proposed metaheuristic

algorithms are able to find more than 43% of the Pareto-optimal solutions on the

average over 12 instances. The results on medium instances also showed that all of the

proposed metaheuristic algorithms outperform the time-limited MILP and CP in terms

of quality and cardinality of the Pareto frontier. Furthermore, it can be said that the

E_IG2 algorithm performs superbly for all instances of the EHFSP-V2 in terms of high

ratio of reference solutions found and closeness to the reference set, as compared to

the other solution methods.

Consequently, by using the proposed bi-objective metaheuristics in this thesis, good

quality solutions can be obtained for both EHFSP-V1 and EHFSP-V2 in very

reasonable computational times. The results demonstrated that the proposed bi-

117

objective metaheuristics are compatible with the exact solution methods for small

instances, and significantly outperforms them for larger instances.

In conclusion, this thesis contributes to the literature on energy-efficient scheduling

and hybrid flowshop scheduling by:

(1) applying the job-based (EHFSP-V1) and matrix-based (EHFSP-V2) speed scaling

strategy to the HFSP,

(2) applying constraint programming to the HFSP,

(3) presenting new bi-objective MILP and CP models for the EHFSP,

(4) applying the augmented ε-constraint method to solve proposed bi-objective MILP

and CP models,

(5) presenting a new benchmark set for the EHFSP,

(6) presenting a new constructive heuristic for the HFSP,

(7) proposing two new heuristic fitness calculation approaches for the HFSP,

(8) developing seven original effective bi-objective metaheuristic algorithms for the

EHFSP-V1,

(9) developing four original effective bi-objective metaheuristic algorithms for the

EHFSP-V2.

From a practical viewpoint, the managers can make decisions considering both

production and energy efficiency by using the developed solution methods in this

thesis. The proposed methods do not require a significant financial investment from a

managerial perspective. Since there is no need for installing costly energy-efficient

machinery, they can also be employed by small and medium-sized enterprises.

Consequently, proposed energy-efficient scheduling methods can provide economic

savings from energy resource consumptions in addition to the environmental benefits,

without making a significant financial investment.

Furthermore, the generated Pareto frontiers, by employing the proposed solution

methods, can serve as visual tools for managers to make informed decisions

considering both energy and production efficiency in hybrid flowshops. Utilizing an

extensive set of compromises produced by the Pareto frontiers, managers can make

118

comprehensive trade-off analyses and explore all the outcomes of a decision regarding

both performance criteria.

This thesis can serve as a reference for the researchers and experts working on the

energy-efficient HFSP with speed scaling strategy, which is scarcely studied in the

current literature. In further studies, different bi-objective metaheuristics and/or

matheuristics can be developed for the EHFSP. Especially, developing matheuristics,

i.e., the mathematical model-based heuristics, is a very promising research direction,

since it utilizes the advantages of both mathematical modeling and heuristic

techniques. In future research, an effective matheuristic can be developed for the

problem by combining the proposed bi-objective models and metaheuristics in this

thesis.

Furthermore, valid inequalities can be developed for the problem in order to strengthen

the proposed bi-objective MILP and CP models. Employing effective valid

inequalities can decrease the solution time of the proposed models by narrowing the

search space of the problem. Lower bounds can also be developed for the studied

problem. Especially, an effective lower bound can accelerate the optimality proof

process of the CP technique.

Studying different objectives such as total tardiness or total flow time with an energy-

related objective in a hybrid flowshop environment is another research direction to

follow. As pointed out by Öztop et al. (2019), the total flow time criterion is very

important to reduce the total in-process inventory and time, since it affects the total

capacity utilization. The tardiness criterion is also very critical to improve the customer

service level. Hence, in future research, these two important production efficiency

related objectives can be incorporated with the total energy consumption criterion for

the hybrid flowshops. The proposed models and metaheuristics in this thesis can be

easily extended for these two versions of the EHFSP.

Additionally, machine-based speed scaling can be studied for the EHFSP as another

realistic extension. This variant can be very practical, especially for the hybrid

flowshops, where there exists setup time for the machines during the speed

adjustments. For such hybrid flowshops, a single speed level can be defined for each

machine, instead of determining the speed levels of the machines for each job

operation.

119

Furthermore, considering the existing literature, energy-efficient scheduling with

sequence-dependent setup times has attracted relatively lower attention, most likely

because of the complexity of the problems. However, recent studies on hybrid

flowshop scheduling have focused on more realistic problems such as problems with

sequence-dependent setup times, machine eligibilities, and job precedence constraints

(Ribas et al., 2010). Therefore, based on the fundamental energy-efficient hybrid

flowshop scheduling models and solution methods presented in this thesis, more

complex models, such as EHFSP models with sequence-dependent setup times and/or

machine eligibility constraints, can also be developed as well as the related solution

methods.

120

121

REFERENCES

Behnamian, J., & Fatemi Ghomi, S. M. T. (2011). Hybrid flowshop scheduling with

machine and resource-dependent processing times. Applied Mathematical

Modelling, 35(3),1107–1123.

Bruzzone, A. A. G., Anghinolfi, D., Paolucci, M., & Tonelli, F. (2012). Energy-aware

scheduling for improving manufacturing process sustainability: a mathematical

model for flexible flowshops. CIRP Annals-Manufacturing Technology, 61(1),

459–62.

Carlier, J., & Neron, E. (2000). An exact method for solving the multiprocessor

flowshop. R.A.I.R.O. Operations Research, 34, 1–25.

Che, A., Lv, K., Levner, E., & Kats, V. (2015). Energy consumption minimization for

single machine scheduling with bounded maximum tardiness. Proceedings of

2015 IEEE 12th International Conference on Networking, Sensing and Control,

146-150.

Che, A., Wu, X., Peng, J., & Yan, P. (2017) Energy-efficient bi-objective single-

machine scheduling with power-down mechanism. Computers & Operations

Research, 85, 172-183.

Chen, T. L., Cheng, C. Y., & Chou, Y. H. (2018). Multi-objective genetic algorithm

for energy-efficient hybrid flow shop scheduling with lot streaming. Annals of

Operations Research, 1-24.

Coello, C. A. C., Lamont, G. B., & Van Veldhuizen, D. A. (2007). Evolutionary

algorithms for solving multi-objective problems (Vol. 5). New York: Springer.

Dai, M., Tang, D., Giret, A., Salido, M. A., & Li, W. (2013). Energy-efficient

scheduling for a flexible flowshop using an improved genetic-simulated annealing

algorithm. Robotics and Computer Integrated Manufacturing, 29, 418–429.

Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. A. M. T. (2002). A fast and elitist

multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary

Computation, 6(2), 182–197.

122

Ding, J-Y., Song, S., Zhang, R., Chiong, R., & Wu, C. (2016a). Parallel machine

scheduling under time-of-use electricity prices: new models and optimization

approaches. IEEE Transactions on Automation Science and Engineering, 13,

1138-1154.

Ding, J. Y., Song, S., & Wu, C. (2016b). Carbon-efficient scheduling of flowshops by

multi-objective optimization. European Journal of Operational Research, 248(3),

758-771.

Deng, J., Wang, L., Wu, C., Wang, J., & Zheng, X. (2016). A competitive memetic

algorithm for carbon-efficient scheduling of distributed flow-shop. In

International Conference on Intelligent Computing (pp. 476-488). Springer,

Cham.

Dubois-Lacoste, J., Pagnozzi, F., & Stützle, T. (2017). An iterated greedy algorithm

with optimization of partial solutions for the makespan permutation flowshop

problem. Computers & Operations Research, 81, 160–166.

Fang, K-T., & Lin, B. M. T. (2013). Parallel-machine scheduling to minimize tardiness

penalty and power cost. Computers & Industrial Engineering, 64(1), 224–234.

Fang, K., Uhan, N., Zhao, F., & Sutherland, J. W. (2011). A new approach to

scheduling in manufacturing for power consumption and carbon footprint

reduction. Journal of Manufacturing Systems, 30(4), 234–240.

Fang, K., Uhan, N. A., Zhao, F., & Sutherland, J. W. (2013). Flowshop scheduling

with peak power consumption constraints. Annals of Operations Research, 206,

115–145.

Gahm, C., Denz, F., Dirr, M., & Tuma, A. (2016). Energy-efficient scheduling in

manufacturing companies: a review and research framework. European Journal

of Operational Research, 248, 744-757.

Grabowski, J., & Pempera, J. (2000). Sequencing of jobs in some production system.

European Journal of Operational Research, 125(3), 535–550.

Graham, R. L., Lawler, E. L., Lenstra, J. K., & Kan Rinnooy, A. H. G. (1979).

Optimization and approximation in deterministic sequencing and scheduling: a

survey. Annals of Discrete Mathematics, 5, 287–326.

Gupta, J. N. D. (1988). Two-stage, hybrid flowshop scheduling problem. Journal of

the Operational Research Society, 39(4), 359–364.

123

IBM ILOG CPLEX, 2017. IBM ILOG CPLEX Optimization Studio V12.8, Language

User's Manual.

Jiang, E. D., & Wang, L. (2019). An improved multi-objective evolutionary algorithm

based on decomposition for energy-efficient permutation flow shop scheduling

problem with sequence-dependent setup time. International Journal of

Production Research, 57(6), 1756-1771.

Jiang, E., Wang, L., & Lu, J. (2017). Modified multi-objective evolutionary algorithm

based on decomposition for low-carbon scheduling of distributed permutation

flow-shop. In 2017 IEEE Symposium Series on Computational Intelligence

(SSCI) (pp. 1-7). IEEE.

Jin, Z. H., Ohno, K., Ito, T., & Elmaghraby, S. E. (2002). Scheduling hybrid flowshops

in printed circuit board assembly lines. Production and Operations Management,

11(2), 216–230.

Jouglet, A., Oğuz, C., & Sevaux, M. (2009). Hybrid flow-shop: a memetic algorithm

using constraint-based scheduling for efficient search. Journal of Mathematical

Modelling and Algorithms, 8(3), 271-292.

Jungwattanakit, J., Reodecha, M., Chaovalitwongse, P., & Werner, F. (2008).

Algorithms for flexible flowshop problems with unrelated parallel machines,

setup times, and dual criteria. International Journal of Advanced Manufacturing

Technology, 37(3–4), 354–370.

Jungwattanakit, J., Reodecha, M., Chaovalitwongse, P., & Werner, F. (2009). A

comparison of scheduling algorithms for flexible flowshop problems with

unrelated parallel machines, setup times, and dual criteria. Computers &

Operations Research, 36(2), 358–378.

Lei, D., Gao, L., & Zheng, Y. (2018). A novel teaching-learning-based optimization

algorithm for energy-efficient scheduling in hybrid flow shop. IEEE Transactions

on Engineering Management, 65(2), 330-340.

Li, M., Lei, D., & Cai, J. (2019). Two-level imperialist competitive algorithm for

energy-efficient hybrid flow shop scheduling problem with relative importance of

objectives. Swarm and Evolutionary Computation, 49, 34-43.

Li, J., Sang, H., Han, Y., Wang, C., & Gao, K. (2018). Efficient multi-objective

optimization algorithm for hybrid flow shop scheduling problems with setup

energy consumptions. Journal of Cleaner Production, 181, 584-598.

124

Liao, C. J., Tjandradjaj, E., & Chung, T. P. (2012). An approach using particle swarm

optimization and bottleneck heuristic to solve flowshop scheduling problem.

Applied Soft Computing, 12, 1755–1764.

Liu, C. Y., & Chang, S. C. (2000). Scheduling flexible flowshops with sequence

dependent setup effects. IEEE Transactions on Robotics and Automation, 16(4),

408–419.

Liu, C. H., & Huang, D. H. (2014). Reduction of power consumption and carbon

footprints by applying multi-objective optimisation via genetic algorithms.

International Journal of Production Research, 52, 337–352.

Liu, X., Zou, F., & Zhang, X. (2008). Mathematical model and genetic optimization

for hybrid flow shop scheduling problem based on energy consumption. In 2008

Chinese Control and Decision Conference (pp. 1002-1007). IEEE.

Lu, C., Gao, L., Li, X., Pan, Q. K., & Wang, Q. (2017). Energy-efficient permutation

flow shop scheduling problem using a hybrid multi-objective backtracking search

algorithm. Journal of Cleaner Production, 144, 228-238.

Luo, H., Du, B., Huang, G. Q., Chen, H., & Li, X. (2013). Hybrid flowshop scheduling

considering machine electricity consumption cost. International Journal of

Production Economics, 146, 423–439.

Mallipeddi, R., & Suganthan, P. N. (2010). Ensemble of Constraint Handling

Techniques. IEEE Transactions on Evolutionary Computation, 14(4), 561-579.

Mallipeddi, R., Suganthan, P. N., Pan, Q. K., & Tasgetiren, M. F. (2011). Differential

evolution algorithm with ensemble of parameters and mutation strategies. Applied

Soft Computing, 11(2), 1679-1696.

Mansouri, S. A., & Aktas, E. (2016). Minimizing energy consumption and makespan

in a two-machine flowshop scheduling problem. Journal of the Operational

Research Society, 67, 1382-1394.

Mansouri, S. A., Aktas, E., & Besikci, U. (2016). Green scheduling of a two-machine

flowshop: trade-off between makespan and energy consumption. European

Journal of Operational Research, 248, 772-788.

Mavrotas, G. (2009). Effective implementation of the e-constraint method in multi-

objective mathematical programming problems, Applied Mathematics and

Computation, 213, 455–465.

125

Meng, L., Zhang, C., Shao, X., Ren, Y., & Ren, C. (2019). Mathematical modelling

and optimisation of energy-conscious hybrid flow shop scheduling problem with

unrelated parallel machines. International Journal of Production Research, 57(4),

1119–1145.

Montgomery, D. C. (2008). Design and Analysis of Experiments. John Wiley & Sons.

Moon, J-Y., Shin, K., & Park, J. (2013). Optimization of production scheduling with

time dependent and machine-dependent electricity cost for industrial energy

efficiency. International Journal of Advanced Manufacturing Technology, 68(1-

4), 523-535.

Mouzon, G., Yildirim, M. B., & Twomey, J. (2007). Operational methods for the

minimization of energy consumption of manufacturing equipment. International

Journal of Production Research, 45(18-19), 4247–4271.

Mouzon, G., & Yildirim, M. B. (2008). A framework to minimize total energy

consumption and total tardiness on a single machine. International Journal of

Sustainable Engineering, 1(2), 105–116.

Nawaz, M., Enscore, Jr. E. E., & Ham, I. (1983). A heuristic algorithm for the m-

machine n-job flowshop sequencing problem. OMEGA, 11(1), 91–95.

Okabe, T., Jin, Y., & Sendhoff, B. (2003). A critical survey of performance indices for

multi-objective optimisation. In The 2003 Congress on Evolutionary

Computation, 2003. CEC'03. (Vol. 2, pp. 878-885). IEEE.

Osman, I., & Potts, C. (1989). Simulated annealing for permutation flow-shop

scheduling. OMEGA, 17(6), 551–557.

Öztop, H., Tasgetiren, M. F., Eliiyi, D. T., & Pan, Q. K. (2018). Green Permutation

Flowshop Scheduling: A Trade-off-Between Energy Consumption and Total

Flow Time. In International Conference on Intelligent Computing (pp. 753-759).

Springer, Cham.

Öztop, H., Tasgetiren, M. F., Eliiyi, D. T., & Pan, Q. K. (2019). Metaheuristic

algorithms for the hybrid flowshop scheduling problem. Computers & Operations

Research, 111, 177-196.

Öztop, H., Tasgetiren, M. F., Eliiyi, D. T., Pan, Q. K., & Kandiller, L. (2020). An

energy-efficient permutation flowshop scheduling problem. Expert Systems with

Applications, 150, 113279.

126

Pan, Q., Wang, L., Li, J. Q., & Duan, J. H. (2014). A novel discrete artificial bee colony

algorithm for the hybrid flowshop scheduling problem with makespan

minimisation. Omega, 45, 42–56.

Pan, Q., Wang, L., Mao, K., Zhao, J. H., & Zhang, M. (2013). An effective artificial

bee colony algorithm for a real-world hybrid flowshop problem in steel making

process. IEEE Transactions on Automation Science and Engineering, 10(2), 307–

322.

Pan, Q. K., Wang, L., & Qian, B. (2009). A novel differential evolution algorithm for

bi-criteria no-wait flow shop scheduling problems. Computers & Operations

Research, 36(8), 2498-2511.

Pinedo, M. (2002). Scheduling: Theory Algorithms and Systems (Vol. 3). New York:

Springer.

Ribas, I., Leisten, R., & Framinan, J. M. (2010). Review and classification of hybrid

flowshop scheduling problems from a production system and a solutions

procedure perspective. Computers & Operations Research, 37, 1439–1454.

Ruiz, R., & Stützle, T. (2007). A simple and effective iterated greedy algorithm for the

permutation flowshop scheduling problem. European Journal of Operational

Research, 177(3), 2033–2049.

Ruiz, R., & Vazquez Rodriguez, J. A. (2010). The hybrid flowshop scheduling

problem. European Journal of Operational Research, 205, 1–18.

Salido, M. A., Escamilla, J., Giret, A., & Barber, F. (2016). A genetic algorithm for

energy-efficiency in job-shop scheduling. The International Journal of Advanced

Manufacturing Technology, 85(5-8), 1303-1314.

Shen, J., Wang, L., & Wang, J. (2017). A discrete teaching-learning-based

optimisation algorithm for hybrid flowshop scheduling problem with peak power

consumption constraints. In 2017 IEEE Symposium Series on Computational

Intelligence (SSCI) (pp. 1-7). IEEE.

Sherali, H. D., Sarin, S. C., & Kodialam, M. S. (1990). Models and algorithms for a

two-stage production process. Production Planning and Control, 1(1), 27–39.

Shrouf, F., Ordieres-Mere, J., García-Sanchez, A., & Ortega-Mier, M. (2014).

Optimizing the production scheduling of a single machine to minimize total

energy consumption costs. Journal of Cleaner Production, 67, 197-207.

127

Tan, K. C., Goh, C. K., Yang, Y., & Lee, T. H. (2006). Evolving better population

distribution and exploration in evolutionary multi-objective optimization.

European Journal of Operational Research, 171, 463–495.

Tang, D., Dai, M., Salido, M. A., & Giret, A. (2016). Energy-efficient dynamic

scheduling for a flexible flow shop using an improved particle swarm

optimization. Computers in Industry, 81, 82-95.

Tasgetiren, M. F., Eliiyi, U., Öztop, H., Kizilay, D., & Pan, Q. K. (2018a). An energy-

efficient single machine scheduling with release dates and sequence-dependent

setup times. In Proceedings of the Genetic and Evolutionary Computation

Conference Companion (pp. 145-146).

Tasgetiren, M. F., Öztop, H., Eliiyi, U., Eliiyi, D. T., & Pan, Q. K. (2018b). Energy-

Efficient Single Machine Total Weighted Tardiness Problem with Sequence-

Dependent Setup Times. In International Conference on Intelligent Computing

(pp. 746-758). Springer, Cham.

Tasgetiren, M. F., Öztop, H., Gao, L., Pan, Q. K., & Li, X. (2019). A variable iterated

local search algorithm for energy-efficient no-idle flowshop scheduling problem.

Procedia Manufacturing, 39, 1185-1193.

Tasgetiren, M. F., Pan, Q., Kizilay, D., & Gao, K. (2016). A variable block insertion

heuristic for the blocking flowshop scheduling problem with total flowtime

criterion. Algorithms, 9(4), 71.

Tasgetiren, M. F., Pan, Q. K., Kizilay, D., & Vélez-Gallego, M. C. (2017). A variable

block insertion heuristic for permutation flowshops with makespan criterion. In

2017 IEEE Congress on Evolutionary Computation (CEC) (pp. 726-733). IEEE.

Tasgetiren, M. F., Suganthan, P. N., & Pan, Q.K. (2010). An ensemble of discrete

differential evolution algorithms for solving the generalized traveling salesman

problem. Applied Mathematics and Computation, 215, 3356–3368.

Vignier, A., Billaut, J. C., & Proust, C. (1999). Hybrid flowshop scheduling problems:

state of the art. Rairo - Recherche Operationnelle – Operations Research, 33(2),

117–183.

Wang, J. J., & Wang, L. (2018). A knowledge-based cooperative algorithm for energy-

efficient scheduling of distributed flow-shop. IEEE Transactions on Systems,

Man, and Cybernetics: Systems, 99, 1-15.

128

Wang, J., Wang, L., Wu, C., & Shen, J. (2017). A Cooperative Algorithm for Energy-

efficient Scheduling of Distributed No-wait Flowshop. In 2017 IEEE Symposium

Series on Computational Intelligence (SSCI) (pp. 1-8). IEEE.

Wang, S., Wang, X., Yu, J., Ma, S., & Liu, M. (2018). Bi-objective identical parallel

machine scheduling to minimize total energy consumption and makespan.

Journal of Cleaner Production, 193, 424-440.

Wittrock, J. R. (1988). An adaptable scheduling algorithm for flexible flow lines.

Operations Research, 36(3), 445–453.

Wu, X., & Che, A. (2019). A memetic differential evolution algorithm for energy-

efficient parallel machine scheduling. Omega, 82, 155-165.

Wu, X., Shen, X., & Cui, Q. (2018). Multi-objective flexible flow shop scheduling

problem considering variable processing time due to renewable energy.

Sustainability, 10(3), 841.

Xu, H., Lu, Z., & Cheng, T. (2014). Iterated local search for single-machine scheduling

with sequence-dependent setup times to minimize total weighted tardiness.

Journal of Scheduling, 17(3), 271-287.

Yan, J., Li, L., Zhao, F., Zhang, F., & Zhao, Q. (2016). A multi-level optimization

approach for energy-efficient flexible flow shop scheduling. Journal of Cleaner

Production, 137, 1543-1552.

Yin, L., Li, X., Gao, L., Lu, C., & Zhang, Z. (2017). A novel mathematical model and

multi-objective method for the low-carbon flexible job shop scheduling problem.

Sustainable Computing: Informatics and Systems,13, 15-30.

Zeng, Z., Hong, M., Man, Y., Li, J., Zhang, Y., & Liu, H. (2018). Multi-objective

optimization of flexible flow shop scheduling with batch process—Consideration

total electricity consumption and material wastage. Journal of Cleaner

Production, 183, 925-939.

Zhang, R., & Chiong, R. (2016). Solving the energy-efficient job shop scheduling

problem: A multi-objective genetic algorithm with enhanced local search for

minimizing the total weighted tardiness and total energy consumption. Journal of

Cleaner Production, 112, 3361-3375.

129

Zhang, H., Fang, Y., Pan, R., & Ge, C. (2018). A new greedy insertion heuristic

algorithm with a multi-stage filtering mechanism for energy-efficient single

machine scheduling problems. Algorithms, 11: 18.

Zhang, Q., & Li, H. (2007). MOEA/D: a multiobjective evolutionary algorithm based

on decomposition. IEEE Transactions on Evolutionary Computation, 11(6), 712–

731.

Zhang, B., Pan, Q. K., Gao, L., Meng, L. L., Li, X. Y., & Peng, K. K. (2019a). A

Three-Stage Multiobjective Approach Based on Decomposition for an Energy-

Efficient Hybrid Flow Shop Scheduling Problem. IEEE Transactions on Systems,

Man, and Cybernetics: Systems.

Zhang, B., Pan, Q. K., Gao, L., Li, X. Y., Meng, L. L., & Peng, K. K. (2019b). A multi-

objective evolutionary algorithm based on decomposition for hybrid flowshop

green scheduling problem. Computers & Industrial Engineering, 136, 325-344.

Zhang, H., Zhao, F., Fang, K., & Sutherland, J. (2014). Energy-conscious flowshop

scheduling under time-of-use electricity tariffs. CIRP Annals - Manufacturing

Technology, 63, 37-40.

Zheng, X. L., & Wang, L. (2018). A collaborative multi-objective fruit fly

optimization algorithm for the resource-constrained unrelated parallel machine

green scheduling problem. IEEE Transactions on Systems, Man, and Cybernetics:

Systems, 48(5), 790-800.

Zhou, A., Qu, B. Y., Li, H., Zhao, S. Z., Suganthan, P. N., & Zhang, Q. (2011).

Multiobjective evolutionary algorithms: a survey of the state of the art. Swarm

and Evolutionary Computation, 1, 32-49.

