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ABSTRACT 

FPGA BASED CONTROL AND RECONFIGURABLE MECHANISM 

IN WSN 

Al-Azzawi, Ahmed Khazal Younis  

PHD, Computer Engineering 

Advisor: Assoc. Prof. Tuncay ERCAN 

May 2019 

Wireless Sensor Networks (WSNs) enable various solutions for many application 

fields. They have acquired large popularity because of their low cost, scalability, easily 

distributed and maintainable features compared to the traditional infrastructure of 

monitoring solutions. Generally, any WSN consists of a huge number of distributed 

sensor nodes that can measure a specific physical phenomenon, perform required tasks 

and enable monitoring of infrastructure-less deployment. A wireless sensor node is 

constrained by its cost, energy, and size. In order to overcome these limitations, this 

thesis aims to introduce a smart design and multi-tasking for wireless sensor networks 

by extending the capability of re-configurability and enhancing the computational 

power of the sensor nodes. These facilities can be integrated in a typical WSN and IoT 

(Internet of Things) environment by incorporating an FPGA (Field Programmable 

Gate Array) device. Enhancing the computational power of data analysis is done by 

integrating multi-core of adaptive neuro-fuzzy algorithms in the FPGA device. This 

thesis contributes into the scientific knowledge with two new modifications in the 

ANFIS (Adaptive Neuro-fuzzy Inferences System algorithm) by using the momentum 

factor that will accelerate the training phase and adding a new hidden layer to decrease 

the number of adjustable linear parameters in the FPGA resources. The neuro-fuzzy 

approach is a kind of soft computation systems that combine between the learning 

capability of artificial neural networks and the powerful inference system in fuzzy 

logic. These two techniques are utilized in order to deal with complex problems when 

the traditional methods cannot provide a simple and precise solution. Later, the multi-

hardware cores of the modified algorithms are comprised within the architecture of 

FPGA by using the different sensor data sets. HW/SW cores in the FPGA are used to 

perform different tasks such as classification, prediction, alerts, and decision-making. 



iv 

On the other hand, the modified ANFIS algorithm will extend the capability of 

MATLAB toolbox for software developers, and the newly generated IP library in the 

FPGA that will combine multi-server and multi-client devices will be ready to use by 

researchers in different IoT implementations. The simulation results of the hardware 

architecture proposed in this thesis provide significant contributions to the state of the 

art by providing additional insights and a deeper understanding when compared with 

existing academic and commercial examples.   

Key Words: adaptive systems, neuro-fuzzy system, re-configurability, ANFIS,  

FPGA, smart systems, embedded systems, smart control.
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ÖZ 

KABLOSUZ ALGILAYICI AĞLAR İÇİN FPGA TABANLI KONTROL VE 

YAPILANDIRILABİLİR MEKANİZMA 

Al-Azzawi, Ahmed Khazal Younis  

Doktora Tezi, Bilgisayar Mühendisliği 

Danışman: Doç. Dr. Tuncay ERCAN 

Mayıs 2019 

Kablosuz Algılayıcı Ağlar (KAA) birçok uygulama alanı için farklı çözümler 

sağlarlar. Bu ağların geleneksel izleme altyapılarıyla karşılaştırıldıklarında sahip 

oldukları düşük maliyet, ölçeklenebilirlik, kolaylıkla dağıtılabilir olmaları ve 

sürdürülebilirlikleri nedeniyle kullanımları da oldukça artmıştır. Genel olarak, 

KAA’lar kullanıldıkları ortamla ilgili olarak fiziksel değişiklikleri ölçebilecek çok 

fazla sayıda algılayıcı düğümler içerebilir, önceden belirlenmiş görevleri yerine 

getirebilir ve altyapısı olmayan yerlerde maliyet, enerji ve işlemci gibi kısıtlarına 

rağmen izleme yapabilirler.  Kablosuz bir algılayıcı düğümün maliyet, enerji ve boyut 

gibi bazı sınırlamalarını kısmen veya tamamen ortadan kaldırabilmek için, bu 

tezimizde algılayıcı düğümlerin çoklu görevleri yerine getirebilmeleri için işlemci 

gücünü artıracak, tekrar yapılandırılabilme kabiliyetini yükseltecek akıllı bir tasarım 

hedeflenmiştir. Bu da tipik bir KAA veya Nesnelerin İnterneti (IoT-Internet of Things) 

ortamında FPGA (Alan Programlanabilir Kapı Dizisi) cihazlarının kullanılmasıyla 

gerçekleştirilebilir. Böyle bir ortamda veri analizi için işlemci gücünün arttırılması 

FPGA cihazı üzerinde uyarlanabilir yapay sinir ve bulanık algoritmaların birlikte 

çalıştırılmasıyla gerçekleştirilebilir.  Bu tez bilimsel bilgiye ANFIS algoritmalarındaki 

iki yeni değişiklikle katkıda bulunmaktadır. Birincisi veri setlerine olan tanışıklığın 

sağlandığı eğitim safhasını hızlandıracak momentum faktörünün eklenmesi, diğeri 

FPGA üzerindeki kaynakların kullanımını etkinleştirecek olan doğrusal parametre 

sayısını azaltacak ilave bir gizli katmanın eklenmesidir. Sinir-Bulanık yaklaşımlar 

yapar sinir ağlarındaki öğrenme ve bulanık sistemlerdeki güçlü çıkarım yapabilme 

yeteneklerini öne çıkartan yazılım tabanlı teknikleri içerirler. Bu iki farklı teknik, 

geleneksel yöntemlerin basit ve kesin bir çözüm sağlayamadığı karmaşık problemleri 
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çözebilmeyi mümkün kılmaktadır. Daha sonra değiştirilmiş olan bu algoritmalar farklı 

veri setlerini kullanarak FPGA mimarisi içinde uygulanır. FPGA içindeki donanım ve 

yazılım bileşenleri sınıflandırma, kestirme, alarm ve karar verme gibi farklı görevleri 

yerine getirebilir. Diğer yandan, değiştirilmiş ANFIS algoritması yazılım geliştiriciler 

için MATLAB araç kutusunun yeteneğini arttıracak, FPGA cihazı üzerinde çoklu- 

kullanıcı ve çoklu-sunucu ortamları için geliştirilen yeni kütüphane de IoT 

uygulamalarında araştırmacılar tarafından kullanılmaya hazır olacaktır. Bu tezde 

önerilen donanım yapısı ile ilgili benzetim sonuçları, akademik ve ticari örneklerle 

karşılaştırıldığında, mevcut bilgiye ve anlayışa en güncel bilgilerle yeni bir derinlik 

katıldığını ve önemli bilimsel katkılar sağladığını göstermektedir. 

Anahtar Kelimeler: uyarlanabilir sistemler, sinir-bulanık sistem, yeniden 

yapılandırma, ANFIS, FPGA, akıllı sistemler, gömülü sistemler, akıllı kontrol. 
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CHAPTER 1 CHAPTER 1 

INTRODUCTION 

A wireless sensor network (WSN) is a collection of specialized sensor nodes that are 

connected with a specific communications protocols for observing and recording 

physical parameters at different locations and then, forward the collected data to the 

end user. Temperature, humidity, sound intensity, speed, pollutants, wind direction, 

light, and pressure are examples of the common monitored conditions. Wireless sensor 

networks provide precise information according to the requirements of the user. 

Therefore, they enable a huge number of applications such as industrial control 

systems, health-care, and target tracking in military fields, weather monitoring 

systems, and home automation systems.  

There are many advantages of wireless sensor networks over conventional sensing 

systems. Because WSNs are deployed in vast scale, they provide more precise data 

about monitoring objects. In addition, these network systems are also easier to 

establish and more scalable when compared with traditional wired systems.  

 Wireless sensor networks have many unique attributes stated in these references 

(Sohraby, Minoli, and Znati, 2007; Karl and Willig, 2007; Ilyas and Mahgoub, 2004): 

• Size: In real applications, the size of sensor nodes is small to reduce the sensor 

deployment cost. 

• Power: The power of Wireless sensor network nodes has a limited energy 

constraint. However, most utilized applications follow different operating 

conditions of sensor nodes to maintain the battery power for a long time. 

• The large scale of deployment: Large scale of deployment increases the 

observation accuracy and reduces the communication distance between nodes. 

This also improves communication quality and increases energy efficiency. A 

large number of sensor nodes is also a prime enabler for robust communication 

in mesh wireless sensor network. 

 



  

 2                  

 

• Mobility: Environmental impacts on sensor nodes such as wind or rain, may 

change their initial position deployment. On the other hand, they can change 

their position according to the demand for the system properties. 

•  Unattended operation: Because a huge number of devices are distributed in a 

WSN, unattended operation and failure-tolerance of every sensor node becomes 

an essential necessity. 

• Low Cost: Since sensor nodes are distributed in wide-range, the cost of a single 

sensor node is the influential factor in the overall cost of different applications 

of WSN’s. Furthermore, most applications of the wireless sensor network in 

civilian fields are named price-enabled applications. That means the markets 

wait for competitive prices to utilize the application. 

• Heterogeneity: In general, wireless sensor networks may be composed of various 

types of nodes. The computational power of some types of sensor nodes may be 

more than others; the degree of heterogeneity within a WSN has an impact on 

the complexity and management method of the overall system. 

The energy budget limitations of these platforms have led to constructing a very low 

power system that can perform complex functions with minimum resources utilization. 

Not only the technology of wireless sensor networks has attracted much interest, but 

also the ability to implement it in several fields such as agriculture, military, tracking 

system, biomedicine, etc. Because WSN’s have become a universal subject, most of 

the engineering can discover an advantage or offer a new contribution. 

In general, simple and traditional microcontrollers that are used within sensor nodes 

are not suitable efficiently to handle complex tasks for data processing. To achieve 

high-performance computing, multi-processor systems are becoming compulsory. 

However, these kinds of systems do not suitable for low power consumption platforms 

such as WSNs. The integration of application-specific hardware accelerators with 

sensor nodes plays a key role to reduce the overall power consumption.  

The energy and required time that is used for data processing tasks when implementing 

them with specific digital logic can be minimized to several times compared to 

software solutions. Furthermore, the wide range of WSN applications means that a 
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high level of flexibility can be achieved in the underlying hardware. Consequently, a 

single infrastructure system can be re-utilized for several purposes. 

Modern improvements in the of Programmable Logic Devices (PLD) design Have a 

significant impact on the rate of energy consumption of these chips, which can be used 

to reconfigure the digital circuit to implement complex tasks of data processing. So, 

the process of reducing power consumption (static and dynamic power) by integrating 

it with high logic intensity makes these kinds of logic devices a preferable choice for 

flexible hardware acceleration. Reconfigurable hardware appears then as a possible 

solution to provide an adequate level of computation power for any sensor node while 

providing additional hardware resources for the implementation of different 

applications in several domains. 

. Research Scope and Objectives 

      

In this thesis, we discuss the possibility of integrating FPGA Device in the architecture 

of sensor nodes. The employment of re-programmable hardware architecture is 

discussed at multiple levels of abstractions, start from the selection of technology up 

to employ it in real-world applications and the modification of suitable software 

programs. In addition, this thesis covers multiple subjects such as architecture design 

of embedded systems, reconfigurable technologies, and some of the soft computing 

technologies such as neural network algorithms, fuzzy control systems, and neuro-

fuzzy structures. In general, our thesis answers the following questions: 

•  What are the benefits and structures of sensor nodes using reconfigurable 

hardware acceleration? To answer this question, we need to identify the current 

structure of the sensor node and potential improvements. The effect of 

reconfigurable acceleration on the sensor node will be discussed and three types 

of sensor nodes depend on reconfigurable hardware acceleration are presented. 

• How to combine reconfigurable devices with the structure of sensor nodes 

and keep the level of power consumption minimum? To solve this problem, 

three techniques are implemented to define appropriate structure where total 

overhead stays unimportant. This structure will be confirmed by designing a 

hardware model performing typical functions of a sensor node.  
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• What kind of soft computing technology that is suitable for the applications 

of sensor nodes? What kind of software tools are used to implement it within 

the sensor node? In this thesis, different approaches of soft computing 

techniques are presented with the pros and cons of each approach. On the other 

hand, the abundance of WSN's applications leads to a variety of programming 

methods where the components of the software and hardware system can be 

rapidly used for sensor node. So, several tools are utilized to create the sensor 

node based on programmable devices. As a result, we will introduce a new 

generic smart sensor node that can be customized for any kind of data processing 

algorithms. This integration approach provides high flexibility, which can permit 

the implementation of a wide range of processing tasks. This flexibility can be 

obtained by supporting dynamic reprogramming which means the function of 

the sensor node can be replaced at any time. 

. Thesis Outline 

This thesis is divided into four principal parts. In Part I, the thesis’ background and 

motivation are described, the theoretical of soft computing (artificial neural networks, 

fuzzy control system, and neuro-fuzzy system) and field programmable gate array that 

related with this thesis are introduced in Part II. In Part III, we will discuss the proposed 

modification of neuro-fuzzy algorithm and variety of hardware connotations and tools 

that are used to design reconfigurable device on a sensor node. The evaluation and the 

application of the proposed sensor node is presented in Part V. Figure 1.1 

demonstrates the general organization of the thesis. The sections below, introduce a 

brief outline of the chapters that comprising these four different parts: 

 

Part I: Chapter 1: 

• The background, advantages, and Challenges of wireless sensor networks.  

• The Research Scope and Objective.  

• Literature review of some related works. 

Part II: Chapter 2 and Chapter 3: 

• Theoretical of neural networks, fuzzy control system, and neuro-fuzzy system 

• Theoretical of Field Programmable Gate Array devices 
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Part III: Chapter 4: 

• Modifications of Adaptive Neuro-fuzzy System 

Part III: Chapter 5 and Chapter 6: 

• Hardware concepts  

• Tools that are used to design of reconfigurable device 

• Design of Multi-Core Neuro-Fuzzy System based on FPGA 

• System Evaluation and Application 

Part V: Chapter 7: 

• Sums up our thesis by summarizing the main contributions and suggesting 

outlines for future work. 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1. Outline of the Thesis. 
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. Existing Studies 

 Field Programmable Gate Arrays include reconfigurable logic elements called Logic 

Blocks, and smart programmable interconnects that permit these blocks to be wired 

together. By employing Hardware Description Languages (HDLs) like Verilog or 

VHDL, designers can configure these reconfigurable blocks to achieve complex logic 

structures. Several pre-designed FPGA generic component cores exist which permit 

implementing multipliers, processors, network protocols, etc. So, FPGA devices are 

extremely flexible especially when they come to designing complex systems.  

FPGA technology is being used in several application fields such as 

telecommunications(Khedkar and Khade, 2017; Yonezawa et al., 2017), signal and 

image processing(Bhattacharyya, Deprettere, Leupers, and Takala, 2018; Li, Xu, and 

Zhang, 2017; Sarpotdar, Mathew, Safonova, and Murthy, 2016; Woods, McAllister, 

Lightbody, and Yi, 2017), automotive applications, robotics(Poudel, Giri, and Munir, 

2017; Sahlbach, Thiele, and Ernst, 2017; Velez and Otaegui, 2016), space landing 

crafts(Guinn et al., 2016; Schrader, Bredemeyer, Mihalachi, Rohde, and Kleine-

Ostmann, 2016; Yang et al., 2016). 

With the advancements of using reconfigurable FPGA and soft computing techniques, 

many studies have been done in this field. Cihan, Fuat, and Mehmet in (Karakuzu, 

Karakaya, and Çavuşlu, 2016) show the ability of implement the meta-heuristic 

learning algorithms of the neuro-fuzzy system (NFS) on the FPGA based on improved 

particle swarm optimization (iPSO). According to the authors, this implementation 

does not need any memory and multiplier usage. Gaussian MF is used as the main 

membership function. This kind of function has an exponential operation and cannot 

be realized directly within FPGA. So, the authors proposed a kind of function 

approximation in order to reduce the number of required hardware resources. The 

proposed approximation function requires one multiplier, one divider, and three adder 

modules. Results indicate that proposed implementation and membership function 

approximation is more effective than other approaches and requires less FPGA 

hardware resources.  

Another parallel implementation of digital ANFIS algorithm using FPGA Zynq 

processor with single and dual based on VHDL (Very high-speed Hardware 

Description Language) language was presented in (Darvill, Tisan, and Cirstea, 2017). 
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Using HDL approach provide fast prototyping and allowing powerful synthesis 

utilization. Comparison between parallel and serial methodology was done in this 

article. The authors show that there are many advantages of using parallel architecture 

over existing serial methodology such as clock cycles and logic utilization in addition 

to reducing the number of redundant calculation cycles that provide higher scalability 

compared with the serial approach. Another parallel hardware implementation of 

ANFIS algorithm was done in (Nadu & Nadu, 2017). 

Implementing ANFIS algorithms for real-time control applications is the main 

challenge. The difficulties come from real-time linear and nonlinear parameters and 

the adaptation of the control systems (Tămas and Brassai, 2015). Distributing the 

functions of ANFIS algorithm between multiple dedicated hardware modules work 

together in parallel can solve these challenges. In other words, the ANFIS IP 

(Intellectual Property) controller is used to run the main function of the algorithm and 

the ARM hard-processor in Zynx FPGA kit is used to adapt and train all ANFIS 

parameters. 

   Other studies use dual-core hard-processor and a programmable logic part based on 

Vivado High-Level Synthesis tool with high-level language like C/C++. Parallel 

ANFIS architecture uses a very high processing speed and the parameter adaptation 

works in parallel with the output processing in real-time can be found in (Tămas and 

Brassai, 2015).  

The authors in (Łapa, Zalasiński, and Cpałka, 2013) present a new methodology based 

on an evolutionary strategy for nonlinear modeling in order to perform the reduction 

of complexity in neuro-fuzzy systems and adapt the parameters and the selection of 

simple rules for the system structure. This work enhances the operation of ANFIS 

algorithm and reduces computational tasks and its complexity. There are some other 

works tried to reduce the data dimensions and the complexity of the neuro-fuzzy 

systems by combining them with other soft computational methods such as particle 

swarm optimization (Ghasemi, Kalhori, & Bagherpour, 2016; Rini, Shamsuddin, and 

Yuhaniz, 2016) or with data mining algorithms like C-means (Çavdar, 2016; Kaur, 

Dhar, and Guha, 2016). 

Authors in (C. Chen, John, Twycross, and Garibaldi, 2016) extend the traditional five 

layers architecture of the ANFIS algorithm to a 6-layer architecture that allows the 
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fuzzification and the node at the inputs layer to be more explicit. The first layer in the 

extended architecture has been divided into two layers (layer 0 and 1). The first layer 

(layer 0) is a fuzzification layer, which is used to generate membership grades of all 

crisp inputs while the layer 1 calculates the largest membership grade for layer 0 nodes.  

According to the existing and reachable literature, we decided that the overall thesis 

design can be covered up into two folds. The first fold deals with improving the 

performance of ANFIS algorithm by combining it with other soft algorithms or trying 

to modify and extend its architecture. The other fold attempts to implement the ANFIS 

in reconfigurable FPGA based on different methodologies. Our contribution aims to 

integrate these two folds by extending the architecture of the ANFIS algorithm and 

using the FPGA to implement the algorithms for real time systems.   

On the other hand, several studies use the FPGA for real-time smart home automation 

systems. In the study of Mohd and Mamun in (Marufuzzaman, Bin, Reaz, & Islam, 

2014). authors propose a methodology based smart algorithm for recognizing and 

analyzing activities of daily life based on FPGA. The modified algorithm aims to 

classify the home events based on intelligent multi-agent algorithms that interact with 

each other. The system consists of four prediction agents (event, time, location, power) 

and one agent for decision-making. Based on the inferential processes within the 

prediction agents, they forward the necessary commands to the Decision-Making 

Agent.  

Other FPGA prototype of a home automation system based on Artificial Intelligent 

can be found in (M.B.I. Reaz, Assim, Choong, Hussain, & Mohd-Yasin, 2006). The 

authors design a system that includes three main units: the prediction unit, the decision 

unit, and the communication unit. Active-Lezi algorithm for the online predictor is 

used in the prediction unit to predict possible future actions. While the Q-Learning 

algorithm that is a kind of reinforcement learning technique is used within the decision 

unit in order to make the final system decision. Other similar FPGA implementation 

based artificial intelligent for home automation can be found in (Mamun Bin Ibne 

Reaz, 2013).  

The authors in (Sang-hyun, Lee, and Kyung-il, 2013) propose the methodology that 

integrates ANFIS with the smart home system to eliminate the difficulties that face the 

sensors in traditional home systems and generate the intelligent and adaptive system. 
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The authors design multiple ANFIS algorithms in order to take multiple dynamic 

decisions. Multiple ANFIS have the ability to deal with the nonlinear and complex 

events system; as a result, the high efficiency can be achieved in the Home Automation 

System (HAS). 

Another implementation based on FPGA, embedded systems, and web technologies is 

proposed in (Rusu and Duka, 2017). The proposed system has the ability to control 

and manage multiple house systems through the internet using a single internet page. 

According to the authors, the system has many advantages over the similar FPGA 

implementations like the ability to monitor and control more than one home system 

through a single web page and LCD panel at the same time. The system has also the 

flexibility to support different types of communication protocols. Finally, the hardware 

system is very fast because of the response time between the FPGA kit and the web 

page is about 500 milliseconds. 

To the best of our knowledge, there are some other studies using different wireless 

communication technologies for FPGA connectivity and HAS. Examples are in the 

references (Suresh and Mastani, 2018; P Waghmare, Chaure, Chandgude, and 

Chaudhari, 2017) for Bluetooth communication and (Asadullah and Raza, 2016; 

Gaikwad, Gabhane, and Golait, 2015; Panigrahi, Qureshi, Saxena, and Reddy, 2016; 

Sharma et al., 2015) for Wi-Fi in addition to previously used wired technologies. 
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CHAPTER 2 CHAPTER 2  

FIELD PROGRAMMABLE GATE ARRAYS 

 

. Introduction 

FPGAs are devices in which almost any digital circuit can be implemented just by 

using programming languages such as Hardware Description Language or by 

Schematic Capture. They are used in electronic fields to build complex sequential or 

combinational logic circuits in order to reduce space and to avoid Application specific 

ICs design cost. In this chapter, we will give an introduction about the internal structure 

of this device and how can be used to build a new generation of WSNs. 

. Field Programmable Gate Array Structure 

Field Programmable Gate Array (FPGA) is a device which consists of a huge number 

of reconfigurable logic circuits and gives particular reprogrammable circuit. When an 

FPGA is programmed, the internal logic circuits are connected in a way that allows 

producing a specific hardware achievement of   a software application.  In general, 

FPGA devices do not have any operating systems and they utilize dedicated hardware 

resources for a specific processing application. Because of the parallel nature of FPGA 

devices, they do not need to compute the same hardware resources for multiple 

software applications. So, the performances of fabric FPGA parts of the different 

applications are not affected in case of much additional processing are added. In 

addition to a single FPGA device can run multiple control loops at multiple rates and 

this is one of the main distinctions between the FPGA devices and general processors.  

A single FPGA has millions of digital logic circuits and can be used instead of 

thousands of analog components by incorporating in one integrated circuit (IC). The 

flexibility of the general structure of the reconfigurable FPGA is explained in Figure 

2.1. The FPGA comprises three main reconfigurable parts: Configurable Logic Block 

(CLB), Programmable Interconnects, and Input/output blocks (IOBs). All these parts 
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can be reconfigured to implement complex applications. reconfigurable IOBs 

represent as a ring around the FPGA microchip and provide access to the I/O FPGA 

package pins. While the CLBs distributed as a rectangular behind the IOB(D. Chen, 

Cong, & Pan, 2006)(Lee & Seshia, 2011). 

 

   

 

 

 

 

 

 

       

The Configurable Logic Block of an FPGA can be programmed to implement various 

kind of combinational functions, sequential functions, or combinations of both of them 

in a simple way. CLB can be configured by one of these methods(Bobda, 2008):  

1. Combinational logic circuits such as AND, OR, XOR, NAND, etc.  

2. Lookup tables  

3. Multiplexers and De-multiplexers 

4. And-OR structure.  

5. Transistor pairs  

Routing process in FPGAs between CLB is done by programmable interconnects that 

consists of a various length of wire that can perform the interconnection through 

configurable switches. The density of CLB that is used for specific application within 

FPGA is based on length and number of programmable wires applied for the routing 

process. Simplified routing in internal FPGA architecture is shown in Figure 2.2. 

 

 

 

Figure 2.1. General Structure of Reconfigurable FPGA 
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. FPGA Programming Technologies 

There are many technologies of programming FPGA devices that have been used to 

configure internal architectures. Each technique has different characteristics which 

have a major effect on the reconfigurable architecture. Some of the techniques 

comprise SRAM (Static Random-Access Memory), EEPROM (Electrically Erasable 

Programmable Read-Only Memory), and Anti-fuse(Maxfield, 2004). 

 

2.3.1. FPGA Based SRAM  

Static memory cells are the essential elements that are used for FPGAs. Most 

commercial vendors use static memory (SRAM) based programming technology in 

their devices. SRAM cells in general, are applied to configure the internal routing of 

FPGAs which are normally drive by digital multiplexors and to re-configure the CLBs 

within FPGA devices which are used to perform the various logic functions. Figure 

2.3 is an example of a static memory cell that is used in re-configurable devices. In 

this picture, SRAM stores a bit of data on four transistors using two cross-coupled 

inverters. The two stable states characterize 0 and 1. During read and write operations 

another two access transistors are used to manage the availability to a memory cell. 

 

 

 

 

Figure 2.2. Simplified Routing in FPGA Architecture 
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 Because SRAM-based technology uses the CMOS technology, it becomes a prevalent 

approach that is used in FPGAs. Also, it improves integration, speed and decreases the 

power. Using the SRAM technology-based FPGA can be infinitely re-configurable 

and soldered into the hardware board. The implemented function can be changed very 

quickly in the field by modifying the information that is stored in the PROM or upload 

a new application code. But this process takes a huge number of digital look-up table 

(LUT). Also, the FPGA-based this technique needs to re-program the device every 

time when the power is turned on. 

 

2.3.2. FPGA Based Anti-fuse  

Another alternative to Static memory cells is anti-fuse technology. A high-density 

interconnect is one of the most important characteristics of this programming 

technology. This programming technology has a huge number of internal 

interconnections and that makes the logic application small and efficient. So, the 

placing and the routing process is much easier and doesn’t take a long time. Also, the 

resistance and capacitance are small when compared with other programming 

technologies.   

But these kinds of devices are one-time programmable, and we cannot make any 

change in its design. Another disadvantage of this technology is the demand to 

integrate all cells of the anti-fuse structure within the integrated circuit (IC). Figure 2.4 

demonstrates an example of an array of AND/OR gates connection with two inputs 

and one output based on anti-fuse technology. 

 

Figure 2.3. Static Memory Cell 
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2.3.3. EEPROM Based 

One of the most commonly used and more efficient technologies is the |FPGA based 

EEPROM cells. This type can be used for two purposes, as s control device like static 

memory cell or it can be used as a very efficient re-configurable direct switch. 

These devices are non-volatile when compared with the SRAM, so they don’t lose its 

content when power off and do not need any additional PROM for booting. But the 

process of the EEPROM is more complex and has finite number of re-configurable 

times when compared with SRAM technology. 

 

. Advantages of using an FPGA 

There are many advantages of utilizing FPGA devices over using Application-Specific 

Integrated Circuit (ASIC) like microcontrollers. The FPGAs are very flexible, 

reusable, and faster to obtain. Usually, FPGAs are more expensive and have a lower 

value of production than an ASIC or microprocessor. On the other hand, an FPGA is 

very cost efficient because of the ability to reprogramming unlimited time for different 

application tasks. The performance of FPGA is very high because of the parallelized 

technique that uses in internal architecture. Also, we can build many soft or hard 

microcontroller inside one FPGA package. Another facility in FPGA is that the ability 

to re-configurable a portion of its internal fabric while other portions are still working. 

Any new modification future in the final design can be modified by generating and 

downloading a new bit-stream file. In the FPGA environment, the user doesn’t need 

Figure 2.4. AND/OR Structure Based on Antifuse 
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to know every hardware details. The software will carry out everything such as routing 

and placement. Also, the timing constraint will be done automatically to fit the design 

specifications. After the design is completed and downloaded it as a bit-stream file, 

the FPGA will convert to a kind of   ASIC (D. Chen et al., 2006; D. Chen et al., 2006 

;D. Chen et al., 2006). 

. FPGAs Employed   

The Xilinx and Altera are the most common manufacturers in the market which 

provide the FPGA devices. Other several manufacturers can also provide FPGAs such 

as Semiconductor, Atmel, etc. 

2.5.1. Xilinx: 

 Xilinx is an American company and it is one of the first and important field-

programmable gate array (FPGA) providers. The Virtex and Spartan series are the two 

families that supplied by this company and they are widely utilized in the market. 

There are many differences between those two families related to cost and 

performance. 

. The Spartan series of FPGAs 

The Spartan family is designed primarily for the low cost and simple solutions that 

don’t need a high performance such as the routing algorithms that are used in the 

wireless sensor networks. Below some of the famous Xilinx Spartan series (Capability, 

2016; June and Ram, 2013; Xilinx, 2011):     

• The Spartan-6 family is mostly used by sensor designers for wireless 

communications or for the automotive applications as a lower cost solution and 

minimum energy consumption.  

 

• The Spartan®-3AN family is a nonvolatile technology that combines between the 

attributes of previous Spartan-3A family and system-based flash memory 

technology for programming and data storage. 
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• The Spartan-3 family is normally utilized to perform real-time applications 

combined with fuzzy system controller and other applications that need large 

number of I/O ports.  

 

. The Virtex series of FPGAs  

The Virtex series are utilized as a solution for the highest system performance (Xilinx 

Inc., 2013). Many features are integrated with this series compared with the Spartan 

series which include Ethernet MAC blocks (Media Access Control), Digital Signal 

Processing block (DSP), FIFO logic, high-speed transceivers, and PCI-Express 

controllers. In addition, the Virtex series have many fixed hardware functions that 

embedded internally and commonly used such as memories, hard cores of 

microprocessors, serial transceivers, etc. 

 

• The Virtex 7 series is intended to achieve a high-performance at 50% lower power 

when compared to the Virtex-6 generation devices. Also, memory bandwidth in 

Virtex-7 is doubled compared to previous Virtex FPGAs generation(Xilinx Inc., 

2013).  

 

• The designers of sensor systems try to use the Virtex devices like Virtex-7 or 

previous generation such as Virtex-II, Virtex-II Pro, etc. in order to implement the 

complex functions within the sensing systems specifically in wireless sensor 

networks (WSN) because the FPGA devices are a powerful and robust and a high- 

performance devices at an acceptable cost.  

   Table 2.1 shows the characteristics of the different FPGA series of Xilinx. 
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2.5.2. Altera 

 Altera is also an American manufacturer that provides programmable logic devices 

(PLDs) and different types of reconfigurable circuits. Three main families of FPGA 

devices are provided by Altera: the low-cost Cyclone series, the mid-range Arria series 

and the last one is the Stratix series that is used for applications that need high-

performance. The interesting thing is that all these families are focusing on its soft-

core processors that is called NIOS processor series within its FPGA logic devices 

instead of hard-core processors compared with Xilinx families.  

• The Cyclone series: This series was designed for applications that required low-

performance and low-cost. It is well suited for many sensor applications such as 

acquisition real data, hardware image processing, and IR Sensors based Signal 

Conditioning Circuit. The FPGA Cyclone VI is the recent series from Altera that 

has 4-input LUT in addition to a register which is associated on the output 

(Cyclone and Partners, 2003).  

 

• In Stratix FPGAs: They have a similar architecture that is found in the Cyclone 

series with additional improvements. The LUT in this series has 8 inputs, with 

Table 2.1. Characteristics of Different FPGA Series of Xilinx. 
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many DSP blocks and Ram blocks which can be used as FIFO dual-port RAM or 

shift registers(Corporation, 2004)(Altera, 2010). 

 

▪ The Arria series: This series also based on 8-input LUT like the Stratix series. The 

series is normally utilized for serial communication applications that need a high- 

performance because it has very high-speed transceiver hardware blocks which 

are embedded on its internal design. The other characteristics of the Arria FPGA 

devices are similar to the Stratix devices(Corporation, 2012). 

Table 2:2 summarizes characteristics of different Altera series. 

 

 

 

 

 

 

 

 

 

 

 

. Xilinx Zinq 

Xilinx Zynq is a new generation of FPGA System-on-Chip (SoC). The Zynq devices 

are primarily manufactured to be used for variety kind of applications because its high 

flexibility. The device has an embedded dual-core ARM Cortex-A9 processor which 

build in the internal fabric of FPGA logic. 

The dual-core ARM processor in Zynq devices has the capability to run full operating 

systems whereas the other programmable logics are based on 7-series of the Xilinx 

FPGA internal architecture (Capability, 2016). The AXI interfaces (Advanced 

eXtensible Interface) are used to build the Zynq architecture, that supply low-latency 

Table 2.2. Characteristics of Different Altera Series. 
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connections and high bandwidth between the main elements of the device(Reference, 

Axi, & Guide, 2014). In other word, the Processing System (PS) part and the 

Programmable Logic (PL) part can perform the related functions individually without 

any conflict or overhead between two separate parts. That means, simplifying the 

system architecture leads to reductions in size and overall cost. 

 

2.6.1. System-on-Chip with Zynq 

The concept behind the System-on-Chip is that:  a single Integrated Circuit (IC) chip 

can be utilized to perform all functionality of the hardware system, compared with 

traditional circuits that need several chips for each function. The term of the SoC 

normally can be represented as an Application Specific Integrated Circuit (ASIC), that 

could comprise from analog circuits, digital logic, and other communication 

components such as radio frequency elements in addition to the digital-to-analog 

(DACs) and analog-to-digital converters (ADCs) embedded in a signal Integrated 

Circuit. 

From the digital aspect of SoC, the SoC can include all aspects related to a digital 

system such as memories, microprocessors, interface circuits, high-speed digital 

elements, and so on. Otherwise, we might need separate devices to realize each 

function. The SoC technique provides: 

• lower cost,  

• low power consumption, 

•  high-level of design security,  

• fast-rate of data transfers among the system components, 

• small size, and 

• high reliability.  

A simple graphical diagram of the System-on-Chip is demonstrated in Figure 2.5 

(Xilinx, 2018). 
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On the other hand, the ASIC-based SoCs are suffering from disadvantages such as:  

(i) The flexibility of the system is low.  

(ii) The development of the SoCs system is very high speed and time consumption.  

The high cost of system development making this kind of non-recurring engineering 

effort (and cost) of developing an ASIC are significant, making this type of hardware 

system suitable only for the application and systems that don’t need any future 

upgrades. Mobile phones, tablets, and PCs are an example of the devices that comprise 

processors based of ASIC; These kinds of processors normally comprise single or 

multiple processor cores, interfacing circuits, storage units, and other associated 

elements (John and Smith, 1997).  

 All these limitations of ASIC-based SoCs make them incompatible for many 

significant applications that need the ability of system upgrade and a high level of 

flexibility. Is it clear the important of the flexibility in our life applications so, 

motivates the hardware designers to move towards re-programmable devices based 

SoCs in order to add more flexibility to add the ability of upgrades the functionality of 

the system and saving the time and cost. Field-Programmable Gate Array (FPGA) is 

the natural solution and one of the most common examples of re-programmable 

devices. 

FPGAs are adaptable devices which can be programmed to actualize any subjective 

system. Compared with ASICs devices, the FPGAs offering high-level performance 

Figure 2.5. Diagram of the System-on-Chip 
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and more flexible hardware platform that can be configured to achieve any desired 

digital system. There is no risk and very easy when system upgrading is necessary to 

the latest generation of Xilinx’s all-programmable System-on-Chip (SoC). 

Now, the FPGA-based Zynq device gives a considerably more perfect hardware 

platform for actualizing adaptable SoCs: the Xilinx presents the Zynq device which is 

the latest generation of Xilinx as a kind of all-programmable System-on-Chip 

(APSoC), that superbly catches its abilities. The internal architecture of the Zynq is 

presented in Figure 2.6 (Xilinx, 2018).  

 

 

 

 

 

 

 

 

 

       

According to Figure 2.6, the internal architecture of the Zynq consists mainly of two 

parts: Processing System (PS) which comprises the dual-core ARM Cortex-A9 

processors in addition to the multiple common peripherals and memory interfacing. 

and the second part is Programmable Logic (PL), that is equivalent to the traditional 

FPGA fabric (internal structure) and has a long range of general peripherals such as 

General-Purpose Input /Output (GPIO), different kind of memories, A/D converters, 

communications interfaces, and so on. The two parts of Zynq architecture can work 

together or independently.    

2.6.2. Processing System (PS) 

The Zynq processing system includes ARM processor with many associated hardware 

processing resources constructing the Application Processing Unit (APU), in addition 

to memory interfaces, clock generation, cache memory, group of peripheral interfaces, 

Figure 2.6. Internal Architecture of Zynq Device. 
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and high-performance interconnection ( Xilinx, 2015). Figure 2.7 demonstrates the 

diagram of the Zynq PS (Xilinx, 2018). 

 

 

 

 

 

 

 

 

 

 

 

 

     

 

The frequency of the ARM processor is up to 1GHz, based on the series of the Zynq 

device. Each dual-core of ARM Cortex-A9 processor has two levels of cache memory: 

Level 1 and Level 2 caches. The size of Level 1 is 32KB which is used for data and 

instructions. This amount of cache is used to reduce the access time of the data and 

instruction that are frequently required and optimize the performance of the processor.  

While the size of Level 2 cache memory is 512KB which is shared between two core 

processors in addition to 256KB of on-chip cache within the APU. 

On the other hand, the Software Development Kit (SDK) from Xilinx is used to 

configure the ARM processor which comprises all necessary tools and libraries to 

develop the processor’s functions. 

 Beside the ARM processor, the APU has NEON engine which utilize to provide 

Single Instruction Multiple Data (SIMD) mechanism to enhance the processing of 

multimedia (2D/3D graphics, video, audio, user interface, etc.) and Digital Signal 

Figure 2.7. Diagram of the Zynq PS. 
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Processing (DSP) (Manual, 2015). Figure 2.8 explains the location of the NEON 

engine within the APU (Xilinx, 2018).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.6.3. The External Interfaces of Processing System 

There is a diversity of interfaces that are used by the Zynq PS to communicate the PL 

and the external devices as shown in Figure 2.7. According to the Figure 2.7, the 

Multiplexed Input / Output (MIO) are utilized to bind the PS part and external 

components. The MIO circuit is a flexible connectivity that consists of 54-pins which 

can be used to achieve different functions. The external connection also can be done 

by the extended MIO (EMIO) which is 192-signals (64 Inputs, 128 outputs) indirect 

connection from PS part to external environment through Zynq PL(Xilinx Inc. SDK, 

2016). The MIO and EMIO demonstrated in Figure 2.9. 

 

 

 

Figure 2.8. Location of the NEON engine within the APU. 
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The EMIO signals are normally utilized when any IP block core within the PL wants 

to access the PS part or more then 54-MIO is needed for any hardware design. The I/O 

ports within the MIO or EMIO consist of standard interface circuits, and (GPIO) that 

can be utilized for a long range of applications which comprise switches, and LEDs, 

etc. ( Xilinx, 2018). The overall I/O peripheral is shown in Table 2.3 which include 

the standard name of each peripheral and its description.  

 

 

 

Figure 2.9. MIO and EMIO Interface. 
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2.6.4 Programmable Logic 

The programmable logic (PL) is the second portion of the Zynq architecture. Figure 

2.10 shows the main elements that can be included within this part. The PL part 

represents the general logic of the FPGA fabric. Generally, the Zynq PL is like any 

traditional FPGA device. It consists of general Input/Output Blocks (IOBs), 

Configurable Logic Blocks (CLBs), and programmable interconnection which is used 

to connect the internal parts of PL.  

 

 

Table 2.3. I/O Peripheral Description. 
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Based on Figure 2.10, all features of the PL can be abridged as shown below: 

• Configurable Logic Block (CLB): The CLB is the basic logic element on the 

FPGA fabric. The general structure of the CLB consists of smaller logic element 

components, such as multiplexers, look-up tables (LUTs), and flip-flops. When 

connecting multiple CLB together based on switch matrix interconnection, the 

CLBs can be used to perform complex functions.  

 

• Lookup Table (LUT): LUT is a group of logic circuits that are wired within the 

FPGA. It has the capability to implement many adaptable functions such as a small 

size of Random Access Memory (RAM) or Read Only Memory (ROM), shift 

registers, logic functions, etc. 

 

Figure 2.10.  Zynq PL structure. 
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• Flip-flop (FF): FF is a sequential logic circuit and normally works as a storage 

resource within the FPGA fabric. A one FF can be used as a binary register to 

keep the logic states during the FPGA clock’s cycles circuit.  

 

• Slice: A sub-unit inside the CLB, which is used to implement the sequential and 

combinational logic circuits. The slice is constructed when a set of multiplexers, 

LUTs, and flip-flops are connected together.  

 

• Switch Matrix: A switch matrix is a flexible programmable interconnection switch 

used to: 

1) connect the internal element of CLB,  

2) connect a group of CLB together, 

3) connect other resources of the PL together. 

 

• Carry logic: Carry logic is a combination of multiplexer circuit and XOR gates 

are connected within the CLB. The main function of the carry logic is to spread 

the intermediate signals of the arithmetic circuits among adjacent slices.  

 

• Input / Output Blocks (IOBs): IOBs are used to interfacing the elements of PL to 

the external physical peripherals. IOBs are placed around the circumference of the 

FPGA device. 

In general, there is no need for a deep knowledge of the internal architecture of 

the logic fabric by the designer, in most cases, all the design requirement from 

logic resources (LUTs, FFs, Multiplexers, gates, etc.) will be done automatically 

by the Xilinx tools accordingly. 

2.6.5. Programmable Logic and Processing System Interfaces 

As we mentioned, the Zynq architecture consists of PS and the PL parts. It is important 

to have the ability to use both of them in order to build complete and integrated 

systems. The key solution is the high flexibility configurable AXI interconnects which 

is a kind of bridge between the Zynq parts.in addition to other particular connections 

likes EMIO. 
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In this section, we will present the configurable interconnection between the Zynq PS 

and PL and show how they can be utilized. We start by explaining the AXI standard 

interconnection, which is the most used connection.  

2.6.6. Advanced eXtensible Interface (AXI) 

Advanced eXtensible Interface or shortly AXI4 is the fourth and current version of the 

ARM microcontrollers based on AMBA standard which was developed and released 

in 1996 to be used within ARM microcontrollers. Lots of devices and hardware cores 

are generated via third-party manufacturers are depended on this standard interface 

(Hinkelmann, Reinhardt, Varyani, and Glesner, 2008). 

We are focusing on the Zynq device-base System-on-Chip which comprise the FPGA 

fabric. The AXI4 is a perfect reconfigurable interconnect technique that can be used 

within FPGA devices and the Xilinx is contributed strongly to develop it and used 

within its architectures(Reference et al., 2014). The Xilinx software tools starting with 

ISE® Design Suite 12.3 and up to the Vivado Design Suite are supported for using 

AXI interconnection.  

Actually, there are three types of AXI4 buses, and each one can be implemented with 

a different bus protocol. The choice of the protocol-baed AXI bus depends on the 

connection’s properties. Shortly, the types of AXI4 interfaces are (Hinkelmann et al., 

2008):  

• AXI4: Also known as memory-mapped protocol. This protocol provides a high 

performance and supports a data transfer up to 256 bytes per connection and 

usually use it for memory-mapped applications are requirements.  

 

• AXI4-Lite: A very simple protocol and support single data transaction per 

connection. AXI4-Lite can be used for memory-mapped but the memory address 

must be provided at every starting connection by the master (read or write) signal. 

 

• AXI4-Stream: high-performance, high-speed protocol and support a burst data 

transaction which its length is unknown. Typically, it is used for applications-based 

streaming of data. AXI4-Stream protocol works likes a unidirectional channel with a 
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handshaking mechanism. The memory address is only determined at the first byte to 

be transferred. 

. WSN based FPGA background and literature review 

Using the reconfigurable technique in the design of the architecture of sensor nodes 

(motes) can profit with regard to many aspects not only benefits from its high 

performance and flexibility but to but also prototype a new generation of processor 

architectures which can be used complex implementation. Recently, the 

Programmable Logic Devices (PLDs) such as FPGA devices are commonly utilized 

in the manufacturing of re-programmable sensor nodes. In this section, we will 

introduce the techniques which are used to design and implement the reconfigurable 

sensor node based on FPGA devices with some research works related with this 

approach. In general, there are three main techniques which are used to design and 

implement the reconfigurable sensor node based on FPGA devices (Wilder, Uzelac, 

Milenković, and Jovanov, 2008). 

2.7.1. SoC-based FPGA prototype 

 Reconfigurability of the SoC-based FPGA prototype is utilized to design and 

implement various customized architectures of motes. New versions of FPGA devices 

have adequate resources to implement a full SoC architecture which include a 

microprocessor, different types of memories and lots of peripheral elements. Those 

SoC architectures can be done based on special tools from major FPGA vendors which 

back this feature like Vivado Design Suite from Xilinx or Embedded Design Suite 

from Altera.  

Usually, these software have embedded tools which are utilized to debug, simulate and 

evaluate the hardware design. Furthermore, using these approaches provide perfect 

hints to optimize design tasks, performance, energy consumption. So, using FPGA 

prototype to design motes or any hardware system is the trustworthy method to 

guarantee that the system has correct functionally. Practically, the FPGA devices are 

chosen with large logic gates number to take advantage of its flexibility when 

evaluating the designing SoC architectures. Figure 2.11 shows this type of architecture. 
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Many works are done for WSN-based on this approach and implemented for different 

applications, for example, the authors in (Jiesheng Wei, Ling Wang, Feng Wu, Yibo 

Chen, & Long Ju, 2009) introduce an architecture based on SoC prototype and the 

system is targeted at Altera FPGADE2-70 kit.  

This system has three main functional units which are: the interface circuit and the 

data acquisition unit, the Zigbee transceiver, and the data processing unit. All these 

units are handled by custom digital resources within FPGA fabric. 

Another implementation for wireless sensor node can be found in(Liao, Singh, Khalid, 

& Tepe, 2013). The authors propose a parallel processing platform based on Xilinx 

Spartan3 FPGA. The proposed architecture can handle multi-events depend on its 

priority.  

Machine monitoring and fault diagnosis platform-based on Xilinx Artix FPGA for 

WSN is suggested in (Bengherbia, Ould Zmirli, Toubal, and Guessoum, 2017). The 

node consists of a MicroBlaze soft processor as the main controller in addition to 

multiple hardware blocks such as AES block, nRF24L01 transceiver, and FFT block 

accelerometer.  

 

Figure 2.11. SoC-based FPGA prototype 
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2.7.2. FPGA as a standalone processing unit 

FPGA as a standalone processing unit is an alternative design for sensor node based 

on re-programmable hardware (Figure 2.12). In this approach, MCU within the 

conventional sensor node is totally substituted by custom hardware-based FPGA and 

there is no need for any CPU within it. This hardware solution focuses on the 

implementation of the main functionalities of the core. So, the flexibility of the system 

and the energy efficiency will be affected negatively.  

For this category, we can recognize between the designs using ASIC-based FPGAs 

prototyping and designs utilizing the custom hardware-based FPGA for sensor node 

in real-applications. In general, sensor nodes without microprocessor are suffering a 

generosity and focusing only on the target applications which make them convenient 

for lots of implementation. 

 

  

 

 

 

 

 

 

 

 

 

Many articles are proposed for WSN-based on this approach for instance the work in 

(Hinkelmann et al., 2008). The authors introduce a rapid prototype-based on 

reconfigurable FPGA for WSN. The system is designed and implemented based on 

Spartan3-2000 FPGA from Xilinx. The proposed platform consists of a radio 

transceiver, sensor module slots, a planar antenna, LEDs, and 4-rechargeable batteries. 

The processing part of the system and the interfacing to the external elements are 

handled by the FPGA. 

                                               

 

                                               

Transceiver 
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Figure 2.12. FPGA as standalone processing unit. 
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The authors in (Muralidhar and Rao, 2008) introduce a wireless sensor node that can 

be used for fire detection and prediction. The Nios processor from Altera is used to 

design the sensor node with a re-programmable unit. The data acquisition process is 

performed by connecting the LM35DZ temperature to the FPGA hardware kit and the 

process of send/receive data is handled by PTR-4500 Bluetooth transceiver. Another 

similar work based on GSM communication can be found in(Suresh, 2018). 

Dynamic re-configurable platform based on IGLOO FPGA is implemented in 

(Francois Philipp and Glesner, 2011) for WSN. In this work, Fast Fourier Transform 

(FFT) and Finite Impulse Response filter (FIR) are used to handle and process the 

sensing data by the system controller. According to the authors, the dynamic re-

configurable approach can help to reduce the energy and execution time.  

Partial reconfiguration is a technique used with the FPGA devices which divides the 

hardware system into dynamic and static parts. The dynamic part can be online re-

configured while the remaining static part is still working without disturbing. So, the 

authors in (Meena and Krishna Prakash, 2014) proposed an architecture for a WSN 

based on partial reconfiguration Virtex-4 FPGA. The sensor node is comprised 

multiple different analog and digital sensors such as: temperature sensor, infrared 

sensor, smoke sensor, and photo detector in addition to another associated components 

like ADC converter, GPIO, and so on.  

Another flexible partial re-configuration implementation for security and 

cryptography applications which can be employed for a wireless sensor node based on 

Xilinx Spartan 6 FPGA device is introduced in (Cardona, Lorente, and Ferrer, 2014). 

The authors propose a method that can be used to perform and synthesis the AES-256 

and SHA-3 algorithms within the FPGA by are storing these algorithms in 

XC6SLX16-2CSG324 flash memory within Spartan 6. The Internal Configuration 

Access Port (ICAP) controller which is a kind of embedded access port is utilized to 

control the data flow to/from the flash memory.  

The time delay between the controller and the flash memory and high-power 

consumption are the difficult challenges that appear when implementing this kind of 

security and cryptography algorithms for WSN. The FPGA prototype is not always 

convenient in WSN applications.  
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2.7.3. PLD as MCU co-processing unit: 

This category is the last and most commonly used in the designing of the motes where 

the re-programmable devices are placed beside the MCUs in same mote architectures 

in order to accelerate the system’s tasks as shown in Figure 2.13. In this case, the 

function of the re-programmable hardware is to implement all the tasks that cannot be 

done efficiently by the main CPU of the mote. 

 

 

 

 

 

 

 

 

 

 

 

Most mote’s architecture from this category are expected to be better compared with 

mote-based FPGA prototype and standalone processing-based FPGA unit in terms of 

performance, speed, and power consumption. Finally, the type of re-programmable 

devices will be used within the mote must be carefully chosen in terms of the number 

of logic resources in order to minimize the power consumption. So, works are done 

based on this methodology with and implemented for different applications. Table 2.4 

summarizes some of these works based on Platform, MCU, Programmable devices, 

Sensors types, and Application.  
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Figure 2.13. PLD as MCU co-processing 
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Table 2.4. PLD as MCU co-processing. 

Work-Year platform MCU 
Programm-

able devices 
Sensors Application 

(Bellis et al., 

2005)  2005 

NMRC 

sensor node 

Spartan 

IIE 

ATMega128L 

 

- General 

purpose 

(Rahimi, 

Estrin, Baer, 

Uyeno, & 

Warrior, 

2004)  2005 

Cyclops 

ATmega12

8L 

 

Xilinx 

XC2C256 

CPLD 

Image 

Sensor 

Vision 

applications 

(Kerhet, 

Magno, 

Leonardi, 

Boni, & 

Benini, 

2007)  2007 

MicrelEye 

AT40K 

MCU 

 

FPSLIC 
Camera 

OV7620 

People 

detection 

(Krasteva

, Portilla, 

Carnicer, De 

La Torre, & 

Riesgo, 

2008)  2008 

Cookie 
ADuC841 

 

Xilinx 

Spartan3 

XC3S200 

Humidity

, Light, 

Infrared 

Environment 

(Imran, 

Khursheed, 

O’Nils, & 

Lawal, 2010)  

2010 

μc  FPGA 

SENTI

O32 

 

Xilinx 

Spartan6 

IGLOO 

Image 

sensor 

magnetic 

particles 

detection 

(“PowWow: 

Power 

Optimized 

Hardware 

and Software 

FrameWork 

for Wireless 

Motes,” 

2018)  2010 

PowWow 
MSP430 

 

FPGA 

IGLOO 125 
- 

General 

purpose 

(W. Liu, 

Bienstman, 

Jooris, 

Yaron, & 

Moerman, 

2012)  2011 

Liu et al. 
TelosB 

 

Xilinx 

Spartan-3A 

and 3E 

- 
Experimental 

platform 

(Yuan, 

Qiu, Gao, 

Tong, & 

Yang, 2012)  

2012 

Yuan et al. 
MSP430 

 

AN231E04 

FPAA 

Sensor 

board 

Self-healing 

paradigms 
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(Kelly, 

Rumberg, 

Graham, & 

Kulathumani

, 2013)  2013 

Kelly et al. 
TelosB 

 

CPLD 2 

FPAA 

Gyroscop

e, 

Micropho

nes 

General 

purpose 

(Szilvási, 

Babják, 

Völgyesi, & 

Lédeczi, 

2013)  2013 

Marmote 

SDR 

SmartFusio

n 

ARM 
IGLOO 

FPGA 
- 

General 

purpose 

(Lopez, 

Valverde, De 

La Torre, & 

Riesgo, 

2014)  2014 

HiReCooki

e 

Spartan-

6 

 

MicroBlaze 
Image 

sensor 

Multimedia 

applications 

(Fularz, 

Kraft, 

Schmidt, & 

Kasi, 2015)  

2015 

Zynq 
ARM 

cortex A9 

Artix7 

xc7z020-

clg484 

Image 

sensor 

Video 

surveillance & 

inspection 

(Zhai, 

Ali, Amira, 

& Bensaali, 

2016)  2016 

Zynq 
ARM 

cortex A9 

Artix7 

XC7Z010T 

1CLG400 

Gas 

sensor 

Gas 

monitoring 

(Gomes, 

Pinto, 

Salgado, 

Tavares, & 

Cabral, 

2017)  2017 

Smart 

RF06EB 

ARM 

Cortex-M3 

IGLOO 

FPGA 
- 

IoT 

application 

(Prakash 

& Surjith, 

2017)  2017 

Krishna et 

al. 

MSP430

F5438 

 

Spartan 

3AN FPGA 

Sensor 

board 
Smart Grids 
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Chapter 3 CHAPTER 3 

ARTIFICIAL NEURAL NETWORKS AND FUZZY SYSTEM 

 
 

. Introduction  

Artificial neural network (ANN) is an information technology (IT) and processing 

system of software and /or hardware based on the architecture and the functionality of 

the biological human neural networks (Fausett and Fausett, 1994). ANNs are non-

linear modeling tools that can be utilized when the inputs and outputs patterns have 

complex relationships. It can be described by: 

The Architecture which is the type of connection between its neurons (nodes), the 

training Algorithm which is the methodology of calculating the associated weight with 

each node, and finally, the types of its activation functions (Fausett & Fausett, 1994).  

There are many differences between biological and artificial networks. In general, 

“artificial neural networks” refer to the software-based algorithm and hard-wired 

structure rather than physical biological system (Konar, 1999; Mehrotra, Mohan, and 

Ranka, 1997; Dreyfus, 2005). 

. How Artificial Neural Networks Work 

Any artificial neural network comprises an enormous number of processors nodes 

working in parallel and distributed in layers. The first layer accepts the input data like 

an optic nerve in human. Each consecutive layer receives its input from the output of 

the layer preceding it. The last layer of the artificial neural produces the system output. 

The knowledge is distributed on all processing nodes through the layers of the network 

including any origin pre-programmed or modified rules. The layers are strongly 

interconnected, that means each node in each layer is connected to all nodes in 

consecutive layer. The output layer could have more than one output node depending 

on the application for which the artificial neural network is used. 
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. Elements of Neural Networks 

The basic structure of an artificial neuron is shown in Figure 3.1 which demonstrates 

the basic components of an ANN. It comprises three basic elements which include 

weights, summation function, and a single activation function(Fausett and Fausett, 

1994 ; Mehrotra et al., 1997). 

3.3.1. Weighting Factors:  

The values of W1, W2, W3 ,…..,Wn  in Figure 3.1 are weight factors which are linked 

with each node to calculate the strength of input X = [x1 x2 x3…..,xn]
T. The associated 

weight with each node is multiplied by corresponding input data in the form (XT * W). 

The weight factors are adaptive coefficients inside the artificial network which 

calculate the strength of the input data. In other word, the intensity of any input 

connection is measured by those adaptive coefficients. They can be adjusted in order 

to respond to different training sets and based on its architecture. 

 

 

 

 

 

 

 

 

3.3.2. Summation Function 

This function is the first level in a data processing. It is also known as a combination 

function. The summation function is using to compute the summation of the inner 

product of all inputs data (x1, x2, x3… xn) and associated weights vectors (w1, w2, w3 . 

. . wn). Mathematically, we can use a simple summation function to represent the 

multiplication between each input data vector and the corresponding weight vector. 

Eq. 3.1 shows this relationship. 
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Figure 3.1. Basic Elements of an Artificial Neuron. 
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𝑦 = 𝑓(𝑥,𝑤, 𝑏) = 𝑏 + ∑𝑥𝑖 ∗ 𝑤𝑖,       𝑖 = 1,2,3,                       (3.1) 

The Eq. 3.1 also includes a net bias (b), that decreases or increases the net input value 

to the activation function. 

3.3.3. Common Activation Function 

The Activation Function is utilized to define the output type of the neural network. 

There are many types of activation function which can be used in any neural network 

based on the type of application which is realized by the network. In this subsection, 

we will present four of the common activation functions which are used in most linear 

or non-linear algorithms (Sivanandam, Sumathi, and Deepa, 2007;Tettamanzi and 

Tomassini, 2013; Sumathi and Paneerselvam, 2010). 

. Linear Function 

The output of the neuron model based on this type of activation function is the same 

to the network input data. The linear activation function is demonstrated in Figure 3.2. 

 

 

 

 

 

                                                                                  

 

 

The formula in Eq. 3.2 describes the linear activation function:  

 

 

y = F(x ) =  α. x                                                (3.2) 

where α is the slope of the linear function. If the value of α equals 1, then the activation 

function is known as an identity function.  As we mentioned above, the output (y) of 

the identity activation function is equal to the net input signal (x).  

 

F(u) 

u 

Figure 3.2. Linear Activation Function. 
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. Threshold Function 

        A threshold function or hard-limiter activation function. It can be used in two 

binary or bipolar forms as demonstrated in Figures (3.3) and (3.4), respectively. Eq. 

3.3 describes the output of a binary activation function: 

 

                                  y = f(x) {
0                        if     x < 𝜃
1                        if     x ≥ θ

                       (3.3) 

 

 

 

 

 

 

 

 

 

while the bipolar function can be written according to the Eq. 3.4: 

 

y = f(x) {
    1                        if     x ≥ 𝜃
−1                        if    x < 𝜃

                (3.4) 
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Figure 3.5. Bipolar Threshold Activation 

 

𝜃 

+1 

F(x) 

u 

Figure 3.3. Binary Threshold Activation 
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. Piecewise Linear Function 

 A piecewise linear activation function is a function comprises multiple linear 

segments which are defined according to specific periods. The piecewise linear 

function is known as saturating linear function which can be used in binary or bipolar 

form. Figure 3.5 shows the mathematical form for a symmetric piecewise linear 

activation function and described in Eq. 3.4: 

 

                       y = f(u) = {
−1             if                   𝑢 <   −𝜃  
   u            if           − θ ≤ u ≤  θ
1            if                         𝑢 > 𝜃

                 (3.4) 

 

 

 

 

 

 

 

 

 

. Sigmoid Function 

This type of activation function is the most common utilized function within neural 

networks.  The sigmoid function provides a perfect equilibrium among linear and non-

linear behaviors. Hyperbolic tangent activation function is an example of a sigmoid 

function which can be defined by Eq. 3.5 and demonstrated in Figure 3.6. 

                                                𝑦 = tanh(𝑢)                                     (3-5) 
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Figure 3.7. Piecewise Linear Activation Function. 
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. Training of Neural Networks  

To start training, first, the structure of the neural network must be specified to be 

suitable for a specific application, second, all internal initial weights of the network 

are randomly picked. Then the training process will begin. Typically, two approaches 

of training any neural network are most commonly used: supervised and unsupervised 

methods. 

3.4.1. Supervised Approach  

Supervised training approach includes a mechanism to provide the network with a set 

of inputs and desired outputs. For instance, to construct a neural network to recognize 

the face of clowns, a large number of pictures of clowns, non-clowns, animal faces, 

human faces with masks and so on must be given in initial training phase. Each input 

data is associated with the specific identification, such as clowns' names, not clowns, 

animals, and so on. The internal initial weightings start to adjust themselves to reach a 

better performance.  Most of the artificial networks utilize supervised training 

approach. In other word, the training set in this approach which includes the inputs and 

the desired target are provided by the user. The neural network then starts training the 

input data and compares its outputs result versus the desired targets. The amount of 

error is calculated in order to modify the overall weights that control the neural 

network. This process is repeated continuously over the time until the weights reach 

to the situation level (Fausett and Fausett, 1994; Galushkin, 2007).  

In some cases, the training process doesn’t complete in some artificial network 

algorithms. This case could appear when the provided input data doesn’t include 

enough information that is needed by the desired target. As a result, the artificial 

Figure 3.8. Tangent Activation Function. 



  

 42      

 

networks don’t have the ability to converge.  So, the data should be divided into 

multiple folds and specify some of these folds in order to test the performance of the 

network. 

The designer should review the overall network when the problem can't besolved 

based on the current configuration. The review process includes the type of the 

network architecture, the number of layers and nodes within each layer, the type of 

activation function, input and output data, the initial weights, and training method. All 

these review elements are required to build a successful artificial network. 

The type of training algorithm is an important aspect the designers should consider. 

There are many training algorithms utilized to adapt the network weights during the 

training stage. The back-propagation algorithm is an example of one of the most 

common techniques which is used with the supervised approach. 

3.4.2. Unsupervised Approach 

The unsupervised training is the other type of training technique. In this approach, the 

artificial network is only provided with input data without desired targets. The type of 

learning algorithm which is used in the artificial network will construct the features 

from input data and then divide them into different groups. This is usually known as 

self-organization technique or self-adaption method. 

Tuevo Kohonen from Helsinki University of Technology is one of the famous leading 

researchers who worked to develop a self-adaption artificial network which learns 

without the advantage of knowing the correct answer. In general, these kinds of 

networks comprise only one layer with multiple connection nodes. The weights 

associated with each connection must be initialized and the provided input data should 

be normalized in order to determine the winner-takes-all based on self-adaption 

technique(Fausett and Fausett, 1994; Anderson and McNeill, 1992). 

The self-adaption to the real environment is the promising technique that activates the 

robot’s science fiction to self-learn as they face new situations and environments where 

same group of training sets could not find. An example of this unexpected situation 

includes military actions, especially where a new combat technology or new weapons 

are encountered. 
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. Types of Neural Networks 

There are several kinds of Artificial Neural Networks (ANN)–based on its architecture 

and function(Jain and Martin, 1998;Graupe, 2013). Only most common and frequently 

used will be considered. 

3.5.1.  Feed-Forward ANN  

This type of artificial neural network is a first and basic type of neural network. The 

input data moves in one direction from the input layer to the output layer through 

hidden layers (if present). There are no loops and feed-back are in this kind of ANN 

as shown in Figure 3.7 which consists of multi-layer feed-forward ANN. The feed-

forward neural networks are originally utilized for supervised learning technique. In 

general, this type is used for simple applications such as recognizing input patterns and 

simple data classification. 

 

 

 

 

  

 

 

 

3.5.2. Feed-back ANN  

The structure of feed-back ANN (or recurrent network) is like feed-forward ANN but 

information about the output sends back into the previous hidden layers to obtain best 

performance results as demonstrated in Figure 3.8. Generally, feed-back network is 

adapted network so, their 'state' is modifying constantly until it arrives an equilibrium 

point. The feed-back ANN is suited to realize optimization problems such as nonlinear 

problems and system error corrections. 

 

 

Figure 3.9. Multi-layer Feed-Forward ANN. 
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3.5.3. Classification-Prediction ANN 

It is a type of feed-forward ANN. Usually, the classification-prediction artificial neural 

network is used for data-mining applications. This kind is trained to distinguish 

particular data patterns and classify them into qualitative groups. Figure 3.9 shows that 

an example for multi-layer classification network.  

 

 

 

 

 

 

 

. Feedforward Back-Propagation 

The back-propagation (BP) algorithm was developed in the early 60s by multiple 

researchers (David E. Rumelhart, James McClelland, Geoffrey E. Hinton, and Ronald 

J. Williams). The (BP) algorithm is a multi-layer feedforward neural network and is 

one of the most commonly used in the application of neural networks. The BP 

algorithm can be utilized to train and keep a great deal of non-linear and complex 

relations between input and output data patterns. The steepest descent technique is 

Figure 3.10. Multi-layer Feed-back ANN. 

Figure 3.11. Multi-output Feed- Forward ANN. 
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used as a learning rule in back to adjust the values of the network weight and threshold 

to get the minimum square of the error between the target and the network output. 

The typical (BP) algorithm has an input layer, one or more hidden layers, and an output 

layer. The number of hidden layers depends on the complexity of the application and 

there is no theoretical constraint about the number of hidden layers which are utilized 

within its architecture but in general, one or two hidden layers are widely used(Amari, 

2003). From the input to the output layer, the information will flow during the Recall 

process. The Recall is the operation of transferring the input data through a trained 

network and obtaining the net output (feed-forward phase). While Back-propagation 

of error is only used when the algorithm is learning a training data set. Figure 3.10 

shows an example of a typical (BP) architecture with two hidden layers. 

 

 

 

 

 

 

 

 

 

3.6.1. Learning in Back-Propagation Algorithm 

The learning in back-propagation algorithm can be divided into two phases as describe 

below (Williams and Zipser, 1995; Dalgleish et al., 2007): 

• Forward phase (Recall process): The input data is propagated over the network 

layers (input layer, hidden layer, and output layer). All weights and thresholds 

which are applied to the network are maintained constant during the forward of 

operating phase. In case, that the foreseeable output of the neural network cannot 

be achieved correctly, so the back- propagation of error can be started at this point. 

The forward propagation phase can be expressed by the following equations:  

Figure 3.12. Example of Typical (BP) Architecture. 
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The output of the of hidden layer: 

 

𝑦𝑗 = 𝑓(∑ 𝑤𝑖𝑗𝑖 − 𝜃𝑗) = 𝑓(𝑛𝑒𝑡𝑗)                                         (3.5) 

𝑛𝑒𝑡𝑗 = ∑ 𝑤𝑖𝑗𝑥𝑖𝑖 − 𝜃𝑗                                                          (3.6) 

 

And the output at the output layer: 

 

𝑧𝑙 = 𝑓(∑ 𝑣𝑙𝑗𝑦𝑗𝑗 − 𝜃𝑙) = 𝑓(𝑛𝑒𝑡𝑙)                                        (3.7) 

𝑛𝑒𝑡𝑙 = ∑ 𝑣𝑙𝑗𝑦𝑗 − 𝜃𝑙                                                             (3.8) 

 

While the error at the output layer can be achieved by the following equation: 

 

𝐸 =
1

2
∑(𝑡𝑙
𝑙

−𝑧𝑙)
2 = 

1

2
∑(𝑡𝑙
𝑙

− 𝑓(∑𝑣𝑙𝑗𝑦𝑗 − 𝜃𝑙))
2 

=
1

2
∑ (𝑡𝑙𝑙 −𝑓(∑ (𝑣𝑙𝑗𝑗 𝑓(𝑤𝑗𝑖𝑥𝑖 − 𝜃𝑗) − 𝜃𝑙))

2                       (3.9) 

Where: 

i,j: 1,2,3, 

xi: The input data, 

yj: The output of hidden layer,  

zl: The output of the output layer, 

wji: The weight between the input and hidden layer,  

vlj: The weight between the hidden and output layer,  

tl:   The expected value of the output node is, 

f(net): is the active function. 

 

• Back-propagation of error: The error at the output layer can be calculated by 

the diversity between the real output (or target) and the calculated output of the 

algorithm; the calculated error in back-propagation phase is propagated from the 
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output layer to all hidden layer. During this phase, all weights and thresholds of 

network are modified based on the value of the error. This modification of weights 

and thresholds is repeated continuously until target be closer to the output of the 

algorithm. The gradient descent technique is applied to modify the value of the 

weights at all layers as demonstrated in the following equations:  

 

1. Modification of Weight Value 

      The first step is to find derivation of output based on the error function 

 

𝜕𝐸

𝜕𝑣𝑙𝑗
=∑

𝜕𝐸

𝜕𝑧𝑘

𝑛

𝑘=𝑙

∗  
𝜕𝑧𝑘
𝜕𝑣𝑙𝑗

= 
𝜕𝐸

𝜕𝑧𝑙
∗
𝜕𝑧𝑙
𝜕𝑣𝑙𝑗

 

Where E (error) is a function including multiple zk, but just one of  zl is linked with vlj 

and all other zk are independent, as shown below. 

𝜕𝐸

𝜕𝑧𝑙
=
1

2
∑[−2(𝑡𝑘 − 𝑧𝑘) ∗

𝜕𝑧𝑘
𝜕𝑧𝑙

𝑘

 ] = −(𝑡𝑙 − 𝑧𝑙) 

𝜕𝑧𝑙
𝜕𝑣𝑙𝑗

=∑
𝜕𝑧𝑘
𝜕𝑛𝑒𝑡𝑙

𝑛

𝑘=𝑙

∗  
𝜕𝑛𝑒𝑡𝑙
𝜕𝑣𝑖𝑗

= 𝑓′(𝑛𝑒𝑡𝑙) ∗ 𝑦𝑗  

In this way, 

𝜕𝐸

𝜕𝑣𝑙𝑗
= −(𝑡𝑙 − 𝑧𝑙) ∗ 𝑓

′(𝑛𝑒𝑡𝑙) ∗ 𝑦𝑗 

Then, we will assume that the error of output node is: 

  

𝛿𝑙 = (𝑡𝑙 − 𝑧𝑙) ∗ 𝑓
′(𝑛𝑒𝑡𝑙)                                                  (3.10) 

So,       

𝜕𝐸

𝜕𝑣𝑙𝑗
= −𝛿𝑙 ∗ 𝑦𝑗                                                                  (3.11) 

Based on the error function, the deviation of hidden layer can be done using the 

following formula:   
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𝜕𝐸

𝜕𝑣𝑗𝑖
=∑∑

𝜕𝐸

𝜕𝑧𝑙
∗
𝜕𝑧𝑙
𝜕𝑦𝑗

∗
𝜕𝑦𝑗

𝜕𝑤𝑗𝑖
𝑗𝑙

 

Also, the E function has multiple zl; but just one is targeted at specific wji, and it is 

corresponding to single yj, and regarding to all zl as explained in below: 

𝜕𝐸

𝜕𝑧𝑙
=
1

2
∑[−2(𝑡𝑘 − 𝑧𝑘) ∗

𝜕𝑧𝑘
𝜕𝑧𝑙

𝑘

 ] = −(𝑡𝑙 − 𝑧𝑙) 

In this way: 

𝜕𝐸

𝜕𝑤𝑗𝑖
= −∑(𝑡𝑙 − 𝑧𝑙)

𝑙

∗ 𝑓′(𝑛𝑒𝑡𝑙) ∗ 𝑣𝑙𝑗 ∗ 𝑓
′(𝑛𝑒𝑡𝑗) ∗ 𝑥𝑖 

 

  = −∑ (𝛿𝑙𝑣𝑙𝑗)𝑙 ∗ 𝑓′(𝑛𝑒𝑡𝑗) ∗ 𝑥𝑖      

 

Assume that the error of hidden layer is: 

 

𝛿′𝑗 = 𝑓′(𝑛𝑒𝑡𝑗) ∗∑(𝛿𝑙𝑣𝑙𝑗)

𝑙

 

In this way: 

 

𝜕𝐸

𝜕𝑤𝑗𝑖
= −𝛿′𝑗  𝑥𝑖 

 

The modification of weight Δvlj and Δwji  is in proportion to the error ratio and decline 

over the gradient, the relationship explaining the modification of all weights in both 

hidden layers and output layer is expressed below: 

∆𝑣𝑙𝑗 = −𝛼
𝜕𝐸

𝜕𝑣𝑙𝑗
= 𝛼𝛿𝑙𝑦𝑗                                    (3.12) 

while the equation below shows that the modification of the weight among the input 

layer and hidden layers is expressed as shown below: 

 

∆𝑤𝑗𝑖 = −𝛼′
𝜕𝐸

𝜕𝑤𝑗𝑖
= 𝛼′𝛿′𝑗𝑥𝑖                                     (3.13) 

 

𝛿′𝑗 = 𝑓′(𝑛𝑒𝑡𝑗) ∗ ∑ (𝛿𝑙𝑣𝑙𝑗)𝑙                                       (3.14) 
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In above formula, the term (∑𝛅 𝐯) in the hidden layer shows that the error δl of output 

node zl is back-propagated over the weight value vlj to the all yj nodes to become the 

error of hidden layer. 

2. Modification of Threshold Value 

The threshold value θ is also adjusted during the training phase and it is important to 

be modified when the weight value is modified; the method which utilize is the same 

as that applied in the weights adjustment.  As we did in the previous section, we will 

start to derivation the threshold value at output layer by error function as shown below:  

 

𝜕𝐸

𝜕𝜃𝑙
=
𝜕𝐸

𝜕𝑧𝑙
∗
𝜕𝑧𝑙
𝜕𝜃𝑙

 

In this formula: 

𝜕𝑧𝑙
𝜕𝜃𝑙

=
𝜕𝑧𝑙
𝜕𝑛𝑒𝑡𝑙

∗
𝜕𝑛𝑒𝑡𝑙
𝜕𝜃𝑙

= 𝑓′(𝑛𝑒𝑡𝑙) ∗ (−1) 

 

In this way, the equation expressing the adjustment of threshold is 

∆𝜃𝑙 = 𝛼
𝜕𝐸

𝜕𝜃𝑙
= 𝛼𝛿𝑙 

Namely: 

𝜃𝑙(𝑘 + 1) = 𝜃𝑙(𝑘) + ∆𝜃𝑙 = 𝜃𝑙(𝑘) + 𝛼𝛿𝑙 

Now, the threshold derivation of the hidden layer based on the error function can be 

expressed as shown below: 

 

𝜕𝐸

𝜕𝜃𝑗
=∑

𝜕𝐸

𝜕𝑧𝑙
∗
𝜕𝑧𝑙
𝜕𝑦𝑗

∗
𝜕𝑦𝑗

𝜕𝜃𝑗
𝑙

 

So, in this formula: 

𝜕𝑦𝑗

𝜕𝜃𝑗
=

𝜕𝑦𝑗

𝜕𝑛𝑒𝑡𝑗
∗
𝜕𝑛𝑒𝑡𝑗

𝜕𝜃𝑗
= 𝑓′(𝑛𝑒𝑡𝑗) ∗ (−1) = −𝑓′(𝑛𝑒𝑡𝑗) 

In this way: 

𝜕𝐸

𝜕𝜃𝑗
=∑(𝑡𝑙 − 𝑧𝑙) ∗ 𝑓

′(𝑛𝑒𝑡𝑙) ∗ 𝑣𝑙𝑗 ∗ 𝑓
′(𝑛𝑒𝑡𝑗) =∑(𝛿𝑙𝑣𝑙𝑗) ∗ 𝑓

′(𝑛𝑒𝑡𝑗) =

𝑙

 𝛿′𝑗  

𝑙
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Now, the equation that expressing the threshold modification is: 

∆𝜃𝑗 = 𝛼
′
𝜕𝐸

𝜕𝜃𝑗
= 𝛼′𝛿′𝑗  

Namely: 

(𝑘 + 1) = 𝜃𝑗(𝑘) + ∆𝜃𝑗 = 𝜃𝑗(𝑘) + 𝛼
′𝛿′𝑗                    (3.15) 

. Network Selection  

The design of the artificial neural network depends on its connection, activation 

function, and the training method. So, there are many similarities between the various 

structures of neural network algorithms. The plurality of the differences appears from 

the different learning methods and how those methods can adapt the topology of the 

network.  

This section covers a number of artificial neural networks which are the most widely 

used. They are arranged in several categories of applications. The categories are listed 

in table below are not meant to be limited, they just want to eliminate some of the 

ambiguity among different neural network structures and they are suitable to particular 

applications (Anderson and McNeill, 1992). In general, most of the neural network 

applications belong to the following five groups as demonstrated in Table (3.1) below:  

 

 

 

 

 

 

 

 

 

 

 

 

Table 3.1. Network Selector. 
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. Neural Networks Applications 

In this section, we will present some of the fields where artificial neural networks are 

being applied (Dreyfus, 2005; Engineering, 2018). 

  

• Language Processing: This field of applications comprises the conversion of 

text-to-speech, language detection and translation, secure voice keyed locks, 

automatic reproduction, the ability to interact with voice orders and processing of 

natural language. 

 

• Character Recognition: Neural network has the ability to distinguish hand 

printed characters by a scanner device. Recognizing characters and cursive can be 

done by a special software tool (Quantum Neural Network package).  

 

• Image Compression: Neural networks algorithm can be designed and 

implemented for real-time data compression and decompression applications. 

These artificial algorithms can minimize an 8- bits of data to 3- bits and then 

reverse this operation to construct 8-bits again from 3-bits. 

• Signal Processing: Some of the neural network algorithms have the capability of 

eliminating electronic noise. Moreover, some applications based on neural 

networks can find out the engine misfire depend on the engine sound. 

 

• Banking & Finance: Neural network algorithms are applied successfully to some 

banking & finance applications such as future price forecasting, forecasting of the 

exchange rate, and stock performance. These days, artificial neural networks are 

usually utilized for financial decision making. 

 

• Predictions: Producing the output which is expected can be done by neural 

networks after giving it a particular input. If we have a neural network which is 

trained well in a stream of values, then, we can utilize it to anticipate future results. 

Prediction of Weather conditions (Temperature, humidity, pressure, etc.) is an 

example of neural network prediction. 

https://in.mathworks.com/help/nnet/ref/predict.html?requestedDomain=www.mathworks.com
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• Medicine: Studies are still ongoing in the field of using neural networks in 

medicine. In this time, a lot of research is done on modeling human body parts 

and distinguishing disease from different scans. 

. Introduction to Fuzzy Logic 

A Fuzzy Logic System (FLS) is a kind of nonlinear mapping system which is used to 

set input data to a scalar output data. In general, the architecture of any FLS can be 

divided into three parts: Fuzzification, Inference system and Rules, and the last part is 

Defuzzification (G. Chen and Pham, 2000; Sivanandam et al., 2007). These 

components are shown in Figure 3.11. 

 

 

 

 

 

 

 

     

The Fuzzy logic term is an expansion of Boolean logic which is  introduced by Lotfi 

Zadeh in 1965 depending  on the mathematical concept of fuzzy sets, that is a 

popularization of the traditional set theory (Sivanandam et al., 2007). The FLS has 

been utilized for many domains, such as  control systems and artificial intelligence. 

Fuzzy logic system is a form of multi-value logic. So, the truth values of any variable 

could be a real value between zero and one. 

It is utilized to deal with the connotation of partial truth, that means, the truth value of 

variables ranges between totally true and totally false. Compared with traditional  two-

valued  Boolean logic, the truth values of any variable could be only the integer value 

zero or one. Formalizing human reasoning is one benefits of using fuzzy logic because 

the fuzzy rules are constructed by natural language. For instance, in Table 3.2, there 

Figure 3.13. Architecture of Fuzzy Logic System. 

https://en.wikipedia.org/wiki/Lotfi_A._Zadeh
https://en.wikipedia.org/wiki/Lotfi_A._Zadeh
https://en.wikipedia.org/wiki/Control_theory
https://en.wikipedia.org/wiki/Artificial_intelligence
https://en.wikipedia.org/wiki/Truth_value
https://en.wikipedia.org/wiki/Two-valued_logic
https://en.wikipedia.org/wiki/Two-valued_logic
https://en.wikipedia.org/wiki/Boolean_algebra
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Light Color Speed  Distance  Action  

If light: red if speed: high If traffic light: close  I brake hard. 

If light: red if speed: low If traffic light: far I preserve my speed. 

If light: orange if speed: average If traffic light: far I brake softly. 

If light: green if speed: low If traffic light: close I accelerate my speed. 

are a few rules of behavior which a car’s driver should follow when he is approaching 

the traffic light: 

 

Table 3.2. Car’s driver rules. 

 

 

 

 

 

 

Based on Table 3.2, the input variables are approximately estimated by the human 

brain, for example, the level of verification of a condition inside a fuzzy system.  

3.9.1. Classic and Fuzzy Sets 

The concept of a traditional set is one of the rudimentary notions, that do not have a 

clear definition. Commonly, a set is known as a group of elements that have some 

common characteristics distinguishing these elements from other elements, like a 

group of negative numbers less than -30 or the set of flying fishes. 

In general, uppercase letters are used to denote any set (A, B, . . .), while lowercase 

letters are used to denote objects within any set (an object x, z, . . .). 

In the case of traditional set (classic sets), any particular object x could be a member 

of a set A (it has value=1) which is symbolized by x ∈ A or not belong to set A and is 

symbolized by x ∉ A (it has value=0). 

There are many basic operations that can be applied on classic sets as demonstrated 

below (Jamshidi and Zilouchian, 2001; Tettamanzi and Tomassini, 2013): 

• Intersection or Min function (AND logic) 

𝐴 ∩  𝐵 =  { 𝑥 ∈  𝑎𝑛𝑑 𝑥 ∈  𝐵}  

Or: 
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𝑚𝑖𝑛 (µ𝐴(𝑥) , µ𝐵(𝑥))                                                (3.16) 

 

• Union or Max function (OR logic) 

𝐴 ∪  𝐵 =  { 𝑥 ∈  𝐴 𝑜𝑟 𝑥 ∈  𝐵}  

Or: 

𝑚𝑎𝑥 (µ𝐴(𝑥) , µ𝐵(𝑥))                                                (3.17) 

 

• Complement or Negation (NOT logic) 

 

𝐴 =  {𝑥 ∉  𝐴} 

Or: 

1 −  µ𝐴(𝑥)                                                           (3.18) 

On the other hand, fuzzy logic is depending on the fuzzy sets theory, that is a 

generalization of the traditional set theory and that means, the traditional set theory is 

a part of the fuzzy sets theory. Figure 3.12 demonstrates this relationship. 

 

 

 

 

 

 

    

In a fuzzy logic system, an object x in the fuzzy set A could belong to set A with 

different membership degrees between 1 (full membership) and 0 (lack of 

membership). In order to characterize a fuzzy set A, we have to prepare its membership 

function where: 

                                                 𝜇𝐴 ∶  𝑋 →  [0, 1]. 

                               Fuzzy logic 

 

                               Fuzzy logic 

Crisp 

Logic 

Figure 3.15. Relationship between Fuzzy and Classic Sets. 
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There are different types of membership functions that can be applied for fuzzy sets(G. 

Chen & Pham, 2000)(Sumathi & Paneerselvam, 2010), three of them are introduced 

which are used in most common applications as shown below: 

 

• Gaussian membership function: which describe by Eq. 3.18 and Figure 3.13 

𝜇𝐴 (𝑥, 𝑎, 𝑏) = 𝑒𝑥𝑝 (− 
(𝑥−𝑎)2

2𝑏2
)                                 (3.18) 

 

 

 

 

 

 

 

Where a and b are its parameters which specify the center of the Gaussian function 

and control the width of the function curve respectively. 

• Trapezoidal membership function: Eq. 3.12 and Figure 3.14 described this 

function 

𝜇𝐴(𝑥, 𝑎, 𝑏, 𝑐, 𝑑) = 𝑓(𝑥) =

{
 
 

 
 

0                        𝑥 ≤ 𝑎 
𝑥−𝑎

𝑏−𝑎
             𝑎 < 𝑥 ≤ 𝑏   

1                𝑏 < 𝑥 ≤ 𝑐
𝑑−𝑥

𝑑−𝑐
               𝑐 < 𝑥 ≤ 𝑑    

0                       𝑥 > 𝑑

                   (3.19) 

 

 

 

 

 

 

Figure 3.16. standard Gaussian Membership. 

Figure 3.17. General Form of Trapezoidal Membership. 
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Where: a= lower limit, d= upper limit, b and c= lower and upper support 

limit respectively, where a < b < c < d. 

 

• Triangular function: this function can be described by Eq. 3.20 and Figure 3.15 

where a and b are lower and upper limit respectively and m is point where a < m 

< b  

𝜇𝐴(𝑥, 𝑎, 𝑏,𝑚) = 𝑓(𝑥) =

{
 
 
 

 
 
 
0                        𝑥 ≤ 𝑎 

 
𝑥−𝑎

𝑚−𝑎
             𝑎 < 𝑚 ≤ 𝑏 

 
  

0                       𝑥 > 𝑏
 
 

                              (3.20) 

 

 

 

 

 

 

 

 

3.9.2. The linguistic variables 

Input and output data for a fuzzy system can be described by linguistic terms whose 

values are a natural language which include words or sentences, rather than numerical 

values. Usually, the linguisttic variable can be broken down into a small group of 

linguistic terms (Sumathi and Paneerselvam, 2010). 

  Example: Suppose that we have an air conditioner system which illustrates in Figure 

3.16. Assume that the temperature (t) is the linguistic term that expresses the status of 

the room temperature. To introduce the temperature in linguistic language, terms such 

as and cold, very-cold, warm, and hot are utilized in real life. Those words are called 

the temperature linguistic values. So, the temperature of linguistic values can be:  

Figure 3.18 General Form of Triangular function. 
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T(t) = {very-hot, hot, warm, cold, very-cold, ..}. Each member of this set is known 

as a linguistic term and can cover a part of the comprehensive temperature values 

(Figure 3.17). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.9.3. Fuzzy Rules (Reasoning in fuzzy logic) 

In a fuzzy logic system, the final system output is produced based on the constructed 

fuzzy rules. Any fuzzy rule can be constructed by a basic IF-THEN condition 

(Kacprzyk and Pedrycz, 2015; Tettamanzi and Tomassini, 2013). In Table 3.3, an 

example of fuzzy rules that are built to be used in air conditioner system in Figure 

3.16, while the Table 3.4 presents the matrix of all possible fuzzy rules that can be 

Figure 3.20. The Linguistic Terms of the Temperature 

Figure 3.19. Air Conditioner based on Control of Fuzzy Logic System. 
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used for the system in Figure 3.16. According to Table 3.4, the Row fields comprise 

the values of the current room temperature, while column field comprises the target 

temperature values. The remaining cells are the resulting actions when row and column 

values are intersected. For example: 

Cell (4, 4) in Table 3.4 can be read as: If current temperature is cold AND target is hot 

THEN the action will be heat. 

 

Table 3.3. Example of Air Conditioner Fuzzy Rules. 

Fuzzy system rules 

1 
If (temperature = warm) AND (target = warm) THEN:    action = no 

change 

2 
If (temperature = hot OR very-hot) AND (target = warm) THEN: action 

= moderate 

3 
If (temperature = cold OR very-cold) AND (target = warm) THEN: 

action is heat 

 

Table 3.4 Example of Fuzzy Rules Matrix. 
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3.9.4. The Defuzzification 

The final result of the FLS is a fuzzy value after fuzzy rules are applied within the 

inference engine. So, this result must be converted to have a final crisp output after 

performing the defuzzification step. The defuzzification step is applied based on 

different kind of membership functions. Here, we will introduce some of the most 

common membership functions which are used in the defuzzification stage. Some 

numerical examples related with this defuzzification types can be found in 

(Sivanandam et al., 2007; Irwin, Wilamowski, and Irwin, 2011). 

• Center of Sums technique (COS): In this technique, the overlapping area is 

calculated two times. The defuzzified value x is expressed as Eq. 3.21: 

 

                             𝑥 =
∑ 𝑥𝑖  ∗  ∑ 𝜇𝐴𝑘 (𝑥𝑖)

𝑛
𝑘=1

𝑁
𝑖=1

∑    ∗  ∑ 𝜇𝐴𝑘 (𝑥𝑖)
𝑛
𝑘=1

𝑁
𝑖=1

                          (3.21) 

 

Where: n is the fuzzy sets number, k the number of the fuzzy sets, N is the counter of 

fuzzy input data, and 𝝁𝑨𝒌 (𝒙𝒊) represent the membership function.  

 

• Centroid of Area (COA) technique: This technique supplies a crisp output by 

calculating the center position of gravity of the fuzzy set. The entire distribution 

area of the membership function that utilized to perform the connected control is 

split into some sub-areas. Then. the summation of the centroid of these sub-areas 

is performed in order to get the final defuzzified value as show in Eq. 3.22. 

                                             

     𝑥 =
∑ 𝑥𝑖  ∗  
𝑁
𝑖=1 𝜇 (𝑥𝑖)

∑ 𝜇(𝑥𝑖)
𝑛
𝑘=1

                         (3.22) 

       Here, n is the number sample, 𝝁(𝒙𝒊)  represents the membership function, 𝒙𝒊      

indicates the input sample element. 

 

• Weighted Average technique: This method does not need a high level of 

mathematical computation. This technique is only used for symmetrical 

membership functions and the produced outputs are very similar to the centroid 

of area technique. The weighted of each membership function is done by taking 

its maximum value. This method can be expressed as shown in Eq. 3.23: 
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                       𝑥 =
∑𝜇 (𝑥𝑖) .  𝑥𝑖

∑𝜇 (𝑥𝑖)  
                                  (3.23) 

 

• Mean of Maxima technique (MOM): Also known as middle-of-maxima. In this 

technique, the defuzzified output is calculated based on the highest value of the 

membership. If there more than one sample having maximum values of the 

membership, then the average value of all these values are taken. Simply, Eq.  3.24 

and Figure 3.18. 

                        𝑥 =
𝑎+𝑏

2  
                                    (3.24) 

 

  

 

 

 

 
 

 

 

 Advantages and Disadvantages of Fuzzy Logic system 

Advantages: 

• A simple and straightforward intelligent approach. 

• Easy to realize and achieve. 

• Provide a simple method of presentation. 

• Provide an efficient performance. 

 

Disadvantages: 

• Model development is complicated from a fuzzy system. 

• The system needs a high smooth tuning and simulation in order to implement.  

• Hard to select an appropriate membership function to be used in fuzzy systems. 

• Knowledge about the solution is required to find the problem solution. This  

• knowledge must be ready in if-then form. 

 

Figure 3.21. Mean of Maxima Defuzzification Method. 
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. Introduction to Neuro-Fuzzy System 

Having a good performance with fuzzy system development is a complicated task. The 

process of finding membership functions and suitable rule sets are sometimes an 

exhausting task based on attempt and error. So, the concept of integrating artificial 

learning algorithms with fuzzy systems has appeared. The artificial neural networks 

that have powerful learning techniques have been introduced to assist in the fuzzy 

system's tuning and development(Kaynak, Zadeh, Turksen, and Rudas, 1996).  

These fuzzy logic systems and neural networks techniques are usually utilized in order 

to deal with problems when the traditional methods do not provide a simple and precise 

solution (P. Liu and Li, 2004).  

In general, the neuro-fuzzy term can be defined as a kind of system which is 

characterized by a similar structure of a fuzzy logic system where the neural networks 

algorithms are utilized to adjust reasoning rules and fuzzy sets in an iterative form 

based on data system (input and output vectors). This kind of systems illustrates 

different behavior within two levels. During the first level, which is known as a 

learning phase, it behaves similar to any neural network that training its internal 

parameters iteratively. While in the second level or execution phase, the system 

behaves similar to a classical fuzzy logic system. The integration between these two 

techniques provide a best performance when compared the systems results with each 

isolated technique (Fullér, 2013; Siddique and Adeli, 2013).  

3.11.1. Types of Neuro-Fuzzy Systems 

There are several combinations between neural network and fuzzy system techniques 

that can be split, into the following criteria (Abraham, 2001; Vieira, Dias, and Mota, 

2004; Nikam, Nikumbh, and Kulkarni, 2012): 

• Cooperative Neuro-Fuzzy System: In this type of cooperative systems, the 

neural networks approach acts as a pre-processing unit where the selected 

algorithm of neural networks is used to train some parameters of the fuzzy system 

such as fuzzy sets, parameters of membership functions, and fuzzy rules. After 

this phase, the learning method of neural networks are taken away and the fuzzy 

system works independently. Figure 3.19 shows this concept. 
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• Concurrent Neuro-Fuzzy System:  

In the concurrent approach, the fuzzy system and the neural network do their tasks 

together continuously. That means the input vector is first pre-processed by the fuzzy 

system, and then the learning algorithm of neural network handles the results of the 

concurrent system. However, the system’s outputs are not completely interpretable, 

and this can be considered as one of the system’s disadvantages. Figure 3.20 shows 

this idea.   

 

 

 

 

 

 

 

 

• Hybrid Neuro-Fuzzy Systems 

In this system, an artificial learning approach based on the gradient algorithm is 

integrated with a fuzzy system to generate a hybrid neuro-fuzzy system. The gradient 

algorithm (will be explained later) is utilized to its parameters: fuzzy rules and its 

weights, membership functions, and fuzzy sets) over input and output patterns. The 

simplicity of the system functionality is one of the system advantages. Also, the 

Input 
Fuzzy System 

 

Neural 

Network 
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Output  

Figure 3.22. Cooperative Neuro-Fuzzy. 
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Figure 3.23. Concurrent Neuro-Fuzzy System 
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representation of the data over a neural network within the hybrid system is more 

suitable because it permits to visualize the flow of data and error signals over the 

system in order to modify its parameters. There are different architectures which are 

used to construct hybrid neuro-fuzzy systems (Vieira et al., 2004). Some of the hybrid 

system models are expressed by artificial neural networks which perform logical 

functions. Adaptive Neuro-Fuzzy Inference System (ANFIS) is an example which is 

the most used architecture of a hybrid system. 

3.11.2. Adaptive Neuro-Fuzzy Inference System (ANFIS) 

In 1993 Jang, J.S.R. has proposed a type of hybrid artificial intelligent system which 

has some characteristics between neural network and fuzzy system that is ANFIS 

algorithm. The objective of ANFIS algorithm is to detect a mapping or relationship 

between the presented inputs data and the system target (desired output) (Jang, 1993). 

As we mentioned before, there is no ability to learn in the fuzzy logic system. So, the 

system is unable to modify its parameters.  

On the contrary, ANFIS algorithm performs the learning capabilities of neural network 

to adapt the membership functions in fuzzy logic system automatically(Kaynak, 

Zadeh, Türksen, and Rudas, 2012). Unlike other traditional FIS, ANFIS algorithm 

does not need any expert knowledge to realize input-output vectors for fuzzy training. 

This facility is very important to minimize the complexity of calculating fuzzy training 

data task.  

Another feature of ANFIS algorithm is that extensive initialization of its parameters is 

not necessary because of a simple random initialization of training can be used. Like 

any fuzzy logic system, ANFIS algorithm has some architecture models with various 

techniques for adapting parameters of membership function based on NNs during 

training phase.  

In this thesis, the Takagi–Sugeno inference structure that has a high computational 

efficiency was utilized to construct the ANFIS model with adaptive capability. This 

benefit allows the inference algorithm to work efficiently with automatic adaptive 

mechanism likes ANNs. Since ANFIS parameters are adapted through the training 

phase, various membership function forms are provided continuously until the training 

is finished. In general, the Takagi–Sugeno structure is constructed from five layers. 

Each layer comprises several nodes with different tasks (Aliev and Guirimov, 2014) 
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as illustrated in Figure 3.21. The fuzzy rules in Takagi–Sugeno model are produced 

from a set of input-output pairs. In this model, the rule can be constructed as shown 

below: 

         𝒊𝒇 𝑥1 𝑖𝑠 𝐴1  𝑎𝑛𝑑 𝑥2 𝑖𝑠 𝐴2, … , 𝐴𝑁𝐷 𝑥𝑚 𝑖𝑠 𝐴𝑚;  𝒕𝒉𝒆𝒏 𝑂 = 𝑓(𝑥1, 𝑥2, … , 𝑥𝑚);  

Where: 

 x1,…, xm are the input data; A1,…, Am are fuzzy sets; and O is the output function 

which can be constant or linear based on the complexity of the application. 

 

 

 

 

 

 

 

 

3.11.2.1. ANFIS Architecture 

For simplicity and based on Figure 3.21, suppose that we have inputs x and y, and f as 

a linear output. Two fuzzy rules are used in the form of  “If-Then” based on  Takagi–

Sugeno model(Jang, 1993), as illustrated: 

𝑅𝑢𝑙𝑒 1 = 𝑰𝒇 𝑥 𝑖𝑠 𝐴1  𝑎𝑛𝑑 𝑦 𝑖𝑠 𝐵1  𝑻𝒉𝒆𝒏   𝑓1  = 𝑝1  𝑥 + 𝑞1  𝑦 + 𝑟1   

 

𝑅𝑢𝑙𝑒 2 = 𝑰𝒇 𝑥 𝑖𝑠 𝐴2  𝑎𝑛𝑑 𝑦 𝑖𝑠 𝐵2   𝑻𝒉𝒆𝒏  𝑓2  = 𝑝2  𝑦 + 𝑞2  𝑦 + 𝑟2   

where A1, B1 and A2 , B2 are representing the membership functions which are 

associated with each input x and y. while 𝑓1  𝑎𝑛𝑑 𝑓1   are a first order linear function 

which have 𝑝1 , 𝑞1  , 𝑟1  and 𝑝2 , 𝑞2  , 𝑟2  as  linear parameters. So, a specification of each 

layer is described as shown below: 

• Layer 1: In the first layer, each node in this layer adjusts to a function parameter. 

So, each node’s output is a membership degree of linguistic terms that is generated 

Figure 3.24. General Structure of ANFIS base on Takagi–Sugeno 
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by the membership functions inputs. Gaussian membership function in Eq. 3.25 

is a membership example which can be utilized within the first layer: 

𝜇𝐴𝑖(𝑥) =
𝟏

𝟏+|
𝒙−𝒄
𝒂
|
𝟐𝒃𝒊    ,   𝑖 = 1,2,3,                            (3.25) 

 

𝑄1,𝑖 = 𝜇𝐴𝑖(𝑥), 𝑖 = 1,2                                           (3.26) 

 

𝑄2,𝑖 = 𝜇𝐵𝑖(𝑦), 𝑖 = 3,4                                            (3.27) 

 

Where 𝜇𝐴𝑖(𝑥) and 𝜇𝐵𝑖(𝑦) are membership functions degree for both 𝐴𝑖 and  𝐵𝑖 (Figure 

3.21) fuzzy sets respectively. While (a, b, and c} are the parameters of Gaussian 

membership function that are used to adapt the membership function shape. All 

parameters in this layer are referred to premise parameters. 

 

• Layer 2: All nodes in this layer are non-adjustable or fixed nodes and each node 

is denoted as Π. The nodes output represents the firing strength of each 

constructed rule based on “min” or “prod” operator. Usually, Logical “AND” is 

commonly utilized in this layer as shown in Eq. 3.28  

 

                                    𝑄2𝑖 = 𝑤𝑖 = 𝜇𝐴𝑖 (𝑥) ∗  𝜇𝐵𝑖  (𝑦), 𝑖 = 1,2                           

(3.28) 

 

• Layer 3: Like layer 2, all layer nodes are non-adjustable or fixed nodes and the 

nodes are denoted by N label. Each node is a determining the ratio between each 

firing strength of the rule and the aggregation of all rules’ firing strengths. This 

result is called a “normalized firing strength” which can be expressed by Eq. 3.29. 

𝑄3,𝑖 = �̅�𝑖 =
𝑤𝑖

𝑤1+𝑤2
,      𝑖 = 1,2,3,                                      (3.29) 

where  �̅�𝑖 represents the output of firing strength. 
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• Layer 4: This layer is a  defuzzification layer. Each node in this layer is an 

adaptive node. The product of  normalized firing strength of all rule sets that are 

generated in layer 3 are done in this layer. The nodes calculate the parameters  of 

linear function (p, q, and r) as illustrated in Eq. 3.30.  The Parameters in this layer 

are known as consequent parameters. 

 

𝑄4,𝑖 = �̅�𝑓𝑖 = �̅�(𝑝𝑖𝑥 + 𝑞𝑖𝑦 + 𝑟𝑖 ), 𝑖 = 1,2,3,                (3.30) 

Where “p”, “q” and “r” are adaptive consequent parameters.  

 

• Layer 5: This layer consists of single non-adaptive node that performs the 

summation task of all  incoming data from layer 4 as shown in Eq.  3.31. The node 

in this layer is labeled as  

Q5 = ∑w̅fi =
∑ 𝑤𝑖𝑓𝑖𝑖

∑ 𝑤𝑖 𝑖
, i = 1,2,3,                                  (3.31) 

3.11.2.2. ANFIS Learning Algorithm  

Neuro-adaptive learning method combines with a fuzzy logic system and ANN 

algorithms to training the information that is extracted from provided data sets. It is 

utilized to figure the parameters of membership function that enable the related 

inference engine in a fuzzy system to follow the provided input/output data set. All 

parameters related to membership functions are modified during the learning phase 

(Jang, 1993; Kaynak et al., 1996). 

To more effectively cooperate with real-world applications, the process of integrating 

the learning algorithm with ANFIS architecture aims to regulate all adjustable 

parameters and re-formulate the output of ANFIS in order to match the providing 

training data sets. To get a better convergence rate, the hybrid ANFIS algorithm can 

be trained by hybrid training techniques algorithms which comprising gradient descent 

and least square algorithms can be utilized.  

The linear least squares algorithm (LSM) is used in the forward pass to fetch the 

optimal consequent parameter values on the layer 4, while gradient descent (GDM) 

based on the back-propagation algorithm is provided in the backward pass to estimate 

the method of modeling the input/output data by the fuzzy inference. The moment that 
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the optimal values of consequent parameters are located, the backward pass begins. 

During the backward pass, the calculated error is propagated inversely to the previous 

layers and the premise parameters in layer 1 are modified by gradient descent method 

(Jang, 1993; Aliev and Guirimov, 2014). Two passes of the ANFIS hybrid algorithm 

are shown in Table 3.5 

Table 3.5. Hybrid Learning Algorithm within ANFIS Algorithm.

 Forward pass Backward pass 

Premise Parameters Fixed Gradient Descent 

Consequent Parameters Least Squares Estimation Fixed 



  

 68  

 

 

Chapter 4 CHAPTER 4 

ANFIS MODIFICATIONS 

4.1. Introduction  

In chapter 3, we presented a structure and hybrid learning technique background for 

the Adaptive Neuro-Fuzzy Inference System (ANFIS) algorithm. In this chapter, we 

will introduce two new modifications for ANFIS algorithm. The gradient descent 

optimization algorithm known as Momentum factor algorithm is combined with the 

learning algorithm of ANFIS. This optimization algorithm works to avoid stuck in 

local minima and accelerate ANFIS algorithm to find the optimal solution. Whereas 

the extending architecture of the standard algorithm is done in the second modification 

level. This extending is achieved by adding a new compression layer in order to 

optimize the adjustable parameters in the output layer. But, we cannot apply these two 

modifications without writing our ANFIS algorithm that can accept the modifications 

and compare its performance with the performance of Matlab toolbox. 

 

4.2. Effect of Momentum on ANFIS algorithm 

The optimization algorithms in neural networks like gradient descent optimization 

algorithm are utilized to arrive a global minima by minimizing the error function. The 

minimizing error function in the idle situation could be like the ball gradient in Figure 

4.1. 

 

 

 

 

 Figure 4.1. Gradient Descent Optimization . 
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Thus, we are ensured to reach the optimal solution (global optimum) because of no 

local minimum on the error surface where the optimization can get stuck. But in the 

real-world, the surface of error is more complicated, it can be composed of many local 

minima. Figure 4.2 is an example of such an error surface. 

 

 

 

 

 

 

 

According to the Figure 4.2, the solution of the algorithm can easily fall and stuck in 

some local minima (sub-optimal solution). In that time, we think that the algorithm 

gets the global minima (final optimal solution). The momentum factor which has a 

value between 0 and 1 plays a key role to avoid this situation. The momentum factor 

tries to boost the steps size that are taken towards the global minima by jumping over 

a local minima. 

In our research and during the first modification, the momentum factor is merged 

ANFIS algorithm through a backward learning pass to minimize the error and speed 

up the training process. To associate a momentum factor to ANFIS algorithm, a 

fraction “m” that represents a small value of momentum must be added to the equations 

that are used to update weights and biases. To do that, we have to write our handwritten 

ANFIS algorithm because the ANFIS toolbox functions in Matlab environment do not 

support adding momentum factor and there is no way to do that. The handwritten 

ANFIS algorithm helps the researcher to enhance the ANFIS functionality and 

tracking it easily without relying on Matlab ANFIS-command. Figure 4.3 shows the 

pseudo code of ANFIS algorithm and how can associate the momentum factor to the 

ANFIS algorithm. 

 

 

Figure 4.2. Global and Local Minimum. 
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4.3. Performance of Modified Handwritten ANFIS Algorithm 

In order to test the performance of our handwritten algorithm, three different types of 

data sets are used. First of all, we will compare our algorithm with the ANFIS function 

in Matlab toolbox. The optimal solutions of discrete and continuous algorithms and 

applications and perform the data analysis can be achieved by Matlab toolbox 

functions. The toolbox allows researchers to handle optimization tasks of any design. 

So, comparing the performance of our handwritten algorithm with Matlab toolbox is 

the best way to measure the performance of the algorithm. So, three different types of 

data sets are used for this reason.  

Set the type of membership function (Gaussian function) 

Load initial premise parameters (a,b,c) 

Load initial consequent parameters (p,q,r) 

Load initial momentum factor (m) 

Input the sensor data  

Normalize the data  

 

// start forward path // 

While (error >  threshold) then 

         Generate the membership degrees for input  

         Normalize and aggregate generated data 

        Calculate the output of the algorithm 

        Update consequent parameters 

 + delta(error) * input data old=pnewp         

+ delta(error) * input data   old=qnewq         

+ delta(error) old=rnewr         
  

// start backward path // 

// update premise parameters 

momentum factor (m) + delta(error) + old=anewa       

momentum factor (m) + delta(error) + old=bnewb       

momentum factor (m) + delta(error) + old=cnewc       
  

End while loop 

Figure 4.3. Pseudo Code of the Proposed Algorithm. 
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4.3.1. Testing ANFIS performance based on Global Ice Volume data set 

The first data set consists of 219 samples for Global Ice Volume over the last 440,000 

years. This data set is implemented in both ANFIS toolbox and handwritten 

algorithms. The data set is divided into two folds comprise 70% of the overall data set 

which represents 155 samples that are used for training both algorithms. While the 

other fold is used for the testing phase and has 64 samples which represents 30% of 

the data set. Figure 4.4 and Figure 4.5 show the results after implementing the Global 

Ice Volume data set in both training and testing phases based on handwritten algorithm 

respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4. Training Algorithm based on Handwritten ANFIS. 

Figure 4.5. Testing algorithm based on Handwritten. 
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While Figure 4.6 and Figure 4.7 represent the results that are obtained based on ANFIS 

function in Matlab toolbox. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6. Training Algorithm based on Matlab Toolbox. 

Figure 4.7. Testing Algorithm based on Matlab Toolbox. 
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Based on above figures that demonstrate the training and testing results of the Global 

Ice Volume for both Matlab toolbox and handwritten ANFIS algorithms, we can easily 

see all results are almost the same in both training and testing phases. Matching results 

in both algorithms mean that our handwritten ANFIS algorithm works correctly and 

arrives at a high optimization level. Table 4.1 and Table 4.2 summarizes all results in 

term of MSE (Mean Squared Error), RMSE (Root-Mean-Square Error), Mean Error, 

and STD (Standard Deviation). 

  

Table 4.1. Training Results of Global Ice Volume. 

 

 

Table 4.2. Testing Results of Global Ice Volume. 

 

4.3.2. Testing ANFIS Performance based on Time Series Prediction 

Recurrent Time Series Prediction (also known as Time Series forecasters) approach is 

widely utilized in artificial neural networks especially in feed-forward networks that 

Technique type MSE RMSE Mean STD 

Matlab Toolbox 0.00097167 0.031172 1.1298e-08 0.031268 

Handwritten Algorithm 0.0010108 0.031793 26553e-14 0.031891 

Technique type MSE RMSE Mean STD 

Matlab Toolbox 0.00087805 0.029632 0.0060321 0.029284 

Handwritten Algorithm 0.00073277 0.02707 0.0035847 027088 
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use a kind of sliding window for the input sequence. Market predictions, weather 

condition predictions, and network traffic forecasting, stock market forecasting are 

typical examples of the time series approach. Time series prediction approach is used 

to predict the potential behaviour of the system in the future depending on current 

information and the antecedent system state. A Recurrent Neural Network (RNN) 

depends on the internal state (or internal memory) to handle sequences of inputs over 

time. Eq. 4.1 shows this relationship.  

 

𝑥 ̂(𝑡 + 1) = 𝑓(𝑥[𝑡], 𝑥[𝑡 − 1], 𝑥[𝑡 − 2], 𝑥[𝑡 − 𝑇])                       (4.1) 

Where T is the number of previous inputs (or time delay). 

 

While the Figure 4.8 shows the general structure of the time series approach based on 

tapped delay line. 

 

 

 

 

 

 

 

 Now, our modified algorithm (ANFIS algorithm with momentum factor) can be 

integrated with the time series approach in order to perform the data prediction of the 

future behaviour of our hardware system (will be described in the next chapter). Figure 

Figure 4.8. A Standard Structure of Time Series Prediction. 
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4.9 is an example that shows the structure of ANFIS algorithm with the time series 

approach (also known as Recurrent ANFIS). 

        

Two different types of weather data sets that are collected from Chicago park based 

on beach weather stations (Chicago, 2015b; Chicago, 2015a). These data sets 

(temperature and humidity) are utilized to measure the performance of our modified 

algorithm. As we did in the previous section, we will compare all the results with the 

ANFIS-commands in Matlab Toolbox. Every set of data has 13916 elements that are 

taken from 5/22/2015 to 12/31/2015. 

 

• Temperature data set of Chicago park  

Figure 4.10 and Figure 4.11 show training 70% and testing 30% results of temperature 

data set based on Handwritten Algorithm  

 

 

 

 

 

 

Figure 4.9. A General ANFIS Algorithm based on Time Series Prediction. 
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Figure 4.10. Training of Chicago Park Temperature Set Using Handwritten Algorithm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

While Figures 4.12 and 4.13 show the results (70% training and 30% testing) of the 

same data set based on ANFIS-commands in Matlab Toolbox. 

Figure 4.11. Testing of Chicago Park Temperature Set Using Handwritten Algorithm. 
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Figure 4.12. Training of Chicago Park Temperature Set using Matlab. 

Figure 4.13. Testing of Chicago Park Temperature Set using Matlab. 
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Table 4.3 summarizes all results (training 70% and testing 30%) in terms of mean error 

for temperature data set for both algorithms. 

 

Table 4.3. Training and Testing results of Chicago Park Temperature data. 

 

 

• Humidity data set of Chicago park  

Figure 4.14 and Figure 4.15 show training (75%) and testing (25%) results of 

temperature data set based on Handwritten Algorithm. 

 

 

Technique type Training Testing 

Matlab Toolbox 3.7802e-11 0.013204 

Modified Algorithm 1.3943e-14 0.0010988 

Figure 4.14. Training of Chicago Park Humidity Set using Handwritten . 
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While Figures 4.16 and 4.17 show the results of the same data set based on ANFIS-

commands in Matlab Toolbox.  

 

Also, Table 4.4 summarizes all results (training 75% and testing 25%) in terms of 

mean error for humidity data set for both algorithms. 

 

Figure 4.16. Training of Chicago Park Humidity Set using Matlab Toolbox. 

Figure 4.15. Testing of Chicago Park Humidity Set using Handwritten Algorithm. 
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Table 4.4. Training and Testing results of Chicago Park Humidity data. 

 

 

Now, the comparison in both Table 4.3 and Table 4.4 summarize the results in all the 

above figures that are related to temperature and humidity data sets in terms of mean 

error. Integrating momentum factor and time series approach with handwritten 

algorithm provides very high accuracy in both training and testing phases compared 

with ANFIS-commands in Matlab toolbox.  

Also, in terms of speed (time of execution), the modified algorithm minimizes the time 

execution that required for training algorithm. Adding momentum factor to the ANFIS 

algorithm helps to reduce the training time about 3.2-time from 3.675 to 1.1921 (in 

seconds) for temperature data set and from 3.6427 to 1.1895 (in seconds) for humidity 

data set. Table 4.5 demonstrates the time execution based on two algorithms.  

Technique type Training Testing 

Matlab Toolbox 9.3506e-11 0.062509 

Modified Algorithm 7.4105e-15 0.001184 

Figure 4.17. Testing Chicago Park Humidity Set using Matlab Toolbox. 
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 Table 4.5. Training Speed (Execution Time) in Sec. 

 

While Table 4.6 shows the time of execution that is needed for testing both algorithms. 

According to the table, the time execution for both algorithms is almost the same. The 

time of execution equality in both algorithms is happened because of in the test phase, 

there is no need for any update parameters or minimize the overall error inside the 

algorithms. So, the test algorithms take a little time.  

 

 Table 4.6. Testing Speed (Execution Time) in Sec. 

 

Finally, Figure 4.18 and Figure 4.19 show the effective momentum factor on the 

training our modified algorithm by using temperature data set of Chicago park.  

According to the figures, the mean square error with momentum factor is (0.9058) 

after 40 iterations, while as equal (23.0417) after the same number of iterations without 

adding momentum factor to the ANFIS algorithm. 

 

 

Execution Time in Sec (Training) 

Data Type ANFIS Toolbox Modified Algorithm 

Temperature 3.675 1.1921 

Humidity  3.6427 1.1895 

Execution Time in Sec (Testing) 

Data Type ANFIS Toolbox Modified Algorithm 

Temperature 0.0124 0.011 

Humidity 0.0122 0.012 
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Figure 4.18. Training Modified Algorithm Without Momentum. 

Figure 4.19. Training Modified Algorithm with Momentum. 
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4.4. Extended Architecture of ANFIS Algorithm 

As we said in section 3.10.2.2, the ANFIS algorithm is trained by hybrid training 

techniques algorithms which comprising gradient descent and least square algorithms. 

each technique adjusts its parameters in a separate phase. The number of parameters 

in each phase is not constant. It depends on the number of transfer functions that are 

used at each level. 

In this contribution, we will focus on linear parameters in layer 4 that are adjusted by 

a linear least square algorithm (LSM). these Parameters are known as consequent 

parameters and can be defined based on Eq. 4.2.  

     𝑄4 = 𝑝𝑖𝑥 + 𝑞𝑖𝑦 + 𝑟𝑖       , 𝑖 = 1,2,3,                     (4.2) 

Where  “Q4“ is the output of layer 4, and  “p”, “q” and “r” are adaptive consequent 

parameters.  

The number of consequent parameters is defined based on the number of rules that 

identify by the user according to the complexity of the application. Figure 4.20 shows 

an example of ANFIS which has 9-rules in layer 3. Each rule is associated with one 

linear equation with a 3-adjustable coefficient. So, we have a 27-linear coefficient that 

should adapt during training iterations.   

  

 

 

 

 

 

 

 

 

 
Figure 4.20. ANFIS Algorithm with 9-Rules. 
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Another example of ANFIS algorithm that has 24-Rule associated with 81-linear 

coefficient can be found in Figure 4.21. We can easily notice that increasing the 

number of fuzzy rules led to increasing the number of linear parameters in layer 4 of 

ANFIS algorithm. 

 

 

 

 

 

 

 

 

 

 

 

  

Increasing the number of nodes in layer 2 (Figure 4.20) will help to achieve more 

accuracy but at the same time, it is a method to waste the system resources and 

consume more execution time when implemented in real-time applications because of 

the large number of linear parameters in the next layers that should calculate and adjust 

during the training process especially when designing a hardware version of this 

algorithm. 

For this reason, we proposed a method to minimize the number of adjustable 

parameters at layer 4. To do that, another normalization layer after layer 4 is added to 

compress and minimize the number of linear equations without effect on the 

performance of the system. Since Figure 4.20 has 9-rules and 9-linear equations with 

27-parameters, the normalization weight which is generated by layer 3 will be 

separated into several parts based on the node numbers in the following layer (layer 

4). As an example, we will put 4-nodes in the new normalization layer. Therefore, the 

Figure 4.21. ANFIS Algorithm with 24-Fuzzy Rule. 
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original weight in layer 3 will be divided into 4-part and each part will perform the 

aggregation process of all weights. Figure 4.22 illustrates this idea. 

 

 

 

 

 

 

 

 

 

 

   

According to Figure 4.22, we have only 4-linear equations with 12-coefficient instead 

of 9-linear equations with 27-coefficient in Figure 4.20. We can use the equation Eq. 

4.3 to calculate the output of the next layer.   

 

                           𝑤𝑐 = ∑ �̅�𝑖𝑗𝑖                                                                   (4.3) 

Where:  

wc: is the new compressed weight, 

i: is the number of nodes in the new proposed layer and,  

j: is the number of nodes in the previous layer (layer 4). 

 As a result, we minimize the number of operations at out the last two layers (layer 5 

and 6 in Figure 4.22), reduce the time of execution, and hardware resources when 

implementing it in real-time environments. 

 

 

Figure 4.22. A Modified ANFIS Algorithm with a New Normalization Layer. 
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4.4.1. Test the Performance of Extended ANFIS Architecture     

The evaluation of performance and speed of modified ANFIS  in training and testing 

phases are done in this section. To training and testing the algorithm, humidity and 

temperature data sets for Izmir city/Turkey for 10-years ranging from 01/10/2006 to 

31/12/2016 have been downloaded based on WU weather underground website. Each 

set of temperature and humidity consist of three groups. Each group has 365 elements 

as shown below: 

• Sets of maximum values of temperature and humidity for each day. 

• Sets of minimum values of temperature and humidity for each day. 

• Sets of average values of minimum and maximum of both temperature and 

humidity for each day. 

Now, we will use the ANFIS structure in Figure 4.23 to test the performance of the 

extended algorithm in terms of execution time and mean square error. 

 

 

 

 

 

 

 

 

   

First, sets of average values of both temperature and humidity are used to train the 

modified algorithm and then, the testing of the algorithm is done based on both 

maximum and minimum sets of temperature and humidity information. All results are 

compared with ANFIS-commands in Matlab toolbox. In the section below, we will list 

the training and testing results based on maximum values of temperature and humidity 

sets, while minimum values of temperature and humidity data sets will be put in the 

appendix A.  

Figure 4.23. Extended ANFIS Architecture based on Recurrent . 
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4.4.1.1. Training the Modified Algorithm and ANFIS  Toolbox 

The average of maximum temperature and humidity data set from 01/10/2006 to 

31/12/2016 is calculated in order to train the extended ANFIS algorithm. Figure 4.24 

shows the Training Results for these data sets.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    

The results in Figure 4.24 represent the training of maximum temperature data set 

based on modified ANFIS (upper part) and ANFIS toolbox (lower part) and these 

results are achieved when using the following initial conditions for both algorithms: 

• 3-Gaussian membership functions for each input. 

• 9-Fuzzy rules that have a direct connection to equivalent normalization nodes. 

• 4-linear equations with 12-adjustable linear coefficients. 

• Adjustable momentum factor. 

• 5000-training iterations. 

• Small randum initial  values for all parameters.  

Figure 4.24. Training Temperature Set using Modified ANFIS and ANFIS Toolbox. 
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 While Figure 4.25 represents the training of maximum humidity data set for both 

algorithms. 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

. Testing Algorithms Using Maximum Temperature and Humidity Sets 

The maximum temperature and humidity data sets are used to test the performance of 

the modified algorithm and compare the results with the ANFIS toolbox in Matlab. 

Figure 4.26 shows the testing results of the maximum temperature of the modified 

algorithm (upper part) and the ANFIS toolbox (lower part). 

 

 

 

 

Figure 4.25. Training Humidity Data using Modified ANFIS and ANFIS Toolbox. 
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While Figure 4.27 shows the testing results of the maximum humidity data set for both 

algorithm. All the above training and testing results are summarized and listed in 

Figure 4.28 in term of Mean Square Error (MSE). According to Figure 4.28, high 

accuracy is achieved by the modified algorithm compared with the ANFIS toolbox in 

both training and testing phases. Adding another layer in order to minimize the number 

of linear parameters does not affect the overall performance. Finally, the execution 

time of both training and testing phases based on the two methods are calculated in 

Figure 4.29 and Figure 4.30 respectively. The modified algorithm provides very high 

speed in the training phase compared with ANFIS toolbox and good speed in the 

testing phase. 

 

Figure 4.26. Testing Temperature Data using Modified ANFIS and ANFIS Toolbox. 
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Figure 4.27. Testing Temperature Data using Modified ANFIS and ANFIS Toolbox 

Figure 4.29. MSE of Training /Testing of Maximum Temperature and Humidity. 
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Figure 4.30. Execution Time of Training Phase. 

Figure 4.31. Execution Time of Testing Phase. 
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Chapter 5 CHAPTER 5 

HARDWARE IMPLEMENTATION 

 

5.1. Introduction  

In this chapter, we will introduce the hardware implementation of single and multiple 

cores of modified ANFIS algorithm in the FPGA device. Also, we will introduce a 

short introduction about FPGA evaluation kit and the required software tools that used 

to implement the modified algorithm. 

5.2. Hardware tools  

In general, there are three types of FPGA tools that are used to implement any 

algorithm and design in the FPGA environment. In this section, we are going to give 

a short definition of each of them. 

5.2.1. Xilinx Vivado Design Suite  

For synthesis (compile) and perform analysis of any FPGA design (HDL design), 

Xilinx has presented a Vivado Design Suite. This software tool is a kind of an 

Integrated Design Environment (IDE). Vivado Design Suite helps developers and 

designers to perform several tasks such as system time analysis, Register Transfer 

Level (RTL) diagrams evaluation, design simulation and program the target FPGA 

device. Also, the software provides a tool for compiling and validating C-based 

algorithmic hardware cores (IP) based on Electronic System Level (ESL) that provides 

a design abstraction and early design implementation to enable wrapping and 

integrating both RTL IP and algorithmic-based IP for reuse (Xilinx Inc. SDK, 2016). 

Figure 5.1 (Synthesis, 2016) shows the tasks that are done by Vivado Design Suite. 

 

 

 

 

https://infogalactic.com/info/Static_timing_analysis
https://infogalactic.com/info/Register_transfer_level
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5.2.2. Xilinx Software Development Kit (SDK) 

Building software platforms of Xilinx FPGA devices can be done by Xilinx Software 

Development Kit (SDK) tool. SDK tool deals with embedded hardware designs that 

are created based on Vivado design suite tool. Several advantages can be achieved by 

SDK tool such as (Xilinx Inc. SDK, 2016): 

• Compilation environment and code editor based on C/C++ languages.  

• Error detection.  

• Project management. 

• Automatic Make-file creation.   

• Debugging and describing of embedded design.  

• Source code control and management. 

Figure 5.2 describes the necessary steps to build any software platform of Xilinx FPGA 

devices. 

 

 

 

 

Figure 5.1. Xilinx Design Flow. 
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5.2.3. Vivado High-Level Synthesis (HLS) 

High-Level Synthesis (Vivado HLS) from Xilinx is a software that is used to generate 

an IP core-based hardware design. This tool allows algorithms that are written by 

System C, C++, and C languages to be targeted into all Xilinx FPGA devices directly 

without any need to manually build RTL design(Synthesis, 2016).  

5.3. Hardware Design   

The modified ANFIS algorithm that was presented in Chapter 4, has been implemented 

on the seventh generation of Xilinx FPGA device. We utilized the Xilinx Zynq 

xc7z020 evaluation kit to be our hardware platform. To achieve our implementation, 

our project is divided into multi-stages: 

• First stage: The first stage in our design implementation depends on Vivado High-

Level Synthesis tool to build a specific soft IP core for the hardware version of our 

modified ANFIS-based time series algorithm based on a small C language that is 

suitable for programming limited hardware resource systems such as embedded 

systems and microcontrollers. In order to economize the hardware resources that 

are used by our IP core, we will use a 16-bit fixed point approach and some directive 

functions such as (data flow, loop merge, and pipeline) to optimizing the hardware 

ANFIS core. After that, we will export the hardware ANFIS core and associated 

files from Vivado HLS to the Vivado Design Suite in order to bind it to other 

Figure 5.2. SDK development Flow. 

https://infogalactic.com/info/Register_transfer_level
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hardware components in the FPGA board. Figure 5.3 shows a single ANFIS IP core 

(denoted by red rectangular) which is connected to other system components. 

 

 

 

 

 

 

 

 

 

 

 

 

According to Figure 5.3, several main components are required for our design to work 

correctly as shown below:  

• Dual-core ARM Cortex-A9 as a main system processor. 

• One soft IP core for modified ANFIS algorithm. 

• One block of memory and its controller to store the data that come from sensors. 

• One block of memory and its controller to store the data that will be sent to PC. 

• Reset system block and system interconnections 

Figure 5.4 describes utilization resources that required to build and connect a single 

ANFIS core in Zynq xc7z020 platform. 

 

 

 

 

Figure 5.3. Hardware Design with a Single ANFIS IP. 
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The Zynq xc7z020 evaluation kit comprises (Xilinx, 2018; Xilinx Inc. SDK, 2016) 

53200-LUT, 106400-FF, 140-BRAM,32-BUFG and 220-DSP block. While the 

implementation needs: 

• 14% (7312) of LUT (Lookup Table) and 2% of LUTRAM (RAM Lookup Table). 

• 6% (6590) of FF (Flip-Flop). 

• 1% (2) of BRAM (Block RAM). 

• 11% (24) of DSP Block (Digital Signal Processor) 

• 3% (1) of BUFG (Global Buffer) 

Logic resources of modified ANFIS algorithm are compared with some existing 

parallel hardware structures of ANFIS algorithm (Brassai, Hajdu, Tamas, and Bakó, 

2015; Mas and Brassai, 2015; Gómez-Castañeda, Tornez-Xavier, Flores-Nava, 

Arellano-Cárdenas, and Moreno-Cadenas, 2014) that implemented it in various FPGA 

devices. Table 5.1 lists hardware utilization resources for different approaches. 

 

 

 

 

Figure 5.4. The Utilization Hardware Resources for Single ANFIS IP. 
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According to Table 5.1, our modified algorithm reduces the number of logic circuits 

that are used by modified ANFIS core like DSP block, size of RAM, and the number 

of LUT when compared with parallel ANFIS structures. Also, the proposed ANFIS 

core requires additional FF logic compared with the traditional parallel 

implementation. Additional numbers of FF logics that are used by modified algorithm 

provide high speed compared with other hardware implementation and more 

convenient for real-time applications. 

• Second stage: Based on Xilinx Vivado Suite tool the overall hardware design has 

built. The ensemble of hardware ANFIS-IP cores in Figure 5.5 composes of 6-

ANFIS cores. ANFIS cores have been trained to deal with contrastive dataset 

(minimum and maximum humidity and temperature values). Each core receives the 

real data from a specific connected sensor. In our implementation, we will connect 

2-set of sensors (3-sensor for temperature and 3-sensor for humidity). Each sensor 

is connected to equivalent ANFIS core through external co-processor (we will 

explain this co-processor in the next chapter). So, the first 3-ANFIS cores are 

connected to different 3-humidity sensors while other 3-temperature sensors are 

connected to remaining 3-ANFIS cores. All received data from sensors will be 

stored in a temporary block RAM in order to perform pre-processing tasks and 

prepare these data to be suitable for each hardware core. Also, we will use one block 

RAM to store all results and prepare them to the next processing stage. Figure 5.5 

illustrates this hardware design. 

 

 

Table 5.1. Comparison of Hardware Resources for the Different Approaches. 
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The hardware resources required for the design in Figure 5.5 are calculated in Figure 

5.6. 

 

 

 

 

 

 

 

 

 

 

Figure 5.5. Hardware design with Multi-ANFIS IP core. 

Figure 5.6. Hardware Resources for Multi-ANFIS Cores. 
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• Third stage: This stage is done based on Xilinx Software Development Kit (SDK) 

tool. In this stage, all drivers, system parameters, and cores initialization of ANFIS 

algorithms are prepared in order to evaluate the performance of the system. All 

received data from Arduino co-processor are stored in system memory (Block 

Memory in Figure 5.5) and then, the ARM Cortex-A9 processor (main system 

processor) fetchs the data from block memory in order to handle the data pre-

processing tasks. The data pre-processing can be divided into several sub-steps: 

 

1. Data classification: All sensing real data (temperature and humidity) that are sent 

by co-processor are associated with the unique 8-bit ID. The main system 

processor performs the data classification task according to its ID using a basic 

classification algorithm (if-then condition approach). Then, the data that are 

classified are stored in different memory bank within the main system memory. 

 

2. Data normalization: which scales all sensing data in the range [0,1]. In our thesis, 

the formula in Eq. 5.1 is used: 

𝑥𝑛𝑒𝑤 =
𝑥𝑖𝑛𝑝𝑢𝑡− 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥− 𝑥𝑚𝑖𝑛
                           (5.1) 

      Where xmax and xmin are the maximum and minimum values of the sensing data 

 

3. Data representation: Cortex-A9 processor supports different data types such as 

floating point and fixed-point data representation. So, we need to convert all 

sensing data to unsigned data representation that acceptable by both IP cores and 

memory based on IEEE754 standard. In our case, the sensing data are converted 

from a 16-bit fixed point to unsigned 16-bit data representation. 

 

4. Data fuzzification: To reduce the number of resources that are utilized by single 

ANFIS core, we split the layer one (fuzzification layer) from ANFIS algorithm 

and implement it within the Cortex-A9 processor instead of ANFIS core. Splitting 

the ANFIS tasks between ANFIS core and Cortex-A9 plays a key role to reduce 

the number of resources that are used by the Zynq programming logic (PL) and 

use the power of Cortex-A9 processor in Zynq processing system (PS). This step 
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decreases the number of DSP block by 55% when compared with (Mas & Brassai, 

2015) that only works which used a similar approach.  

 

5. Data routing: during this step, the Cortex-A9 processor forwards the classified 

data to equivalent ANFIS cores and then transfers results to the PC via Ethernet 

controller. Figure 5.7 illustrates the above processing steps. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.7. Processing Steps that Implemented by Cortex-a9 Processor. 
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5.4. Hardware Test and Results 

Matlab Implementation results that are obtained in chapter 4 are used to test evaluate 

and compare the performance of the hardware design with the ANFIS   

implementations in Matlab environment (software version) in term of mean square 

error (MSE) and mean of error. Figure 5.8 and Figure 5.9 show comparison between 

hardware and software result of both maximum temperature and humidity data 

respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.8. Hardware and Software Comparison of Maximum Temperature. 
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Figure 5.10 and Figure 5.11 show comparison between hardware and software result 

of both minimum temperature and humidity data respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.9. Hardware and Software Comparison of Maximum Humidity. 

Figure 5.10. Hardware and Software Comparison of Minimum Temperature. 
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Finally, Table 5.2 lists the comparison values between hardware and software versions 

in term of the mean of error and the mean square error.  

 

 

 

 

 

 

 

 

   

According to Figures 5.8 to Figures 5.11 and Table 5.2, we can see easily, the hardware 

version gives very good results in terms of the mean of error and the mean square error 

and there are very small differences between hardware and software versions in both 

temperature and humidity data sets. Normally, these small differences appear when 

using any simulation software compared with hardware systems. 

Table 5.2. Comparison between Hardware and Software versions. 

Figure 5.11. Hardware and Software Comparison of Minimum Humidity. 
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Chapter 6 CHAPTER 6 

SMART AUTOMATION SYSTEM 

6.1. Introduction 

In this chapter, hardware design of a smart automation system platform hardware is 

presented and implemented. The hardware system has two main units: the first unit is 

The Aggregation unit. It is designed and controlled by Arduino microcontroller that is 

used as system co-processor. This unit is responsible for real data acquisition from all 

sensors that are connected to Arduino board, while the second unit is the Multi-

function. This unit is designed and implemented based on the Xilinx FPGA Zynq-7 

ZC702 evaluation kit. All data analysis tasks like data classification, prediction of data 

future behaviour, and system decision-making are performed by this unit. At the end 

of this chapter, and in order to observe and evaluate all information that are received 

from the hardware system, a special Graphic User Interface (GUI) based on Matlab 

environment is designed.  

6.2. Principle of Smart Automation System 

A smart automation system makes the control of various applications and devices in a 

lot of fields more convenient and quite simple. In general, an automation control 

system can be utilized for different applications such as weather conditioning, heating, 

security systems, lighting, and a lot of smart devices. 

Mainly, any smart automation system is constructed by actuators, sensors, co-

processor unit (microcontroller in most cases), and controlled devices. Different types 

of real information like light, gas, humidity, temperature, etc. are collected by system 

sensors. Then, the co-processor sends all sensing data to the main system controller. 

The co-processor unit permits to bind different actuators and sensors through analog 

or digital devices. The elements of smart automation system include: 
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• Controlled Devices:  

They represent the wide range of smart appliances which can be connected and 

controlled by co-processor units such as power door locks, door openers, lighting 

systems, audio and video systems, sprinkling systems, home theater equipment, 

telephone systems, and other tremendous kinds of equipment. 

 

• Sensor Devices:  

Sensors devices are used to collect different types of real data such as light, sound, 

humidity, temperature, etc. The system co-processor mutates these data to another 

form which can be utilized by the controller to generate appropriate system decisions 

depend on specific conditions.  

 

• Interfacing of I/O Devices:  

The interface of I/O devices provide the logical or physical connection links between 

the system controller and all connected devices in the hardware system. The interface 

circuits make different devices convenient with the logical and physical architecture 

of the system. The interface circuit of I/O devices can be isolated or integrated with 

the system controller.  Most of the industrial manufacturers that generate I/O interface 

circuits utilize standardized protocols which permit products from many 

manufacturers to interact with each other. 

 

• System Controllers: 

System Controller implements the intelligent control tasks depend on data which arrive 

from different sensors. Intelligent tasks which are performed by the system controller, 

have a wide scope which can be laid from simple to complex tasks. Sufficient data 

must be provided to the system controller to drive all controlled devices. Providing 

data can arrive from sensors, timers, user, control program, or any combination of 

them.  Figure 6.1 presents the main parts of an intelligent control system. 
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A special and simple graphic user interface is used to react the user with the system 

controller and monitor all arrived information or send user commands to the system 

about certain conditions. However, in some advanced automation systems supply 

intelligent decisions without the need to any graphical user interfaces.  

Power consumption, response time, cost, and flexibility are most challenges that any 

Automation Systems face. So, combining Artificial Intelligence (AI) systems with 

embedded systems based on programmable devices such as FPGA automation control 

system can face all the above challenges.  

FPGAs provide a significant processing system, depend on application-specific 

integrated circuits. FPGA devices have powerful mathematical and rapid acceleration 

components that qualify these devices to perform simple and more complex 

algorithms. 

   

6.3. Designing of Automation Control System 

The proposed hardware system aims to provide an automation control system that is 

flexible, high-efficient and fast. The proposed system structure mainly consists of three 

units: 

 

Figure 6.1. Main parts of Smart Automation System. 
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1) Aggregation Unit: This unit is implemented based on Arduino microcontroller 

and acts as a system co-processor. The unit performs the data aggregation task 

from different analog and digital sensors  

 

2)  Multi-function Unit: Multi-function Unit is designed and implemented by 

Xilinx FPGA evaluation board and acts as the main system controller.  

 

3) Communication Unit: It is used to connect the Multi-function unit, the 

Aggregation Unit, and Personal Computer (PC). 

 

6.3.1. Aggregation Unit 

As we said before, the aggregation data from different sensors are done by this unit. 

So, 3-sets of different sensors are connected to this unit based on the Arduino Uno 

microcontroller. Each set consists of:  

• 3-analog gas sensors  

• 3-digital temperature sensors and,  

• 3-digital humidity sensors  

The microcontroller collects the data from all these sensors and associates each byte 

of sensing data with a special 8-bit ID. After that, the Arduino re-arrange all data and 

generates the Ethernet message format in order to forward data to the Multi-function 

unit. Figure 6.2 demonstrates the Ethernet message between Multi-function and 

Aggregation units. 

 

 

 

 

 

 

 

  
Figure 6.2. Ethernet Message between Multi-function and Aggregation. 
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According to the Figure 6.2, we used 27-bytes in payload field within the Ethernet 

message format. The payload can be divided into three that are distributed on three 

groups of sensors in form of:  

• 8-bit ID / 8-bit temperature sensor values, 

• 8-bit ID / 8-bit humidity values, and  

• 8-bit ID / 16-bit gas sensor values. 

   A 6-byte is used in the beginning to provide system time and date in the form of: 

• hour: minute: second for system time and, 

• day: month: year for date. 

 

6.3.2. Multi-function unit 

The Multi-function unit is the second unit in our hardware design.  This unit is 

designed based on Vivado HLS V2016.1, Vivado Design Suite V2016.1, and Vivado 

SDK V2016 and targeted at the Xilinx Zynq-7 ZC702 evaluation kit. The Multi-

function unit is obtained and the sensing data from the Aggregation Unit and starts to 

perform multiple tasks and data analysis on the receiving data. These tasks include: 

 

• Data Classification, 

• Prediction of future values based on Modified ANFIS Algorithm, 

• System Decision-making. 

• System Fault Alerts.  

Figure 6.3 shows the Multi-function unit based on Vivado Design Suite.  
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Three main parts are included in the Figure 6.3 and denoted by the labels as shown 

below:  

 

• The Dual-core SYNQ Cortex-A9 Processor: This is the main system controller. 

The initialization of hardware platform, implements and controls all tasks within 

this unit are done by this processor which acts as a main system controller. The 

flowchart in Figure 6.4 explains all tasks that are executed by SYNQ    processor.  

 

 

 

 

 

 

Figure 6.3. Hardware Design within the Multi-Function. 
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The neuro-fuzzy prediction task in the above flowchart is implemented by the modified 

ANFIS algorithm based on time series approach for both temperature and humidity 

data. While the classification task is done according to: 

1. Types (gas sensors, humidity, and temperature),  

2. Values (extreme, very high, high, moderate, and low), and 

3. Locations (outside or inside the home).  

The last task is system decision making. This task is done based on: 

1. Light adjuster, 

2. Air conditional adjustment, and  

3. System Alert. 

 

Figure 6.4. The overall tasks are executed by Cortex-A9. 
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• ANFIS Hardware Cores: As we said in the previous section, our system design 

includes 3-humidity and 3-temperature sensors linked to the aggregation unit and 

the prediction processes are performed on the data coming from these sensors. 

The prediction results are sent back to the system processor to prevent any unusual 

event in the automation control system. For this reason, the designing system has 

6-ANFIS cores. Each core is allocated to the particular sensor.  

 

• General Purpose I/O Ports (GPIO): GPIO is the last block in the Multi-function 

unit. The main processor will evaluate all data (original data and results) in order 

to generate the final decisions and the system fault alerts (4-bit binary code is used 

to represent each one). The processor will send those codes to the GPIO block.  

Table 6.1 and Table 6.2 explain how can represent the system fault alerts and decisions 

by 8-bit binary codes respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The generated 8-bit binary code is divided into two parts: the codes in Table 6.1 

represent the Most Significant 4-bit (MS4B) which is used for the system actions, 

Table 6.1. System Actions. 

Table 6.2. System Fault Alerts. 
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while the codes in Table 6.2 represent the Least Significant 4-bit (LS4B) for the system 

fault alerts.  

The Least Significant 4-bit (LS4B) in Table 6.1 are forwarded to the J62 headers in 

the Xilinx Zynq-7 ZC702 evaluation kit. The system processor sends the system 

actions commands as a 4-bit to the J62 header.   

Figure 6.5 illustrates the pseudo code of the system actions based on 4-bit commands 

that can be achieved.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Initialization of maximum threshold temperature value  

Initialization of minimum threshold temperature value 

Initialization of maximum threshold humidity value 

Initialization of minimum threshold humidity value 

 Initialization of gas threshold value 

Initialization of time threshold value 

Recieve the data from Arduino  
 

// start data processing 

while (data is available) then 

 

// deal with temperature sensors 

for (each temperature sensor) do 

      if (temperature value > maximum threshold) then 

     Increase Fan Speed: Code=0100 

     if (temperature value < minimum threshold) then 

    Decrease Fan Speed: Code=0100 

end for loop 

 

// deal with humidity sensors 

for (each humidity sensor) do 

     if (humidity value > threshold) then 

     High Humidity Alert: Code=1000 

end for loop 

  

  // deal with gas sensors 

for (each gas sensor) do 

      if (gas value > threshold) then 

      Gas Alert: Code=0001 

end for loop 

 

 

Initialization of maximum threshold temperature value  

Initialization of minimum threshold temperature value 

Initialization of maximum threshold humidity value 

Initialization of minimum threshold humidity value 
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While Figure 6.6 shows 4-LED interfacing to the J62 header in FPGA board. 

 

 

 

 

 

 

 

 

 

 

 

 

6.3.3. Communication Unit  

The Communication Unit is the last unit in our hardware design. Basically, this unit is 

implemented by a special library known as Lightweight IP (lwIP) that is used by 

Gigabit Ethernet Controllers (GEM) within Zynq-7 ZC702 board. The lwIP library is 

a TCP/IP networking stack and an open source that is used for embedded systems. The 

Figure 6.6. The Interface of the J62 Header. 

// Continue // 

// deal with lighting 

If (time: hour > threshold) then 

      Lighting: Turn-On: Code=0010  

     Lighting: Turn-Off: Code=0011 
 

end while loop 

         

end while loop 

 

De-normalize the output data 

 

Figure 6.5. Pseudo Code of the System Actions. 



  

 114  

 

Xilinx (SDK) provides and customizes this library to work on different Xilinx 

embedded system environments such as Xilinx ARM-based Zynq-7000, PowerPC 

hard processor, or soft MicroBlaze-based processor (Xilinx, 2016). The lwIP library 

can perform the following protocols(Macmahon & Cherukupaly, 2014): 

• Internet Protocol (IP) 

• Transmission Control Protocol (TCP) 

• User Datagram Protocol (UDP)  

• Address Resolution Protocol (ARP) 

• Dynamic Host Configuration Protocol (DHCP) 

• Internet Group Message Protocol (IGMP)  

• Internet Control Message Protocol (ICMP) 

The lwIP library helps to provide networking capability to the FPGA embedded system 

and minimize the number of resources that are used to achieve a network TCP stack. 

Now, the main goal of the Communication Unit is to connect the multi-function unit 

to the aggregation unit and forward data to the user interface panel.  

To achieve this goal, we develop a new version of Lightweight IP (lwIP) library that 

supports multi-server and multi-client devices by combining between a standard client 

version and a standard server version in a single library-based FPGA device that ready 

to use by researchers in IoT applications. The newly developed library is modified 

based on User Datagram Protocol (UDP). 

 

. Xilinx Adapter Functions 

The Xilinx adapters-based SDK tool provides multiple functions in order to simplify 

the implementation of the lwIP Application Programming Interfaces (lwIP APIs) that 

are used to modify the Communication Unit. The lwIP library provides two different 

APIs: RAW mode and Socket mode. In our thesis, we will focus on RAW mode which 

is callback based. This mode provides a perfect performance at the price of 

compatibility compared with other TCP networking stacks. In this mode, API gets 

direct access into the TCP  stack and there is no needed to additional socket layer 

(Xilinx, 2016; Macmahon and Cherukupaly, 2014) as explained below: 
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Figure 6.7. Initialization of the Lwip Functions. 

Figure 6.8. handling the system interrupt by lwIP library. 

 

• void lwip_init() 

This function provides the initialization of the lwIP functions for the data structures. 

This function replaces specific calls to initialize system memory, pbufs, UDP, IP, and 

TCP layers. Figure 6.7 shows the callback of this function.  

 

 

 

 

     

The xemac_add function supplies a unified interface for Xilinx EMAC IP.This 

function covers the lwIP: network interface (netif_add), IP address (ipaddr), gateway 

IP address (gw),  ethernet address MAC address( mac_ethernet_address), and memory  

base address of the MAC address(mac_baseaddr). 

 

• void xemacif_input(struct netif *netif) 

This function is used to handle the system interrupt in order to put the arrived data 

packets in a queue, while the  xemacif_input function moves those packets from the 

queue, and presents them to lwIP. Figure 6.8 shows this process. 

 

  

 

 

 

 

The pseudocode in Figure 6.9 shows the initialization structure of the RAW API that 

we are used in this thesis.   
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 Several sequence functions are used to establish the connection between the server 

and client devices based on this library. These functions are used to create a TCP 

connection as shown in Figure 6.10. 

 

Figure 6.9. Initialization Structure of the  RAW API. 
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Figure 6.10. Establishing the Connection based on Lwip. 

Figure 6.11. Data Arrived and Received Callbacks. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The accept_callback function is called automatically when the connection is accepted, 

because the server device needs to reply only when data arrives. At this time, the 

function recv_callback is called in order to send the data to the other device as 

explained in Figure 6.11. 

 

 

 

 

 

 

 

The flowchart in Figure 6.12 shows all functions that are required to establish the mult-

server and multi-client based on Lwip. 
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According to Figure 6.12, the Dual-core SYNQ Cortex-A9 Processor begins as system 

server which continuously listens to received sensing data from the different sensors 

in the Aggregation Unit. Then, the Processor changes its status from server to UDP 

client to send all data to the user interface panel-based Matlab Graphic User Interface 

(GUI) after processes it. 

Finally, Figure 6.13 shows the complete proposed system design that includes all 

system units. 

 

 

 

Figure 6.12. Modified LWIP based on User Datagram Protocol. 
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6.4. Experimental Results  

The overall hardware design is tested and evaluated during all implementation levels 

to validate the performance of the system. The data acquisition- based Arduino Uno 

kit is done every 15-minute and then the Arduino microcontroller forwards the sensing 

data to the Zynq-7 ZC702 board through the Ethernet cable. Figure 6.14 presents the 

Aggregation unit and how the system’s sensors are connected to the Arduino Uno 

board. According to Figure 6.14, it includes:  

• Arduino Uno kit. 

• DS3231 Real Time Clock (RTC) module which supplies a time system. 

• 3-MQ2 Gas Sensors. 

• Arduino Ethernet Shield-2 is utilized to provide the network capability to the   

Arduino Uno controller in order to connect the Arduino Uno board (Aggregation 

Unit) to the FPGA evaluation kit (Multi-function unit). 

Figure 6.13. Complete Proposed Hardware System. 
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• 3-DHT11 Temperature  

• 3-DHT11 Humidity sensors.  

 

 

 

 

 

 

 

 

 

 

 
 

    

Figure 6.15 shows how the Arduino board connects to Xilinx Zynq-7 ZC702 

evaluation kit through the Ethernet cable. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.14. Interfacing Arduino with the Sensors. 

Figure 6.15. The Connection between Arduino Board and FPGA. 
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To monitor and evaluate information that arrives from hardware system units, a Matlab 

GUI that acts as a user panel is built for this purpose. based on the environment is 

designed. The user panel is demonstrated in Figure 6.16.  

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 6.11 includes five main parts which are highlighted and numbered by the red-

color as illustrated below:  

• Part 1: This part is used to display the connected sensors and its ID. 

• Part 2: This section is used to monitor all sensing data that come from sensors 

and the prediction of future values of humidity and temperature. 

• Part 3: Classification of each group of data according to its type and value and 

provide the percentage for each value is done in this part. 

• Part 4: The information of date and time (real-time clock) is displayed here. 

• Part 5: The last part is used to give information about the system alerts colors. 

The green color is utilized for on-line sensors, while yellow color is utilized for 

gas detector alert. Finally, the red color is used to alert for off-line sensors. 

 

Figure 6.17 shows an example of high-level gas detector and humidity/temperature 

sensors in the off-line state (disconnected). 

Figure 6.16. System Graphic User Interface. 
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Other example is presented in Figure 6.18 when a high-level gas is detected while 

other sensors work properly. 

 

 

 

 

 

 

 

 

 

 

 

Compared with existing implementation of automation control systems that related to 

our approach, we can divide them into two group: 

 

Figure 6.17. High-level Gas Detector and Temperature/Humidity in the Off-line State. 

Figure 6.18. An Example of High-level Detection. 
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1. The hardware implementations in the first group are designed and implemented 

systems are based on traditional microcontrollers(Kumar, Shegokar, Chouhan, and 

Iqbal, 2018; Asadullah and Raza, 2016) and AI (Artificial Intelligent) algorithms 

the designers are integrated with these systems in order perform data analysis and 

smart self-decision-making like some commercial systems such as Alexa from 

Amazonis and Apple HomeKit and several academic works like (Prabhu, Jena, and 

Rode, 2018;; Sang-hyun et al., 2013; Yugashini, Vidhyasri, and Devi, 2013).  

 

 

2. In the second group, the designers use the FPGA devices in their design of 

automation systems in order to take advantage of their flexibility and 

reconfigurability features like implementations in (Suresh and Mastani, 2018; 

Panigrahi et al., 2016; Chinchansure and Kulkarni, 2014; D, 2017; Assaf et al., 

2012; Pratik Waghmare, Chandgude, Chaure, and Chaudhari, 2017).   

 

To build a robust, fast, and high performance, our proposed implementation combines 

between the above two groups. The system is designed and implemented in 

reconfigurability FPGA environment and take advantage of its flexibility. Also, our 

system has multiple Artificial Intelligent algorithms that can perform simple and 

complex tasks based on its application. 

 

 

 

 

 

 

 

 

 



  

 124 

 

CHAPTER 3 CHAPTER 7 

CONCLUSION AND FUTURE WORKS 

7.1. Conclusion 

In order to enhance sensor nodes architecture and its computation power, Field-

Programmable Gate Array (FPGA) is used to design a modified hardware structure of 

a sensor node. This structure is embedded with an ensemble of the Adaptive Neuro-

Fuzzy Inference system algorithms that is one of the artificial intelligence algorithms 

to present a typical solution of the limitations of sensor node-based classical 

microcontrollers. The contribution of this thesis can be divided into three parts: 

 

1) In the first part, the Adaptive Neuro-fuzzy Inference System has been used, 

modified and evaluated based on different data sets. Two modifications are added 

to the ANFIS algorithm in order to enhance its work and performance (Chapter 

4): 

 

• During the first modification, the ANFIS algorithm is combined with a 

momentum factor which is a type of optimization algorithms during the 

learning process. The momentum factor helped the ANFIS algorithm to 

arrive at the optimal solution and provided a best and fast convergence 

without stuck in local minima and reduce the overall error compared with 

the standard architecture of ANFIS algorithm. in terms of Mean Squared 

Error, Root-Mean-Square Error, Mean Error, and Standard Deviation. 

Using momentum factor in our ANFIS algorithm minimizes the execution 

time (in second) during the training phase from 3.675 to 1.1921 and from 

3.6427 to 1.1895 for temperature and humidity data sets respectively that 

are used to test the first modification. 

 

• In the second modification, we proposed a methodology that reduces the 

adjustable linear parameters at layer 4 of ANFIS algorithm. This process is 
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done by adding a special normalization that is used compress linear equations     

at the output layer without effect on the overall performance of the algorithm.  

Several different data sets related to weather condition are used to test and 

evaluated this modification. All results are compared with ANFIS algorithms-

based Matlab toolbox. High accuracy is achieved in both training and testing 

phases based on the modified algorithm compared with the ANFIS toolbox 

(Section 4.4.1.2). 

Minimizing the number of linear parameters do not affect the overall 

performance of the modified algorithm. Also, the execution time of the training 

and testing phases are measured (Figure 4.29 and Figure 4.30). Adding this 

modification to the algorithm provides high speed in the training algorithm 

compared with ANFIS-based Matlab tool and good speed in the testing 

algorithm. 

 

2) In the second part of our contribution is the design and implementation of the 

proposed hardware system that is done and evaluated in Chapter 5. The 

achievements can be divided into:   

 

• An ensemble of 6-soft hardware cores-based modified ANFIS algorithm is 

built and developed using the reconfigurable FPGA Zynq xc7z020 

evaluation kit. The ensemble of ANFIS cores is designed to work in parallel 

and deal with different real acquisition data. Each ANFIS core is built based 

on three associated tools: 

 

❖ Xilinx Vivado High-Level Synthesis V2016.1 that is used to build 6-

hardware cores of modified ANFIS-based time series algorithm. A small 

C programming language is used in this tool which is suitable for 

programming the algorithms in embedded systems. 

 

❖ Xilinx Vivado Suite V2016.1 that is used to build the complete hardware 

design and import 6-ANFIS cores from Vivado High-Level Synthesis 



  

 126 

 

libraries. Then, export all hardware files and libraries to the Xilinx 

Software Development Kit.  

 

❖ Xilinx Software Development Kit tool which is used to initialize ARM 

Cortex-A9 processor and build the software platform that includes 

drivers, system parameters, hardware core and other associated hardware 

elements. 

 

• The ARM Cortex-A9 processor is used to share the primary tasks of 

ANFIS algorithm (data normalization and data fuzzification tasks) with 

ANFIS-hardware cores. In the other word, we successfully distributed the 

processing tasks between Zynq programming logic (PL) which is represented 

by ANFIS-cores and Zynq processing system (PS) which is represented by 

ARM Cortex-A9 processor (Section 5.3). This helps us to minimize the DSP 

block by 55%.  

 

• Real sensing data based on 3-temperature and 3-humidity DHT11 sensors 

that grouped in 3-set are used to test the performance of the hardware 

system. Compared the hardware results-based ANFIS cores with the 

simulation results-based Matlab software provide very good results in terms of 

the mean of error and the mean square error (Section 5.4) with very small error 

ratio which is the normal case when comparing hardware with software results. 

 

3) The last part of our contribution is the design of monitoring and intelligent 

control system. The system consists of several parts: 

 

• Aggregation Unit-based Arduino microcontroller is used to connect 3-set 

of sets of temperature, humidity, and gas sensors. We used the Arduino 

microcontroller as a co-processor in our system besides the ARM Cortex-A9 

processor in order to aggregate and send the sensing data to the next unit in the 

monitoring system. 
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• Multi-function unit is constructed based on Zynq-7 ZC702 kit. This unit 

received the data from the Aggregation Unit and performs: 
❖ Data classification, 

❖ Prediction future behavior of the weather condition, 

❖ System decision-making, and 

❖ System Alerts. 

 

• Communication Unit based on Lightweight IP library that is used 

especially for embedded systems to provide them with a networking capability 

(Section 6.3.3). The aim of this unit is to connect the system units with each 

other (multi-function unit, aggregation unit and user panel). We modified a 

special multi-server and multi-client agents based on the User Datagram 

Protocol (UDP). The main purpose of this modification is to allow the multi-

function unit to switch its mode based on system status.  

 

• User panel which is designed based on Matlab Graphic User Interface to 

monitor all data that is come from the hardware system.  

 

Using a combination of Arduino microcontroller and FPGA device plays a key role to 

distribute the tasks between microcontroller that interfaces different types of sensors 

and FPGA that performs the data analysis and pre-processing  (François Philipp, 

2014). As a result, we reduced the execution time, the required hardware resources and 

add added more flexibility to the system to implement more complex and intelligent 

functions.  

Comparing our system with the existing implementation of automation control 

systems (Section 6.4), our proposed implementation combines the traditional control 

system that has embedded Artificial Intelligent algorithms (to perform data analysis 

and smart self-decision-making) and other systems that are built by FPGA 

environments. Our system is implemented in FPGA environment in order to take 

advantage of its flexibility and reconfigurability. Also, the system has multiple 

Artificial Intelligent algorithms that are utilized to implement simple and complex 

tasks based on its application. 



  

 128 

 

7.2. Future Works 

This research aims to build a smart and reconfigurable sensor node based on FPGA 

device. But, the continuation of such a contribution is open. The overall system 

consists of single Aggregation Unit and Multi-function unit that connect together by 

ethernet cable based on UDP protocol. So, update the system can include the 

following: 

• Using multiple Aggregation Unit and modifying the communication protocol to 

support multiple agents wirelessly. 

 

• Adding security algorithms to the system in order to protect the system 

information. 

 

• Adding the partial reconfigurable feature to the system to change or modify some 

functions in the system (or functions in some agent in case of multiple agents).     
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Appendix A 

A.1. Training the Modified Algorithm and ANFIS  Toolbox based on 

Minimum   Temperature and Humidity Data Sets 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A.01. Training Minimum Temperature Data  

 

 

Figure A.0.2. Training Minimum Temperature Data  
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Figure A.3. Training Minimum Humidity Data set 
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A.2. Testing the Modified Algorithm and ANFIS Toolbox based on 

Minimum   Temperature and Humidity Data Sets 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

Figure A.5. Testing Minimum Temperature Data set 
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Figure A.7. Testing Minimum Humidity Data Set 

Figure A.9. MSE of Training and Testing Minimum Temperature and Humidity Sets 
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A.3. Training and Testing Execution Time 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure A.11. Training and Testing Execution Time 


