

BORNOVA / İZMİR

MAY 2019

YAŞAR UNIVERSITY

GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

PHD THESIS

FPGA BASED CONTROL AND RECONFIGURABLE

MECHANISM IN WSN

AHMED KHAZAL YOUNIS, AL-AZZAWI

THESIS ADVISOR: ASSOC. PROF. TUNCAY ERCAN

COMPUTER ENGINEERING

PRESENTATION DATE: 03.05.2019

ii

iii

ABSTRACT

FPGA BASED CONTROL AND RECONFIGURABLE MECHANISM

IN WSN

Al-Azzawi, Ahmed Khazal Younis

PHD, Computer Engineering

Advisor: Assoc. Prof. Tuncay ERCAN

May 2019

Wireless Sensor Networks (WSNs) enable various solutions for many application

fields. They have acquired large popularity because of their low cost, scalability, easily

distributed and maintainable features compared to the traditional infrastructure of

monitoring solutions. Generally, any WSN consists of a huge number of distributed

sensor nodes that can measure a specific physical phenomenon, perform required tasks

and enable monitoring of infrastructure-less deployment. A wireless sensor node is

constrained by its cost, energy, and size. In order to overcome these limitations, this

thesis aims to introduce a smart design and multi-tasking for wireless sensor networks

by extending the capability of re-configurability and enhancing the computational

power of the sensor nodes. These facilities can be integrated in a typical WSN and IoT

(Internet of Things) environment by incorporating an FPGA (Field Programmable

Gate Array) device. Enhancing the computational power of data analysis is done by

integrating multi-core of adaptive neuro-fuzzy algorithms in the FPGA device. This

thesis contributes into the scientific knowledge with two new modifications in the

ANFIS (Adaptive Neuro-fuzzy Inferences System algorithm) by using the momentum

factor that will accelerate the training phase and adding a new hidden layer to decrease

the number of adjustable linear parameters in the FPGA resources. The neuro-fuzzy

approach is a kind of soft computation systems that combine between the learning

capability of artificial neural networks and the powerful inference system in fuzzy

logic. These two techniques are utilized in order to deal with complex problems when

the traditional methods cannot provide a simple and precise solution. Later, the multi-

hardware cores of the modified algorithms are comprised within the architecture of

FPGA by using the different sensor data sets. HW/SW cores in the FPGA are used to

perform different tasks such as classification, prediction, alerts, and decision-making.

iv

On the other hand, the modified ANFIS algorithm will extend the capability of

MATLAB toolbox for software developers, and the newly generated IP library in the

FPGA that will combine multi-server and multi-client devices will be ready to use by

researchers in different IoT implementations. The simulation results of the hardware

architecture proposed in this thesis provide significant contributions to the state of the

art by providing additional insights and a deeper understanding when compared with

existing academic and commercial examples.

Key Words: adaptive systems, neuro-fuzzy system, re-configurability, ANFIS,

FPGA, smart systems, embedded systems, smart control.

v

ÖZ

KABLOSUZ ALGILAYICI AĞLAR İÇİN FPGA TABANLI KONTROL VE

YAPILANDIRILABİLİR MEKANİZMA

Al-Azzawi, Ahmed Khazal Younis

Doktora Tezi, Bilgisayar Mühendisliği

Danışman: Doç. Dr. Tuncay ERCAN

Mayıs 2019

Kablosuz Algılayıcı Ağlar (KAA) birçok uygulama alanı için farklı çözümler

sağlarlar. Bu ağların geleneksel izleme altyapılarıyla karşılaştırıldıklarında sahip

oldukları düşük maliyet, ölçeklenebilirlik, kolaylıkla dağıtılabilir olmaları ve

sürdürülebilirlikleri nedeniyle kullanımları da oldukça artmıştır. Genel olarak,

KAA’lar kullanıldıkları ortamla ilgili olarak fiziksel değişiklikleri ölçebilecek çok

fazla sayıda algılayıcı düğümler içerebilir, önceden belirlenmiş görevleri yerine

getirebilir ve altyapısı olmayan yerlerde maliyet, enerji ve işlemci gibi kısıtlarına

rağmen izleme yapabilirler. Kablosuz bir algılayıcı düğümün maliyet, enerji ve boyut

gibi bazı sınırlamalarını kısmen veya tamamen ortadan kaldırabilmek için, bu

tezimizde algılayıcı düğümlerin çoklu görevleri yerine getirebilmeleri için işlemci

gücünü artıracak, tekrar yapılandırılabilme kabiliyetini yükseltecek akıllı bir tasarım

hedeflenmiştir. Bu da tipik bir KAA veya Nesnelerin İnterneti (IoT-Internet of Things)

ortamında FPGA (Alan Programlanabilir Kapı Dizisi) cihazlarının kullanılmasıyla

gerçekleştirilebilir. Böyle bir ortamda veri analizi için işlemci gücünün arttırılması

FPGA cihazı üzerinde uyarlanabilir yapay sinir ve bulanık algoritmaların birlikte

çalıştırılmasıyla gerçekleştirilebilir. Bu tez bilimsel bilgiye ANFIS algoritmalarındaki

iki yeni değişiklikle katkıda bulunmaktadır. Birincisi veri setlerine olan tanışıklığın

sağlandığı eğitim safhasını hızlandıracak momentum faktörünün eklenmesi, diğeri

FPGA üzerindeki kaynakların kullanımını etkinleştirecek olan doğrusal parametre

sayısını azaltacak ilave bir gizli katmanın eklenmesidir. Sinir-Bulanık yaklaşımlar

yapar sinir ağlarındaki öğrenme ve bulanık sistemlerdeki güçlü çıkarım yapabilme

yeteneklerini öne çıkartan yazılım tabanlı teknikleri içerirler. Bu iki farklı teknik,

geleneksel yöntemlerin basit ve kesin bir çözüm sağlayamadığı karmaşık problemleri

vi

çözebilmeyi mümkün kılmaktadır. Daha sonra değiştirilmiş olan bu algoritmalar farklı

veri setlerini kullanarak FPGA mimarisi içinde uygulanır. FPGA içindeki donanım ve

yazılım bileşenleri sınıflandırma, kestirme, alarm ve karar verme gibi farklı görevleri

yerine getirebilir. Diğer yandan, değiştirilmiş ANFIS algoritması yazılım geliştiriciler

için MATLAB araç kutusunun yeteneğini arttıracak, FPGA cihazı üzerinde çoklu-

kullanıcı ve çoklu-sunucu ortamları için geliştirilen yeni kütüphane de IoT

uygulamalarında araştırmacılar tarafından kullanılmaya hazır olacaktır. Bu tezde

önerilen donanım yapısı ile ilgili benzetim sonuçları, akademik ve ticari örneklerle

karşılaştırıldığında, mevcut bilgiye ve anlayışa en güncel bilgilerle yeni bir derinlik

katıldığını ve önemli bilimsel katkılar sağladığını göstermektedir.

Anahtar Kelimeler: uyarlanabilir sistemler, sinir-bulanık sistem, yeniden

yapılandırma, ANFIS, FPGA, akıllı sistemler, gömülü sistemler, akıllı kontrol.

vii

ACKNOWLEDGEMENTS

I would like to express my enduring love to my parents, who are always supportive,

loving and caring to me in every possible way in my life.

Foremost, I would like to express my sincere gratitude to my advisor Assoc. Prof. Dr.

Tuncay Ercan for the continuous support of my Ph.D. study and related research, for

his patience, motivation, enthusiasm, and immense knowledge. His guidance helped

me a lot in all the time of research and writing of this thesis. I could not have imagined

having a better advisor and mentor for my Ph.D. study.

Besides my advisor, I would like to thank the rest of my thesis committee: Prof. Dr.

Mehmet Ünlütürk and Assoc. Prof. Dr. Y. Murat Erten for their insightful comments,

encouragement, and for their hard questions that incented me to widen my research

from various perspectives.

Last but not the least; I would like to thank my family: my mother, my wife, and my

three wonderful children.

Ahmed Khazal Younis Al-Azzawi

Izmir, 2019

VIII

TEXT OF OATH

I declare and honestly confirm that my study, titled “FPGA BASED CONTROL AND

RECONFIGURABLE MECHANISM IN WSN” and presented as a PhD Thesis, has

been written without applying to any assistance inconsistent with scientific ethics and

traditions. I declare, to the best of my knowledge and belief, that all content and ideas

drawn directly or indirectly from external sources are indicated in the text and listed

in the list of references.

Ahmed Khazal Younis Al-Azzawi

Signature

………………………………..

May 3, 2019

 IX

TABLE OF CONTENTS

ABSTRACT .. iii

ÖZ ... v

ACKNOWLEDGEMENTS .. vii

TEXT OF OATH .. VIII

SYMBOLS AND ABBREVIATIONS .. XX

CHAPTER 1 Introduction .. 1

 . Research Scope and Objectives ... 3

 . Thesis Outline .. 4

 . Existing Studies ... 6

Field Programmable Gate Arrays ... 10

 . Introduction .. 10

 . Field Programmable Gate Array Structure .. 10

 . FPGA Programming Technologies.. 12

2.3.1 . FPGA Based SRAM ... 12

2.3.2 . FPGA Based Anti-fuse.. 13

2.3.3 . EEPROM Based .. 14

 . Advantages of using an FPGA .. 14

 . FPGAs Employed .. 15

2.5.1 . Xilinx: ... 15

 . The Spartan series of FPGAs .. 15

 . The Virtex series of FPGAs .. 16

2.5.2 . Altera ... 17

 X

 . Xilinx Zinq ... 18

2.6.1 . System-on-Chip with Zynq ... 19

2.6.2 . Processing System (PS) ... 21

2.6.3 . The External Interfaces of Processing System 23

2.6.4 Programmable Logic ... 25

2.6.5 . Programmable Logic and Processing System Interfaces 27

2.6.6 . Advanced eXtensible Interface (AXI) .. 28

 . WSN based FPGA background and literature review 29

2.7.1 . SoC-based FPGA prototype .. 29

2.7.2 . FPGA as a standalone processing unit .. 31

2.7.3 . PLD as MCU co-processing unit: ... 33

 36

 . Introduction .. 36

 . How Artificial Neural Networks Work ... 36

 . Elements of Neural Networks .. 37

3.3.1 . Weighting Factors: .. 37

3.3.2 . Summation Function ... 37

3.3.3 . Common Activation Function ... 38

 . Linear Function ... 38

 . Threshold Function ... 39

 . Piecewise Linear Function .. 40

 . Sigmoid Function .. 40

 . Training of Neural Networks ... 41

3.4.1 . Supervised Approach .. 41

 XI

3.4.2 . Unsupervised Approach .. 42

 . Types of Neural Networks ... 43

3.5.1 . Feed-Forward ANN ... 43

3.5.2 . Feed-back ANN .. 43

3.5.3 . Classification-Prediction ANN ... 44

 . Feedforward Back-Propagation ... 44

3.6.1 . Learning in Back-Propagation Algorithm... 45

 . Network Selection ... 50

 . Neural Networks Applications .. 51

 . Introduction to Fuzzy Logic .. 52

3.9.1 . Classic and Fuzzy Sets .. 53

3.9.2 . The linguistic variables ... 56

3.9.3 . Fuzzy Rules (Reasoning in fuzzy logic) ... 57

3.9.4 . The Defuzzification ... 59

 Advantages and Disadvantages of Fuzzy Logic system 60

 . Introduction to Neuro-Fuzzy System... 61

3.11.1 . Types of Neuro-Fuzzy Systems .. 61

3.11.2 . Adaptive Neuro-Fuzzy Inference System (ANFIS) 63

3.11.2.1 . ANFIS Architecture .. 64

3.11.2.2 . ANFIS Learning Algorithm .. 66

Chapter 4 ANFIS Modifications .. 68

4.1 . Introduction .. 68

4.2 . Effect of Momentum on ANFIS algorithm ... 68

4.3 . Performance of Modified Handwritten ANFIS Algorithm 70

 XII

4.3.1 . Testing ANFIS performance based on Global Ice Volume data set ... 71

4.3.2 . Testing ANFIS Performance based on Time Series Prediction 73

4.4 . Extended Architecture of ANFIS Algorithm ... 83

4.4.1 . Test the Performance of Extended ANFIS Architecture 86

4.4.1.1 . Training the Modified Algorithm and ANFIS Toolbox 87

 . Testing Algorithms Using Maximum Temperature and Humidity Sets 88

Chapter 5 Hardware Implementation ... 92

5.1 . Introduction .. 92

5.2 . Hardware tools ... 92

5.2.1 . Xilinx Vivado Design Suite .. 92

5.2.2 . Xilinx Software Development Kit (SDK) ... 93

5.2.3 . Vivado High-Level Synthesis (HLS) .. 94

5.3 . Hardware Design ... 94

5.4 . Hardware Test and Results .. 101

Chapter 6 Smart Automation System .. 104

6.1 . Introduction .. 104

6.2 . Principle of Smart Automation System ... 104

6.3 . Designing of Automation Control System ... 106

6.3.1 . Aggregation Unit ... 107

6.3.2 . Multi-function unit .. 108

6.3.3 . Communication Unit ... 113

 . Xilinx Adapter Functions .. 114

6.4 . Experimental Results ... 119

Chapter 7 Conclusıon And Future Works .. 124

 XIII

7.1 . Conclusion ... 124

7.2 . Future Works ... 128

Appendix A .. 138

A.1. Training the Modified Algorithm and ANFIS Toolbox based on Minimum

Temperature and Humidity Data Sets .. 138

A.2. Testing the Modified Algorithm and ANFIS Toolbox based on Minimum

Temperature and Humidity Data Sets .. 140

A.3. Training and Testing Execution Time ... 142

 XIV

LIST OF FIGURES

Figure 1.1. Outline of the Thesis .. 5

Figure 2.1. General Structure of Reconfigurable FPGA 11

Figure 2.2. Simplified Routing in FPGA Architecture ... 12

Figure 2.3. Static Memory Cell .. 13

Figure 2.4. AND/OR Structure Based on Antifuse .. 14

Figure 2.5. Diagram of the System-on-Chip .. 20

Figure 2.6. Internal Architecture of Zynq Device. ... 21

Figure 2.7. Diagram of the Zynq PS. .. 22

Figure 2.8. Location of the NEON engine within the APU.................................. 23

Figure 2.9. MIO and EMIO Interface. .. 24

Figure 2.10. Zynq PL structure. ... 26

Figure 2.11. SoC-based FPGA prototype ... 30

Figure 2.12. FPGA as standalone processing unit. ... 31

Figure 2.13. PLD as MCU co-processing unit. .. 33

Figure 3.1. Basic Elements of an Artificial Neuron. .. 37

Figure 3.2. Linear Activation Function. ... 38

Figure 3.3. Binary Threshold Activation .. 39

Figure 3.3. Binary Threshold Activation .. 39

Figure 3.4. Bipolar Threshold Activation ... 39

Figure 3.4. Bipolar Threshold Activation ... 39

Figure 3.5. Piecewise Linear Activation Function. .. 40

file:///D:/PhD/الاطروحة-%20دكتوراه/all%20chapter/yasar%20form/PhD%20thesis-yasar%20format.docx%23_Toc8125329
file:///D:/PhD/الاطروحة-%20دكتوراه/all%20chapter/yasar%20form/PhD%20thesis-yasar%20format.docx%23_Toc8125331
file:///D:/PhD/الاطروحة-%20دكتوراه/all%20chapter/yasar%20form/PhD%20thesis-yasar%20format.docx%23_Toc8125332
file:///D:/PhD/الاطروحة-%20دكتوراه/all%20chapter/yasar%20form/PhD%20thesis-yasar%20format.docx%23_Toc8125333
file:///D:/PhD/الاطروحة-%20دكتوراه/all%20chapter/yasar%20form/PhD%20thesis-yasar%20format.docx%23_Toc8125334
file:///D:/PhD/الاطروحة-%20دكتوراه/all%20chapter/yasar%20form/PhD%20thesis-yasar%20format.docx%23_Toc8125337
file:///D:/PhD/الاطروحة-%20دكتوراه/all%20chapter/yasar%20form/PhD%20thesis-yasar%20format.docx%23_Toc8125338
file:///D:/PhD/الاطروحة-%20دكتوراه/all%20chapter/yasar%20form/PhD%20thesis-yasar%20format.docx%23_Toc8125339
file:///D:/PhD/الاطروحة-%20دكتوراه/all%20chapter/yasar%20form/PhD%20thesis-yasar%20format.docx%23_Toc8125340
file:///D:/PhD/الاطروحة-%20دكتوراه/all%20chapter/yasar%20form/PhD%20thesis-yasar%20format.docx%23_Toc8125341
file:///D:/PhD/الاطروحة-%20دكتوراه/all%20chapter/yasar%20form/PhD%20thesis-yasar%20format.docx%23_Toc8125343
file:///D:/PhD/الاطروحة-%20دكتوراه/all%20chapter/yasar%20form/PhD%20thesis-yasar%20format.docx%23_Toc8125344
file:///D:/PhD/الاطروحة-%20دكتوراه/all%20chapter/yasar%20form/PhD%20thesis-yasar%20format.docx%23_Toc8125345
file:///D:/PhD/الاطروحة-%20دكتوراه/all%20chapter/yasar%20form/PhD%20thesis-yasar%20format.docx%23_Toc8125346
file:///D:/PhD/الاطروحة-%20دكتوراه/all%20chapter/yasar%20form/PhD%20thesis-yasar%20format.docx%23_Toc8125348
file:///D:/PhD/الاطروحة-%20دكتوراه/all%20chapter/yasar%20form/PhD%20thesis-yasar%20format.docx%23_Toc8125349
file:///D:/PhD/الاطروحة-%20دكتوراه/all%20chapter/yasar%20form/PhD%20thesis-yasar%20format.docx%23_Toc8125350
file:///D:/PhD/الاطروحة-%20دكتوراه/all%20chapter/yasar%20form/PhD%20thesis-yasar%20format.docx%23_Toc8125351
file:///D:/PhD/الاطروحة-%20دكتوراه/all%20chapter/yasar%20form/PhD%20thesis-yasar%20format.docx%23_Toc8125352
file:///D:/PhD/الاطروحة-%20دكتوراه/all%20chapter/yasar%20form/PhD%20thesis-yasar%20format.docx%23_Toc8125353
file:///D:/PhD/الاطروحة-%20دكتوراه/all%20chapter/yasar%20form/PhD%20thesis-yasar%20format.docx%23_Toc8125354

 XV

Figure 3.6. Tangent Activation Function. .. 41

Figure 3.7. Multi-layer Feed-Forward ANN. ... 43

Figure 3.8. Multi-layer Feed-back ANN. ... 44

Figure 3.9. Multi-output Feed- Forward ANN. .. 44

Figure 3.10. Example of Typical (BP) Architecture. ... 45

Figure 3.11. Architecture of Fuzzy Logic System. .. 52

Figure 3.12. Relationship between Fuzzy and Classic SetsCrisp Logic 54

Figure 3.12. Relationship between Fuzzy and Classic Sets. 54

Figure 3.13. standard Gaussian Membership. .. 55

Figure 3.14. General Form of Trapezoidal Membership. 55

Figure 3.15 General Form of Triangular function. ... 56

Figure 3.16. Air Conditioner based on Control of Fuzzy Logic System. 57

Figure 3.17. The Linguistic Terms of the Temperature 57

Figure 3.18. Mean of Maxima Defuzzification Method. 60

Figure 3.19. Cooperative Neuro-Fuzzy. ... 62

Figure 3.20. Concurrent Neuro-Fuzzy System ... 62

Figure 3.21. General Structure of ANFIS base on Takagi–Sugeno 64

Figure 4.1. Gradient Descent Optimization . .. 68

Figure 4.2. Global and Local Minimum. .. 69

Figure 4.3. Pseudo Code of the Proposed Algorithm. .. 70

Figure 4.4. Training Algorithm based on Handwritten ANFIS. 71

Figure 4.5. Testing algorithm based on Handwritten. .. 71

Figure 4.6. Training Algorithm based on Matlab Toolbox. 72

Figure 4.7. Testing Algorithm based on Matlab Toolbox. 72

file:///D:/PhD/الاطروحة-%20دكتوراه/all%20chapter/yasar%20form/PhD%20thesis-yasar%20format.docx%23_Toc8125355
file:///D:/PhD/الاطروحة-%20دكتوراه/all%20chapter/yasar%20form/PhD%20thesis-yasar%20format.docx%23_Toc8125356
file:///D:/PhD/الاطروحة-%20دكتوراه/all%20chapter/yasar%20form/PhD%20thesis-yasar%20format.docx%23_Toc8125357
file:///D:/PhD/الاطروحة-%20دكتوراه/all%20chapter/yasar%20form/PhD%20thesis-yasar%20format.docx%23_Toc8125358
file:///D:/PhD/الاطروحة-%20دكتوراه/all%20chapter/yasar%20form/PhD%20thesis-yasar%20format.docx%23_Toc8125359
file:///D:/PhD/الاطروحة-%20دكتوراه/all%20chapter/yasar%20form/PhD%20thesis-yasar%20format.docx%23_Toc8125361
file:///D:/PhD/الاطروحة-%20دكتوراه/all%20chapter/yasar%20form/PhD%20thesis-yasar%20format.docx%23_Toc8125363
file:///D:/PhD/الاطروحة-%20دكتوراه/all%20chapter/yasar%20form/PhD%20thesis-yasar%20format.docx%23_Toc8125364
file:///D:/PhD/الاطروحة-%20دكتوراه/all%20chapter/yasar%20form/PhD%20thesis-yasar%20format.docx%23_Toc8125365
file:///D:/PhD/الاطروحة-%20دكتوراه/all%20chapter/yasar%20form/PhD%20thesis-yasar%20format.docx%23_Toc8125366
file:///D:/PhD/الاطروحة-%20دكتوراه/all%20chapter/yasar%20form/PhD%20thesis-yasar%20format.docx%23_Toc8125367
file:///D:/PhD/الاطروحة-%20دكتوراه/all%20chapter/yasar%20form/PhD%20thesis-yasar%20format.docx%23_Toc8125368
file:///D:/PhD/الاطروحة-%20دكتوراه/all%20chapter/yasar%20form/PhD%20thesis-yasar%20format.docx%23_Toc8125369
file:///D:/PhD/الاطروحة-%20دكتوراه/all%20chapter/yasar%20form/PhD%20thesis-yasar%20format.docx%23_Toc8125371
file:///D:/PhD/الاطروحة-%20دكتوراه/all%20chapter/yasar%20form/PhD%20thesis-yasar%20format.docx%23_Toc8125372
file:///D:/PhD/الاطروحة-%20دكتوراه/all%20chapter/yasar%20form/PhD%20thesis-yasar%20format.docx%23_Toc8125373
file:///D:/PhD/الاطروحة-%20دكتوراه/all%20chapter/yasar%20form/PhD%20thesis-yasar%20format.docx%23_Toc8125374
file:///D:/PhD/الاطروحة-%20دكتوراه/all%20chapter/yasar%20form/PhD%20thesis-yasar%20format.docx%23_Toc8125376
file:///D:/PhD/الاطروحة-%20دكتوراه/all%20chapter/yasar%20form/PhD%20thesis-yasar%20format.docx%23_Toc8125377
file:///D:/PhD/الاطروحة-%20دكتوراه/all%20chapter/yasar%20form/PhD%20thesis-yasar%20format.docx%23_Toc8125378
file:///D:/PhD/الاطروحة-%20دكتوراه/all%20chapter/yasar%20form/PhD%20thesis-yasar%20format.docx%23_Toc8125379
file:///D:/PhD/الاطروحة-%20دكتوراه/all%20chapter/yasar%20form/PhD%20thesis-yasar%20format.docx%23_Toc8125380
file:///D:/PhD/الاطروحة-%20دكتوراه/all%20chapter/yasar%20form/PhD%20thesis-yasar%20format.docx%23_Toc8125381
file:///D:/PhD/الاطروحة-%20دكتوراه/all%20chapter/yasar%20form/PhD%20thesis-yasar%20format.docx%23_Toc8125382

 XVI

Figure 4.8. A Standard Structure of Time Series Prediction. 74

Figure 4.9. A General ANFIS Algorithm based on Time Series Prediction. 75

Figure 4.10. Training of Chicago Park Temperature Set Using Handwritten

Algorithm. ... 76

Figure 4.11. Testing of Chicago Park Temperature Set Using Handwritten

Algorithm. ... 76

Figure 4.12. Training of Chicago Park Temperature Set using Matlab................ 77

Figure 4.13. Testing of Chicago Park Temperature Set using Matlab. 77

Figure 4.14. Training of Chicago Park Humidity Set using Handwritten 78

Figure 4.15. Testing of Chicago Park Humidity Set using Handwritten Algorithm.

 ... 79

Figure 4.16. Training of Chicago Park Humidity Set using Matlab Toolbox. 79

Figure 4.17. Testing Chicago Park Humidity Set using Matlab Toolbox. 80

Figure 4.18. Training Modified Algorithm Without Momentum. 82

Figure 4.19. Training Modified Algorithm with Momentum. 82

Figure 4.20. ANFIS Algorithm with 9-Rules. .. 83

Figure 4.21. ANFIS Algorithm with 24-Fuzzy Rule. ... 84

Figure 4.22. A Modified ANFIS Algorithm with a New Normalization Layer. .. 85

Figure 4.23. Extended ANFIS Architecture based on Recurrent 86

Figure 4.24. Training Temperature Set using Modified ANFIS and ANFIS

Toolbox. ... 87

Figure 4.25. Training Humidity Data using Modified ANFIS and ANFIS Toolbox.

 ... 88

Figure 4.26. Testing Temperature Data using Modified ANFIS and ANFIS

Toolbox. ... 89

file:///D:/PhD/الاطروحة-%20دكتوراه/all%20chapter/yasar%20form/PhD%20thesis-yasar%20format.docx%23_Toc8125385
file:///D:/PhD/الاطروحة-%20دكتوراه/all%20chapter/yasar%20form/PhD%20thesis-yasar%20format.docx%23_Toc8125386
file:///D:/PhD/الاطروحة-%20دكتوراه/all%20chapter/yasar%20form/PhD%20thesis-yasar%20format.docx%23_Toc8125387
file:///D:/PhD/الاطروحة-%20دكتوراه/all%20chapter/yasar%20form/PhD%20thesis-yasar%20format.docx%23_Toc8125387
file:///D:/PhD/الاطروحة-%20دكتوراه/all%20chapter/yasar%20form/PhD%20thesis-yasar%20format.docx%23_Toc8125388
file:///D:/PhD/الاطروحة-%20دكتوراه/all%20chapter/yasar%20form/PhD%20thesis-yasar%20format.docx%23_Toc8125388
file:///D:/PhD/الاطروحة-%20دكتوراه/all%20chapter/yasar%20form/PhD%20thesis-yasar%20format.docx%23_Toc8125389
file:///D:/PhD/الاطروحة-%20دكتوراه/all%20chapter/yasar%20form/PhD%20thesis-yasar%20format.docx%23_Toc8125390
file:///D:/PhD/الاطروحة-%20دكتوراه/all%20chapter/yasar%20form/PhD%20thesis-yasar%20format.docx%23_Toc8125392
file:///D:/PhD/الاطروحة-%20دكتوراه/all%20chapter/yasar%20form/PhD%20thesis-yasar%20format.docx%23_Toc8125393
file:///D:/PhD/الاطروحة-%20دكتوراه/all%20chapter/yasar%20form/PhD%20thesis-yasar%20format.docx%23_Toc8125393
file:///D:/PhD/الاطروحة-%20دكتوراه/all%20chapter/yasar%20form/PhD%20thesis-yasar%20format.docx%23_Toc8125394
file:///D:/PhD/الاطروحة-%20دكتوراه/all%20chapter/yasar%20form/PhD%20thesis-yasar%20format.docx%23_Toc8125396
file:///D:/PhD/الاطروحة-%20دكتوراه/all%20chapter/yasar%20form/PhD%20thesis-yasar%20format.docx%23_Toc8125398
file:///D:/PhD/الاطروحة-%20دكتوراه/all%20chapter/yasar%20form/PhD%20thesis-yasar%20format.docx%23_Toc8125399
file:///D:/PhD/الاطروحة-%20دكتوراه/all%20chapter/yasar%20form/PhD%20thesis-yasar%20format.docx%23_Toc8125400
file:///D:/PhD/الاطروحة-%20دكتوراه/all%20chapter/yasar%20form/PhD%20thesis-yasar%20format.docx%23_Toc8125401
file:///D:/PhD/الاطروحة-%20دكتوراه/all%20chapter/yasar%20form/PhD%20thesis-yasar%20format.docx%23_Toc8125402
file:///D:/PhD/الاطروحة-%20دكتوراه/all%20chapter/yasar%20form/PhD%20thesis-yasar%20format.docx%23_Toc8125403
file:///D:/PhD/الاطروحة-%20دكتوراه/all%20chapter/yasar%20form/PhD%20thesis-yasar%20format.docx%23_Toc8125404
file:///D:/PhD/الاطروحة-%20دكتوراه/all%20chapter/yasar%20form/PhD%20thesis-yasar%20format.docx%23_Toc8125404
file:///D:/PhD/الاطروحة-%20دكتوراه/all%20chapter/yasar%20form/PhD%20thesis-yasar%20format.docx%23_Toc8125405
file:///D:/PhD/الاطروحة-%20دكتوراه/all%20chapter/yasar%20form/PhD%20thesis-yasar%20format.docx%23_Toc8125405
file:///D:/PhD/الاطروحة-%20دكتوراه/all%20chapter/yasar%20form/PhD%20thesis-yasar%20format.docx%23_Toc8125406
file:///D:/PhD/الاطروحة-%20دكتوراه/all%20chapter/yasar%20form/PhD%20thesis-yasar%20format.docx%23_Toc8125406

 XVII

Figure 4.27. Testing Temperature Data using Modified ANFIS and ANFIS

Toolbox ... 90

Figure 4.27. Testing Temperature Data using Modified ANFIS and ANFIS

Toolbox ... 90

Figure 4.28. MSE of Training /Testing of Maximum Temperature and Humidity.

 ... 90

Figure 4.29. Execution Time of Training Phase. .. 91

Figure 4.30. Execution Time of Testing Phase. ... 91

Figure 5.1. Xilinx Design Flow. ... 93

Figure 5.2. SDK development Flow. .. 94

Figure 5.3. Hardware Design with a Single ANFIS IP. 95

Figure 5.4. The Utilization Hardware Resources for Single ANFIS IP. 96

Figure 5.5. Hardware design with Multi-ANFIS IP core. 98

Figure 5.6. Hardware Resources for Multi-ANFIS Cores. 98

Figure 5.7. Processing Steps that Implemented by Cortex-a9 Processor. 100

Figure 5.8. Hardware and Software Comparison of Maximum Temperature. ... 101

Figure 5.9. Hardware and Software Comparison of Maximum Humidity. 102

Figure 5.10. Hardware and Software Comparison of Minimum Temperature. . 102

Figure 5.11. Hardware and Software Comparison of Minimum Humidity. 103

Figure 6.1. Main parts of Smart Automation System. .. 106

Figure 6.2. Ethernet Message between Multi-function and Aggregation. 107

Figure 6.3. Hardware Design within the Multi-Function. 109

Figure 6.4. The overall tasks are executed by Cortex-A9. 110

Figure 6.5. Pseudo Code of the System Actions. ... 113

Figure 6.6. The Interface of the J62 Header. .. 113

file:///D:/PhD/الاطروحة-%20دكتوراه/all%20chapter/yasar%20form/PhD%20thesis-yasar%20format.docx%23_Toc8125407
file:///D:/PhD/الاطروحة-%20دكتوراه/all%20chapter/yasar%20form/PhD%20thesis-yasar%20format.docx%23_Toc8125407
file:///D:/PhD/الاطروحة-%20دكتوراه/all%20chapter/yasar%20form/PhD%20thesis-yasar%20format.docx%23_Toc8125408
file:///D:/PhD/الاطروحة-%20دكتوراه/all%20chapter/yasar%20form/PhD%20thesis-yasar%20format.docx%23_Toc8125408
file:///D:/PhD/الاطروحة-%20دكتوراه/all%20chapter/yasar%20form/PhD%20thesis-yasar%20format.docx%23_Toc8125409
file:///D:/PhD/الاطروحة-%20دكتوراه/all%20chapter/yasar%20form/PhD%20thesis-yasar%20format.docx%23_Toc8125409
file:///D:/PhD/الاطروحة-%20دكتوراه/all%20chapter/yasar%20form/PhD%20thesis-yasar%20format.docx%23_Toc8125410
file:///D:/PhD/الاطروحة-%20دكتوراه/all%20chapter/yasar%20form/PhD%20thesis-yasar%20format.docx%23_Toc8125411
file:///D:/PhD/الاطروحة-%20دكتوراه/all%20chapter/yasar%20form/PhD%20thesis-yasar%20format.docx%23_Toc8125412
file:///D:/PhD/الاطروحة-%20دكتوراه/all%20chapter/yasar%20form/PhD%20thesis-yasar%20format.docx%23_Toc8125413
file:///D:/PhD/الاطروحة-%20دكتوراه/all%20chapter/yasar%20form/PhD%20thesis-yasar%20format.docx%23_Toc8125414
file:///D:/PhD/الاطروحة-%20دكتوراه/all%20chapter/yasar%20form/PhD%20thesis-yasar%20format.docx%23_Toc8125415
file:///D:/PhD/الاطروحة-%20دكتوراه/all%20chapter/yasar%20form/PhD%20thesis-yasar%20format.docx%23_Toc8125418
file:///D:/PhD/الاطروحة-%20دكتوراه/all%20chapter/yasar%20form/PhD%20thesis-yasar%20format.docx%23_Toc8125419
file:///D:/PhD/الاطروحة-%20دكتوراه/all%20chapter/yasar%20form/PhD%20thesis-yasar%20format.docx%23_Toc8125420
file:///D:/PhD/الاطروحة-%20دكتوراه/all%20chapter/yasar%20form/PhD%20thesis-yasar%20format.docx%23_Toc8125421
file:///D:/PhD/الاطروحة-%20دكتوراه/all%20chapter/yasar%20form/PhD%20thesis-yasar%20format.docx%23_Toc8125422
file:///D:/PhD/الاطروحة-%20دكتوراه/all%20chapter/yasar%20form/PhD%20thesis-yasar%20format.docx%23_Toc8125423
file:///D:/PhD/الاطروحة-%20دكتوراه/all%20chapter/yasar%20form/PhD%20thesis-yasar%20format.docx%23_Toc8125424
file:///D:/PhD/الاطروحة-%20دكتوراه/all%20chapter/yasar%20form/PhD%20thesis-yasar%20format.docx%23_Toc8125427
file:///D:/PhD/الاطروحة-%20دكتوراه/all%20chapter/yasar%20form/PhD%20thesis-yasar%20format.docx%23_Toc8125428
file:///D:/PhD/الاطروحة-%20دكتوراه/all%20chapter/yasar%20form/PhD%20thesis-yasar%20format.docx%23_Toc8125429
file:///D:/PhD/الاطروحة-%20دكتوراه/all%20chapter/yasar%20form/PhD%20thesis-yasar%20format.docx%23_Toc8125430
file:///D:/PhD/الاطروحة-%20دكتوراه/all%20chapter/yasar%20form/PhD%20thesis-yasar%20format.docx%23_Toc8125435
file:///D:/PhD/الاطروحة-%20دكتوراه/all%20chapter/yasar%20form/PhD%20thesis-yasar%20format.docx%23_Toc8125436

 XVIII

Figure 6.7. Initialization of the Lwip Functions. .. 115

Figure 6.8. handling the system interrupt by lwIP library. 115

Figure 6.9. Initialization Structure of the RAW API. .. 116

Figure 6.10. Establishing the Connection based on Lwip. 117

Figure 6.11. Data Arrived and Received Callbacks. .. 117

Figure 6.12. Modified LWIP based on User Datagram Protocol. 118

Figure 6.13. Complete Proposed Hardware System. .. 119

Figure 6.14. Interfacing Arduino with the Sensors... 120

Figure 6.15. The Connection between Arduino Board and FPGA. 120

Figure 6.16. System Graphic User Interface. ... 121

Figure 6.17. High-level Gas Detector and Temperature/Humidity in the Off-line

State. .. 122

Figure 6.18. An Example of High-level Detection. .. 122

Figure A.1. Training Minimum Temperature Data .. 138

Figure A.2. Training Minimum Humidity Data set .. 139

Figure A.3. Testing Minimum Temperature Data set... 140

Figure A.4. Testing Minimum Humidity Data Set ... 141

Figure A.5. MSE of Training and Testing Minimum Temperature and Humidity

Sets .. 141

Figure A.6. Training and Testing Execution Time ... 142

file:///D:/PhD/الاطروحة-%20دكتوراه/all%20chapter/yasar%20form/PhD%20thesis-yasar%20format.docx%23_Toc8125437
file:///D:/PhD/الاطروحة-%20دكتوراه/all%20chapter/yasar%20form/PhD%20thesis-yasar%20format.docx%23_Toc8125438
file:///D:/PhD/الاطروحة-%20دكتوراه/all%20chapter/yasar%20form/PhD%20thesis-yasar%20format.docx%23_Toc8125439
file:///D:/PhD/الاطروحة-%20دكتوراه/all%20chapter/yasar%20form/PhD%20thesis-yasar%20format.docx%23_Toc8125440
file:///D:/PhD/الاطروحة-%20دكتوراه/all%20chapter/yasar%20form/PhD%20thesis-yasar%20format.docx%23_Toc8125441
file:///D:/PhD/الاطروحة-%20دكتوراه/all%20chapter/yasar%20form/PhD%20thesis-yasar%20format.docx%23_Toc8125442
file:///D:/PhD/الاطروحة-%20دكتوراه/all%20chapter/yasar%20form/PhD%20thesis-yasar%20format.docx%23_Toc8125443
file:///D:/PhD/الاطروحة-%20دكتوراه/all%20chapter/yasar%20form/PhD%20thesis-yasar%20format.docx%23_Toc8125444
file:///D:/PhD/الاطروحة-%20دكتوراه/all%20chapter/yasar%20form/PhD%20thesis-yasar%20format.docx%23_Toc8125445
file:///D:/PhD/الاطروحة-%20دكتوراه/all%20chapter/yasar%20form/PhD%20thesis-yasar%20format.docx%23_Toc8125446
file:///D:/PhD/الاطروحة-%20دكتوراه/all%20chapter/yasar%20form/PhD%20thesis-yasar%20format.docx%23_Toc8125447
file:///D:/PhD/الاطروحة-%20دكتوراه/all%20chapter/yasar%20form/PhD%20thesis-yasar%20format.docx%23_Toc8125447
file:///D:/PhD/الاطروحة-%20دكتوراه/all%20chapter/yasar%20form/PhD%20thesis-yasar%20format.docx%23_Toc8125448
file:///D:/PhD/الاطروحة-%20دكتوراه/all%20chapter/yasar%20form/PhD%20thesis-yasar%20format.docx%23_Toc8125450
file:///D:/PhD/الاطروحة-%20دكتوراه/all%20chapter/yasar%20form/PhD%20thesis-yasar%20format.docx%23_Toc8125452
file:///D:/PhD/الاطروحة-%20دكتوراه/all%20chapter/yasar%20form/PhD%20thesis-yasar%20format.docx%23_Toc8125454
file:///D:/PhD/الاطروحة-%20دكتوراه/all%20chapter/yasar%20form/PhD%20thesis-yasar%20format.docx%23_Toc8125456
file:///D:/PhD/الاطروحة-%20دكتوراه/all%20chapter/yasar%20form/PhD%20thesis-yasar%20format.docx%23_Toc8125458
file:///D:/PhD/الاطروحة-%20دكتوراه/all%20chapter/yasar%20form/PhD%20thesis-yasar%20format.docx%23_Toc8125458
file:///D:/PhD/الاطروحة-%20دكتوراه/all%20chapter/yasar%20form/PhD%20thesis-yasar%20format.docx%23_Toc8125460

 XIX

LIST OF TABLES

Table 2.1. Characteristics of Different FPGA Series of Xilinx. 17

Table 2.2. Characteristics of Different Altera Series. ... 18

Table 2.3. I/O Peripheral Description. .. 25

Table 2.4. PLD as MCU co-processing. ... 34

Table 3.1. Network Selector. .. 50

Table 3.2. Car’s driver rules. .. 53

Table 3.3. Example of Air Conditioner Fuzzy Rules. .. 58

Table 3.4 Example of Fuzzy Rules Matrix. .. 58

Table 3.5. Hybrid Learning Algorithm within ANFIS Algorithm. 67

Table 4.1. Training Results of Global Ice Volume. .. 73

Table 4.2. Testing Results of Global Ice Volume. ... 73

Table 4.3. Training and Testing results of Chicago Park Temperature data. 78

Table 4.4. Training and Testing results of Chicago Park Humidity data. 80

Table 4.5. Training Speed (Execution Time) in Sec. ... 81

Table 4.6. Testing Speed (Execution Time) in Sec. ... 81

Table 5.1. Comparison of Hardware Resources for the Different Approaches. ... 97

Table 5.2. Comparison between Hardware and Software versions. 103

Table 6.1. System Actions. ... 111

Table 6.2. System Fault Alerts. .. 111

file:///D:/PhD/الاطروحة-%20دكتوراه/all%20chapter/yasar%20form/PhD%20thesis-yasar%20format.docx%23_Toc8126837
file:///D:/PhD/الاطروحة-%20دكتوراه/all%20chapter/yasar%20form/PhD%20thesis-yasar%20format.docx%23_Toc8126838
file:///D:/PhD/الاطروحة-%20دكتوراه/all%20chapter/yasar%20form/PhD%20thesis-yasar%20format.docx%23_Toc8126839
file:///D:/PhD/الاطروحة-%20دكتوراه/all%20chapter/yasar%20form/PhD%20thesis-yasar%20format.docx%23_Toc8126841
file:///D:/PhD/الاطروحة-%20دكتوراه/all%20chapter/yasar%20form/PhD%20thesis-yasar%20format.docx%23_Toc8126852
file:///D:/PhD/الاطروحة-%20دكتوراه/all%20chapter/yasar%20form/PhD%20thesis-yasar%20format.docx%23_Toc8126853
file:///D:/PhD/الاطروحة-%20دكتوراه/all%20chapter/yasar%20form/PhD%20thesis-yasar%20format.docx%23_Toc8126854
file:///D:/PhD/الاطروحة-%20دكتوراه/all%20chapter/yasar%20form/PhD%20thesis-yasar%20format.docx%23_Toc8126855

 XX

SYMBOLS AND ABBREVIATIONS

SSR Structure of Scientific Revolution

NS Normal Science

EOS Extra Ordinary Science

ADC Analogue-To-Digital Converter

ANFIS Adaptive Neuro-Fuzzy Inference System

ANN Artificial Neural Network

APSoC All-Programmable System-On-Chip

APU Application Processing Unit

ARP Address Resolution Protocol

ASIC Application-Specific Integrated Circuit

AXI Advanced eXtensible Interface

BP Back-Propagation

CLB Configurable Logic Block

COA Centroid of Area

COS Center of Sums technique

DAC Digital-To-Analogue Converter

DHCP Dynamic Host Configuration Protocol

DSP Digital Signal Processing block

EEPROM Electrically Erasable Programmable Read-Only Memory

EMIO Extended Multiplexed Input / Output

ESL Electronic System Level

FF Flip-Flop

FFT Fast Fourier Transform

FIFO First In First Out

FIR Finite Impulse Response filter

 XXI

FLS Fuzzy Logic System

FPGA Field Programmable Gate Array

GDM Gradient Descent

GEM Gigabit Ethernet Controllers

GPIO General-Purpose Input /Output

GUI Graphical User Interface

HAS Home Automation System

HDL Hardware Description Language

HLS Vivado High-Level Synthesis

IC Integrated Circuit

ICAP Internal Configuration Access Port

ICMP Internet Control Message Protocol

IDE Integrated Design Environment

IGMP Internet Group Message Protocol

IOBs Input/output blocks

IP Intellectual Property

IP Internet Protocol

iPSO improved Particle Swarm Optimization

IT Information Technology

LSM Linear Least Squares Algorithm

LUT Look-Up Table

lwIP Light weight IP

MAC Media Access Control

MF Membership Function

MIO Multiplexed Input / Output

MOM Mean of Maxima Technique

 XXII

MSE Mean Squared Error

NFS Neuro-Fuzzy System

PC Personal Computer

PL Programmable Logic

PLD Programmable Logic Devices

PS Processing System

RAM Random Access Memory

RMSE Root-Mean-Square Error

RNN Recurrent Neural Network

ROM Read Only Memory

RTL Register Transfer Level

SDK Software Development Kit

SDK Xilinx Software Development Kit

SIMD Single Instruction Multiple Data

SoC System-on-Chip

SRAM Static Random-Access Memory

STD Standard Deviation

TCP Transmission Control Protocol

UDP User Datagram Protocol

VHDL Very high-speed Hardware Description Language

WSN Wireless Sensor Network

 1

CHAPTER 1 CHAPTER 1

INTRODUCTION

A wireless sensor network (WSN) is a collection of specialized sensor nodes that are

connected with a specific communications protocols for observing and recording

physical parameters at different locations and then, forward the collected data to the

end user. Temperature, humidity, sound intensity, speed, pollutants, wind direction,

light, and pressure are examples of the common monitored conditions. Wireless sensor

networks provide precise information according to the requirements of the user.

Therefore, they enable a huge number of applications such as industrial control

systems, health-care, and target tracking in military fields, weather monitoring

systems, and home automation systems.

There are many advantages of wireless sensor networks over conventional sensing

systems. Because WSNs are deployed in vast scale, they provide more precise data

about monitoring objects. In addition, these network systems are also easier to

establish and more scalable when compared with traditional wired systems.

 Wireless sensor networks have many unique attributes stated in these references

(Sohraby, Minoli, and Znati, 2007; Karl and Willig, 2007; Ilyas and Mahgoub, 2004):

• Size: In real applications, the size of sensor nodes is small to reduce the sensor

deployment cost.

• Power: The power of Wireless sensor network nodes has a limited energy

constraint. However, most utilized applications follow different operating

conditions of sensor nodes to maintain the battery power for a long time.

• The large scale of deployment: Large scale of deployment increases the

observation accuracy and reduces the communication distance between nodes.

This also improves communication quality and increases energy efficiency. A

large number of sensor nodes is also a prime enabler for robust communication

in mesh wireless sensor network.

 2

• Mobility: Environmental impacts on sensor nodes such as wind or rain, may

change their initial position deployment. On the other hand, they can change

their position according to the demand for the system properties.

• Unattended operation: Because a huge number of devices are distributed in a

WSN, unattended operation and failure-tolerance of every sensor node becomes

an essential necessity.

• Low Cost: Since sensor nodes are distributed in wide-range, the cost of a single

sensor node is the influential factor in the overall cost of different applications

of WSN’s. Furthermore, most applications of the wireless sensor network in

civilian fields are named price-enabled applications. That means the markets

wait for competitive prices to utilize the application.

• Heterogeneity: In general, wireless sensor networks may be composed of various

types of nodes. The computational power of some types of sensor nodes may be

more than others; the degree of heterogeneity within a WSN has an impact on

the complexity and management method of the overall system.

The energy budget limitations of these platforms have led to constructing a very low

power system that can perform complex functions with minimum resources utilization.

Not only the technology of wireless sensor networks has attracted much interest, but

also the ability to implement it in several fields such as agriculture, military, tracking

system, biomedicine, etc. Because WSN’s have become a universal subject, most of

the engineering can discover an advantage or offer a new contribution.

In general, simple and traditional microcontrollers that are used within sensor nodes

are not suitable efficiently to handle complex tasks for data processing. To achieve

high-performance computing, multi-processor systems are becoming compulsory.

However, these kinds of systems do not suitable for low power consumption platforms

such as WSNs. The integration of application-specific hardware accelerators with

sensor nodes plays a key role to reduce the overall power consumption.

The energy and required time that is used for data processing tasks when implementing

them with specific digital logic can be minimized to several times compared to

software solutions. Furthermore, the wide range of WSN applications means that a

 3

high level of flexibility can be achieved in the underlying hardware. Consequently, a

single infrastructure system can be re-utilized for several purposes.

Modern improvements in the of Programmable Logic Devices (PLD) design Have a

significant impact on the rate of energy consumption of these chips, which can be used

to reconfigure the digital circuit to implement complex tasks of data processing. So,

the process of reducing power consumption (static and dynamic power) by integrating

it with high logic intensity makes these kinds of logic devices a preferable choice for

flexible hardware acceleration. Reconfigurable hardware appears then as a possible

solution to provide an adequate level of computation power for any sensor node while

providing additional hardware resources for the implementation of different

applications in several domains.

. Research Scope and Objectives

In this thesis, we discuss the possibility of integrating FPGA Device in the architecture

of sensor nodes. The employment of re-programmable hardware architecture is

discussed at multiple levels of abstractions, start from the selection of technology up

to employ it in real-world applications and the modification of suitable software

programs. In addition, this thesis covers multiple subjects such as architecture design

of embedded systems, reconfigurable technologies, and some of the soft computing

technologies such as neural network algorithms, fuzzy control systems, and neuro-

fuzzy structures. In general, our thesis answers the following questions:

• What are the benefits and structures of sensor nodes using reconfigurable

hardware acceleration? To answer this question, we need to identify the current

structure of the sensor node and potential improvements. The effect of

reconfigurable acceleration on the sensor node will be discussed and three types

of sensor nodes depend on reconfigurable hardware acceleration are presented.

• How to combine reconfigurable devices with the structure of sensor nodes

and keep the level of power consumption minimum? To solve this problem,

three techniques are implemented to define appropriate structure where total

overhead stays unimportant. This structure will be confirmed by designing a

hardware model performing typical functions of a sensor node.

 4

• What kind of soft computing technology that is suitable for the applications

of sensor nodes? What kind of software tools are used to implement it within

the sensor node? In this thesis, different approaches of soft computing

techniques are presented with the pros and cons of each approach. On the other

hand, the abundance of WSN's applications leads to a variety of programming

methods where the components of the software and hardware system can be

rapidly used for sensor node. So, several tools are utilized to create the sensor

node based on programmable devices. As a result, we will introduce a new

generic smart sensor node that can be customized for any kind of data processing

algorithms. This integration approach provides high flexibility, which can permit

the implementation of a wide range of processing tasks. This flexibility can be

obtained by supporting dynamic reprogramming which means the function of

the sensor node can be replaced at any time.

. Thesis Outline

This thesis is divided into four principal parts. In Part I, the thesis’ background and

motivation are described, the theoretical of soft computing (artificial neural networks,

fuzzy control system, and neuro-fuzzy system) and field programmable gate array that

related with this thesis are introduced in Part II. In Part III, we will discuss the proposed

modification of neuro-fuzzy algorithm and variety of hardware connotations and tools

that are used to design reconfigurable device on a sensor node. The evaluation and the

application of the proposed sensor node is presented in Part V. Figure 1.1

demonstrates the general organization of the thesis. The sections below, introduce a

brief outline of the chapters that comprising these four different parts:

Part I: Chapter 1:

• The background, advantages, and Challenges of wireless sensor networks.

• The Research Scope and Objective.

• Literature review of some related works.

Part II: Chapter 2 and Chapter 3:

• Theoretical of neural networks, fuzzy control system, and neuro-fuzzy system

• Theoretical of Field Programmable Gate Array devices

 5

Part III: Chapter 4:

• Modifications of Adaptive Neuro-fuzzy System

Part III: Chapter 5 and Chapter 6:

• Hardware concepts

• Tools that are used to design of reconfigurable device

• Design of Multi-Core Neuro-Fuzzy System based on FPGA

• System Evaluation and Application

Part V: Chapter 7:

• Sums up our thesis by summarizing the main contributions and suggesting

outlines for future work.

Figure 1.1. Outline of the Thesis.

 6

. Existing Studies

 Field Programmable Gate Arrays include reconfigurable logic elements called Logic

Blocks, and smart programmable interconnects that permit these blocks to be wired

together. By employing Hardware Description Languages (HDLs) like Verilog or

VHDL, designers can configure these reconfigurable blocks to achieve complex logic

structures. Several pre-designed FPGA generic component cores exist which permit

implementing multipliers, processors, network protocols, etc. So, FPGA devices are

extremely flexible especially when they come to designing complex systems.

FPGA technology is being used in several application fields such as

telecommunications(Khedkar and Khade, 2017; Yonezawa et al., 2017), signal and

image processing(Bhattacharyya, Deprettere, Leupers, and Takala, 2018; Li, Xu, and

Zhang, 2017; Sarpotdar, Mathew, Safonova, and Murthy, 2016; Woods, McAllister,

Lightbody, and Yi, 2017), automotive applications, robotics(Poudel, Giri, and Munir,

2017; Sahlbach, Thiele, and Ernst, 2017; Velez and Otaegui, 2016), space landing

crafts(Guinn et al., 2016; Schrader, Bredemeyer, Mihalachi, Rohde, and Kleine-

Ostmann, 2016; Yang et al., 2016).

With the advancements of using reconfigurable FPGA and soft computing techniques,

many studies have been done in this field. Cihan, Fuat, and Mehmet in (Karakuzu,

Karakaya, and Çavuşlu, 2016) show the ability of implement the meta-heuristic

learning algorithms of the neuro-fuzzy system (NFS) on the FPGA based on improved

particle swarm optimization (iPSO). According to the authors, this implementation

does not need any memory and multiplier usage. Gaussian MF is used as the main

membership function. This kind of function has an exponential operation and cannot

be realized directly within FPGA. So, the authors proposed a kind of function

approximation in order to reduce the number of required hardware resources. The

proposed approximation function requires one multiplier, one divider, and three adder

modules. Results indicate that proposed implementation and membership function

approximation is more effective than other approaches and requires less FPGA

hardware resources.

Another parallel implementation of digital ANFIS algorithm using FPGA Zynq

processor with single and dual based on VHDL (Very high-speed Hardware

Description Language) language was presented in (Darvill, Tisan, and Cirstea, 2017).

 7

Using HDL approach provide fast prototyping and allowing powerful synthesis

utilization. Comparison between parallel and serial methodology was done in this

article. The authors show that there are many advantages of using parallel architecture

over existing serial methodology such as clock cycles and logic utilization in addition

to reducing the number of redundant calculation cycles that provide higher scalability

compared with the serial approach. Another parallel hardware implementation of

ANFIS algorithm was done in (Nadu & Nadu, 2017).

Implementing ANFIS algorithms for real-time control applications is the main

challenge. The difficulties come from real-time linear and nonlinear parameters and

the adaptation of the control systems (Tămas and Brassai, 2015). Distributing the

functions of ANFIS algorithm between multiple dedicated hardware modules work

together in parallel can solve these challenges. In other words, the ANFIS IP

(Intellectual Property) controller is used to run the main function of the algorithm and

the ARM hard-processor in Zynx FPGA kit is used to adapt and train all ANFIS

parameters.

 Other studies use dual-core hard-processor and a programmable logic part based on

Vivado High-Level Synthesis tool with high-level language like C/C++. Parallel

ANFIS architecture uses a very high processing speed and the parameter adaptation

works in parallel with the output processing in real-time can be found in (Tămas and

Brassai, 2015).

The authors in (Łapa, Zalasiński, and Cpałka, 2013) present a new methodology based

on an evolutionary strategy for nonlinear modeling in order to perform the reduction

of complexity in neuro-fuzzy systems and adapt the parameters and the selection of

simple rules for the system structure. This work enhances the operation of ANFIS

algorithm and reduces computational tasks and its complexity. There are some other

works tried to reduce the data dimensions and the complexity of the neuro-fuzzy

systems by combining them with other soft computational methods such as particle

swarm optimization (Ghasemi, Kalhori, & Bagherpour, 2016; Rini, Shamsuddin, and

Yuhaniz, 2016) or with data mining algorithms like C-means (Çavdar, 2016; Kaur,

Dhar, and Guha, 2016).

Authors in (C. Chen, John, Twycross, and Garibaldi, 2016) extend the traditional five

layers architecture of the ANFIS algorithm to a 6-layer architecture that allows the

 8

fuzzification and the node at the inputs layer to be more explicit. The first layer in the

extended architecture has been divided into two layers (layer 0 and 1). The first layer

(layer 0) is a fuzzification layer, which is used to generate membership grades of all

crisp inputs while the layer 1 calculates the largest membership grade for layer 0 nodes.

According to the existing and reachable literature, we decided that the overall thesis

design can be covered up into two folds. The first fold deals with improving the

performance of ANFIS algorithm by combining it with other soft algorithms or trying

to modify and extend its architecture. The other fold attempts to implement the ANFIS

in reconfigurable FPGA based on different methodologies. Our contribution aims to

integrate these two folds by extending the architecture of the ANFIS algorithm and

using the FPGA to implement the algorithms for real time systems.

On the other hand, several studies use the FPGA for real-time smart home automation

systems. In the study of Mohd and Mamun in (Marufuzzaman, Bin, Reaz, & Islam,

2014). authors propose a methodology based smart algorithm for recognizing and

analyzing activities of daily life based on FPGA. The modified algorithm aims to

classify the home events based on intelligent multi-agent algorithms that interact with

each other. The system consists of four prediction agents (event, time, location, power)

and one agent for decision-making. Based on the inferential processes within the

prediction agents, they forward the necessary commands to the Decision-Making

Agent.

Other FPGA prototype of a home automation system based on Artificial Intelligent

can be found in (M.B.I. Reaz, Assim, Choong, Hussain, & Mohd-Yasin, 2006). The

authors design a system that includes three main units: the prediction unit, the decision

unit, and the communication unit. Active-Lezi algorithm for the online predictor is

used in the prediction unit to predict possible future actions. While the Q-Learning

algorithm that is a kind of reinforcement learning technique is used within the decision

unit in order to make the final system decision. Other similar FPGA implementation

based artificial intelligent for home automation can be found in (Mamun Bin Ibne

Reaz, 2013).

The authors in (Sang-hyun, Lee, and Kyung-il, 2013) propose the methodology that

integrates ANFIS with the smart home system to eliminate the difficulties that face the

sensors in traditional home systems and generate the intelligent and adaptive system.

 9

The authors design multiple ANFIS algorithms in order to take multiple dynamic

decisions. Multiple ANFIS have the ability to deal with the nonlinear and complex

events system; as a result, the high efficiency can be achieved in the Home Automation

System (HAS).

Another implementation based on FPGA, embedded systems, and web technologies is

proposed in (Rusu and Duka, 2017). The proposed system has the ability to control

and manage multiple house systems through the internet using a single internet page.

According to the authors, the system has many advantages over the similar FPGA

implementations like the ability to monitor and control more than one home system

through a single web page and LCD panel at the same time. The system has also the

flexibility to support different types of communication protocols. Finally, the hardware

system is very fast because of the response time between the FPGA kit and the web

page is about 500 milliseconds.

To the best of our knowledge, there are some other studies using different wireless

communication technologies for FPGA connectivity and HAS. Examples are in the

references (Suresh and Mastani, 2018; P Waghmare, Chaure, Chandgude, and

Chaudhari, 2017) for Bluetooth communication and (Asadullah and Raza, 2016;

Gaikwad, Gabhane, and Golait, 2015; Panigrahi, Qureshi, Saxena, and Reddy, 2016;

Sharma et al., 2015) for Wi-Fi in addition to previously used wired technologies.

 10

CHAPTER 2 CHAPTER 2

FIELD PROGRAMMABLE GATE ARRAYS

. Introduction

FPGAs are devices in which almost any digital circuit can be implemented just by

using programming languages such as Hardware Description Language or by

Schematic Capture. They are used in electronic fields to build complex sequential or

combinational logic circuits in order to reduce space and to avoid Application specific

ICs design cost. In this chapter, we will give an introduction about the internal structure

of this device and how can be used to build a new generation of WSNs.

. Field Programmable Gate Array Structure

Field Programmable Gate Array (FPGA) is a device which consists of a huge number

of reconfigurable logic circuits and gives particular reprogrammable circuit. When an

FPGA is programmed, the internal logic circuits are connected in a way that allows

producing a specific hardware achievement of a software application. In general,

FPGA devices do not have any operating systems and they utilize dedicated hardware

resources for a specific processing application. Because of the parallel nature of FPGA

devices, they do not need to compute the same hardware resources for multiple

software applications. So, the performances of fabric FPGA parts of the different

applications are not affected in case of much additional processing are added. In

addition to a single FPGA device can run multiple control loops at multiple rates and

this is one of the main distinctions between the FPGA devices and general processors.

A single FPGA has millions of digital logic circuits and can be used instead of

thousands of analog components by incorporating in one integrated circuit (IC). The

flexibility of the general structure of the reconfigurable FPGA is explained in Figure

2.1. The FPGA comprises three main reconfigurable parts: Configurable Logic Block

(CLB), Programmable Interconnects, and Input/output blocks (IOBs). All these parts

 11

can be reconfigured to implement complex applications. reconfigurable IOBs

represent as a ring around the FPGA microchip and provide access to the I/O FPGA

package pins. While the CLBs distributed as a rectangular behind the IOB(D. Chen,

Cong, & Pan, 2006)(Lee & Seshia, 2011).

The Configurable Logic Block of an FPGA can be programmed to implement various

kind of combinational functions, sequential functions, or combinations of both of them

in a simple way. CLB can be configured by one of these methods(Bobda, 2008):

1. Combinational logic circuits such as AND, OR, XOR, NAND, etc.

2. Lookup tables

3. Multiplexers and De-multiplexers

4. And-OR structure.

5. Transistor pairs

Routing process in FPGAs between CLB is done by programmable interconnects that

consists of a various length of wire that can perform the interconnection through

configurable switches. The density of CLB that is used for specific application within

FPGA is based on length and number of programmable wires applied for the routing

process. Simplified routing in internal FPGA architecture is shown in Figure 2.2.

Figure 2.1. General Structure of Reconfigurable FPGA

 12

. FPGA Programming Technologies

There are many technologies of programming FPGA devices that have been used to

configure internal architectures. Each technique has different characteristics which

have a major effect on the reconfigurable architecture. Some of the techniques

comprise SRAM (Static Random-Access Memory), EEPROM (Electrically Erasable

Programmable Read-Only Memory), and Anti-fuse(Maxfield, 2004).

2.3.1. FPGA Based SRAM

Static memory cells are the essential elements that are used for FPGAs. Most

commercial vendors use static memory (SRAM) based programming technology in

their devices. SRAM cells in general, are applied to configure the internal routing of

FPGAs which are normally drive by digital multiplexors and to re-configure the CLBs

within FPGA devices which are used to perform the various logic functions. Figure

2.3 is an example of a static memory cell that is used in re-configurable devices. In

this picture, SRAM stores a bit of data on four transistors using two cross-coupled

inverters. The two stable states characterize 0 and 1. During read and write operations

another two access transistors are used to manage the availability to a memory cell.

Figure 2.2. Simplified Routing in FPGA Architecture

 13

 Because SRAM-based technology uses the CMOS technology, it becomes a prevalent

approach that is used in FPGAs. Also, it improves integration, speed and decreases the

power. Using the SRAM technology-based FPGA can be infinitely re-configurable

and soldered into the hardware board. The implemented function can be changed very

quickly in the field by modifying the information that is stored in the PROM or upload

a new application code. But this process takes a huge number of digital look-up table

(LUT). Also, the FPGA-based this technique needs to re-program the device every

time when the power is turned on.

2.3.2. FPGA Based Anti-fuse

Another alternative to Static memory cells is anti-fuse technology. A high-density

interconnect is one of the most important characteristics of this programming

technology. This programming technology has a huge number of internal

interconnections and that makes the logic application small and efficient. So, the

placing and the routing process is much easier and doesn’t take a long time. Also, the

resistance and capacitance are small when compared with other programming

technologies.

But these kinds of devices are one-time programmable, and we cannot make any

change in its design. Another disadvantage of this technology is the demand to

integrate all cells of the anti-fuse structure within the integrated circuit (IC). Figure 2.4

demonstrates an example of an array of AND/OR gates connection with two inputs

and one output based on anti-fuse technology.

Figure 2.3. Static Memory Cell

 14

2.3.3. EEPROM Based

One of the most commonly used and more efficient technologies is the |FPGA based

EEPROM cells. This type can be used for two purposes, as s control device like static

memory cell or it can be used as a very efficient re-configurable direct switch.

These devices are non-volatile when compared with the SRAM, so they don’t lose its

content when power off and do not need any additional PROM for booting. But the

process of the EEPROM is more complex and has finite number of re-configurable

times when compared with SRAM technology.

. Advantages of using an FPGA

There are many advantages of utilizing FPGA devices over using Application-Specific

Integrated Circuit (ASIC) like microcontrollers. The FPGAs are very flexible,

reusable, and faster to obtain. Usually, FPGAs are more expensive and have a lower

value of production than an ASIC or microprocessor. On the other hand, an FPGA is

very cost efficient because of the ability to reprogramming unlimited time for different

application tasks. The performance of FPGA is very high because of the parallelized

technique that uses in internal architecture. Also, we can build many soft or hard

microcontroller inside one FPGA package. Another facility in FPGA is that the ability

to re-configurable a portion of its internal fabric while other portions are still working.

Any new modification future in the final design can be modified by generating and

downloading a new bit-stream file. In the FPGA environment, the user doesn’t need

Figure 2.4. AND/OR Structure Based on Antifuse

 15

to know every hardware details. The software will carry out everything such as routing

and placement. Also, the timing constraint will be done automatically to fit the design

specifications. After the design is completed and downloaded it as a bit-stream file,

the FPGA will convert to a kind of ASIC (D. Chen et al., 2006; D. Chen et al., 2006

;D. Chen et al., 2006).

. FPGAs Employed

The Xilinx and Altera are the most common manufacturers in the market which

provide the FPGA devices. Other several manufacturers can also provide FPGAs such

as Semiconductor, Atmel, etc.

2.5.1. Xilinx:

 Xilinx is an American company and it is one of the first and important field-

programmable gate array (FPGA) providers. The Virtex and Spartan series are the two

families that supplied by this company and they are widely utilized in the market.

There are many differences between those two families related to cost and

performance.

. The Spartan series of FPGAs

The Spartan family is designed primarily for the low cost and simple solutions that

don’t need a high performance such as the routing algorithms that are used in the

wireless sensor networks. Below some of the famous Xilinx Spartan series (Capability,

2016; June and Ram, 2013; Xilinx, 2011):

• The Spartan-6 family is mostly used by sensor designers for wireless

communications or for the automotive applications as a lower cost solution and

minimum energy consumption.

• The Spartan®-3AN family is a nonvolatile technology that combines between the

attributes of previous Spartan-3A family and system-based flash memory

technology for programming and data storage.

 16

• The Spartan-3 family is normally utilized to perform real-time applications

combined with fuzzy system controller and other applications that need large

number of I/O ports.

. The Virtex series of FPGAs

The Virtex series are utilized as a solution for the highest system performance (Xilinx

Inc., 2013). Many features are integrated with this series compared with the Spartan

series which include Ethernet MAC blocks (Media Access Control), Digital Signal

Processing block (DSP), FIFO logic, high-speed transceivers, and PCI-Express

controllers. In addition, the Virtex series have many fixed hardware functions that

embedded internally and commonly used such as memories, hard cores of

microprocessors, serial transceivers, etc.

• The Virtex 7 series is intended to achieve a high-performance at 50% lower power

when compared to the Virtex-6 generation devices. Also, memory bandwidth in

Virtex-7 is doubled compared to previous Virtex FPGAs generation(Xilinx Inc.,

2013).

• The designers of sensor systems try to use the Virtex devices like Virtex-7 or

previous generation such as Virtex-II, Virtex-II Pro, etc. in order to implement the

complex functions within the sensing systems specifically in wireless sensor

networks (WSN) because the FPGA devices are a powerful and robust and a high-

performance devices at an acceptable cost.

 Table 2.1 shows the characteristics of the different FPGA series of Xilinx.

 17

2.5.2. Altera

 Altera is also an American manufacturer that provides programmable logic devices

(PLDs) and different types of reconfigurable circuits. Three main families of FPGA

devices are provided by Altera: the low-cost Cyclone series, the mid-range Arria series

and the last one is the Stratix series that is used for applications that need high-

performance. The interesting thing is that all these families are focusing on its soft-

core processors that is called NIOS processor series within its FPGA logic devices

instead of hard-core processors compared with Xilinx families.

• The Cyclone series: This series was designed for applications that required low-

performance and low-cost. It is well suited for many sensor applications such as

acquisition real data, hardware image processing, and IR Sensors based Signal

Conditioning Circuit. The FPGA Cyclone VI is the recent series from Altera that

has 4-input LUT in addition to a register which is associated on the output

(Cyclone and Partners, 2003).

• In Stratix FPGAs: They have a similar architecture that is found in the Cyclone

series with additional improvements. The LUT in this series has 8 inputs, with

Table 2.1. Characteristics of Different FPGA Series of Xilinx.

 18

many DSP blocks and Ram blocks which can be used as FIFO dual-port RAM or

shift registers(Corporation, 2004)(Altera, 2010).

▪ The Arria series: This series also based on 8-input LUT like the Stratix series. The

series is normally utilized for serial communication applications that need a high-

performance because it has very high-speed transceiver hardware blocks which

are embedded on its internal design. The other characteristics of the Arria FPGA

devices are similar to the Stratix devices(Corporation, 2012).

Table 2:2 summarizes characteristics of different Altera series.

. Xilinx Zinq

Xilinx Zynq is a new generation of FPGA System-on-Chip (SoC). The Zynq devices

are primarily manufactured to be used for variety kind of applications because its high

flexibility. The device has an embedded dual-core ARM Cortex-A9 processor which

build in the internal fabric of FPGA logic.

The dual-core ARM processor in Zynq devices has the capability to run full operating

systems whereas the other programmable logics are based on 7-series of the Xilinx

FPGA internal architecture (Capability, 2016). The AXI interfaces (Advanced

eXtensible Interface) are used to build the Zynq architecture, that supply low-latency

Table 2.2. Characteristics of Different Altera Series.

 19

connections and high bandwidth between the main elements of the device(Reference,

Axi, & Guide, 2014). In other word, the Processing System (PS) part and the

Programmable Logic (PL) part can perform the related functions individually without

any conflict or overhead between two separate parts. That means, simplifying the

system architecture leads to reductions in size and overall cost.

2.6.1. System-on-Chip with Zynq

The concept behind the System-on-Chip is that: a single Integrated Circuit (IC) chip

can be utilized to perform all functionality of the hardware system, compared with

traditional circuits that need several chips for each function. The term of the SoC

normally can be represented as an Application Specific Integrated Circuit (ASIC), that

could comprise from analog circuits, digital logic, and other communication

components such as radio frequency elements in addition to the digital-to-analog

(DACs) and analog-to-digital converters (ADCs) embedded in a signal Integrated

Circuit.

From the digital aspect of SoC, the SoC can include all aspects related to a digital

system such as memories, microprocessors, interface circuits, high-speed digital

elements, and so on. Otherwise, we might need separate devices to realize each

function. The SoC technique provides:

• lower cost,

• low power consumption,

• high-level of design security,

• fast-rate of data transfers among the system components,

• small size, and

• high reliability.

A simple graphical diagram of the System-on-Chip is demonstrated in Figure 2.5

(Xilinx, 2018).

 20

On the other hand, the ASIC-based SoCs are suffering from disadvantages such as:

(i) The flexibility of the system is low.

(ii) The development of the SoCs system is very high speed and time consumption.

The high cost of system development making this kind of non-recurring engineering

effort (and cost) of developing an ASIC are significant, making this type of hardware

system suitable only for the application and systems that don’t need any future

upgrades. Mobile phones, tablets, and PCs are an example of the devices that comprise

processors based of ASIC; These kinds of processors normally comprise single or

multiple processor cores, interfacing circuits, storage units, and other associated

elements (John and Smith, 1997).

 All these limitations of ASIC-based SoCs make them incompatible for many

significant applications that need the ability of system upgrade and a high level of

flexibility. Is it clear the important of the flexibility in our life applications so,

motivates the hardware designers to move towards re-programmable devices based

SoCs in order to add more flexibility to add the ability of upgrades the functionality of

the system and saving the time and cost. Field-Programmable Gate Array (FPGA) is

the natural solution and one of the most common examples of re-programmable

devices.

FPGAs are adaptable devices which can be programmed to actualize any subjective

system. Compared with ASICs devices, the FPGAs offering high-level performance

Figure 2.5. Diagram of the System-on-Chip

 21

and more flexible hardware platform that can be configured to achieve any desired

digital system. There is no risk and very easy when system upgrading is necessary to

the latest generation of Xilinx’s all-programmable System-on-Chip (SoC).

Now, the FPGA-based Zynq device gives a considerably more perfect hardware

platform for actualizing adaptable SoCs: the Xilinx presents the Zynq device which is

the latest generation of Xilinx as a kind of all-programmable System-on-Chip

(APSoC), that superbly catches its abilities. The internal architecture of the Zynq is

presented in Figure 2.6 (Xilinx, 2018).

According to Figure 2.6, the internal architecture of the Zynq consists mainly of two

parts: Processing System (PS) which comprises the dual-core ARM Cortex-A9

processors in addition to the multiple common peripherals and memory interfacing.

and the second part is Programmable Logic (PL), that is equivalent to the traditional

FPGA fabric (internal structure) and has a long range of general peripherals such as

General-Purpose Input /Output (GPIO), different kind of memories, A/D converters,

communications interfaces, and so on. The two parts of Zynq architecture can work

together or independently.

2.6.2. Processing System (PS)

The Zynq processing system includes ARM processor with many associated hardware

processing resources constructing the Application Processing Unit (APU), in addition

to memory interfaces, clock generation, cache memory, group of peripheral interfaces,

Figure 2.6. Internal Architecture of Zynq Device.

 22

and high-performance interconnection (Xilinx, 2015). Figure 2.7 demonstrates the

diagram of the Zynq PS (Xilinx, 2018).

The frequency of the ARM processor is up to 1GHz, based on the series of the Zynq

device. Each dual-core of ARM Cortex-A9 processor has two levels of cache memory:

Level 1 and Level 2 caches. The size of Level 1 is 32KB which is used for data and

instructions. This amount of cache is used to reduce the access time of the data and

instruction that are frequently required and optimize the performance of the processor.

While the size of Level 2 cache memory is 512KB which is shared between two core

processors in addition to 256KB of on-chip cache within the APU.

On the other hand, the Software Development Kit (SDK) from Xilinx is used to

configure the ARM processor which comprises all necessary tools and libraries to

develop the processor’s functions.

 Beside the ARM processor, the APU has NEON engine which utilize to provide

Single Instruction Multiple Data (SIMD) mechanism to enhance the processing of

multimedia (2D/3D graphics, video, audio, user interface, etc.) and Digital Signal

Figure 2.7. Diagram of the Zynq PS.

 23

Processing (DSP) (Manual, 2015). Figure 2.8 explains the location of the NEON

engine within the APU (Xilinx, 2018).

2.6.3. The External Interfaces of Processing System

There is a diversity of interfaces that are used by the Zynq PS to communicate the PL

and the external devices as shown in Figure 2.7. According to the Figure 2.7, the

Multiplexed Input / Output (MIO) are utilized to bind the PS part and external

components. The MIO circuit is a flexible connectivity that consists of 54-pins which

can be used to achieve different functions. The external connection also can be done

by the extended MIO (EMIO) which is 192-signals (64 Inputs, 128 outputs) indirect

connection from PS part to external environment through Zynq PL(Xilinx Inc. SDK,

2016). The MIO and EMIO demonstrated in Figure 2.9.

Figure 2.8. Location of the NEON engine within the APU.

 24

The EMIO signals are normally utilized when any IP block core within the PL wants

to access the PS part or more then 54-MIO is needed for any hardware design. The I/O

ports within the MIO or EMIO consist of standard interface circuits, and (GPIO) that

can be utilized for a long range of applications which comprise switches, and LEDs,

etc. (Xilinx, 2018). The overall I/O peripheral is shown in Table 2.3 which include

the standard name of each peripheral and its description.

Figure 2.9. MIO and EMIO Interface.

 25

2.6.4 Programmable Logic

The programmable logic (PL) is the second portion of the Zynq architecture. Figure

2.10 shows the main elements that can be included within this part. The PL part

represents the general logic of the FPGA fabric. Generally, the Zynq PL is like any

traditional FPGA device. It consists of general Input/Output Blocks (IOBs),

Configurable Logic Blocks (CLBs), and programmable interconnection which is used

to connect the internal parts of PL.

Table 2.3. I/O Peripheral Description.

 26

Based on Figure 2.10, all features of the PL can be abridged as shown below:

• Configurable Logic Block (CLB): The CLB is the basic logic element on the

FPGA fabric. The general structure of the CLB consists of smaller logic element

components, such as multiplexers, look-up tables (LUTs), and flip-flops. When

connecting multiple CLB together based on switch matrix interconnection, the

CLBs can be used to perform complex functions.

• Lookup Table (LUT): LUT is a group of logic circuits that are wired within the

FPGA. It has the capability to implement many adaptable functions such as a small

size of Random Access Memory (RAM) or Read Only Memory (ROM), shift

registers, logic functions, etc.

Figure 2.10. Zynq PL structure.

 27

• Flip-flop (FF): FF is a sequential logic circuit and normally works as a storage

resource within the FPGA fabric. A one FF can be used as a binary register to

keep the logic states during the FPGA clock’s cycles circuit.

• Slice: A sub-unit inside the CLB, which is used to implement the sequential and

combinational logic circuits. The slice is constructed when a set of multiplexers,

LUTs, and flip-flops are connected together.

• Switch Matrix: A switch matrix is a flexible programmable interconnection switch

used to:

1) connect the internal element of CLB,

2) connect a group of CLB together,

3) connect other resources of the PL together.

• Carry logic: Carry logic is a combination of multiplexer circuit and XOR gates

are connected within the CLB. The main function of the carry logic is to spread

the intermediate signals of the arithmetic circuits among adjacent slices.

• Input / Output Blocks (IOBs): IOBs are used to interfacing the elements of PL to

the external physical peripherals. IOBs are placed around the circumference of the

FPGA device.

In general, there is no need for a deep knowledge of the internal architecture of

the logic fabric by the designer, in most cases, all the design requirement from

logic resources (LUTs, FFs, Multiplexers, gates, etc.) will be done automatically

by the Xilinx tools accordingly.

2.6.5. Programmable Logic and Processing System Interfaces

As we mentioned, the Zynq architecture consists of PS and the PL parts. It is important

to have the ability to use both of them in order to build complete and integrated

systems. The key solution is the high flexibility configurable AXI interconnects which

is a kind of bridge between the Zynq parts.in addition to other particular connections

likes EMIO.

 28

In this section, we will present the configurable interconnection between the Zynq PS

and PL and show how they can be utilized. We start by explaining the AXI standard

interconnection, which is the most used connection.

2.6.6. Advanced eXtensible Interface (AXI)

Advanced eXtensible Interface or shortly AXI4 is the fourth and current version of the

ARM microcontrollers based on AMBA standard which was developed and released

in 1996 to be used within ARM microcontrollers. Lots of devices and hardware cores

are generated via third-party manufacturers are depended on this standard interface

(Hinkelmann, Reinhardt, Varyani, and Glesner, 2008).

We are focusing on the Zynq device-base System-on-Chip which comprise the FPGA

fabric. The AXI4 is a perfect reconfigurable interconnect technique that can be used

within FPGA devices and the Xilinx is contributed strongly to develop it and used

within its architectures(Reference et al., 2014). The Xilinx software tools starting with

ISE® Design Suite 12.3 and up to the Vivado Design Suite are supported for using

AXI interconnection.

Actually, there are three types of AXI4 buses, and each one can be implemented with

a different bus protocol. The choice of the protocol-baed AXI bus depends on the

connection’s properties. Shortly, the types of AXI4 interfaces are (Hinkelmann et al.,

2008):

• AXI4: Also known as memory-mapped protocol. This protocol provides a high

performance and supports a data transfer up to 256 bytes per connection and

usually use it for memory-mapped applications are requirements.

• AXI4-Lite: A very simple protocol and support single data transaction per

connection. AXI4-Lite can be used for memory-mapped but the memory address

must be provided at every starting connection by the master (read or write) signal.

• AXI4-Stream: high-performance, high-speed protocol and support a burst data

transaction which its length is unknown. Typically, it is used for applications-based

streaming of data. AXI4-Stream protocol works likes a unidirectional channel with a

 29

handshaking mechanism. The memory address is only determined at the first byte to

be transferred.

. WSN based FPGA background and literature review

Using the reconfigurable technique in the design of the architecture of sensor nodes

(motes) can profit with regard to many aspects not only benefits from its high

performance and flexibility but to but also prototype a new generation of processor

architectures which can be used complex implementation. Recently, the

Programmable Logic Devices (PLDs) such as FPGA devices are commonly utilized

in the manufacturing of re-programmable sensor nodes. In this section, we will

introduce the techniques which are used to design and implement the reconfigurable

sensor node based on FPGA devices with some research works related with this

approach. In general, there are three main techniques which are used to design and

implement the reconfigurable sensor node based on FPGA devices (Wilder, Uzelac,

Milenković, and Jovanov, 2008).

2.7.1. SoC-based FPGA prototype

 Reconfigurability of the SoC-based FPGA prototype is utilized to design and

implement various customized architectures of motes. New versions of FPGA devices

have adequate resources to implement a full SoC architecture which include a

microprocessor, different types of memories and lots of peripheral elements. Those

SoC architectures can be done based on special tools from major FPGA vendors which

back this feature like Vivado Design Suite from Xilinx or Embedded Design Suite

from Altera.

Usually, these software have embedded tools which are utilized to debug, simulate and

evaluate the hardware design. Furthermore, using these approaches provide perfect

hints to optimize design tasks, performance, energy consumption. So, using FPGA

prototype to design motes or any hardware system is the trustworthy method to

guarantee that the system has correct functionally. Practically, the FPGA devices are

chosen with large logic gates number to take advantage of its flexibility when

evaluating the designing SoC architectures. Figure 2.11 shows this type of architecture.

 30

Many works are done for WSN-based on this approach and implemented for different

applications, for example, the authors in (Jiesheng Wei, Ling Wang, Feng Wu, Yibo

Chen, & Long Ju, 2009) introduce an architecture based on SoC prototype and the

system is targeted at Altera FPGADE2-70 kit.

This system has three main functional units which are: the interface circuit and the

data acquisition unit, the Zigbee transceiver, and the data processing unit. All these

units are handled by custom digital resources within FPGA fabric.

Another implementation for wireless sensor node can be found in(Liao, Singh, Khalid,

& Tepe, 2013). The authors propose a parallel processing platform based on Xilinx

Spartan3 FPGA. The proposed architecture can handle multi-events depend on its

priority.

Machine monitoring and fault diagnosis platform-based on Xilinx Artix FPGA for

WSN is suggested in (Bengherbia, Ould Zmirli, Toubal, and Guessoum, 2017). The

node consists of a MicroBlaze soft processor as the main controller in addition to

multiple hardware blocks such as AES block, nRF24L01 transceiver, and FFT block

accelerometer.

Figure 2.11. SoC-based FPGA prototype

FPGA

Custom Digital

 Hardware

FPGA

Custom Digital

 Hardware

Transceiver

Sensor

Interface

Processor(s)

Memory

Power

 31

2.7.2. FPGA as a standalone processing unit

FPGA as a standalone processing unit is an alternative design for sensor node based

on re-programmable hardware (Figure 2.12). In this approach, MCU within the

conventional sensor node is totally substituted by custom hardware-based FPGA and

there is no need for any CPU within it. This hardware solution focuses on the

implementation of the main functionalities of the core. So, the flexibility of the system

and the energy efficiency will be affected negatively.

For this category, we can recognize between the designs using ASIC-based FPGAs

prototyping and designs utilizing the custom hardware-based FPGA for sensor node

in real-applications. In general, sensor nodes without microprocessor are suffering a

generosity and focusing only on the target applications which make them convenient

for lots of implementation.

Many articles are proposed for WSN-based on this approach for instance the work in

(Hinkelmann et al., 2008). The authors introduce a rapid prototype-based on

reconfigurable FPGA for WSN. The system is designed and implemented based on

Spartan3-2000 FPGA from Xilinx. The proposed platform consists of a radio

transceiver, sensor module slots, a planar antenna, LEDs, and 4-rechargeable batteries.

The processing part of the system and the interfacing to the external elements are

handled by the FPGA.

Transceiver

Sensor

Interface

Memory

Power

FPGA Custom

MCU / SoC

Figure 2.12. FPGA as standalone processing unit.

 32

The authors in (Muralidhar and Rao, 2008) introduce a wireless sensor node that can

be used for fire detection and prediction. The Nios processor from Altera is used to

design the sensor node with a re-programmable unit. The data acquisition process is

performed by connecting the LM35DZ temperature to the FPGA hardware kit and the

process of send/receive data is handled by PTR-4500 Bluetooth transceiver. Another

similar work based on GSM communication can be found in(Suresh, 2018).

Dynamic re-configurable platform based on IGLOO FPGA is implemented in

(Francois Philipp and Glesner, 2011) for WSN. In this work, Fast Fourier Transform

(FFT) and Finite Impulse Response filter (FIR) are used to handle and process the

sensing data by the system controller. According to the authors, the dynamic re-

configurable approach can help to reduce the energy and execution time.

Partial reconfiguration is a technique used with the FPGA devices which divides the

hardware system into dynamic and static parts. The dynamic part can be online re-

configured while the remaining static part is still working without disturbing. So, the

authors in (Meena and Krishna Prakash, 2014) proposed an architecture for a WSN

based on partial reconfiguration Virtex-4 FPGA. The sensor node is comprised

multiple different analog and digital sensors such as: temperature sensor, infrared

sensor, smoke sensor, and photo detector in addition to another associated components

like ADC converter, GPIO, and so on.

Another flexible partial re-configuration implementation for security and

cryptography applications which can be employed for a wireless sensor node based on

Xilinx Spartan 6 FPGA device is introduced in (Cardona, Lorente, and Ferrer, 2014).

The authors propose a method that can be used to perform and synthesis the AES-256

and SHA-3 algorithms within the FPGA by are storing these algorithms in

XC6SLX16-2CSG324 flash memory within Spartan 6. The Internal Configuration

Access Port (ICAP) controller which is a kind of embedded access port is utilized to

control the data flow to/from the flash memory.

The time delay between the controller and the flash memory and high-power

consumption are the difficult challenges that appear when implementing this kind of

security and cryptography algorithms for WSN. The FPGA prototype is not always

convenient in WSN applications.

 33

2.7.3. PLD as MCU co-processing unit:

This category is the last and most commonly used in the designing of the motes where

the re-programmable devices are placed beside the MCUs in same mote architectures

in order to accelerate the system’s tasks as shown in Figure 2.13. In this case, the

function of the re-programmable hardware is to implement all the tasks that cannot be

done efficiently by the main CPU of the mote.

Most mote’s architecture from this category are expected to be better compared with

mote-based FPGA prototype and standalone processing-based FPGA unit in terms of

performance, speed, and power consumption. Finally, the type of re-programmable

devices will be used within the mote must be carefully chosen in terms of the number

of logic resources in order to minimize the power consumption. So, works are done

based on this methodology with and implemented for different applications. Table 2.4

summarizes some of these works based on Platform, MCU, Programmable devices,

Sensors types, and Application.

Power

Transceiver

Sensor

Interface

Memory

Figure 2.13. PLD as MCU co-processing

 34

Table 2.4. PLD as MCU co-processing.

Work-Year platform MCU
Programm-

able devices
Sensors Application

(Bellis et al.,

2005) 2005

NMRC

sensor node

Spartan

IIE

ATMega128L

- General

purpose

(Rahimi,

Estrin, Baer,

Uyeno, &

Warrior,

2004) 2005

Cyclops

ATmega12

8L

Xilinx

XC2C256

CPLD

Image

Sensor

Vision

applications

(Kerhet,

Magno,

Leonardi,

Boni, &

Benini,

2007) 2007

MicrelEye

AT40K

MCU

FPSLIC
Camera

OV7620

People

detection

(Krasteva

, Portilla,

Carnicer, De

La Torre, &

Riesgo,

2008) 2008

Cookie
ADuC841

Xilinx

Spartan3

XC3S200

Humidity

, Light,

Infrared

Environment

(Imran,

Khursheed,

O’Nils, &

Lawal, 2010)

2010

μc FPGA

SENTI

O32

Xilinx

Spartan6

IGLOO

Image

sensor

magnetic

particles

detection

(“PowWow:

Power

Optimized

Hardware

and Software

FrameWork

for Wireless

Motes,”

2018) 2010

PowWow
MSP430

FPGA

IGLOO 125
-

General

purpose

(W. Liu,

Bienstman,

Jooris,

Yaron, &

Moerman,

2012) 2011

Liu et al.
TelosB

Xilinx

Spartan-3A

and 3E

-
Experimental

platform

(Yuan,

Qiu, Gao,

Tong, &

Yang, 2012)

2012

Yuan et al.
MSP430

AN231E04

FPAA

Sensor

board

Self-healing

paradigms

 35

(Kelly,

Rumberg,

Graham, &

Kulathumani

, 2013) 2013

Kelly et al.
TelosB

CPLD 2

FPAA

Gyroscop

e,

Micropho

nes

General

purpose

(Szilvási,

Babják,

Völgyesi, &

Lédeczi,

2013) 2013

Marmote

SDR

SmartFusio

n

ARM
IGLOO

FPGA
-

General

purpose

(Lopez,

Valverde, De

La Torre, &

Riesgo,

2014) 2014

HiReCooki

e

Spartan-

6

MicroBlaze
Image

sensor

Multimedia

applications

(Fularz,

Kraft,

Schmidt, &

Kasi, 2015)

2015

Zynq
ARM

cortex A9

Artix7

xc7z020-

clg484

Image

sensor

Video

surveillance &

inspection

(Zhai,

Ali, Amira,

& Bensaali,

2016) 2016

Zynq
ARM

cortex A9

Artix7

XC7Z010T

1CLG400

Gas

sensor

Gas

monitoring

(Gomes,

Pinto,

Salgado,

Tavares, &

Cabral,

2017) 2017

Smart

RF06EB

ARM

Cortex-M3

IGLOO

FPGA
-

IoT

application

(Prakash

& Surjith,

2017) 2017

Krishna et

al.

MSP430

F5438

Spartan

3AN FPGA

Sensor

board
Smart Grids

 36

Chapter 3 CHAPTER 3

ARTIFICIAL NEURAL NETWORKS AND FUZZY SYSTEM

. Introduction

Artificial neural network (ANN) is an information technology (IT) and processing

system of software and /or hardware based on the architecture and the functionality of

the biological human neural networks (Fausett and Fausett, 1994). ANNs are non-

linear modeling tools that can be utilized when the inputs and outputs patterns have

complex relationships. It can be described by:

The Architecture which is the type of connection between its neurons (nodes), the

training Algorithm which is the methodology of calculating the associated weight with

each node, and finally, the types of its activation functions (Fausett & Fausett, 1994).

There are many differences between biological and artificial networks. In general,

“artificial neural networks” refer to the software-based algorithm and hard-wired

structure rather than physical biological system (Konar, 1999; Mehrotra, Mohan, and

Ranka, 1997; Dreyfus, 2005).

. How Artificial Neural Networks Work

Any artificial neural network comprises an enormous number of processors nodes

working in parallel and distributed in layers. The first layer accepts the input data like

an optic nerve in human. Each consecutive layer receives its input from the output of

the layer preceding it. The last layer of the artificial neural produces the system output.

The knowledge is distributed on all processing nodes through the layers of the network

including any origin pre-programmed or modified rules. The layers are strongly

interconnected, that means each node in each layer is connected to all nodes in

consecutive layer. The output layer could have more than one output node depending

on the application for which the artificial neural network is used.

 37

. Elements of Neural Networks

The basic structure of an artificial neuron is shown in Figure 3.1 which demonstrates

the basic components of an ANN. It comprises three basic elements which include

weights, summation function, and a single activation function(Fausett and Fausett,

1994 ; Mehrotra et al., 1997).

3.3.1. Weighting Factors:

The values of W1, W2, W3 ,…..,Wn in Figure 3.1 are weight factors which are linked

with each node to calculate the strength of input X = [x1 x2 x3…..,xn]
T. The associated

weight with each node is multiplied by corresponding input data in the form (XT * W).

The weight factors are adaptive coefficients inside the artificial network which

calculate the strength of the input data. In other word, the intensity of any input

connection is measured by those adaptive coefficients. They can be adjusted in order

to respond to different training sets and based on its architecture.

3.3.2. Summation Function

This function is the first level in a data processing. It is also known as a combination

function. The summation function is using to compute the summation of the inner

product of all inputs data (x1, x2, x3… xn) and associated weights vectors (w1, w2, w3 .

. . wn). Mathematically, we can use a simple summation function to represent the

multiplication between each input data vector and the corresponding weight vector.

Eq. 3.1 shows this relationship.

Threshol

 Summing

junction

Y

Activation function

2X

3X

Xn

W2

W3

Wn

∑

W1
1X

weight

Figure 3.1. Basic Elements of an Artificial Neuron.

 38

𝑦 = 𝑓(𝑥,𝑤, 𝑏) = 𝑏 + ∑𝑥𝑖 ∗ 𝑤𝑖, 𝑖 = 1,2,3, (3.1)

The Eq. 3.1 also includes a net bias (b), that decreases or increases the net input value

to the activation function.

3.3.3. Common Activation Function

The Activation Function is utilized to define the output type of the neural network.

There are many types of activation function which can be used in any neural network

based on the type of application which is realized by the network. In this subsection,

we will present four of the common activation functions which are used in most linear

or non-linear algorithms (Sivanandam, Sumathi, and Deepa, 2007;Tettamanzi and

Tomassini, 2013; Sumathi and Paneerselvam, 2010).

. Linear Function

The output of the neuron model based on this type of activation function is the same

to the network input data. The linear activation function is demonstrated in Figure 3.2.

The formula in Eq. 3.2 describes the linear activation function:

y = F(x) = α. x (3.2)

where α is the slope of the linear function. If the value of α equals 1, then the activation

function is known as an identity function. As we mentioned above, the output (y) of

the identity activation function is equal to the net input signal (x).

F(u)

u

Figure 3.2. Linear Activation Function.

 39

. Threshold Function

 A threshold function or hard-limiter activation function. It can be used in two

binary or bipolar forms as demonstrated in Figures (3.3) and (3.4), respectively. Eq.

3.3 describes the output of a binary activation function:

 y = f(x) {
0 if x < 𝜃
1 if x ≥ θ

 (3.3)

while the bipolar function can be written according to the Eq. 3.4:

y = f(x) {
 1 if x ≥ 𝜃
−1 if x < 𝜃

 (3.4)

𝜃

u

F(u)

+1

-1

Figure 3.5. Bipolar Threshold Activation

𝜃

+1

F(x)

u

Figure 3.3. Binary Threshold Activation

 40

. Piecewise Linear Function

 A piecewise linear activation function is a function comprises multiple linear

segments which are defined according to specific periods. The piecewise linear

function is known as saturating linear function which can be used in binary or bipolar

form. Figure 3.5 shows the mathematical form for a symmetric piecewise linear

activation function and described in Eq. 3.4:

 y = f(u) = {
−1 if 𝑢 < −𝜃
 u if − θ ≤ u ≤ θ
1 if 𝑢 > 𝜃

 (3.4)

. Sigmoid Function

This type of activation function is the most common utilized function within neural

networks. The sigmoid function provides a perfect equilibrium among linear and non-

linear behaviors. Hyperbolic tangent activation function is an example of a sigmoid

function which can be defined by Eq. 3.5 and demonstrated in Figure 3.6.

 𝑦 = tanh(𝑢) (3-5)

𝜃

F(u)

+

-

u

Figure 3.7. Piecewise Linear Activation Function.

 41

. Training of Neural Networks

To start training, first, the structure of the neural network must be specified to be

suitable for a specific application, second, all internal initial weights of the network

are randomly picked. Then the training process will begin. Typically, two approaches

of training any neural network are most commonly used: supervised and unsupervised

methods.

3.4.1. Supervised Approach

Supervised training approach includes a mechanism to provide the network with a set

of inputs and desired outputs. For instance, to construct a neural network to recognize

the face of clowns, a large number of pictures of clowns, non-clowns, animal faces,

human faces with masks and so on must be given in initial training phase. Each input

data is associated with the specific identification, such as clowns' names, not clowns,

animals, and so on. The internal initial weightings start to adjust themselves to reach a

better performance. Most of the artificial networks utilize supervised training

approach. In other word, the training set in this approach which includes the inputs and

the desired target are provided by the user. The neural network then starts training the

input data and compares its outputs result versus the desired targets. The amount of

error is calculated in order to modify the overall weights that control the neural

network. This process is repeated continuously over the time until the weights reach

to the situation level (Fausett and Fausett, 1994; Galushkin, 2007).

In some cases, the training process doesn’t complete in some artificial network

algorithms. This case could appear when the provided input data doesn’t include

enough information that is needed by the desired target. As a result, the artificial

Figure 3.8. Tangent Activation Function.

 42

networks don’t have the ability to converge. So, the data should be divided into

multiple folds and specify some of these folds in order to test the performance of the

network.

The designer should review the overall network when the problem can't besolved

based on the current configuration. The review process includes the type of the

network architecture, the number of layers and nodes within each layer, the type of

activation function, input and output data, the initial weights, and training method. All

these review elements are required to build a successful artificial network.

The type of training algorithm is an important aspect the designers should consider.

There are many training algorithms utilized to adapt the network weights during the

training stage. The back-propagation algorithm is an example of one of the most

common techniques which is used with the supervised approach.

3.4.2. Unsupervised Approach

The unsupervised training is the other type of training technique. In this approach, the

artificial network is only provided with input data without desired targets. The type of

learning algorithm which is used in the artificial network will construct the features

from input data and then divide them into different groups. This is usually known as

self-organization technique or self-adaption method.

Tuevo Kohonen from Helsinki University of Technology is one of the famous leading

researchers who worked to develop a self-adaption artificial network which learns

without the advantage of knowing the correct answer. In general, these kinds of

networks comprise only one layer with multiple connection nodes. The weights

associated with each connection must be initialized and the provided input data should

be normalized in order to determine the winner-takes-all based on self-adaption

technique(Fausett and Fausett, 1994; Anderson and McNeill, 1992).

The self-adaption to the real environment is the promising technique that activates the

robot’s science fiction to self-learn as they face new situations and environments where

same group of training sets could not find. An example of this unexpected situation

includes military actions, especially where a new combat technology or new weapons

are encountered.

 43

. Types of Neural Networks

There are several kinds of Artificial Neural Networks (ANN)–based on its architecture

and function(Jain and Martin, 1998;Graupe, 2013). Only most common and frequently

used will be considered.

3.5.1. Feed-Forward ANN

This type of artificial neural network is a first and basic type of neural network. The

input data moves in one direction from the input layer to the output layer through

hidden layers (if present). There are no loops and feed-back are in this kind of ANN

as shown in Figure 3.7 which consists of multi-layer feed-forward ANN. The feed-

forward neural networks are originally utilized for supervised learning technique. In

general, this type is used for simple applications such as recognizing input patterns and

simple data classification.

3.5.2. Feed-back ANN

The structure of feed-back ANN (or recurrent network) is like feed-forward ANN but

information about the output sends back into the previous hidden layers to obtain best

performance results as demonstrated in Figure 3.8. Generally, feed-back network is

adapted network so, their 'state' is modifying constantly until it arrives an equilibrium

point. The feed-back ANN is suited to realize optimization problems such as nonlinear

problems and system error corrections.

Figure 3.9. Multi-layer Feed-Forward ANN.

 44

3.5.3. Classification-Prediction ANN

It is a type of feed-forward ANN. Usually, the classification-prediction artificial neural

network is used for data-mining applications. This kind is trained to distinguish

particular data patterns and classify them into qualitative groups. Figure 3.9 shows that

an example for multi-layer classification network.

. Feedforward Back-Propagation

The back-propagation (BP) algorithm was developed in the early 60s by multiple

researchers (David E. Rumelhart, James McClelland, Geoffrey E. Hinton, and Ronald

J. Williams). The (BP) algorithm is a multi-layer feedforward neural network and is

one of the most commonly used in the application of neural networks. The BP

algorithm can be utilized to train and keep a great deal of non-linear and complex

relations between input and output data patterns. The steepest descent technique is

Figure 3.10. Multi-layer Feed-back ANN.

Figure 3.11. Multi-output Feed- Forward ANN.

 45

used as a learning rule in back to adjust the values of the network weight and threshold

to get the minimum square of the error between the target and the network output.

The typical (BP) algorithm has an input layer, one or more hidden layers, and an output

layer. The number of hidden layers depends on the complexity of the application and

there is no theoretical constraint about the number of hidden layers which are utilized

within its architecture but in general, one or two hidden layers are widely used(Amari,

2003). From the input to the output layer, the information will flow during the Recall

process. The Recall is the operation of transferring the input data through a trained

network and obtaining the net output (feed-forward phase). While Back-propagation

of error is only used when the algorithm is learning a training data set. Figure 3.10

shows an example of a typical (BP) architecture with two hidden layers.

3.6.1. Learning in Back-Propagation Algorithm

The learning in back-propagation algorithm can be divided into two phases as describe

below (Williams and Zipser, 1995; Dalgleish et al., 2007):

• Forward phase (Recall process): The input data is propagated over the network

layers (input layer, hidden layer, and output layer). All weights and thresholds

which are applied to the network are maintained constant during the forward of

operating phase. In case, that the foreseeable output of the neural network cannot

be achieved correctly, so the back- propagation of error can be started at this point.

The forward propagation phase can be expressed by the following equations:

Figure 3.12. Example of Typical (BP) Architecture.

 46

The output of the of hidden layer:

𝑦𝑗 = 𝑓(∑ 𝑤𝑖𝑗𝑖 − 𝜃𝑗) = 𝑓(𝑛𝑒𝑡𝑗) (3.5)

𝑛𝑒𝑡𝑗 = ∑ 𝑤𝑖𝑗𝑥𝑖𝑖 − 𝜃𝑗 (3.6)

And the output at the output layer:

𝑧𝑙 = 𝑓(∑ 𝑣𝑙𝑗𝑦𝑗𝑗 − 𝜃𝑙) = 𝑓(𝑛𝑒𝑡𝑙) (3.7)

𝑛𝑒𝑡𝑙 = ∑ 𝑣𝑙𝑗𝑦𝑗 − 𝜃𝑙 (3.8)

While the error at the output layer can be achieved by the following equation:

𝐸 =
1

2
∑(𝑡𝑙
𝑙

−𝑧𝑙)
2 =

1

2
∑(𝑡𝑙
𝑙

− 𝑓(∑𝑣𝑙𝑗𝑦𝑗 − 𝜃𝑙))
2

=
1

2
∑ (𝑡𝑙𝑙 −𝑓(∑ (𝑣𝑙𝑗𝑗 𝑓(𝑤𝑗𝑖𝑥𝑖 − 𝜃𝑗) − 𝜃𝑙))

2 (3.9)

Where:

i,j: 1,2,3,

xi: The input data,

yj: The output of hidden layer,

zl: The output of the output layer,

wji: The weight between the input and hidden layer,

vlj: The weight between the hidden and output layer,

tl: The expected value of the output node is,

f(net): is the active function.

• Back-propagation of error: The error at the output layer can be calculated by

the diversity between the real output (or target) and the calculated output of the

algorithm; the calculated error in back-propagation phase is propagated from the

 47

output layer to all hidden layer. During this phase, all weights and thresholds of

network are modified based on the value of the error. This modification of weights

and thresholds is repeated continuously until target be closer to the output of the

algorithm. The gradient descent technique is applied to modify the value of the

weights at all layers as demonstrated in the following equations:

1. Modification of Weight Value

 The first step is to find derivation of output based on the error function

𝜕𝐸

𝜕𝑣𝑙𝑗
=∑

𝜕𝐸

𝜕𝑧𝑘

𝑛

𝑘=𝑙

∗
𝜕𝑧𝑘
𝜕𝑣𝑙𝑗

=
𝜕𝐸

𝜕𝑧𝑙
∗
𝜕𝑧𝑙
𝜕𝑣𝑙𝑗

Where E (error) is a function including multiple zk, but just one of zl is linked with vlj

and all other zk are independent, as shown below.

𝜕𝐸

𝜕𝑧𝑙
=
1

2
∑[−2(𝑡𝑘 − 𝑧𝑘) ∗

𝜕𝑧𝑘
𝜕𝑧𝑙

𝑘

] = −(𝑡𝑙 − 𝑧𝑙)

𝜕𝑧𝑙
𝜕𝑣𝑙𝑗

=∑
𝜕𝑧𝑘
𝜕𝑛𝑒𝑡𝑙

𝑛

𝑘=𝑙

∗
𝜕𝑛𝑒𝑡𝑙
𝜕𝑣𝑖𝑗

= 𝑓′(𝑛𝑒𝑡𝑙) ∗ 𝑦𝑗

In this way,

𝜕𝐸

𝜕𝑣𝑙𝑗
= −(𝑡𝑙 − 𝑧𝑙) ∗ 𝑓

′(𝑛𝑒𝑡𝑙) ∗ 𝑦𝑗

Then, we will assume that the error of output node is:

𝛿𝑙 = (𝑡𝑙 − 𝑧𝑙) ∗ 𝑓
′(𝑛𝑒𝑡𝑙) (3.10)

So,

𝜕𝐸

𝜕𝑣𝑙𝑗
= −𝛿𝑙 ∗ 𝑦𝑗 (3.11)

Based on the error function, the deviation of hidden layer can be done using the

following formula:

 48

𝜕𝐸

𝜕𝑣𝑗𝑖
=∑∑

𝜕𝐸

𝜕𝑧𝑙
∗
𝜕𝑧𝑙
𝜕𝑦𝑗

∗
𝜕𝑦𝑗

𝜕𝑤𝑗𝑖
𝑗𝑙

Also, the E function has multiple zl; but just one is targeted at specific wji, and it is

corresponding to single yj, and regarding to all zl as explained in below:

𝜕𝐸

𝜕𝑧𝑙
=
1

2
∑[−2(𝑡𝑘 − 𝑧𝑘) ∗

𝜕𝑧𝑘
𝜕𝑧𝑙

𝑘

] = −(𝑡𝑙 − 𝑧𝑙)

In this way:

𝜕𝐸

𝜕𝑤𝑗𝑖
= −∑(𝑡𝑙 − 𝑧𝑙)

𝑙

∗ 𝑓′(𝑛𝑒𝑡𝑙) ∗ 𝑣𝑙𝑗 ∗ 𝑓
′(𝑛𝑒𝑡𝑗) ∗ 𝑥𝑖

 = −∑ (𝛿𝑙𝑣𝑙𝑗)𝑙 ∗ 𝑓′(𝑛𝑒𝑡𝑗) ∗ 𝑥𝑖

Assume that the error of hidden layer is:

𝛿′𝑗 = 𝑓′(𝑛𝑒𝑡𝑗) ∗∑(𝛿𝑙𝑣𝑙𝑗)

𝑙

In this way:

𝜕𝐸

𝜕𝑤𝑗𝑖
= −𝛿′𝑗 𝑥𝑖

The modification of weight Δvlj and Δwji is in proportion to the error ratio and decline

over the gradient, the relationship explaining the modification of all weights in both

hidden layers and output layer is expressed below:

∆𝑣𝑙𝑗 = −𝛼
𝜕𝐸

𝜕𝑣𝑙𝑗
= 𝛼𝛿𝑙𝑦𝑗 (3.12)

while the equation below shows that the modification of the weight among the input

layer and hidden layers is expressed as shown below:

∆𝑤𝑗𝑖 = −𝛼′
𝜕𝐸

𝜕𝑤𝑗𝑖
= 𝛼′𝛿′𝑗𝑥𝑖 (3.13)

𝛿′𝑗 = 𝑓′(𝑛𝑒𝑡𝑗) ∗ ∑ (𝛿𝑙𝑣𝑙𝑗)𝑙 (3.14)

 49

In above formula, the term (∑𝛅 𝐯) in the hidden layer shows that the error δl of output

node zl is back-propagated over the weight value vlj to the all yj nodes to become the

error of hidden layer.

2. Modification of Threshold Value

The threshold value θ is also adjusted during the training phase and it is important to

be modified when the weight value is modified; the method which utilize is the same

as that applied in the weights adjustment. As we did in the previous section, we will

start to derivation the threshold value at output layer by error function as shown below:

𝜕𝐸

𝜕𝜃𝑙
=
𝜕𝐸

𝜕𝑧𝑙
∗
𝜕𝑧𝑙
𝜕𝜃𝑙

In this formula:

𝜕𝑧𝑙
𝜕𝜃𝑙

=
𝜕𝑧𝑙
𝜕𝑛𝑒𝑡𝑙

∗
𝜕𝑛𝑒𝑡𝑙
𝜕𝜃𝑙

= 𝑓′(𝑛𝑒𝑡𝑙) ∗ (−1)

In this way, the equation expressing the adjustment of threshold is

∆𝜃𝑙 = 𝛼
𝜕𝐸

𝜕𝜃𝑙
= 𝛼𝛿𝑙

Namely:

𝜃𝑙(𝑘 + 1) = 𝜃𝑙(𝑘) + ∆𝜃𝑙 = 𝜃𝑙(𝑘) + 𝛼𝛿𝑙

Now, the threshold derivation of the hidden layer based on the error function can be

expressed as shown below:

𝜕𝐸

𝜕𝜃𝑗
=∑

𝜕𝐸

𝜕𝑧𝑙
∗
𝜕𝑧𝑙
𝜕𝑦𝑗

∗
𝜕𝑦𝑗

𝜕𝜃𝑗
𝑙

So, in this formula:

𝜕𝑦𝑗

𝜕𝜃𝑗
=

𝜕𝑦𝑗

𝜕𝑛𝑒𝑡𝑗
∗
𝜕𝑛𝑒𝑡𝑗

𝜕𝜃𝑗
= 𝑓′(𝑛𝑒𝑡𝑗) ∗ (−1) = −𝑓′(𝑛𝑒𝑡𝑗)

In this way:

𝜕𝐸

𝜕𝜃𝑗
=∑(𝑡𝑙 − 𝑧𝑙) ∗ 𝑓

′(𝑛𝑒𝑡𝑙) ∗ 𝑣𝑙𝑗 ∗ 𝑓
′(𝑛𝑒𝑡𝑗) =∑(𝛿𝑙𝑣𝑙𝑗) ∗ 𝑓

′(𝑛𝑒𝑡𝑗) =

𝑙

 𝛿′𝑗

𝑙

 50

Now, the equation that expressing the threshold modification is:

∆𝜃𝑗 = 𝛼
′
𝜕𝐸

𝜕𝜃𝑗
= 𝛼′𝛿′𝑗

Namely:

(𝑘 + 1) = 𝜃𝑗(𝑘) + ∆𝜃𝑗 = 𝜃𝑗(𝑘) + 𝛼
′𝛿′𝑗 (3.15)

. Network Selection

The design of the artificial neural network depends on its connection, activation

function, and the training method. So, there are many similarities between the various

structures of neural network algorithms. The plurality of the differences appears from

the different learning methods and how those methods can adapt the topology of the

network.

This section covers a number of artificial neural networks which are the most widely

used. They are arranged in several categories of applications. The categories are listed

in table below are not meant to be limited, they just want to eliminate some of the

ambiguity among different neural network structures and they are suitable to particular

applications (Anderson and McNeill, 1992). In general, most of the neural network

applications belong to the following five groups as demonstrated in Table (3.1) below:

Table 3.1. Network Selector.

 51

. Neural Networks Applications

In this section, we will present some of the fields where artificial neural networks are

being applied (Dreyfus, 2005; Engineering, 2018).

• Language Processing: This field of applications comprises the conversion of

text-to-speech, language detection and translation, secure voice keyed locks,

automatic reproduction, the ability to interact with voice orders and processing of

natural language.

• Character Recognition: Neural network has the ability to distinguish hand

printed characters by a scanner device. Recognizing characters and cursive can be

done by a special software tool (Quantum Neural Network package).

• Image Compression: Neural networks algorithm can be designed and

implemented for real-time data compression and decompression applications.

These artificial algorithms can minimize an 8- bits of data to 3- bits and then

reverse this operation to construct 8-bits again from 3-bits.

• Signal Processing: Some of the neural network algorithms have the capability of

eliminating electronic noise. Moreover, some applications based on neural

networks can find out the engine misfire depend on the engine sound.

• Banking & Finance: Neural network algorithms are applied successfully to some

banking & finance applications such as future price forecasting, forecasting of the

exchange rate, and stock performance. These days, artificial neural networks are

usually utilized for financial decision making.

• Predictions: Producing the output which is expected can be done by neural

networks after giving it a particular input. If we have a neural network which is

trained well in a stream of values, then, we can utilize it to anticipate future results.

Prediction of Weather conditions (Temperature, humidity, pressure, etc.) is an

example of neural network prediction.

https://in.mathworks.com/help/nnet/ref/predict.html?requestedDomain=www.mathworks.com

 52

• Medicine: Studies are still ongoing in the field of using neural networks in

medicine. In this time, a lot of research is done on modeling human body parts

and distinguishing disease from different scans.

. Introduction to Fuzzy Logic

A Fuzzy Logic System (FLS) is a kind of nonlinear mapping system which is used to

set input data to a scalar output data. In general, the architecture of any FLS can be

divided into three parts: Fuzzification, Inference system and Rules, and the last part is

Defuzzification (G. Chen and Pham, 2000; Sivanandam et al., 2007). These

components are shown in Figure 3.11.

The Fuzzy logic term is an expansion of Boolean logic which is introduced by Lotfi

Zadeh in 1965 depending on the mathematical concept of fuzzy sets, that is a

popularization of the traditional set theory (Sivanandam et al., 2007). The FLS has

been utilized for many domains, such as control systems and artificial intelligence.

Fuzzy logic system is a form of multi-value logic. So, the truth values of any variable

could be a real value between zero and one.

It is utilized to deal with the connotation of partial truth, that means, the truth value of

variables ranges between totally true and totally false. Compared with traditional two-

valued Boolean logic, the truth values of any variable could be only the integer value

zero or one. Formalizing human reasoning is one benefits of using fuzzy logic because

the fuzzy rules are constructed by natural language. For instance, in Table 3.2, there

Figure 3.13. Architecture of Fuzzy Logic System.

https://en.wikipedia.org/wiki/Lotfi_A._Zadeh
https://en.wikipedia.org/wiki/Lotfi_A._Zadeh
https://en.wikipedia.org/wiki/Control_theory
https://en.wikipedia.org/wiki/Artificial_intelligence
https://en.wikipedia.org/wiki/Truth_value
https://en.wikipedia.org/wiki/Two-valued_logic
https://en.wikipedia.org/wiki/Two-valued_logic
https://en.wikipedia.org/wiki/Boolean_algebra

 53

Light Color Speed Distance Action

If light: red if speed: high If traffic light: close I brake hard.

If light: red if speed: low If traffic light: far I preserve my speed.

If light: orange if speed: average If traffic light: far I brake softly.

If light: green if speed: low If traffic light: close I accelerate my speed.

are a few rules of behavior which a car’s driver should follow when he is approaching

the traffic light:

Table 3.2. Car’s driver rules.

Based on Table 3.2, the input variables are approximately estimated by the human

brain, for example, the level of verification of a condition inside a fuzzy system.

3.9.1. Classic and Fuzzy Sets

The concept of a traditional set is one of the rudimentary notions, that do not have a

clear definition. Commonly, a set is known as a group of elements that have some

common characteristics distinguishing these elements from other elements, like a

group of negative numbers less than -30 or the set of flying fishes.

In general, uppercase letters are used to denote any set (A, B, . . .), while lowercase

letters are used to denote objects within any set (an object x, z, . . .).

In the case of traditional set (classic sets), any particular object x could be a member

of a set A (it has value=1) which is symbolized by x ∈ A or not belong to set A and is

symbolized by x ∉ A (it has value=0).

There are many basic operations that can be applied on classic sets as demonstrated

below (Jamshidi and Zilouchian, 2001; Tettamanzi and Tomassini, 2013):

• Intersection or Min function (AND logic)

𝐴 ∩ 𝐵 = { 𝑥 ∈ 𝑎𝑛𝑑 𝑥 ∈ 𝐵}

Or:

 54

𝑚𝑖𝑛 (µ𝐴(𝑥) , µ𝐵(𝑥)) (3.16)

• Union or Max function (OR logic)

𝐴 ∪ 𝐵 = { 𝑥 ∈ 𝐴 𝑜𝑟 𝑥 ∈ 𝐵}

Or:

𝑚𝑎𝑥 (µ𝐴(𝑥) , µ𝐵(𝑥)) (3.17)

• Complement or Negation (NOT logic)

𝐴 = {𝑥 ∉ 𝐴}

Or:

1 − µ𝐴(𝑥) (3.18)

On the other hand, fuzzy logic is depending on the fuzzy sets theory, that is a

generalization of the traditional set theory and that means, the traditional set theory is

a part of the fuzzy sets theory. Figure 3.12 demonstrates this relationship.

In a fuzzy logic system, an object x in the fuzzy set A could belong to set A with

different membership degrees between 1 (full membership) and 0 (lack of

membership). In order to characterize a fuzzy set A, we have to prepare its membership

function where:

 𝜇𝐴 ∶ 𝑋 → [0, 1].

 Fuzzy logic

 Fuzzy logic

Crisp

Logic

Figure 3.15. Relationship between Fuzzy and Classic Sets.

 55

There are different types of membership functions that can be applied for fuzzy sets(G.

Chen & Pham, 2000)(Sumathi & Paneerselvam, 2010), three of them are introduced

which are used in most common applications as shown below:

• Gaussian membership function: which describe by Eq. 3.18 and Figure 3.13

𝜇𝐴 (𝑥, 𝑎, 𝑏) = 𝑒𝑥𝑝 (−
(𝑥−𝑎)2

2𝑏2
) (3.18)

Where a and b are its parameters which specify the center of the Gaussian function

and control the width of the function curve respectively.

• Trapezoidal membership function: Eq. 3.12 and Figure 3.14 described this

function

𝜇𝐴(𝑥, 𝑎, 𝑏, 𝑐, 𝑑) = 𝑓(𝑥) =

{

0 𝑥 ≤ 𝑎
𝑥−𝑎

𝑏−𝑎
 𝑎 < 𝑥 ≤ 𝑏

1 𝑏 < 𝑥 ≤ 𝑐
𝑑−𝑥

𝑑−𝑐
 𝑐 < 𝑥 ≤ 𝑑

0 𝑥 > 𝑑

 (3.19)

Figure 3.16. standard Gaussian Membership.

Figure 3.17. General Form of Trapezoidal Membership.

 56

Where: a= lower limit, d= upper limit, b and c= lower and upper support

limit respectively, where a < b < c < d.

• Triangular function: this function can be described by Eq. 3.20 and Figure 3.15

where a and b are lower and upper limit respectively and m is point where a < m

< b

𝜇𝐴(𝑥, 𝑎, 𝑏,𝑚) = 𝑓(𝑥) =

{

0 𝑥 ≤ 𝑎

𝑥−𝑎

𝑚−𝑎
 𝑎 < 𝑚 ≤ 𝑏

0 𝑥 > 𝑏

 (3.20)

3.9.2. The linguistic variables

Input and output data for a fuzzy system can be described by linguistic terms whose

values are a natural language which include words or sentences, rather than numerical

values. Usually, the linguisttic variable can be broken down into a small group of

linguistic terms (Sumathi and Paneerselvam, 2010).

 Example: Suppose that we have an air conditioner system which illustrates in Figure

3.16. Assume that the temperature (t) is the linguistic term that expresses the status of

the room temperature. To introduce the temperature in linguistic language, terms such

as and cold, very-cold, warm, and hot are utilized in real life. Those words are called

the temperature linguistic values. So, the temperature of linguistic values can be:

Figure 3.18 General Form of Triangular function.

 57

T(t) = {very-hot, hot, warm, cold, very-cold, ..}. Each member of this set is known

as a linguistic term and can cover a part of the comprehensive temperature values

(Figure 3.17).

3.9.3. Fuzzy Rules (Reasoning in fuzzy logic)

In a fuzzy logic system, the final system output is produced based on the constructed

fuzzy rules. Any fuzzy rule can be constructed by a basic IF-THEN condition

(Kacprzyk and Pedrycz, 2015; Tettamanzi and Tomassini, 2013). In Table 3.3, an

example of fuzzy rules that are built to be used in air conditioner system in Figure

3.16, while the Table 3.4 presents the matrix of all possible fuzzy rules that can be

Figure 3.20. The Linguistic Terms of the Temperature

Figure 3.19. Air Conditioner based on Control of Fuzzy Logic System.

 58

used for the system in Figure 3.16. According to Table 3.4, the Row fields comprise

the values of the current room temperature, while column field comprises the target

temperature values. The remaining cells are the resulting actions when row and column

values are intersected. For example:

Cell (4, 4) in Table 3.4 can be read as: If current temperature is cold AND target is hot

THEN the action will be heat.

Table 3.3. Example of Air Conditioner Fuzzy Rules.

Fuzzy system rules

1
If (temperature = warm) AND (target = warm) THEN: action = no

change

2
If (temperature = hot OR very-hot) AND (target = warm) THEN: action

= moderate

3
If (temperature = cold OR very-cold) AND (target = warm) THEN:

action is heat

Table 3.4 Example of Fuzzy Rules Matrix.

 59

3.9.4. The Defuzzification

The final result of the FLS is a fuzzy value after fuzzy rules are applied within the

inference engine. So, this result must be converted to have a final crisp output after

performing the defuzzification step. The defuzzification step is applied based on

different kind of membership functions. Here, we will introduce some of the most

common membership functions which are used in the defuzzification stage. Some

numerical examples related with this defuzzification types can be found in

(Sivanandam et al., 2007; Irwin, Wilamowski, and Irwin, 2011).

• Center of Sums technique (COS): In this technique, the overlapping area is

calculated two times. The defuzzified value x is expressed as Eq. 3.21:

 𝑥 =
∑ 𝑥𝑖 ∗ ∑ 𝜇𝐴𝑘 (𝑥𝑖)

𝑛
𝑘=1

𝑁
𝑖=1

∑ ∗ ∑ 𝜇𝐴𝑘 (𝑥𝑖)
𝑛
𝑘=1

𝑁
𝑖=1

 (3.21)

Where: n is the fuzzy sets number, k the number of the fuzzy sets, N is the counter of

fuzzy input data, and 𝝁𝑨𝒌 (𝒙𝒊) represent the membership function.

• Centroid of Area (COA) technique: This technique supplies a crisp output by

calculating the center position of gravity of the fuzzy set. The entire distribution

area of the membership function that utilized to perform the connected control is

split into some sub-areas. Then. the summation of the centroid of these sub-areas

is performed in order to get the final defuzzified value as show in Eq. 3.22.

 𝑥 =
∑ 𝑥𝑖 ∗
𝑁
𝑖=1 𝜇 (𝑥𝑖)

∑ 𝜇(𝑥𝑖)
𝑛
𝑘=1

 (3.22)

 Here, n is the number sample, 𝝁(𝒙𝒊) represents the membership function, 𝒙𝒊

indicates the input sample element.

• Weighted Average technique: This method does not need a high level of

mathematical computation. This technique is only used for symmetrical

membership functions and the produced outputs are very similar to the centroid

of area technique. The weighted of each membership function is done by taking

its maximum value. This method can be expressed as shown in Eq. 3.23:

 60

 𝑥 =
∑𝜇 (𝑥𝑖) . 𝑥𝑖

∑𝜇 (𝑥𝑖)
 (3.23)

• Mean of Maxima technique (MOM): Also known as middle-of-maxima. In this

technique, the defuzzified output is calculated based on the highest value of the

membership. If there more than one sample having maximum values of the

membership, then the average value of all these values are taken. Simply, Eq. 3.24

and Figure 3.18.

 𝑥 =
𝑎+𝑏

2
 (3.24)

 Advantages and Disadvantages of Fuzzy Logic system

Advantages:

• A simple and straightforward intelligent approach.

• Easy to realize and achieve.

• Provide a simple method of presentation.

• Provide an efficient performance.

Disadvantages:

• Model development is complicated from a fuzzy system.

• The system needs a high smooth tuning and simulation in order to implement.

• Hard to select an appropriate membership function to be used in fuzzy systems.

• Knowledge about the solution is required to find the problem solution. This

• knowledge must be ready in if-then form.

Figure 3.21. Mean of Maxima Defuzzification Method.

 61

. Introduction to Neuro-Fuzzy System

Having a good performance with fuzzy system development is a complicated task. The

process of finding membership functions and suitable rule sets are sometimes an

exhausting task based on attempt and error. So, the concept of integrating artificial

learning algorithms with fuzzy systems has appeared. The artificial neural networks

that have powerful learning techniques have been introduced to assist in the fuzzy

system's tuning and development(Kaynak, Zadeh, Turksen, and Rudas, 1996).

These fuzzy logic systems and neural networks techniques are usually utilized in order

to deal with problems when the traditional methods do not provide a simple and precise

solution (P. Liu and Li, 2004).

In general, the neuro-fuzzy term can be defined as a kind of system which is

characterized by a similar structure of a fuzzy logic system where the neural networks

algorithms are utilized to adjust reasoning rules and fuzzy sets in an iterative form

based on data system (input and output vectors). This kind of systems illustrates

different behavior within two levels. During the first level, which is known as a

learning phase, it behaves similar to any neural network that training its internal

parameters iteratively. While in the second level or execution phase, the system

behaves similar to a classical fuzzy logic system. The integration between these two

techniques provide a best performance when compared the systems results with each

isolated technique (Fullér, 2013; Siddique and Adeli, 2013).

3.11.1. Types of Neuro-Fuzzy Systems

There are several combinations between neural network and fuzzy system techniques

that can be split, into the following criteria (Abraham, 2001; Vieira, Dias, and Mota,

2004; Nikam, Nikumbh, and Kulkarni, 2012):

• Cooperative Neuro-Fuzzy System: In this type of cooperative systems, the

neural networks approach acts as a pre-processing unit where the selected

algorithm of neural networks is used to train some parameters of the fuzzy system

such as fuzzy sets, parameters of membership functions, and fuzzy rules. After

this phase, the learning method of neural networks are taken away and the fuzzy

system works independently. Figure 3.19 shows this concept.

 62

• Concurrent Neuro-Fuzzy System:

In the concurrent approach, the fuzzy system and the neural network do their tasks

together continuously. That means the input vector is first pre-processed by the fuzzy

system, and then the learning algorithm of neural network handles the results of the

concurrent system. However, the system’s outputs are not completely interpretable,

and this can be considered as one of the system’s disadvantages. Figure 3.20 shows

this idea.

• Hybrid Neuro-Fuzzy Systems

In this system, an artificial learning approach based on the gradient algorithm is

integrated with a fuzzy system to generate a hybrid neuro-fuzzy system. The gradient

algorithm (will be explained later) is utilized to its parameters: fuzzy rules and its

weights, membership functions, and fuzzy sets) over input and output patterns. The

simplicity of the system functionality is one of the system advantages. Also, the

Input
Fuzzy System

Neural

Network

Fuzzy Fuzzy

Output

Figure 3.22. Cooperative Neuro-Fuzzy.

Input

Output

Neural

Network

Fuzzy

System

Neural

Network

Fuzzy

System

Figure 3.23. Concurrent Neuro-Fuzzy System

 63

representation of the data over a neural network within the hybrid system is more

suitable because it permits to visualize the flow of data and error signals over the

system in order to modify its parameters. There are different architectures which are

used to construct hybrid neuro-fuzzy systems (Vieira et al., 2004). Some of the hybrid

system models are expressed by artificial neural networks which perform logical

functions. Adaptive Neuro-Fuzzy Inference System (ANFIS) is an example which is

the most used architecture of a hybrid system.

3.11.2. Adaptive Neuro-Fuzzy Inference System (ANFIS)

In 1993 Jang, J.S.R. has proposed a type of hybrid artificial intelligent system which

has some characteristics between neural network and fuzzy system that is ANFIS

algorithm. The objective of ANFIS algorithm is to detect a mapping or relationship

between the presented inputs data and the system target (desired output) (Jang, 1993).

As we mentioned before, there is no ability to learn in the fuzzy logic system. So, the

system is unable to modify its parameters.

On the contrary, ANFIS algorithm performs the learning capabilities of neural network

to adapt the membership functions in fuzzy logic system automatically(Kaynak,

Zadeh, Türksen, and Rudas, 2012). Unlike other traditional FIS, ANFIS algorithm

does not need any expert knowledge to realize input-output vectors for fuzzy training.

This facility is very important to minimize the complexity of calculating fuzzy training

data task.

Another feature of ANFIS algorithm is that extensive initialization of its parameters is

not necessary because of a simple random initialization of training can be used. Like

any fuzzy logic system, ANFIS algorithm has some architecture models with various

techniques for adapting parameters of membership function based on NNs during

training phase.

In this thesis, the Takagi–Sugeno inference structure that has a high computational

efficiency was utilized to construct the ANFIS model with adaptive capability. This

benefit allows the inference algorithm to work efficiently with automatic adaptive

mechanism likes ANNs. Since ANFIS parameters are adapted through the training

phase, various membership function forms are provided continuously until the training

is finished. In general, the Takagi–Sugeno structure is constructed from five layers.

Each layer comprises several nodes with different tasks (Aliev and Guirimov, 2014)

 64

as illustrated in Figure 3.21. The fuzzy rules in Takagi–Sugeno model are produced

from a set of input-output pairs. In this model, the rule can be constructed as shown

below:

 𝒊𝒇 𝑥1 𝑖𝑠 𝐴1 𝑎𝑛𝑑 𝑥2 𝑖𝑠 𝐴2, … , 𝐴𝑁𝐷 𝑥𝑚 𝑖𝑠 𝐴𝑚; 𝒕𝒉𝒆𝒏 𝑂 = 𝑓(𝑥1, 𝑥2, … , 𝑥𝑚);

Where:

 x1,…, xm are the input data; A1,…, Am are fuzzy sets; and O is the output function

which can be constant or linear based on the complexity of the application.

3.11.2.1. ANFIS Architecture

For simplicity and based on Figure 3.21, suppose that we have inputs x and y, and f as

a linear output. Two fuzzy rules are used in the form of “If-Then” based on Takagi–

Sugeno model(Jang, 1993), as illustrated:

𝑅𝑢𝑙𝑒 1 = 𝑰𝒇 𝑥 𝑖𝑠 𝐴1 𝑎𝑛𝑑 𝑦 𝑖𝑠 𝐵1 𝑻𝒉𝒆𝒏 𝑓1 = 𝑝1 𝑥 + 𝑞1 𝑦 + 𝑟1

𝑅𝑢𝑙𝑒 2 = 𝑰𝒇 𝑥 𝑖𝑠 𝐴2 𝑎𝑛𝑑 𝑦 𝑖𝑠 𝐵2 𝑻𝒉𝒆𝒏 𝑓2 = 𝑝2 𝑦 + 𝑞2 𝑦 + 𝑟2

where A1, B1 and A2 , B2 are representing the membership functions which are

associated with each input x and y. while 𝑓1 𝑎𝑛𝑑 𝑓1 are a first order linear function

which have 𝑝1 , 𝑞1 , 𝑟1 and 𝑝2 , 𝑞2 , 𝑟2 as linear parameters. So, a specification of each

layer is described as shown below:

• Layer 1: In the first layer, each node in this layer adjusts to a function parameter.

So, each node’s output is a membership degree of linguistic terms that is generated

Figure 3.24. General Structure of ANFIS base on Takagi–Sugeno

 65

by the membership functions inputs. Gaussian membership function in Eq. 3.25

is a membership example which can be utilized within the first layer:

𝜇𝐴𝑖(𝑥) =
𝟏

𝟏+|
𝒙−𝒄
𝒂
|
𝟐𝒃𝒊 , 𝑖 = 1,2,3, (3.25)

𝑄1,𝑖 = 𝜇𝐴𝑖(𝑥), 𝑖 = 1,2 (3.26)

𝑄2,𝑖 = 𝜇𝐵𝑖(𝑦), 𝑖 = 3,4 (3.27)

Where 𝜇𝐴𝑖(𝑥) and 𝜇𝐵𝑖(𝑦) are membership functions degree for both 𝐴𝑖 and 𝐵𝑖 (Figure

3.21) fuzzy sets respectively. While (a, b, and c} are the parameters of Gaussian

membership function that are used to adapt the membership function shape. All

parameters in this layer are referred to premise parameters.

• Layer 2: All nodes in this layer are non-adjustable or fixed nodes and each node

is denoted as Π. The nodes output represents the firing strength of each

constructed rule based on “min” or “prod” operator. Usually, Logical “AND” is

commonly utilized in this layer as shown in Eq. 3.28

 𝑄2𝑖 = 𝑤𝑖 = 𝜇𝐴𝑖 (𝑥) ∗ 𝜇𝐵𝑖 (𝑦), 𝑖 = 1,2

(3.28)

• Layer 3: Like layer 2, all layer nodes are non-adjustable or fixed nodes and the

nodes are denoted by N label. Each node is a determining the ratio between each

firing strength of the rule and the aggregation of all rules’ firing strengths. This

result is called a “normalized firing strength” which can be expressed by Eq. 3.29.

𝑄3,𝑖 = �̅�𝑖 =
𝑤𝑖

𝑤1+𝑤2
, 𝑖 = 1,2,3, (3.29)

where �̅�𝑖 represents the output of firing strength.

 66

• Layer 4: This layer is a defuzzification layer. Each node in this layer is an

adaptive node. The product of normalized firing strength of all rule sets that are

generated in layer 3 are done in this layer. The nodes calculate the parameters of

linear function (p, q, and r) as illustrated in Eq. 3.30. The Parameters in this layer

are known as consequent parameters.

𝑄4,𝑖 = �̅�𝑓𝑖 = �̅�(𝑝𝑖𝑥 + 𝑞𝑖𝑦 + 𝑟𝑖), 𝑖 = 1,2,3, (3.30)

Where “p”, “q” and “r” are adaptive consequent parameters.

• Layer 5: This layer consists of single non-adaptive node that performs the

summation task of all incoming data from layer 4 as shown in Eq. 3.31. The node

in this layer is labeled as

Q5 = ∑w̅fi =
∑ 𝑤𝑖𝑓𝑖𝑖

∑ 𝑤𝑖 𝑖
, i = 1,2,3, (3.31)

3.11.2.2. ANFIS Learning Algorithm

Neuro-adaptive learning method combines with a fuzzy logic system and ANN

algorithms to training the information that is extracted from provided data sets. It is

utilized to figure the parameters of membership function that enable the related

inference engine in a fuzzy system to follow the provided input/output data set. All

parameters related to membership functions are modified during the learning phase

(Jang, 1993; Kaynak et al., 1996).

To more effectively cooperate with real-world applications, the process of integrating

the learning algorithm with ANFIS architecture aims to regulate all adjustable

parameters and re-formulate the output of ANFIS in order to match the providing

training data sets. To get a better convergence rate, the hybrid ANFIS algorithm can

be trained by hybrid training techniques algorithms which comprising gradient descent

and least square algorithms can be utilized.

The linear least squares algorithm (LSM) is used in the forward pass to fetch the

optimal consequent parameter values on the layer 4, while gradient descent (GDM)

based on the back-propagation algorithm is provided in the backward pass to estimate

the method of modeling the input/output data by the fuzzy inference. The moment that

 67

the optimal values of consequent parameters are located, the backward pass begins.

During the backward pass, the calculated error is propagated inversely to the previous

layers and the premise parameters in layer 1 are modified by gradient descent method

(Jang, 1993; Aliev and Guirimov, 2014). Two passes of the ANFIS hybrid algorithm

are shown in Table 3.5

Table 3.5. Hybrid Learning Algorithm within ANFIS Algorithm.

 Forward pass Backward pass

Premise Parameters Fixed Gradient Descent

Consequent Parameters Least Squares Estimation Fixed

 68

Chapter 4 CHAPTER 4

ANFIS MODIFICATIONS

4.1. Introduction

In chapter 3, we presented a structure and hybrid learning technique background for

the Adaptive Neuro-Fuzzy Inference System (ANFIS) algorithm. In this chapter, we

will introduce two new modifications for ANFIS algorithm. The gradient descent

optimization algorithm known as Momentum factor algorithm is combined with the

learning algorithm of ANFIS. This optimization algorithm works to avoid stuck in

local minima and accelerate ANFIS algorithm to find the optimal solution. Whereas

the extending architecture of the standard algorithm is done in the second modification

level. This extending is achieved by adding a new compression layer in order to

optimize the adjustable parameters in the output layer. But, we cannot apply these two

modifications without writing our ANFIS algorithm that can accept the modifications

and compare its performance with the performance of Matlab toolbox.

4.2. Effect of Momentum on ANFIS algorithm

The optimization algorithms in neural networks like gradient descent optimization

algorithm are utilized to arrive a global minima by minimizing the error function. The

minimizing error function in the idle situation could be like the ball gradient in Figure

4.1.

 Figure 4.1. Gradient Descent Optimization .

 69

Thus, we are ensured to reach the optimal solution (global optimum) because of no

local minimum on the error surface where the optimization can get stuck. But in the

real-world, the surface of error is more complicated, it can be composed of many local

minima. Figure 4.2 is an example of such an error surface.

According to the Figure 4.2, the solution of the algorithm can easily fall and stuck in

some local minima (sub-optimal solution). In that time, we think that the algorithm

gets the global minima (final optimal solution). The momentum factor which has a

value between 0 and 1 plays a key role to avoid this situation. The momentum factor

tries to boost the steps size that are taken towards the global minima by jumping over

a local minima.

In our research and during the first modification, the momentum factor is merged

ANFIS algorithm through a backward learning pass to minimize the error and speed

up the training process. To associate a momentum factor to ANFIS algorithm, a

fraction “m” that represents a small value of momentum must be added to the equations

that are used to update weights and biases. To do that, we have to write our handwritten

ANFIS algorithm because the ANFIS toolbox functions in Matlab environment do not

support adding momentum factor and there is no way to do that. The handwritten

ANFIS algorithm helps the researcher to enhance the ANFIS functionality and

tracking it easily without relying on Matlab ANFIS-command. Figure 4.3 shows the

pseudo code of ANFIS algorithm and how can associate the momentum factor to the

ANFIS algorithm.

Figure 4.2. Global and Local Minimum.

 70

4.3. Performance of Modified Handwritten ANFIS Algorithm

In order to test the performance of our handwritten algorithm, three different types of

data sets are used. First of all, we will compare our algorithm with the ANFIS function

in Matlab toolbox. The optimal solutions of discrete and continuous algorithms and

applications and perform the data analysis can be achieved by Matlab toolbox

functions. The toolbox allows researchers to handle optimization tasks of any design.

So, comparing the performance of our handwritten algorithm with Matlab toolbox is

the best way to measure the performance of the algorithm. So, three different types of

data sets are used for this reason.

Set the type of membership function (Gaussian function)

Load initial premise parameters (a,b,c)

Load initial consequent parameters (p,q,r)

Load initial momentum factor (m)

Input the sensor data

Normalize the data

// start forward path //

While (error > threshold) then

 Generate the membership degrees for input

 Normalize and aggregate generated data

 Calculate the output of the algorithm

 Update consequent parameters

 + delta(error) * input data old=pnewp

+ delta(error) * input data old=qnewq

+ delta(error) old=rnewr

// start backward path //

// update premise parameters

momentum factor (m) + delta(error) + old=anewa

momentum factor (m) + delta(error) + old=bnewb

momentum factor (m) + delta(error) + old=cnewc

End while loop

Figure 4.3. Pseudo Code of the Proposed Algorithm.

 71

4.3.1. Testing ANFIS performance based on Global Ice Volume data set

The first data set consists of 219 samples for Global Ice Volume over the last 440,000

years. This data set is implemented in both ANFIS toolbox and handwritten

algorithms. The data set is divided into two folds comprise 70% of the overall data set

which represents 155 samples that are used for training both algorithms. While the

other fold is used for the testing phase and has 64 samples which represents 30% of

the data set. Figure 4.4 and Figure 4.5 show the results after implementing the Global

Ice Volume data set in both training and testing phases based on handwritten algorithm

respectively.

Figure 4.4. Training Algorithm based on Handwritten ANFIS.

Figure 4.5. Testing algorithm based on Handwritten.

 72

While Figure 4.6 and Figure 4.7 represent the results that are obtained based on ANFIS

function in Matlab toolbox.

Figure 4.6. Training Algorithm based on Matlab Toolbox.

Figure 4.7. Testing Algorithm based on Matlab Toolbox.

 73

Based on above figures that demonstrate the training and testing results of the Global

Ice Volume for both Matlab toolbox and handwritten ANFIS algorithms, we can easily

see all results are almost the same in both training and testing phases. Matching results

in both algorithms mean that our handwritten ANFIS algorithm works correctly and

arrives at a high optimization level. Table 4.1 and Table 4.2 summarizes all results in

term of MSE (Mean Squared Error), RMSE (Root-Mean-Square Error), Mean Error,

and STD (Standard Deviation).

Table 4.1. Training Results of Global Ice Volume.

Table 4.2. Testing Results of Global Ice Volume.

4.3.2. Testing ANFIS Performance based on Time Series Prediction

Recurrent Time Series Prediction (also known as Time Series forecasters) approach is

widely utilized in artificial neural networks especially in feed-forward networks that

Technique type MSE RMSE Mean STD

Matlab Toolbox 0.00097167 0.031172 1.1298e-08 0.031268

Handwritten Algorithm 0.0010108 0.031793 26553e-14 0.031891

Technique type MSE RMSE Mean STD

Matlab Toolbox 0.00087805 0.029632 0.0060321 0.029284

Handwritten Algorithm 0.00073277 0.02707 0.0035847 027088

 74

use a kind of sliding window for the input sequence. Market predictions, weather

condition predictions, and network traffic forecasting, stock market forecasting are

typical examples of the time series approach. Time series prediction approach is used

to predict the potential behaviour of the system in the future depending on current

information and the antecedent system state. A Recurrent Neural Network (RNN)

depends on the internal state (or internal memory) to handle sequences of inputs over

time. Eq. 4.1 shows this relationship.

𝑥 ̂(𝑡 + 1) = 𝑓(𝑥[𝑡], 𝑥[𝑡 − 1], 𝑥[𝑡 − 2], 𝑥[𝑡 − 𝑇]) (4.1)

Where T is the number of previous inputs (or time delay).

While the Figure 4.8 shows the general structure of the time series approach based on

tapped delay line.

 Now, our modified algorithm (ANFIS algorithm with momentum factor) can be

integrated with the time series approach in order to perform the data prediction of the

future behaviour of our hardware system (will be described in the next chapter). Figure

Figure 4.8. A Standard Structure of Time Series Prediction.

 75

4.9 is an example that shows the structure of ANFIS algorithm with the time series

approach (also known as Recurrent ANFIS).

Two different types of weather data sets that are collected from Chicago park based

on beach weather stations (Chicago, 2015b; Chicago, 2015a). These data sets

(temperature and humidity) are utilized to measure the performance of our modified

algorithm. As we did in the previous section, we will compare all the results with the

ANFIS-commands in Matlab Toolbox. Every set of data has 13916 elements that are

taken from 5/22/2015 to 12/31/2015.

• Temperature data set of Chicago park

Figure 4.10 and Figure 4.11 show training 70% and testing 30% results of temperature

data set based on Handwritten Algorithm

Figure 4.9. A General ANFIS Algorithm based on Time Series Prediction.

 76

Figure 4.10. Training of Chicago Park Temperature Set Using Handwritten Algorithm.

While Figures 4.12 and 4.13 show the results (70% training and 30% testing) of the

same data set based on ANFIS-commands in Matlab Toolbox.

Figure 4.11. Testing of Chicago Park Temperature Set Using Handwritten Algorithm.

 77

Figure 4.12. Training of Chicago Park Temperature Set using Matlab.

Figure 4.13. Testing of Chicago Park Temperature Set using Matlab.

 78

Table 4.3 summarizes all results (training 70% and testing 30%) in terms of mean error

for temperature data set for both algorithms.

Table 4.3. Training and Testing results of Chicago Park Temperature data.

• Humidity data set of Chicago park

Figure 4.14 and Figure 4.15 show training (75%) and testing (25%) results of

temperature data set based on Handwritten Algorithm.

Technique type Training Testing

Matlab Toolbox 3.7802e-11 0.013204

Modified Algorithm 1.3943e-14 0.0010988

Figure 4.14. Training of Chicago Park Humidity Set using Handwritten .

 79

While Figures 4.16 and 4.17 show the results of the same data set based on ANFIS-

commands in Matlab Toolbox.

Also, Table 4.4 summarizes all results (training 75% and testing 25%) in terms of

mean error for humidity data set for both algorithms.

Figure 4.16. Training of Chicago Park Humidity Set using Matlab Toolbox.

Figure 4.15. Testing of Chicago Park Humidity Set using Handwritten Algorithm.

 80

Table 4.4. Training and Testing results of Chicago Park Humidity data.

Now, the comparison in both Table 4.3 and Table 4.4 summarize the results in all the

above figures that are related to temperature and humidity data sets in terms of mean

error. Integrating momentum factor and time series approach with handwritten

algorithm provides very high accuracy in both training and testing phases compared

with ANFIS-commands in Matlab toolbox.

Also, in terms of speed (time of execution), the modified algorithm minimizes the time

execution that required for training algorithm. Adding momentum factor to the ANFIS

algorithm helps to reduce the training time about 3.2-time from 3.675 to 1.1921 (in

seconds) for temperature data set and from 3.6427 to 1.1895 (in seconds) for humidity

data set. Table 4.5 demonstrates the time execution based on two algorithms.

Technique type Training Testing

Matlab Toolbox 9.3506e-11 0.062509

Modified Algorithm 7.4105e-15 0.001184

Figure 4.17. Testing Chicago Park Humidity Set using Matlab Toolbox.

 81

 Table 4.5. Training Speed (Execution Time) in Sec.

While Table 4.6 shows the time of execution that is needed for testing both algorithms.

According to the table, the time execution for both algorithms is almost the same. The

time of execution equality in both algorithms is happened because of in the test phase,

there is no need for any update parameters or minimize the overall error inside the

algorithms. So, the test algorithms take a little time.

 Table 4.6. Testing Speed (Execution Time) in Sec.

Finally, Figure 4.18 and Figure 4.19 show the effective momentum factor on the

training our modified algorithm by using temperature data set of Chicago park.

According to the figures, the mean square error with momentum factor is (0.9058)

after 40 iterations, while as equal (23.0417) after the same number of iterations without

adding momentum factor to the ANFIS algorithm.

Execution Time in Sec (Training)

Data Type ANFIS Toolbox Modified Algorithm

Temperature 3.675 1.1921

Humidity 3.6427 1.1895

Execution Time in Sec (Testing)

Data Type ANFIS Toolbox Modified Algorithm

Temperature 0.0124 0.011

Humidity 0.0122 0.012

 82

Figure 4.18. Training Modified Algorithm Without Momentum.

Figure 4.19. Training Modified Algorithm with Momentum.

 83

4.4. Extended Architecture of ANFIS Algorithm

As we said in section 3.10.2.2, the ANFIS algorithm is trained by hybrid training

techniques algorithms which comprising gradient descent and least square algorithms.

each technique adjusts its parameters in a separate phase. The number of parameters

in each phase is not constant. It depends on the number of transfer functions that are

used at each level.

In this contribution, we will focus on linear parameters in layer 4 that are adjusted by

a linear least square algorithm (LSM). these Parameters are known as consequent

parameters and can be defined based on Eq. 4.2.

 𝑄4 = 𝑝𝑖𝑥 + 𝑞𝑖𝑦 + 𝑟𝑖 , 𝑖 = 1,2,3, (4.2)

Where “Q4“ is the output of layer 4, and “p”, “q” and “r” are adaptive consequent

parameters.

The number of consequent parameters is defined based on the number of rules that

identify by the user according to the complexity of the application. Figure 4.20 shows

an example of ANFIS which has 9-rules in layer 3. Each rule is associated with one

linear equation with a 3-adjustable coefficient. So, we have a 27-linear coefficient that

should adapt during training iterations.

Figure 4.20. ANFIS Algorithm with 9-Rules.

 84

Another example of ANFIS algorithm that has 24-Rule associated with 81-linear

coefficient can be found in Figure 4.21. We can easily notice that increasing the

number of fuzzy rules led to increasing the number of linear parameters in layer 4 of

ANFIS algorithm.

Increasing the number of nodes in layer 2 (Figure 4.20) will help to achieve more

accuracy but at the same time, it is a method to waste the system resources and

consume more execution time when implemented in real-time applications because of

the large number of linear parameters in the next layers that should calculate and adjust

during the training process especially when designing a hardware version of this

algorithm.

For this reason, we proposed a method to minimize the number of adjustable

parameters at layer 4. To do that, another normalization layer after layer 4 is added to

compress and minimize the number of linear equations without effect on the

performance of the system. Since Figure 4.20 has 9-rules and 9-linear equations with

27-parameters, the normalization weight which is generated by layer 3 will be

separated into several parts based on the node numbers in the following layer (layer

4). As an example, we will put 4-nodes in the new normalization layer. Therefore, the

Figure 4.21. ANFIS Algorithm with 24-Fuzzy Rule.

 85

original weight in layer 3 will be divided into 4-part and each part will perform the

aggregation process of all weights. Figure 4.22 illustrates this idea.

According to Figure 4.22, we have only 4-linear equations with 12-coefficient instead

of 9-linear equations with 27-coefficient in Figure 4.20. We can use the equation Eq.

4.3 to calculate the output of the next layer.

 𝑤𝑐 = ∑ �̅�𝑖𝑗𝑖 (4.3)

Where:

wc: is the new compressed weight,

i: is the number of nodes in the new proposed layer and,

j: is the number of nodes in the previous layer (layer 4).

 As a result, we minimize the number of operations at out the last two layers (layer 5

and 6 in Figure 4.22), reduce the time of execution, and hardware resources when

implementing it in real-time environments.

Figure 4.22. A Modified ANFIS Algorithm with a New Normalization Layer.

 86

4.4.1. Test the Performance of Extended ANFIS Architecture

The evaluation of performance and speed of modified ANFIS in training and testing

phases are done in this section. To training and testing the algorithm, humidity and

temperature data sets for Izmir city/Turkey for 10-years ranging from 01/10/2006 to

31/12/2016 have been downloaded based on WU weather underground website. Each

set of temperature and humidity consist of three groups. Each group has 365 elements

as shown below:

• Sets of maximum values of temperature and humidity for each day.

• Sets of minimum values of temperature and humidity for each day.

• Sets of average values of minimum and maximum of both temperature and

humidity for each day.

Now, we will use the ANFIS structure in Figure 4.23 to test the performance of the

extended algorithm in terms of execution time and mean square error.

First, sets of average values of both temperature and humidity are used to train the

modified algorithm and then, the testing of the algorithm is done based on both

maximum and minimum sets of temperature and humidity information. All results are

compared with ANFIS-commands in Matlab toolbox. In the section below, we will list

the training and testing results based on maximum values of temperature and humidity

sets, while minimum values of temperature and humidity data sets will be put in the

appendix A.

Figure 4.23. Extended ANFIS Architecture based on Recurrent .

 87

4.4.1.1. Training the Modified Algorithm and ANFIS Toolbox

The average of maximum temperature and humidity data set from 01/10/2006 to

31/12/2016 is calculated in order to train the extended ANFIS algorithm. Figure 4.24

shows the Training Results for these data sets.

The results in Figure 4.24 represent the training of maximum temperature data set

based on modified ANFIS (upper part) and ANFIS toolbox (lower part) and these

results are achieved when using the following initial conditions for both algorithms:

• 3-Gaussian membership functions for each input.

• 9-Fuzzy rules that have a direct connection to equivalent normalization nodes.

• 4-linear equations with 12-adjustable linear coefficients.

• Adjustable momentum factor.

• 5000-training iterations.

• Small randum initial values for all parameters.

Figure 4.24. Training Temperature Set using Modified ANFIS and ANFIS Toolbox.

 88

 While Figure 4.25 represents the training of maximum humidity data set for both

algorithms.

. Testing Algorithms Using Maximum Temperature and Humidity Sets

The maximum temperature and humidity data sets are used to test the performance of

the modified algorithm and compare the results with the ANFIS toolbox in Matlab.

Figure 4.26 shows the testing results of the maximum temperature of the modified

algorithm (upper part) and the ANFIS toolbox (lower part).

Figure 4.25. Training Humidity Data using Modified ANFIS and ANFIS Toolbox.

 89

While Figure 4.27 shows the testing results of the maximum humidity data set for both

algorithm. All the above training and testing results are summarized and listed in

Figure 4.28 in term of Mean Square Error (MSE). According to Figure 4.28, high

accuracy is achieved by the modified algorithm compared with the ANFIS toolbox in

both training and testing phases. Adding another layer in order to minimize the number

of linear parameters does not affect the overall performance. Finally, the execution

time of both training and testing phases based on the two methods are calculated in

Figure 4.29 and Figure 4.30 respectively. The modified algorithm provides very high

speed in the training phase compared with ANFIS toolbox and good speed in the

testing phase.

Figure 4.26. Testing Temperature Data using Modified ANFIS and ANFIS Toolbox.

 90

Figure 4.27. Testing Temperature Data using Modified ANFIS and ANFIS Toolbox

Figure 4.29. MSE of Training /Testing of Maximum Temperature and Humidity.

 91

Figure 4.30. Execution Time of Training Phase.

Figure 4.31. Execution Time of Testing Phase.

 92

Chapter 5 CHAPTER 5

HARDWARE IMPLEMENTATION

5.1. Introduction

In this chapter, we will introduce the hardware implementation of single and multiple

cores of modified ANFIS algorithm in the FPGA device. Also, we will introduce a

short introduction about FPGA evaluation kit and the required software tools that used

to implement the modified algorithm.

5.2. Hardware tools

In general, there are three types of FPGA tools that are used to implement any

algorithm and design in the FPGA environment. In this section, we are going to give

a short definition of each of them.

5.2.1. Xilinx Vivado Design Suite

For synthesis (compile) and perform analysis of any FPGA design (HDL design),

Xilinx has presented a Vivado Design Suite. This software tool is a kind of an

Integrated Design Environment (IDE). Vivado Design Suite helps developers and

designers to perform several tasks such as system time analysis, Register Transfer

Level (RTL) diagrams evaluation, design simulation and program the target FPGA

device. Also, the software provides a tool for compiling and validating C-based

algorithmic hardware cores (IP) based on Electronic System Level (ESL) that provides

a design abstraction and early design implementation to enable wrapping and

integrating both RTL IP and algorithmic-based IP for reuse (Xilinx Inc. SDK, 2016).

Figure 5.1 (Synthesis, 2016) shows the tasks that are done by Vivado Design Suite.

https://infogalactic.com/info/Static_timing_analysis
https://infogalactic.com/info/Register_transfer_level

 93

5.2.2. Xilinx Software Development Kit (SDK)

Building software platforms of Xilinx FPGA devices can be done by Xilinx Software

Development Kit (SDK) tool. SDK tool deals with embedded hardware designs that

are created based on Vivado design suite tool. Several advantages can be achieved by

SDK tool such as (Xilinx Inc. SDK, 2016):

• Compilation environment and code editor based on C/C++ languages.

• Error detection.

• Project management.

• Automatic Make-file creation.

• Debugging and describing of embedded design.

• Source code control and management.

Figure 5.2 describes the necessary steps to build any software platform of Xilinx FPGA

devices.

Figure 5.1. Xilinx Design Flow.

 94

5.2.3. Vivado High-Level Synthesis (HLS)

High-Level Synthesis (Vivado HLS) from Xilinx is a software that is used to generate

an IP core-based hardware design. This tool allows algorithms that are written by

System C, C++, and C languages to be targeted into all Xilinx FPGA devices directly

without any need to manually build RTL design(Synthesis, 2016).

5.3. Hardware Design

The modified ANFIS algorithm that was presented in Chapter 4, has been implemented

on the seventh generation of Xilinx FPGA device. We utilized the Xilinx Zynq

xc7z020 evaluation kit to be our hardware platform. To achieve our implementation,

our project is divided into multi-stages:

• First stage: The first stage in our design implementation depends on Vivado High-

Level Synthesis tool to build a specific soft IP core for the hardware version of our

modified ANFIS-based time series algorithm based on a small C language that is

suitable for programming limited hardware resource systems such as embedded

systems and microcontrollers. In order to economize the hardware resources that

are used by our IP core, we will use a 16-bit fixed point approach and some directive

functions such as (data flow, loop merge, and pipeline) to optimizing the hardware

ANFIS core. After that, we will export the hardware ANFIS core and associated

files from Vivado HLS to the Vivado Design Suite in order to bind it to other

Figure 5.2. SDK development Flow.

https://infogalactic.com/info/Register_transfer_level

 95

hardware components in the FPGA board. Figure 5.3 shows a single ANFIS IP core

(denoted by red rectangular) which is connected to other system components.

According to Figure 5.3, several main components are required for our design to work

correctly as shown below:

• Dual-core ARM Cortex-A9 as a main system processor.

• One soft IP core for modified ANFIS algorithm.

• One block of memory and its controller to store the data that come from sensors.

• One block of memory and its controller to store the data that will be sent to PC.

• Reset system block and system interconnections

Figure 5.4 describes utilization resources that required to build and connect a single

ANFIS core in Zynq xc7z020 platform.

Figure 5.3. Hardware Design with a Single ANFIS IP.

 96

The Zynq xc7z020 evaluation kit comprises (Xilinx, 2018; Xilinx Inc. SDK, 2016)

53200-LUT, 106400-FF, 140-BRAM,32-BUFG and 220-DSP block. While the

implementation needs:

• 14% (7312) of LUT (Lookup Table) and 2% of LUTRAM (RAM Lookup Table).

• 6% (6590) of FF (Flip-Flop).

• 1% (2) of BRAM (Block RAM).

• 11% (24) of DSP Block (Digital Signal Processor)

• 3% (1) of BUFG (Global Buffer)

Logic resources of modified ANFIS algorithm are compared with some existing

parallel hardware structures of ANFIS algorithm (Brassai, Hajdu, Tamas, and Bakó,

2015; Mas and Brassai, 2015; Gómez-Castañeda, Tornez-Xavier, Flores-Nava,

Arellano-Cárdenas, and Moreno-Cadenas, 2014) that implemented it in various FPGA

devices. Table 5.1 lists hardware utilization resources for different approaches.

Figure 5.4. The Utilization Hardware Resources for Single ANFIS IP.

 97

According to Table 5.1, our modified algorithm reduces the number of logic circuits

that are used by modified ANFIS core like DSP block, size of RAM, and the number

of LUT when compared with parallel ANFIS structures. Also, the proposed ANFIS

core requires additional FF logic compared with the traditional parallel

implementation. Additional numbers of FF logics that are used by modified algorithm

provide high speed compared with other hardware implementation and more

convenient for real-time applications.

• Second stage: Based on Xilinx Vivado Suite tool the overall hardware design has

built. The ensemble of hardware ANFIS-IP cores in Figure 5.5 composes of 6-

ANFIS cores. ANFIS cores have been trained to deal with contrastive dataset

(minimum and maximum humidity and temperature values). Each core receives the

real data from a specific connected sensor. In our implementation, we will connect

2-set of sensors (3-sensor for temperature and 3-sensor for humidity). Each sensor

is connected to equivalent ANFIS core through external co-processor (we will

explain this co-processor in the next chapter). So, the first 3-ANFIS cores are

connected to different 3-humidity sensors while other 3-temperature sensors are

connected to remaining 3-ANFIS cores. All received data from sensors will be

stored in a temporary block RAM in order to perform pre-processing tasks and

prepare these data to be suitable for each hardware core. Also, we will use one block

RAM to store all results and prepare them to the next processing stage. Figure 5.5

illustrates this hardware design.

Table 5.1. Comparison of Hardware Resources for the Different Approaches.

 98

The hardware resources required for the design in Figure 5.5 are calculated in Figure

5.6.

Figure 5.5. Hardware design with Multi-ANFIS IP core.

Figure 5.6. Hardware Resources for Multi-ANFIS Cores.

 99

• Third stage: This stage is done based on Xilinx Software Development Kit (SDK)

tool. In this stage, all drivers, system parameters, and cores initialization of ANFIS

algorithms are prepared in order to evaluate the performance of the system. All

received data from Arduino co-processor are stored in system memory (Block

Memory in Figure 5.5) and then, the ARM Cortex-A9 processor (main system

processor) fetchs the data from block memory in order to handle the data pre-

processing tasks. The data pre-processing can be divided into several sub-steps:

1. Data classification: All sensing real data (temperature and humidity) that are sent

by co-processor are associated with the unique 8-bit ID. The main system

processor performs the data classification task according to its ID using a basic

classification algorithm (if-then condition approach). Then, the data that are

classified are stored in different memory bank within the main system memory.

2. Data normalization: which scales all sensing data in the range [0,1]. In our thesis,

the formula in Eq. 5.1 is used:

𝑥𝑛𝑒𝑤 =
𝑥𝑖𝑛𝑝𝑢𝑡− 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥− 𝑥𝑚𝑖𝑛
 (5.1)

 Where xmax and xmin are the maximum and minimum values of the sensing data

3. Data representation: Cortex-A9 processor supports different data types such as

floating point and fixed-point data representation. So, we need to convert all

sensing data to unsigned data representation that acceptable by both IP cores and

memory based on IEEE754 standard. In our case, the sensing data are converted

from a 16-bit fixed point to unsigned 16-bit data representation.

4. Data fuzzification: To reduce the number of resources that are utilized by single

ANFIS core, we split the layer one (fuzzification layer) from ANFIS algorithm

and implement it within the Cortex-A9 processor instead of ANFIS core. Splitting

the ANFIS tasks between ANFIS core and Cortex-A9 plays a key role to reduce

the number of resources that are used by the Zynq programming logic (PL) and

use the power of Cortex-A9 processor in Zynq processing system (PS). This step

 100

decreases the number of DSP block by 55% when compared with (Mas & Brassai,

2015) that only works which used a similar approach.

5. Data routing: during this step, the Cortex-A9 processor forwards the classified

data to equivalent ANFIS cores and then transfers results to the PC via Ethernet

controller. Figure 5.7 illustrates the above processing steps.

Figure 5.7. Processing Steps that Implemented by Cortex-a9 Processor.

 101

5.4. Hardware Test and Results

Matlab Implementation results that are obtained in chapter 4 are used to test evaluate

and compare the performance of the hardware design with the ANFIS

implementations in Matlab environment (software version) in term of mean square

error (MSE) and mean of error. Figure 5.8 and Figure 5.9 show comparison between

hardware and software result of both maximum temperature and humidity data

respectively.

Figure 5.8. Hardware and Software Comparison of Maximum Temperature.

 102

Figure 5.10 and Figure 5.11 show comparison between hardware and software result

of both minimum temperature and humidity data respectively.

Figure 5.9. Hardware and Software Comparison of Maximum Humidity.

Figure 5.10. Hardware and Software Comparison of Minimum Temperature.

 103

Finally, Table 5.2 lists the comparison values between hardware and software versions

in term of the mean of error and the mean square error.

According to Figures 5.8 to Figures 5.11 and Table 5.2, we can see easily, the hardware

version gives very good results in terms of the mean of error and the mean square error

and there are very small differences between hardware and software versions in both

temperature and humidity data sets. Normally, these small differences appear when

using any simulation software compared with hardware systems.

Table 5.2. Comparison between Hardware and Software versions.

Figure 5.11. Hardware and Software Comparison of Minimum Humidity.

 104

Chapter 6 CHAPTER 6

SMART AUTOMATION SYSTEM

6.1. Introduction

In this chapter, hardware design of a smart automation system platform hardware is

presented and implemented. The hardware system has two main units: the first unit is

The Aggregation unit. It is designed and controlled by Arduino microcontroller that is

used as system co-processor. This unit is responsible for real data acquisition from all

sensors that are connected to Arduino board, while the second unit is the Multi-

function. This unit is designed and implemented based on the Xilinx FPGA Zynq-7

ZC702 evaluation kit. All data analysis tasks like data classification, prediction of data

future behaviour, and system decision-making are performed by this unit. At the end

of this chapter, and in order to observe and evaluate all information that are received

from the hardware system, a special Graphic User Interface (GUI) based on Matlab

environment is designed.

6.2. Principle of Smart Automation System

A smart automation system makes the control of various applications and devices in a

lot of fields more convenient and quite simple. In general, an automation control

system can be utilized for different applications such as weather conditioning, heating,

security systems, lighting, and a lot of smart devices.

Mainly, any smart automation system is constructed by actuators, sensors, co-

processor unit (microcontroller in most cases), and controlled devices. Different types

of real information like light, gas, humidity, temperature, etc. are collected by system

sensors. Then, the co-processor sends all sensing data to the main system controller.

The co-processor unit permits to bind different actuators and sensors through analog

or digital devices. The elements of smart automation system include:

 105

• Controlled Devices:

They represent the wide range of smart appliances which can be connected and

controlled by co-processor units such as power door locks, door openers, lighting

systems, audio and video systems, sprinkling systems, home theater equipment,

telephone systems, and other tremendous kinds of equipment.

• Sensor Devices:

Sensors devices are used to collect different types of real data such as light, sound,

humidity, temperature, etc. The system co-processor mutates these data to another

form which can be utilized by the controller to generate appropriate system decisions

depend on specific conditions.

• Interfacing of I/O Devices:

The interface of I/O devices provide the logical or physical connection links between

the system controller and all connected devices in the hardware system. The interface

circuits make different devices convenient with the logical and physical architecture

of the system. The interface circuit of I/O devices can be isolated or integrated with

the system controller. Most of the industrial manufacturers that generate I/O interface

circuits utilize standardized protocols which permit products from many

manufacturers to interact with each other.

• System Controllers:

System Controller implements the intelligent control tasks depend on data which arrive

from different sensors. Intelligent tasks which are performed by the system controller,

have a wide scope which can be laid from simple to complex tasks. Sufficient data

must be provided to the system controller to drive all controlled devices. Providing

data can arrive from sensors, timers, user, control program, or any combination of

them. Figure 6.1 presents the main parts of an intelligent control system.

 106

A special and simple graphic user interface is used to react the user with the system

controller and monitor all arrived information or send user commands to the system

about certain conditions. However, in some advanced automation systems supply

intelligent decisions without the need to any graphical user interfaces.

Power consumption, response time, cost, and flexibility are most challenges that any

Automation Systems face. So, combining Artificial Intelligence (AI) systems with

embedded systems based on programmable devices such as FPGA automation control

system can face all the above challenges.

FPGAs provide a significant processing system, depend on application-specific

integrated circuits. FPGA devices have powerful mathematical and rapid acceleration

components that qualify these devices to perform simple and more complex

algorithms.

6.3. Designing of Automation Control System

The proposed hardware system aims to provide an automation control system that is

flexible, high-efficient and fast. The proposed system structure mainly consists of three

units:

Figure 6.1. Main parts of Smart Automation System.

 107

1) Aggregation Unit: This unit is implemented based on Arduino microcontroller

and acts as a system co-processor. The unit performs the data aggregation task

from different analog and digital sensors

2) Multi-function Unit: Multi-function Unit is designed and implemented by

Xilinx FPGA evaluation board and acts as the main system controller.

3) Communication Unit: It is used to connect the Multi-function unit, the

Aggregation Unit, and Personal Computer (PC).

6.3.1. Aggregation Unit

As we said before, the aggregation data from different sensors are done by this unit.

So, 3-sets of different sensors are connected to this unit based on the Arduino Uno

microcontroller. Each set consists of:

• 3-analog gas sensors

• 3-digital temperature sensors and,

• 3-digital humidity sensors

The microcontroller collects the data from all these sensors and associates each byte

of sensing data with a special 8-bit ID. After that, the Arduino re-arrange all data and

generates the Ethernet message format in order to forward data to the Multi-function

unit. Figure 6.2 demonstrates the Ethernet message between Multi-function and

Aggregation units.

Figure 6.2. Ethernet Message between Multi-function and Aggregation.

 108

According to the Figure 6.2, we used 27-bytes in payload field within the Ethernet

message format. The payload can be divided into three that are distributed on three

groups of sensors in form of:

• 8-bit ID / 8-bit temperature sensor values,

• 8-bit ID / 8-bit humidity values, and

• 8-bit ID / 16-bit gas sensor values.

 A 6-byte is used in the beginning to provide system time and date in the form of:

• hour: minute: second for system time and,

• day: month: year for date.

6.3.2. Multi-function unit

The Multi-function unit is the second unit in our hardware design. This unit is

designed based on Vivado HLS V2016.1, Vivado Design Suite V2016.1, and Vivado

SDK V2016 and targeted at the Xilinx Zynq-7 ZC702 evaluation kit. The Multi-

function unit is obtained and the sensing data from the Aggregation Unit and starts to

perform multiple tasks and data analysis on the receiving data. These tasks include:

• Data Classification,

• Prediction of future values based on Modified ANFIS Algorithm,

• System Decision-making.

• System Fault Alerts.

Figure 6.3 shows the Multi-function unit based on Vivado Design Suite.

 109

Three main parts are included in the Figure 6.3 and denoted by the labels as shown

below:

• The Dual-core SYNQ Cortex-A9 Processor: This is the main system controller.

The initialization of hardware platform, implements and controls all tasks within

this unit are done by this processor which acts as a main system controller. The

flowchart in Figure 6.4 explains all tasks that are executed by SYNQ processor.

Figure 6.3. Hardware Design within the Multi-Function.

 110

The neuro-fuzzy prediction task in the above flowchart is implemented by the modified

ANFIS algorithm based on time series approach for both temperature and humidity

data. While the classification task is done according to:

1. Types (gas sensors, humidity, and temperature),

2. Values (extreme, very high, high, moderate, and low), and

3. Locations (outside or inside the home).

The last task is system decision making. This task is done based on:

1. Light adjuster,

2. Air conditional adjustment, and

3. System Alert.

Figure 6.4. The overall tasks are executed by Cortex-A9.

 111

• ANFIS Hardware Cores: As we said in the previous section, our system design

includes 3-humidity and 3-temperature sensors linked to the aggregation unit and

the prediction processes are performed on the data coming from these sensors.

The prediction results are sent back to the system processor to prevent any unusual

event in the automation control system. For this reason, the designing system has

6-ANFIS cores. Each core is allocated to the particular sensor.

• General Purpose I/O Ports (GPIO): GPIO is the last block in the Multi-function

unit. The main processor will evaluate all data (original data and results) in order

to generate the final decisions and the system fault alerts (4-bit binary code is used

to represent each one). The processor will send those codes to the GPIO block.

Table 6.1 and Table 6.2 explain how can represent the system fault alerts and decisions

by 8-bit binary codes respectively.

The generated 8-bit binary code is divided into two parts: the codes in Table 6.1

represent the Most Significant 4-bit (MS4B) which is used for the system actions,

Table 6.1. System Actions.

Table 6.2. System Fault Alerts.

 112

while the codes in Table 6.2 represent the Least Significant 4-bit (LS4B) for the system

fault alerts.

The Least Significant 4-bit (LS4B) in Table 6.1 are forwarded to the J62 headers in

the Xilinx Zynq-7 ZC702 evaluation kit. The system processor sends the system

actions commands as a 4-bit to the J62 header.

Figure 6.5 illustrates the pseudo code of the system actions based on 4-bit commands

that can be achieved.

Initialization of maximum threshold temperature value

Initialization of minimum threshold temperature value

Initialization of maximum threshold humidity value

Initialization of minimum threshold humidity value

 Initialization of gas threshold value

Initialization of time threshold value

Recieve the data from Arduino

// start data processing

while (data is available) then

// deal with temperature sensors

for (each temperature sensor) do

 if (temperature value > maximum threshold) then

 Increase Fan Speed: Code=0100

 if (temperature value < minimum threshold) then

 Decrease Fan Speed: Code=0100

end for loop

// deal with humidity sensors

for (each humidity sensor) do

 if (humidity value > threshold) then

 High Humidity Alert: Code=1000

end for loop

 // deal with gas sensors

for (each gas sensor) do

 if (gas value > threshold) then

 Gas Alert: Code=0001

end for loop

Initialization of maximum threshold temperature value

Initialization of minimum threshold temperature value

Initialization of maximum threshold humidity value

Initialization of minimum threshold humidity value

 113

While Figure 6.6 shows 4-LED interfacing to the J62 header in FPGA board.

6.3.3. Communication Unit

The Communication Unit is the last unit in our hardware design. Basically, this unit is

implemented by a special library known as Lightweight IP (lwIP) that is used by

Gigabit Ethernet Controllers (GEM) within Zynq-7 ZC702 board. The lwIP library is

a TCP/IP networking stack and an open source that is used for embedded systems. The

Figure 6.6. The Interface of the J62 Header.

// Continue //

// deal with lighting

If (time: hour > threshold) then

 Lighting: Turn-On: Code=0010

 Lighting: Turn-Off: Code=0011

end while loop

end while loop

De-normalize the output data

Figure 6.5. Pseudo Code of the System Actions.

 114

Xilinx (SDK) provides and customizes this library to work on different Xilinx

embedded system environments such as Xilinx ARM-based Zynq-7000, PowerPC

hard processor, or soft MicroBlaze-based processor (Xilinx, 2016). The lwIP library

can perform the following protocols(Macmahon & Cherukupaly, 2014):

• Internet Protocol (IP)

• Transmission Control Protocol (TCP)

• User Datagram Protocol (UDP)

• Address Resolution Protocol (ARP)

• Dynamic Host Configuration Protocol (DHCP)

• Internet Group Message Protocol (IGMP)

• Internet Control Message Protocol (ICMP)

The lwIP library helps to provide networking capability to the FPGA embedded system

and minimize the number of resources that are used to achieve a network TCP stack.

Now, the main goal of the Communication Unit is to connect the multi-function unit

to the aggregation unit and forward data to the user interface panel.

To achieve this goal, we develop a new version of Lightweight IP (lwIP) library that

supports multi-server and multi-client devices by combining between a standard client

version and a standard server version in a single library-based FPGA device that ready

to use by researchers in IoT applications. The newly developed library is modified

based on User Datagram Protocol (UDP).

. Xilinx Adapter Functions

The Xilinx adapters-based SDK tool provides multiple functions in order to simplify

the implementation of the lwIP Application Programming Interfaces (lwIP APIs) that

are used to modify the Communication Unit. The lwIP library provides two different

APIs: RAW mode and Socket mode. In our thesis, we will focus on RAW mode which

is callback based. This mode provides a perfect performance at the price of

compatibility compared with other TCP networking stacks. In this mode, API gets

direct access into the TCP stack and there is no needed to additional socket layer

(Xilinx, 2016; Macmahon and Cherukupaly, 2014) as explained below:

 115

Figure 6.7. Initialization of the Lwip Functions.

Figure 6.8. handling the system interrupt by lwIP library.

• void lwip_init()

This function provides the initialization of the lwIP functions for the data structures.

This function replaces specific calls to initialize system memory, pbufs, UDP, IP, and

TCP layers. Figure 6.7 shows the callback of this function.

The xemac_add function supplies a unified interface for Xilinx EMAC IP.This

function covers the lwIP: network interface (netif_add), IP address (ipaddr), gateway

IP address (gw), ethernet address MAC address(mac_ethernet_address), and memory

base address of the MAC address(mac_baseaddr).

• void xemacif_input(struct netif *netif)

This function is used to handle the system interrupt in order to put the arrived data

packets in a queue, while the xemacif_input function moves those packets from the

queue, and presents them to lwIP. Figure 6.8 shows this process.

The pseudocode in Figure 6.9 shows the initialization structure of the RAW API that

we are used in this thesis.

 116

 Several sequence functions are used to establish the connection between the server

and client devices based on this library. These functions are used to create a TCP

connection as shown in Figure 6.10.

Figure 6.9. Initialization Structure of the RAW API.

 117

Figure 6.10. Establishing the Connection based on Lwip.

Figure 6.11. Data Arrived and Received Callbacks.

The accept_callback function is called automatically when the connection is accepted,

because the server device needs to reply only when data arrives. At this time, the

function recv_callback is called in order to send the data to the other device as

explained in Figure 6.11.

The flowchart in Figure 6.12 shows all functions that are required to establish the mult-

server and multi-client based on Lwip.

 118

According to Figure 6.12, the Dual-core SYNQ Cortex-A9 Processor begins as system

server which continuously listens to received sensing data from the different sensors

in the Aggregation Unit. Then, the Processor changes its status from server to UDP

client to send all data to the user interface panel-based Matlab Graphic User Interface

(GUI) after processes it.

Finally, Figure 6.13 shows the complete proposed system design that includes all

system units.

Figure 6.12. Modified LWIP based on User Datagram Protocol.

 119

6.4. Experimental Results

The overall hardware design is tested and evaluated during all implementation levels

to validate the performance of the system. The data acquisition- based Arduino Uno

kit is done every 15-minute and then the Arduino microcontroller forwards the sensing

data to the Zynq-7 ZC702 board through the Ethernet cable. Figure 6.14 presents the

Aggregation unit and how the system’s sensors are connected to the Arduino Uno

board. According to Figure 6.14, it includes:

• Arduino Uno kit.

• DS3231 Real Time Clock (RTC) module which supplies a time system.

• 3-MQ2 Gas Sensors.

• Arduino Ethernet Shield-2 is utilized to provide the network capability to the

Arduino Uno controller in order to connect the Arduino Uno board (Aggregation

Unit) to the FPGA evaluation kit (Multi-function unit).

Figure 6.13. Complete Proposed Hardware System.

 120

• 3-DHT11 Temperature

• 3-DHT11 Humidity sensors.

Figure 6.15 shows how the Arduino board connects to Xilinx Zynq-7 ZC702

evaluation kit through the Ethernet cable.

Figure 6.14. Interfacing Arduino with the Sensors.

Figure 6.15. The Connection between Arduino Board and FPGA.

 121

To monitor and evaluate information that arrives from hardware system units, a Matlab

GUI that acts as a user panel is built for this purpose. based on the environment is

designed. The user panel is demonstrated in Figure 6.16.

Figure 6.11 includes five main parts which are highlighted and numbered by the red-

color as illustrated below:

• Part 1: This part is used to display the connected sensors and its ID.

• Part 2: This section is used to monitor all sensing data that come from sensors

and the prediction of future values of humidity and temperature.

• Part 3: Classification of each group of data according to its type and value and

provide the percentage for each value is done in this part.

• Part 4: The information of date and time (real-time clock) is displayed here.

• Part 5: The last part is used to give information about the system alerts colors.

The green color is utilized for on-line sensors, while yellow color is utilized for

gas detector alert. Finally, the red color is used to alert for off-line sensors.

Figure 6.17 shows an example of high-level gas detector and humidity/temperature

sensors in the off-line state (disconnected).

Figure 6.16. System Graphic User Interface.

 122

Other example is presented in Figure 6.18 when a high-level gas is detected while

other sensors work properly.

Compared with existing implementation of automation control systems that related to

our approach, we can divide them into two group:

Figure 6.17. High-level Gas Detector and Temperature/Humidity in the Off-line State.

Figure 6.18. An Example of High-level Detection.

 123

1. The hardware implementations in the first group are designed and implemented

systems are based on traditional microcontrollers(Kumar, Shegokar, Chouhan, and

Iqbal, 2018; Asadullah and Raza, 2016) and AI (Artificial Intelligent) algorithms

the designers are integrated with these systems in order perform data analysis and

smart self-decision-making like some commercial systems such as Alexa from

Amazonis and Apple HomeKit and several academic works like (Prabhu, Jena, and

Rode, 2018;; Sang-hyun et al., 2013; Yugashini, Vidhyasri, and Devi, 2013).

2. In the second group, the designers use the FPGA devices in their design of

automation systems in order to take advantage of their flexibility and

reconfigurability features like implementations in (Suresh and Mastani, 2018;

Panigrahi et al., 2016; Chinchansure and Kulkarni, 2014; D, 2017; Assaf et al.,

2012; Pratik Waghmare, Chandgude, Chaure, and Chaudhari, 2017).

To build a robust, fast, and high performance, our proposed implementation combines

between the above two groups. The system is designed and implemented in

reconfigurability FPGA environment and take advantage of its flexibility. Also, our

system has multiple Artificial Intelligent algorithms that can perform simple and

complex tasks based on its application.

 124

CHAPTER 3 CHAPTER 7

CONCLUSION AND FUTURE WORKS

7.1. Conclusion

In order to enhance sensor nodes architecture and its computation power, Field-

Programmable Gate Array (FPGA) is used to design a modified hardware structure of

a sensor node. This structure is embedded with an ensemble of the Adaptive Neuro-

Fuzzy Inference system algorithms that is one of the artificial intelligence algorithms

to present a typical solution of the limitations of sensor node-based classical

microcontrollers. The contribution of this thesis can be divided into three parts:

1) In the first part, the Adaptive Neuro-fuzzy Inference System has been used,

modified and evaluated based on different data sets. Two modifications are added

to the ANFIS algorithm in order to enhance its work and performance (Chapter

4):

• During the first modification, the ANFIS algorithm is combined with a

momentum factor which is a type of optimization algorithms during the

learning process. The momentum factor helped the ANFIS algorithm to

arrive at the optimal solution and provided a best and fast convergence

without stuck in local minima and reduce the overall error compared with

the standard architecture of ANFIS algorithm. in terms of Mean Squared

Error, Root-Mean-Square Error, Mean Error, and Standard Deviation.

Using momentum factor in our ANFIS algorithm minimizes the execution

time (in second) during the training phase from 3.675 to 1.1921 and from

3.6427 to 1.1895 for temperature and humidity data sets respectively that

are used to test the first modification.

• In the second modification, we proposed a methodology that reduces the

adjustable linear parameters at layer 4 of ANFIS algorithm. This process is

 125

done by adding a special normalization that is used compress linear equations

at the output layer without effect on the overall performance of the algorithm.

Several different data sets related to weather condition are used to test and

evaluated this modification. All results are compared with ANFIS algorithms-

based Matlab toolbox. High accuracy is achieved in both training and testing

phases based on the modified algorithm compared with the ANFIS toolbox

(Section 4.4.1.2).

Minimizing the number of linear parameters do not affect the overall

performance of the modified algorithm. Also, the execution time of the training

and testing phases are measured (Figure 4.29 and Figure 4.30). Adding this

modification to the algorithm provides high speed in the training algorithm

compared with ANFIS-based Matlab tool and good speed in the testing

algorithm.

2) In the second part of our contribution is the design and implementation of the

proposed hardware system that is done and evaluated in Chapter 5. The

achievements can be divided into:

• An ensemble of 6-soft hardware cores-based modified ANFIS algorithm is

built and developed using the reconfigurable FPGA Zynq xc7z020

evaluation kit. The ensemble of ANFIS cores is designed to work in parallel

and deal with different real acquisition data. Each ANFIS core is built based

on three associated tools:

❖ Xilinx Vivado High-Level Synthesis V2016.1 that is used to build 6-

hardware cores of modified ANFIS-based time series algorithm. A small

C programming language is used in this tool which is suitable for

programming the algorithms in embedded systems.

❖ Xilinx Vivado Suite V2016.1 that is used to build the complete hardware

design and import 6-ANFIS cores from Vivado High-Level Synthesis

 126

libraries. Then, export all hardware files and libraries to the Xilinx

Software Development Kit.

❖ Xilinx Software Development Kit tool which is used to initialize ARM

Cortex-A9 processor and build the software platform that includes

drivers, system parameters, hardware core and other associated hardware

elements.

• The ARM Cortex-A9 processor is used to share the primary tasks of

ANFIS algorithm (data normalization and data fuzzification tasks) with

ANFIS-hardware cores. In the other word, we successfully distributed the

processing tasks between Zynq programming logic (PL) which is represented

by ANFIS-cores and Zynq processing system (PS) which is represented by

ARM Cortex-A9 processor (Section 5.3). This helps us to minimize the DSP

block by 55%.

• Real sensing data based on 3-temperature and 3-humidity DHT11 sensors

that grouped in 3-set are used to test the performance of the hardware

system. Compared the hardware results-based ANFIS cores with the

simulation results-based Matlab software provide very good results in terms of

the mean of error and the mean square error (Section 5.4) with very small error

ratio which is the normal case when comparing hardware with software results.

3) The last part of our contribution is the design of monitoring and intelligent

control system. The system consists of several parts:

• Aggregation Unit-based Arduino microcontroller is used to connect 3-set

of sets of temperature, humidity, and gas sensors. We used the Arduino

microcontroller as a co-processor in our system besides the ARM Cortex-A9

processor in order to aggregate and send the sensing data to the next unit in the

monitoring system.

 127

• Multi-function unit is constructed based on Zynq-7 ZC702 kit. This unit

received the data from the Aggregation Unit and performs:
❖ Data classification,

❖ Prediction future behavior of the weather condition,

❖ System decision-making, and

❖ System Alerts.

• Communication Unit based on Lightweight IP library that is used

especially for embedded systems to provide them with a networking capability

(Section 6.3.3). The aim of this unit is to connect the system units with each

other (multi-function unit, aggregation unit and user panel). We modified a

special multi-server and multi-client agents based on the User Datagram

Protocol (UDP). The main purpose of this modification is to allow the multi-

function unit to switch its mode based on system status.

• User panel which is designed based on Matlab Graphic User Interface to

monitor all data that is come from the hardware system.

Using a combination of Arduino microcontroller and FPGA device plays a key role to

distribute the tasks between microcontroller that interfaces different types of sensors

and FPGA that performs the data analysis and pre-processing (François Philipp,

2014). As a result, we reduced the execution time, the required hardware resources and

add added more flexibility to the system to implement more complex and intelligent

functions.

Comparing our system with the existing implementation of automation control

systems (Section 6.4), our proposed implementation combines the traditional control

system that has embedded Artificial Intelligent algorithms (to perform data analysis

and smart self-decision-making) and other systems that are built by FPGA

environments. Our system is implemented in FPGA environment in order to take

advantage of its flexibility and reconfigurability. Also, the system has multiple

Artificial Intelligent algorithms that are utilized to implement simple and complex

tasks based on its application.

 128

7.2. Future Works

This research aims to build a smart and reconfigurable sensor node based on FPGA

device. But, the continuation of such a contribution is open. The overall system

consists of single Aggregation Unit and Multi-function unit that connect together by

ethernet cable based on UDP protocol. So, update the system can include the

following:

• Using multiple Aggregation Unit and modifying the communication protocol to

support multiple agents wirelessly.

• Adding security algorithms to the system in order to protect the system

information.

• Adding the partial reconfigurable feature to the system to change or modify some

functions in the system (or functions in some agent in case of multiple agents).

 129

 References:

Abraham, A. (2001). Neuro fuzzy systems: State-of-the-art modeling techniques. In

International Work-Conference on Artificial Neural Networks (pp. 269–276).

Springer.

Aliev, R. A., & Guirimov, B. G. (2014). Type-2 fuzzy neural networks and their

applications. Springer.

Altera. (2010). Stratix V Device Family Overview. Stratix V Device Handbook,

1(March), 1–15.

Amari, S. (2003). The handbook of brain theory and neural networks. MIT press.

Anderson, D., & McNeill, G. (1992). Artificial neural networks technology. Kaman

Sciences Corporation, 258(6), 1–83.

Asadullah, M., & Raza, A. (2016). An overview of home automation systems. 2016

2nd International Conference on Robotics and Artificial Intelligence, ICRAI

2016, 27–31. https://doi.org/10.1109/ICRAI.2016.7791223

Assaf, M. H., Mootoo, R., Das, S. R., Petriu, E. M., Groza, V., & Biswas, S. (2012).

Sensor based home automation and security system. 2012 IEEE International

Instrumentation and Measurement Technology Conference Proceedings, 722–

727. https://doi.org/10.1109/I2MTC.2012.6229153

Bellis, S. J., Delaney, K., O’Flynn, B., Barton, J., Razeeb, K. M., & O’Mathuna, C.

(2005). Development of field programmable modular wireless sensor network

nodes for ambient systems. Computer Communications, 28(13 SPEC. ISS.),

1531–1544. https://doi.org/10.1016/j.comcom.2004.12.045

Bengherbia, B., Ould Zmirli, M., Toubal, A., & Guessoum, A. (2017). FPGA-based

wireless sensor nodes for vibration monitoring system and fault diagnosis.

Measurement: Journal of the International Measurement Confederation, 101,

81–92. https://doi.org/10.1016/j.measurement.2017.01.022

Bhattacharyya, S. S., Deprettere, E. F., Leupers, R., & Takala, J. (2018). Handbook of

signal processing systems. Springer.

Bobda, C. (2008). Introduction to reconfigurable computing: Architectures,

algorithms, and applications. Introduction to Reconfigurable Computing:

Architectures, Algorithms, and Applications. https://doi.org/10.1007/978-1-

4020-6100-4

Brassai, S. T., Hajdu, S., Tamas, T., & Bakó, L. (2015). Hardware implemented

adaptive neuro fuzzy system. In Carpathian Control Conference (ICCC), 2015

16th International (pp. 58–63). IEEE.

Capability, M. (2016). 7 Series FPGAs Overview Summary of 7 Series FPGA Features

Table 1 : 7 Series Families Comparison Spartan-7 FPGA Feature Summary, 180,

1–18.

Cardona, L. A., Lorente, B., & Ferrer, C. (2014). Partial crypto-reconfiguration of

nodes based on FPGA for WSN. Proceedings - International Carnahan

Conference on Security Technology, 2014–Octob(October), 14–17.

 130

https://doi.org/10.1109/CCST.2014.6987046

Çavdar, T. (2016). PSO tuned ANFIS equalizer based on fuzzy C-means clustering

algorithm. AEU-International Journal of Electronics and Communications,

70(6), 799–807.

Chen, C., John, R., Twycross, J., & Garibaldi, J. M. (2016). An extended ANFIS

architecture and its learning properties for type-1 and interval type-2 models. In

Fuzzy Systems (FUZZ-IEEE), 2016 IEEE International Conference on (pp. 602–

609). IEEE.

Chen, D., Cong, J., & Pan, P. (2006). FPGA Design Automation: A Survey (Vol. 3).

https://doi.org/10.1561/1000000003

Chen, G., & Pham, T. T. (2000). Introduction to fuzzy sets, fuzzy logic, and fuzzy

control systems. CRC press.

Chicago. (2015a). Air Humidity of Chicago City. Retrieved from

https://data.cityofchicago.org/Parks-Recreation/Beach-Weather-Stations-

Automated-Sensors-2015-Humi/4tf5-5fw5

Chicago. (2015b). Air Temperature of Chicago City. Retrieved from

https://data.cityofchicago.org/Parks-Recreation/Beach-Weather-Stations-

Automated- Sensors-2015-Air-/rsk3-iyyk

Chinchansure, P. S., & Kulkarni, C. V. (2014). Home Automation System based on

FPGA and GSM, 3–7.

Corporation, A. (2004). Stratix GX FPGA Family Data Sheet. Options, (December),

1–262.

Corporation, A. (2012). 1 . Overview for the Arria II Device Family, 1(July), 1–16.

Cyclone, T., & Partners, A. M. (2003). Features ..., (April), 1–97.

D, D. G. X. N. D. (2017). DQG : HE 7HFKQRORJLHV, 181, 588–595.

https://doi.org/10.1016/j.proeng.2017.02.438

Dalgleish, T., Williams, J. M. G. ., Golden, A.-M. J., Perkins, N., Barrett, L. F.,

Barnard, P. J., … Watkins, E. (2007). The Handbook of Brain Theory and Neural

Networks. Journal of Experimental Psychology: General, 136(1), 23–42.

Darvill, J., Tisan, A., & Cirstea, M. (2017). A novel ANFIS algorithm architecture for

FPGA implementation. In IEEE International Symposium on Industrial

Electronics (pp. 1243–1248). IEEE. https://doi.org/10.1109/ISIE.2017.8001423

Dreyfus, G. (2005). Neural networks: methodology and applications. Springer Science

& Business Media.

Engineering, E. (2018). Application of Artificial Intelligence in Electrical

Engineering, (March), 105–111.

Fausett, L. V, & Fausett, L. (1994). Fundamentals of Neural Networks: Architectures,

Algorithms, and Applications. Prentice-Hall. Retrieved from

https://books.google.iq/books?id=ONylQgAACAAJ

 131

Fularz, M., Kraft, M., Schmidt, A., & Kasi, A. (2015). Progress in Automation,

Robotics and Measuring Techniques, 351(May). https://doi.org/10.1007/978-3-

319-15847-1

Fullér, R. (2013). Introduction to neuro-fuzzy systems (Vol. 2). Springer Science &

Business Media.

Gaikwad, P. P., Gabhane, J. P., & Golait, S. S. (2015). A survey based on Smart Homes

system using Internet-of-Things. In 2015 International Conference on

Computation of Power, Energy, Information and Communication (ICCPEIC)

(pp. 0330–0335). IEEE. https://doi.org/10.1109/ICCPEIC.2015.7259486

Galushkin, A. I. (2007). Neural networks theory. Springer Science & Business Media.

Ghasemi, E., Kalhori, H., & Bagherpour, R. (2016). A new hybrid ANFIS–PSO model

for prediction of peak particle velocity due to bench blasting. Engineering with

Computers, 32(4), 607–614.

Gomes, T., Pinto, S., Salgado, F., Tavares, A., & Cabral, J. (2017). Building IEEE

802.15.4 Accelerators for Heterogeneous Wireless Sensor Nodes. IEEE Sensors

Letters, 1(1), 1–4. https://doi.org/10.1109/LSENS.2017.2681625

Gómez-Castañeda, F., Tornez-Xavier, G. M., Flores-Nava, L. M., Arellano-Cárdenas,

O., & Moreno-Cadenas, J. A. (2014). Photovoltaic panel emulator in FPGA

technology using ANFIS approach. In Electrical Engineering, Computing

Science and Automatic Control (CCE), 2014 11th International Conference on

(pp. 1–6). IEEE.

Graupe, D. (2013). Principles of artificial neural networks (Vol. 7). World Scientific.

Guinn, J. R., Riedel, J. E., Bhaskaran, S., Park, R. S., Vaughan, A. T., Owen, W. M.,

… Martin-Mur, T. (2016). The deep-space positioning system concept:

Automating complex navigation operations beyond the earth. In AIAA SPACE

2016 (p. 5409).

Hinkelmann, H., Reinhardt, A., Varyani, S., & Glesner, M. (2008). A Reconfigurable

Prototyping Platform for Smart Sensor Networks. 2008 4th Southern Conference

on Programmable Logic, 1, 125–130. https://doi.org/10.1109/SPL.2008.4547743

Ilyas, M., & Mahgoub, I. (2004). Handbook of sensor networks: compact wireless and

wired sensing systems. CRC press.

Imran, M., Khursheed, K., O’Nils, M., & Lawal, N. (2010). Exploration of target

architecture for a wireless camera based sensor node. Norchip, 2010, 1–4.

https://doi.org/10.1109/NORCHIP.2010.5669490

Irwin, J. D., Wilamowski, B., & Irwin, J. D. (2011). The Industrial Electronics

Handbook. Eecs.Ucf.Edu. CRC Press.

https://doi.org/10.1017/CBO9781107415324.004

Jain, L. C., & Martin, N. M. (1998). Fusion of neural networks, fuzzy systems and

genetic algorithms: industrial applications (Vol. 4). CRC press.

Jamshidi, M., & Zilouchian, A. (2001). Intelligent control systems using soft

computing methodologies. CRC press.

 132

Jang, J.-S. (1993). ANFIS: adaptive-network-based fuzzy inference system. IEEE

Transactions on Systems, Man, and Cybernetics, 23(3), 665–685.

Jiesheng Wei, Ling Wang, Feng Wu, Yibo Chen, & Long Ju. (2009). Design and

implementation of wireless sensor node based on open core. 2009 IEEE Youth

Conference on Information, Computing and Telecommunication, 102–105.

https://doi.org/10.1109/YCICT.2009.5382416

John, M., & Smith, S. (n.d.). Application-Specific Integrated Circuits (First Edit).

Addison Wesley Longman 1997.

June, D. S., & Ram, B. (2013). Spartan-3 FPGA Family Module 1 : Module 4 : Pinout

Descriptions Module 2 : Functional Description Spartan-3 FPGA Family :, 1–

272.

Kacprzyk, J., & Pedrycz, W. (2015). Springer handbook of computational intelligence.

Springer.

Karakuzu, C., Karakaya, F., & Çavuşlu, M. A. (2016). FPGA implementation of

neuro-fuzzy system with improved PSO learning. Neural Networks, 79, 128–140.

Karl, H., & Willig, A. (2007). Protocols and architectures for wireless sensor

networks. John Wiley & Sons.

Kaur, G., Dhar, J., & Guha, R. K. (2016). Minimal variability OWA operator

combining ANFIS and fuzzy c-means for forecasting BSE index. Mathematics

and Computers in Simulation, 122, 69–80.

Kaynak, O., Zadeh, L. A., Turksen, B., & Rudas, I. J. (1996). Computational

Intelligence: Soft Computing and Fuzzy-Neuro Integration with Applications

(Vol. 162). Springer Science & Business Media.

Kaynak, O., Zadeh, L. A., Türksen, B., & Rudas, I. J. (2012). Computational

intelligence: Soft computing and fuzzy-neuro integration with applications (Vol.

162). Springer Science & Business Media.

Kelly, B. M., Rumberg, B., Graham, D. W., & Kulathumani, V. (2013).

Reconfigurable analog signal processing for wireless sensor networks. 2013

IEEE 56th International Midwest Symposium on Circuits and Systems

(MWSCAS), 221–224. https://doi.org/10.1109/MWSCAS.2013.6674625

Kerhet, A., Magno, M., Leonardi, F., Boni, A., & Benini, L. (2007). A low-power

wireless video sensor node for distributed object detection. Journal of Real-Time

Image Processing, 2(4), 331–342. https://doi.org/10.1007/s11554-007-0048-7

Khedkar, A. A., & Khade, R. H. (2017). High speed FPGA-based data acquisition

system. Microprocessors and Microsystems, 49, 87–94.

Konar, A. (1999). Artificial intelligence and soft computing: behavioral and cognitive

modeling of the human brain. CRC press.

Krasteva, Y. E., Portilla, J., Carnicer, J. M., De La Torre, E., & Riesgo, T. (2008).

Remote HW-SW reconfigurable wireless sensor nodes. IECON Proceedings

(Industrial Electronics Conference), 2483–2488.

https://doi.org/10.1109/IECON.2008.4758346

 133

Kumar, S., Shegokar, S., Chouhan, D., & Iqbal, A. (2018). Different Technology

Comparison for Home Automation System, 1(9), 2–6. Retrieved from

http://irejournals.com/FormDetails.jsp?id=1700231

Łapa, K., Zalasiński, M., & Cpałka, K. (2013). A new method for designing and

complexity reduction of neuro-fuzzy systems for nonlinear modelling. In

International Conference on Artificial Intelligence and Soft Computing (pp. 329–

344). Springer.

Lee, E. A., & Seshia, S. A. (2011). Embedded Systems.

Li, J., Xu, T., & Zhang, K. (2017). Real-time feature-based video stabilization on

FPGA. IEEE Transactions on Circuits and Systems for Video Technology, 27(4),

907–919.

Liao, J., Singh, B. K., Khalid, M. A. S., & Tepe, K. E. (2013). Open Access FPGA

based wireless sensor node with customizable event-driven architecture, 1–11.

Liu, P., & Li, H.-X. (2004). Fuzzy neural network theory and application (Vol. 59).

World Scientific.

Liu, W., Bienstman, L., Jooris, B., Yaron, O., & Moerman, I. (2012). FPGA-Based

Wireless Link Emulator, 48–63.

Lopez, B., Valverde, J., De La Torre, E., & Riesgo, T. (2014). Power-aware multi-

objective evolvable hardware system on an FPGA. Proceedings of the 2014

NASA/ESA Conference on Adaptive Hardware and Systems, AHS 2014, 61–68.

https://doi.org/10.1109/AHS.2014.6880159

Macmahon, S., & Cherukupaly, U. (2014). LightWeight IP Application Examples,

1026, 1–31.

Manual, T. R. (2015). ARM ® Cortex ® -A72 MPCore Processor, 1–577.

Manual, T. R. (2018). Zynq-7000 SoC, 585.

Marufuzzaman, M., Bin, M., Reaz, I., & Islam, M. T. (2014). FPGA based Distributed

Task Organizing Agents in Smart Home. In Proc. of the 2nd Int. Conf. on

Research in Science, Engineering and Technology, Dubai (pp. 2–5).

https://doi.org/10.15242/IIE.E0314504

Mas, T. T. Ă., & Brassai, S. T. (2015). Hardware Implementation of a Neuro-Fuzzy

Controller Using High Level Synthesis Tool. MACRo 2015, 1(1), 183–191.

Maxfield, C. (2004). The Design Warrior ’ s Guide to FPGAs. System.

Meena, S., & Krishna Prakash, N. (2014). Simulation of Dynamically Reconfigurable

Wireless Sensor Node. 2014 International Conference on Electronics and

Communication System (LCECS -2014).

Mehrotra, K., Mohan, C. K., & Ranka, S. (1997). Elements of artificial neural

networks. MIT press.

Muralidhar, P., & Rao, C. B. R. (2008). Reconfigurable Wireless sensor network node

based on NIOS core. Proceedings of the 4th International Conference on Wireless

Communication and Sensor Networks, WCSN 2008, 67–72.

 134

https://doi.org/10.1109/WCSN.2008.4772684

Nadu, T., & Nadu, T. (2017). Fpga Implementation Of Neuro Fuzzy System With

Adaptive Particle Swarm Optimization Learning For Image Edge Detection, 181–

185.

Nikam, S. R., Nikumbh, P. J., & Kulkarni, S. P. (2012). Fuzzy logic and neuro-fuzzy

modeling. In MPGI National Multi Conference (pp. 7–8).

Panigrahi, A., Qureshi, A., Saxena, P., & Reddy, E. R. (2016). Home Automation

Using FPGA Controller, (5), 1064–1066.

Philipp, F. (2014). Runtime Hardware Reconfiguration in Wireless Sensor Networks

for Condition Monitoring. Universitäts-und Landesbibliothek Darmstadt.

Philipp, F., & Glesner, M. (2011). Mechanisms and Architecture for the Dynamic

Reconfiguration of an Advanced Wireless Sensor Node. 2011 21st International

Conference on Field Programmable Logic and Applications, 396–398.

https://doi.org/10.1109/FPL.2011.78

Poudel, B., Giri, N. K., & Munir, A. (2017). Design and comparative evaluation of

GPGPU-and FPGA-based MPSoC ECU architectures for secure, dependable, and

real-time automotive CPS. In 2017 IEEE 28th International Conference on

Application-specific Systems, Architectures and Processors (ASAP) (pp. 29–36).

IEEE.

PowWow: Power Optimized Hardware and Software FrameWork for Wireless Motes.

(2018), (2010), 2018.

Prabhu, V., Jena, J., & Rode, S. (2018). Home automation using artificial intelligence,

780–784. https://doi.org/10.23883/IJRTER.2018.4206.PD8PQ

Prakash, N. K., & Surjith, B. (2017). FPGA Based Remote Monitoring System in

Smart Grids. Indian Journal of Science and Technology, 10(5).

https://doi.org/10.17485/ijst/2017/v10i5/108829

Rahimi, M., Estrin, D., Baer, R., Uyeno, H., & Warrior, J. (2004). Cyclops, image

sensing and interpretation in wireless networks. Proceedings of the 2nd

International Conference on Embedded Networked Sensor Systems - SenSys ’04,

311. https://doi.org/10.1145/1031495.1031554

Reaz, M. B. I. (2013). Artificial Intelligence Techniques For Advanced Smart Home

Implementation. Acta Technica Corvininesis-Bulletin of Engineering, 6(2).

Reaz, M. B. I., Assim, A., Choong, F., Hussain, M. S., & Mohd-Yasin, F. (2006).

Multiagent System for Home Automation. In WSEAS International Conference

on Signal Processing (SIP ’06) (pp. 135–139). Citeseer. Retrieved from

https://dl.acm.org/citation.cfm?id=1983968

Reference, A. X. I., Axi, V., & Guide, R. (2014). Vivado Design, 1037, 1–143.

Rini, D. P., Shamsuddin, S. M., & Yuhaniz, S. S. (2016). Particle swarm optimization

for ANFIS interpretability and accuracy. Soft Computing, 20(1), 251–262.

Rusu, O.-V., & Duka, A.-V. (2017). Monitoring and Control Platform for Homes

Based on FPGA, SoC and Web Technologies. Procedia Engineering, 181, 588–

 135

595.

Sahlbach, H., Thiele, D., & Ernst, R. (2017). A system-level FPGA design

methodology for video applications with weakly-programmable hardware

components. Journal of Real-Time Image Processing, 13(2), 291–309.

Sang-hyun, L., Lee, J., & Kyung-il, M. (2013). Smart Home Security System Using

Multiple ANFIS, 7(3), 121–132.

Sarpotdar, M., Mathew, J., Safonova, M., & Murthy, J. (2016). A generic FPGA-based

detector readout and real-time image processing board. In High Energy, Optical,

and Infrared Detectors for Astronomy VII (Vol. 9915, p. 99152K). International

Society for Optics and Photonics.

Schrader, T., Bredemeyer, J., Mihalachi, M., Rohde, J., & Kleine-Ostmann, T. (2016).

Concept and design of a UAS-based platform for measurements of RF signal-in-

space. Advances in Radio Science, 14(A.), 1–9.

Sharma, S., Boddu, J., Charan, G. S., Sharma, S., Sivanantham, S., & Sivasankaran,

K. (2015). Home automation through FPGA controller. In Green Engineering

and Technologies (IC-GET), 2015 Online International Conference on (pp. 1–4).

IEEE.

Siddique, N., & Adeli, H. (2013). Computational intelligence: synergies of fuzzy logic,

neural networks and evolutionary computing. John Wiley & Sons.

Sivanandam, S. N., Sumathi, S., & Deepa, S. N. (2007). Introduction to fuzzy logic

using MATLAB (Vol. 1). Springer.

Sohraby, K., Minoli, D., & Znati, T. (2007). Wireless sensor networks: technology,

protocols, and applications. John Wiley & Sons.

Sumathi, S., & Paneerselvam, S. (2010). Computational intelligence paradigms:

theory & applications using MATLAB. CRC Press.

Suresh, G. (2018). Effective Replacement of FPGA for Microcontrollers in Home

Automation, 13(5), 2710–2713.

Suresh, G., & Mastani, S. A. (2018). Effective Replacement of FPGA for

Microcontrollers in Home Automation. International Journal of Applied

Engineering Research, 13(5), 2710–2713. Retrieved from

https://www.ripublication.com/ijaer18/ijaerv13n5_82.pdf

Synthesis, H. (2016). Vivado Design Suite User Guide, 902.

Systems, M., & Smart, F. O. R. (n.d.). Artificial Intelligence Techniques For

Advanced.

Szilvási, S., Babják, B., Völgyesi, P., & Lédeczi, Á. (2013). Marmote SDR:

Experimental Platform for Low-PowerWirelessProtocol Stack Research. Journal

of Sensor and Actuator Networks, 2(3), 631–652.

https://doi.org/10.3390/jsan2030631

Tămas, T., & Brassai, S. T. (2015). Hardware implementation of a neuro-fuzzy

controller using high level synthesis tool. MACRo 2015, 1(1), 183–191.

 136

Tettamanzi, A., & Tomassini, M. (2013). Soft computing: integrating evolutionary,

neural, and fuzzy systems. Springer Science & Business Media.

Velez, G., & Otaegui, O. (2016). Embedding vision-based advanced driver assistance

systems: a survey. IET Intelligent Transport Systems, 11(3), 103–112.

Vieira, J., Dias, F. M., & Mota, A. (2004). Neuro-fuzzy systems: a survey. In 5th

WSEAS NNA international conference on neural networks and applications,

Udine, Italia.

Waghmare, P., Chandgude, M., Chaure, P., & Chaudhari, A. (2017). Survey on : Home

Automation Systems, 7–10.

Waghmare, P., Chaure, P., Chandgude, M., & Chaudhari, A. (2017). Survey on: Home

automation systems. In 2017 International Conference on Trends in Electronics

and Informatics (ICEI) (pp. 7–10). https://doi.org/10.1109/ICOEI.2017.8300864

Wilder, J. L., Uzelac, V., Milenković, A., & Jovanov, E. (2008). Runtime hardware

reconfiguration in wireless sensor networks. Proceedings of the Annual

Southeastern Symposium on System Theory, (September), 154–158.

https://doi.org/10.1109/SSST.2008.4480210

Williams, R. J., & Zipser, D. (1995). Gradient-based learning algorithms for recurrent

networks and their computational complexity, 1–45.

https://doi.org/10.1080/02673039508720837

Woods, R., McAllister, J., Lightbody, G., & Yi, Y. (2017). FPGA-based

implementation of signal processing systems. Wiley Online Library.

Xilinx. (2011). Spartan-6 Family Overview Summary of Spartan-6 FPGA Features.

Product Specification, 160(DS160 v2.0), 1–11.

Xilinx. (2016). lwIP 1.4.0 Library, v1.7(UG650), 15.

Xilinx. (2018). Zynq-7000 SoC Data Sheet : Overview, 190, 1–25.

Xilinx Inc. (2013). Virtex-7 T and XT FPGAs Data Sheet : DC and AC Switching

Characteristics, 183, 62.

Xilinx Inc. SDK. (2016). Vivado Design Suite User Guide, 898, 1–156.

Yang, M., Liu, B., Gong, J., Liu, H., Hu, H., Dong, Y., … Miao, Z. (2016).

Architecture design for reliable and reconfigurable FPGA-based GNC computer

for deep space exploration. Science China Technological Sciences, 59(2), 289–

300.

Yonezawa, Y., Nakao, H., Nakashima, Y., Vithanage, A., Kanehira, T., & Ueno, Y.

(2017). Model-based development of high-current-density point-of-load

converter of high performance FPGA for telecommunication application. In 2017

IEEE International Telecommunications Energy Conference (INTELEC) (pp.

351–356). IEEE.

Yuan, S., Qiu, L., Gao, S., Tong, Y., & Yang, W. (2012). Providing self-healing ability

for wireless sensor node by using reconfigurable hardware. Sensors

(Switzerland), 12(11), 14570–14591. https://doi.org/10.3390/s121114570

 137

Yugashini, I., Vidhyasri, S., & Devi, K. G. (2013). Design And Implementation Of

Automated Door Accessing System With Face Recognition, (12), 10–13.

Zhai, X., Ali, A. A. S., Amira, A., & Bensaali, F. (2016). MLP Neural Network Based

Gas Classification System on Zynq SoC. IEEE Access, 4, 8138–8146.

https://doi.org/10.1109/ACCESS.2016.2619181

 138

Appendix A

A.1. Training the Modified Algorithm and ANFIS Toolbox based on

Minimum Temperature and Humidity Data Sets

Figure A.01. Training Minimum Temperature Data

Figure A.0.2. Training Minimum Temperature Data

 139

Figure A.3. Training Minimum Humidity Data set

 140

A.2. Testing the Modified Algorithm and ANFIS Toolbox based on

Minimum Temperature and Humidity Data Sets

Figure A.5. Testing Minimum Temperature Data set

 141

Figure A.7. Testing Minimum Humidity Data Set

Figure A.9. MSE of Training and Testing Minimum Temperature and Humidity Sets

 142

A.3. Training and Testing Execution Time

Figure A.11. Training and Testing Execution Time

