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Abstract
Suspended sediment load is a substantial portion of the total sediment load in rivers and plays a vital role in determination of the
service life of the downstream dam. To this end, estimationmodels are needed to compute suspended sediment load in rivers. The
application of artificial intelligence (AI) techniques has become popular in water resources engineering for solving complex
problems such as sediment transport modeling. In this study, novel integrative intelligence models coupled with iterative
classifier optimizer (ICO) are proposed to compute suspended sediment load in Simga station in Seonath river basin,
Chhattisgarh State, India. The proposed models are hybridization of the random forest (RF) and pace regression (PR) models
with the iterative classifier optimizer (ICO) algorithm to develop ICO-RF and ICO-PR hybrid models. The recommendedmodels
are established using the discharge and sediment daily data spanning a 35-year period (1980–2015). The accuracy of the
developed models is examined in terms of error; by root mean square error (RMSE) and mean absolute error (MAE); and based
on a correlation index of determination coefficient (R2). The proposed novel hybrid models of ICO-RF and ICO-PR have been
found to be more precise than their stand-alone counterparts of RF and PR. Overall, ICO-RF models delivered better accuracy
than their alternatives. The results of this analysis tend to claim the appropriateness of the implemented methodology for precise
modeling of the suspended sediment load in rivers.
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Introduction

The hydrological modeling of sediment, river stream and
rainfall–overflow connection are significant to offer a design
insight for the water resources management projects in practice
(Firat and Gungor 2009). Sediment transport modeling is re-
quired for issues in the outline of transport of sediment in chan-
nels, ponds and bays, stable stations and dams, repositories of

dams, protection of fish, effect of watershed administration, and
ecological effect valuation (Cigizoglu 2004). In the field of
computational hydrology, sediment and water quality modeling
is a challenging task (Kisi et al. 2009). Sediment load has been
estimated using traditionally method such as experimental rela-
tions, numerical reproductions, materially grounded models,
remote sensing (RS) and geographic information systems
(GIS) practices (Gajbhiye et al. 2015).
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Reservoir sedimentation is the main concern, since the res-
ervoir capacity is reduced to a large amount each year (Iraji
et al. 2020). Surveying by traditional method for reservoir
evaluation is a time-and money-consuming task. Due to var-
ious problems like population growth, agricultural activities,
deforestation and poor soil conservation practices, the sedi-
mentation has become a major problem in Indian
Reservoirs. Global sediment production is estimated at around
15 × 1016 Ton/year, according to an estimate. The Indian
subcontinent river carries around 6 billion tonnes of sediment
per year. The soil erosion issue predominates over around
53% of India’s total land area (Narayana and Ram Babu
1983). Currently about 40,000 major reservoirs are used
worldwide for water storage, power generation, flood control
etc. About 0.5 and 1% of the total storage capacity of these
existing reservoirs is lost each year as a result of sedimenta-
tion, and 300–400 new dams are needed to be installed per
year only to sustain the current total storage (White 2001).

The growing population and per capita consumptionmeans
that demand for water storage in reservoirs is rising, despite
the increasing usage of alternative water sources and more
productive water usage. Morris et al. (2008) predict that sed-
imentation would have depleted more than 30% of the world’s
reservoir capacity by the mid-twenty-first century.

India has invested heavily in developing these vital infra-
structure needs that helped to improve the use and manage-
ment of India’s limited water resources. India ranks third
worldwide in terms of the number of large dams, behind
China and the USA with 5254 large dams built, and about
447 large dams under construction. As of March 2017, the
live storage capacity of completed large dams amounted to
approximately 283 billion cubic meters (BCM), i.e., 37% of
the total useable surface water resources 690 BCM in India.

Systematic strategies and policies are required to reduce the
adverse effects of sedimentation and extend reservoir exis-
tence. In designing sound sediment management strategies
and policies, the ability to estimate the rate of watershed sur-
face erosion, sediment transport, scouring and deposition in a
river system, and sediment deposition and distribution within
a reservoir is important. An addition to the planning and for-
mulation of policies is the effective use of latest available
technology like remote sensing (SRS), geographic informa-
tion system (GIS), and soft computing techniques to measure
the reservoir sedimentation.

The hydrologic conditions change spatio-temporally, and
the challenges emerging in resolution of their special posses-
sions have stimulated the engagement of black box models in
the deferred sediment valuations. Black box models come in
two types, that is, linear and non-linear. Artificial intelligence
(AI) methods are normally used in the forming of non-linear
system performance. The artificial intelligence techniques have
attracted interest as modeling tools that have been applied to
derive historical data to forecast future knowledge about a

specific parameter over the last several decades. The artificial
intelligence techniques have been adopted in many studies in
the sense of hydrological problems such as rainfall-runoff
modeling (Asadi et al. 2013; Tayebiyan et al. 2016; Juan
et al. 2017; Tao et al. 2018; Mirabbasi et al. 2019; Safari et al.
2020), streamflow estimation (Besaw et al. 2010; Mehr et al.
2015; Fathian et al. 2019; Meshram et al. 2019b), reservoir
inflow forecasting (Coulibaly et al. 2000; Sattari et al. 2012),
water quality modeling (Khalil and Ouarda Taha 2011; Bui
et al. 2020), prediction of evapotranspiration (Huo et al. 2012;
Xiong et al. 2016; Khosravi et al. 2019), and sediment transport
modeling (Yadav et al. 2017, 2018; Meshram et al. 2019a,
2020; Kargar et al. 2019; Safari et al. 2019; Safari
2020; Khosravi et al. 2020).

Due to the non-linear behavior of the suspended sediment
problem and stochastic nature of the sediment particle move-
ment in the flow, conventional computational methods may
fail for accurate suspended sediment load prediction. To this
end, AI approaches have been commonly implemented for
sediment transport modeling in rivers (Nourani et al. 2016;
Kisi and Yaseen 2019). Applied AI techniques for suspended
sediment load prediction can be classified as stand-alone and
hybrid algorithms. As examples of application of stand-alone
algorithms, Tayfur (2002), Alp and Cigizoglu (2007), and
Mustafa et al. (2012) investigated the efficiency of artificial
neural networks (ANN) for suspended load prediction.
Satisfactory performances of genetic algorithm (GA), neuro-
fuzzy (NF), neural differential evolution (NDE), least square
support vector regression (LSSVR), support vector machine
(SVM), multivariate adaptive regression spline (MARS), and
classification and regression tree (CART) as stand-alone
models for suspended sediment load prediction were reported
by Altunkaynak (2009), Rajaee et al. (2009), Kisi (2010),
Kumar et al. (2016), Nourani et al. (2016), Yilmaz et al.
(2018), and Choubin et al. (2018), respectively. Hybrid
models may be implemented for suspended sediment trans-
port modeling to improve the computational performance of
the stand-alone models. For instance, Shiri and Kisi et al.
(2012), Ramezani et al. (2015), and Zounemat-Kermani
(2016) implemented wavelet-gene expression programming
(W-GEP), ANN-social-based algorithm (ANN-SBA), and
ANN-particle swarm optimization (ANN-PSO), respectively,
for river suspended sediment modeling. Chen and Chau
(2016) and Meshram et al. (2018) applied feed-forward
ANN-based hybrid models of double feed forward neural net-
work (HDFNN) and feed-forward neuron network particle
swarm optimization gravitational search algorithm (FNN-
PSOGSA) for the same purpose. Recently, alternative novel
approaches of bagging-M5P, W-ANN, ANFIS-bat algorithm
(ANFIS-BA), W-M5, and evolutionary fuzzy (EF) were sug-
gested for suspended sediment load prediction by Khosravi
et al. (2018), Sharghi et al. (2019), Ehteram et al. (2019),
Nourani et al. (2019), and Kisi and Yaseen (2019),
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respectively. Despite relevant literature review showing that
the random forest (RF) and pace regression (PR) models were
rarely used for the modeling of suspended sediment load, their
hybridized version integrated with an optimization algorithm
is very rare in the literature.

Summary and a basic description of the RF algorithm can
be found at Hastie et al. (2009), Verikas et al. (2011), Biau and
Scornet (2016), Shirzad and Safari et al. (2019), and Safari
et al. (2020). Regression with RF can be applied for forecast-
ing purposes of the time series. Representative applications
can be found with varying success in earth science studies
including engineering (Herrera et al. 2010; Dudek 2014) and
environmental and geophysical sciences (Chen et al. 2011;
Naing and Htike 2015), with varying performances. Small
datasets are often used in these applications; therefore, the
results cannot be generalized. It can develop various advanced
models that are focused on regression. For example, Wang
(2000) proposed pace approach, on the basis of a technique
similar to an empirical Bayes method. Pace regression (PR) is
a linear regression approach that its outperformance on alter-
native linear methods was demonstrated, especially for prob-
lems having higher effective variables (Wang and Witten
1999). PR involves a form of collection of features; thus, not
all features are included in the models result.

For the best author’s information, there was no recorded
work for the RF and PR model integrated with ICO for
suspended sediment forecasting. The goal of the current study
is to integrate the stand-alone RF and PR model with ICO to
create robust smart models for forecasting suspended sedi-
ment load. For the purpose of validating the predictive accu-
racy of ICO-RF and ICO-PR models, the recorded data of
Chhattisgarh State in India for the period of 1980 to 2015
was tested against the stand-alone RF and PR model for
predicting daily suspended sediment load outcomes.

Materials and methods

Study area and modeling data

The Seonath river basin in Chhattisgarh State (India) is River
Mahanadi’s longest tributary sub-basin, covering 25% of the
Mahanadi region area. The river crosses a length of 380 km.
The basin is situated between latitude 20° 16′ N to 22° 41′ N
and longitudes 80° 25′ E to 82° 35′ E. The normal elevation of
basin is 329 m above MSL with minimum and maximum
elevation of 204 m and 1058 m, individually (Fig. 1).

Most of the tributaries of Seonath River get dried by mid-
winter season, and both rural and urban areas are subjected to
severe water crisis during the summer season due to erratic and
skewed nature of rainfall. The river basin experiences a sub-
humid type of climate. The geographical factors such as distance
from the sea and altitude have influenced the basin climate. The

mean annual rainfall in the basin varies from 1005 to 1255 mm.
The major part of rainfall occurs only within three monsoon
months (July–September). It experiences higher humidity levels
during monsoon season. The summer season prevails from
April to middle of June. The climatic condition during summer
is hot and gusts of dry wind blow; the temperature varies from
40 to 45.5 °C. The mean daily maximum temperature varies
from 42 to 45.5 °C for the hottest month of May. During winter
the temperature varies between 10 and 25 °C.

The main soil types found in the basin are sandy clay and
silt loam. Agriculture is the main occupation of people in this
sub-basin. There are two cropping seasons, namely monsoon
(kharif) season from mid-June to October and post-monsoon
(rabi) season from November to middle of April. Rice is the
major crop of monsoon season covering 94% of the cultivated
basin area. During rabi season, wheat, summer paddy, pulses,
and oilseed are grown.

Daily data used in this study includes discharge (m3/s) and
suspended sediment load (ton/day) obtained from the Simga sta-
tion for the period of 1980 to 2015. Among the 35 years of data,
75%discharge and suspended sediment loadwere utilized for the
model development/calibration, and the rest 25%were employed
to test/validate themodel performance. Figure 2 displays the time
series of the entire data that was implemented for Simga station.
Table 1 lists the statistical parameters for the results.

Random forest

Breiman (2001) initially developed the random forest (RF)
model based on a variation of the decision tree classifiers
(Breiman and Cutler 2004). RF is a set of methods of learning
which can be used for regression and classification. The basic
principle of the methodology of the random forest is the con-
struction of a forest of random trees that are generated through
randomizing the spilt at every decision tree node. RF inte-
grates the robustness of several individual trees to create a
more accurate model applying an ensemble approach
(Jayech and Mahjoub 2011; Goeschel 2016).

A number of studies explored RF’s application in engineering
applications and demonstrated its viability in prediction process-
es (Rudžianskaitė-Kvaraciejienė et al. 2015; Yaseen et al. 2019a,
2019b; Shirzad and Safari 2019). Under the bootstrapping meth-
od, data is selected randomly and independently during the train-
ing phase to develop the RF model, and data not involved in the
selection process is referred to as “out-of-bag” (Catani et al.
2013). Owing to the large number of trees, over-fitting does
not occur in the RF algorithm and the choice of the correct type
of random variables leads to precise classification. RF contain
several parameters, such as number of trees, minimum gain, and
maximum tree depth, that need to be optimized.

In order to calculate the output of ^f Brf xð Þ in input x, RF
model is fitted for each bootstrap samples of b = 1, 2, 3, . . .,
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B (Hastie et al. 2009). Output of the RF model through con-
struction of random forest tree Tb on the bootstrapped data is
computed by:

f̂
B
rf xð Þ ¼ 1

B
∑B

b¼1Tb xð Þ ð1Þ

RF is a hyper-parameter algorithm and this is the main
drawback of RF model.

Pace regression

Pace regression (PR) approach was first introduced by Wang
(2000) for linear-fitting problems. The fundamental principles
of PR are based upon Robbins’ (1964) empirical Bayes meth-
odology. An asymptotic normality property for maximum
likelihood estimation (MLE) is applied to convert the initial
variables to dummy variables. A nonparametric mixture ap-
proximation is developed for the measured quantities of these
dummy variables, and in the end, an empirical Bayes ap-
proach is applied to minimize the Kullback–Leibler distance.

Considering the methodological approach of Bayes,
given independent samples of x1;………xk from F xið ; θi
Þ distributions, where the values of θi may differ
completely with respect to one another, it is recognized
that the MLE provided from the F x; θð Þ joint distribu-
tion is a vector, with each entry being a univariate MLE;
for instance, if F xið ; θiÞ; is the normal distribution with

the mean θi, thenbθ =x. The MLE calculator is lower than
the empirical one:

ð2Þ

where is the probability density function in propor-
tion to F xið ; θiÞ that is inferior in which predicted squared

error is not minimized with respect to the

estimator eθ xð Þ; where θ1;………::θk are independent and dis-
tributed equivalently from G θð Þ, where G is the distribution of

the function and Gk is a consistent

calculator of G provided the mixture sample of x.

Fig. 1 Index map of Seonath river basin (study area)
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Iterative classifier optimizer

Iterative classifier optimizer (ICO) uses cross-validation and
optimizes the number of iteration for the given classifier; it is
capable of handling missing, nominal, binary classes and at-
tributes like numeric, nominal, binary, empty nominal
(Omondi and Rajapakse 2010). Through the optimization pro-
cedure of ICO algorithm, after developing the model, compar-
ing the observed and measured values, the model performance
is examined and, then, the obtained information are

introduced to the model for tuning the outputs. The main
objective of the hybridization is to enhance the prediction
accuracy of the stand-alone RF and PR algorithms. As stated
previously, RF algorithm suffers from determination of the
optimal hyper-parameter and in this study the RF and PR are
integrated with ICO for improving the results and develop
robust algorithms. It is already reported that each tree in a
RF model can grow incorrectly and reduced the prediction
accuracy of the model (Adnan et al. 2019). Number of trees
grown and number of predictors sampled for splitting at each
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Fig. 2 Time series of observed
data (discharge and sediment)
used for training and testing
stages

Table 1 Statistics of the data

Parameters Xmin Xmean Xmax Standard deviation Variation coefficient

Entire data

Discharge (m3/s) 0.230 251.7989 11,331.68 685.7905 272.3565

Suspended sediment load (ton/day) 0.081 6812.378 892,862.4 30,038.83 440.9449

Training

Discharge (m3/s) 0.014249 157.7602 10,821 509.0265 322.6583

Suspended sediment load (ton/day) 0 4917.394 892,862.4 27,337.24 555.9294

Testing

Discharge (m3/s) 0 191.5584 11,331.68 681.4086 355.7184

Suspended sediment load (ton/day) 0 3053.609 229,393.1 14,209.63 465.3388
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node are two operators from these hyper-parameter which
significantly affect the RF prediction power. To this end,
ICO algorithm was implemented to determine the best subset
of features in RF model to enhance the result. Figure 3 shows
flowchart of RF integrated with ICO.

Performance criteria

Three statistical indices of root mean square error (RMSE),
mean absolute error (MAE), and determination coefficient
(R2) were utilized for performance examination of stand-
alone RF and PR, as well as the hybrid ICO-RF and ICO-
PR models for modeling suspended sediment loads. RMSE,
MAE, and R2 can be expressed respectively by:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
n

i¼1
xi−yið Þ2

n

vuut
ð3Þ

MAE ¼ 1

n
∑
n

i¼1
xi−yij j ð4Þ

R2 ¼ 1

n
�

∑ xi−x
� �

yi−y
� �

σxð Þ σy
� �

0
@

1
A

2

ð5Þ

where xi and yi are observed and estimated values, standard
deviation of the measured and estimated data are respectively

as σx and σy, and n is the number of data. It must be noted that
the less value (near to zero) for RMSE and MAE and greater
value (near to the unity) for R2 imply perfect agreement be-
tween measured and calculated parameters.

Result and discussion

Using the daily discharge and suspended sediment load data
series for Simga station located in the Seonath Basin, India,
the stand-alone RF and PR models vs. hybrid ICO-RF and
ICO-PR models have been developed and evaluated for sed-
iment load prediction. The entire data was split into training/
calibration (75%) and testing/validation (25%) sub data sets
and MATLAB software was implemented for model
construction.

Best input combination

To select the most important driving variable between input
variables, the Pearson correlation coefficient (PCC) methods
were applied (Chiang and Tsai 2011; Kisi et al. 2012;
Khosravi et al. 2018). In order to investigate the correlation
of different input parameters to the model output, the Pearson
correlation coefficients for one-three days ahead discharge (Q)
and suspended sediment load (S) with output parameter were
calculated. The Pearson correlation coefficient (PCC) values

Q, Q-1, Q-2, Q-3, S-1, S-2, S-3
Input variables

RF model

-Optimized number of trees

-Optimized maximum depth of tree

-Optimized minimal leaf size

-Optimized minimal size of split

ICO algorithm

Optimized 

RF using

ICO

Prediction of 

SSL

Fig. 3 Flowchart of optimized RF
using ICO (ICO-RF)
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in Table 2 indicate that the discharge provides the highest
effect on suspended sediment load (PCC = 0.75), followed
by S-1 (PCC = 0.63), Q-1 (PCC = 0.56), Q-2, S-2 (PCC =
0.34), and Q-3, S-3 (PCC = 0.23). Ten separate combinations
were built and investigated on the basis of certain PCC values
as shown in Table 3.

Inappropriate selection of inputs for intelligent models can
decrease model’s accuracy and increasemodeling complexity.
Likewise, a crucial stage in the process of building such
models is the selection of the correct subset of applicable input
variables. All the developed models in the present study (e.g.,
RF, PR, ICO-RF, and ICO-PR) use separate datasets for each
of the different sets of input parameters. The efficiency of the
models was evaluated based on the RMSE as shown in Table 4
using different subsets of input parameters. It is seen in
Table 4 that all studied models of RF, PR, ICO-RF, and
ICO-PR provide better results for scenarios No. 5 and No. 6,
where input combinations are constructed in terms of one-
three ahead suspended sediment load data. Although dis-
charge has higher PCC value with suspended sediment load,
it gives poor results in the modeling. Among scenarios that
discharge and suspended sediment load are incorporated into
the model structure, scenario No. 9 provides better results;
however, its performance is not as high as scenario No. 6.
The best input combination for the RF, PR, ICO-RF, and
ICO-PR versions is found as scenario No. 9.

Model performance and validation

Historical discharge and suspended sediment load data are
vital factors in modeling of a river suspended sediment load.
The seasonality of rainfall affects discharge and influences the
suspended sediment load (Yunus and Nakagoshi 2004). In
this study, two stand-alone intelligent models of PR and RF
were employed to calculate suspended sediment load. In order
to enhance the robustness of the stand-alone models, two nov-
el hybrid algorithms were developed by combining the stand-
alone models of RR and PE with ICO optimization technique.
The performance of the four developed models was compared
in terms of accurate suspended sediment load prediction.

After determination of the most effective combination of
input parameters, all algorithms were trained utilizing the train
dataset and, then, their performances were examined on a test
data set. This analysis would demonstrate how the built model
fits the train data set, as the models were created using a
training data set (Khosravi et al. 2016; Chen et al. 2019). To

this end, model’s credibility must be examined on unseen data
set at testing stage.

Table 5 illustrates an evaluation of the performance of the
four recommended models for suspended sediment load pre-
diction. For the sake of fair comparison of the models, the
statistical parameters must be applied during both training
and testing stages. However, the performance bench marks
are more relevant when determining the best model during
the test phase, because the performance of the models during
the test phase demonstrates their ability to replicate any new
data not entered in the models during the training period
(Meshram et al. 2019). The R2 values indicate that during
the testing process, the ICO-RF model generates the best per-
formance (0.81) followed by the ICO-PR (0.80), PR (0.73),
and RF (0.64). R2 is optimized for variations between mean
and variance of measured and expected quantities; it is prone
to outliers and must not be utilized exclusively for examina-
tion of developed models (Legates and McCabe 1999; Shiri
and Kisi 2012). Therefore, alternative error measurement in-
dices were used for model performance evaluation. The ICO-
RF was superior to the other types, based on RMSE andMAE.
The ICO-RF and RF models proved the greatest and least
predictive capability, taking into account all the evaluation
metrics together. The efficiency of ICO-RF and ICO-PR is
found better during the training and testing process than the
respective RF and PR versions. For example, during the test-
ing stage, the values of theMAE and RMSE indices, i.e., 2600
and 8675 (RF model), and 3288 and 7634 (PR model), in the
ICO decrease to 2252 and 6329, and 2880 and 6436, respec-
tively. Evaluation of the performances of the developed hy-
brid models in contrast to the stand-alone RF and PR models
shows that the hybrid models being proposed are more

Table 3 Different
combination of input
parameters

No. Input combinations

1 Q

2 Q, Q-1

3 Q,Q-1, Q-2

4 Q,Q-1, Q-2, Q-3

5 S-1

6 S-1, S-2

7 S-1, S-2, S-3

8 Q, S-1

9 Q, S-1, Q-1

10 Q,Q-1, Q-2, Q-3, S-1, S-2, S-3

Table 2 Pearson correlation
coefficient for different input
parameters

Input Q Q-1 Q-2 Q-3 S-1 S-2 S-3

Pearson correlation coefficient 0.75 0.56 0.34 0.23 0.63 0.34 0.23
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reliable than stand-alone ones. In the proposed hybrid models,
the less accurate results of RF and PR models are usually
improved to excellent or reasonable performance by consid-
ering the R2 predictor. Furthermore, the weak correlations of
measured and computed suspended sediment load data in the
RF and PR models are significantly enhanced in the ICO-RF
and ICO-PR models. ICO-RF also had the highest results as
compared to the other models. It is worthy to mention that
among stand-alone models, PR gave better results than RF;
however, between hybrid models, ICO-RF outperformed
ICO-PR. It illustrates that an optimization approach greatly
promotes the RF performance, where in this study the perfor-
mance of stand-alone RFmodel has been improved by a factor
of 27% in ICO-RF model with RMSE values of 8675 and
6329, respectively.

In Figs. 4 and 5, the scatter and comparative plots were
drawn for graphical checking of the performance of proposed
ICO-RF and ICO-PR hybrid models compared to the stand-
alone RF and PR models during testing and training phases.
Figures 4 and 5 reflect scatter plots between regular suspended
sediments observed vs. computed during the training and test
phases. The ICO-RF model predicts more accurately than the
other models as shown in Fig. 5. The results generally show that
hybrid algorithms’ predictive power depends mostly on the

optimization approach (i.e., ICO) and base algorithm (i.e., PR,
RF). The implementation of iterative classifier optimizer (ICO)
approach improved the stand-alone model’s predictive ability.
A significant underestimation for suspended sediment load data
has been seen for stand-alone RF and PR models, while ICO-
RF and ICO-PR hybrid models generate better results with a
slight underestimation. An important feature of hybrid models
of ICO-RF and ICO-PR is that they have the ability to capture
extreme suspended load values as shown in time series plots in
Fig. 5. Stand-alonemodels of RF and PR are failed in predicting
extreme suspended sediment load data, indicating their poor
performance for molding river suspended sediment prediction.

As a result of statistical analysis given above, it can be
concluded that in the ICO-RF model the daily suspended sed-
iment of the current day can be modeled with fewer inputs
using the suspended sediment of the one day and two days
ahead data. ICO-RF is found superior to its alternatives, al-
though ICO-PR can compete with ICO-RF model in terms of
accurate prediction of suspended sediment load.

As the literature review shows, suspended yield prediction
by soft computing techniques was superior compared to that
using traditional method (Yadav et al. 2017). The perfor-
mance of the sediment rating curve (SRC) model was below
expectations as it produced the least accurate results for the
peak sediment values, as well as overall model performance. It
is also noticed that the multiple linear regression (MLR) mod-
el predicted negative sediment yield at low values, which is
completely unrealistic as suspended sediment yield cannot be
negative in nature. It was also observed that suspended yield
prediction by ANNwas superior compared to that using MLR
(Yadav et al. 2017).

It is always challenging to model sediment yield using
traditional mathematical models because they are incapable
of handling the complex non-linearity and non-stationarity
(Yadav et al. 2020). A comparative study of different tradi-
tional models for assessment of sediment yield (Modified
Universal Soil Loss Equation and Sediment delivery ratio)

Table 4 RMSE values for RF,
PR, ICO-RF, and ICO-PRmodels
performed in different scenarios

No. Input combinations RF PR ICO-
RF

ICO-
PR

1 Q 18,565 17,938 15,385 16,758

2 Q, Q-1 19,061 18,673 17,602 17,512

3 Q,Q-1, Q-2 19,134 18,847 16,535 17,363

4 Q,Q-1, Q-2, Q-3 19,274 19,084 16,837 17,728

5 S-1 10,337 10,278 10,312 10,229

6 S-1, S-2 10,301 10,105 10,036 10,038

7 S-1, S-2, S-3 11,640 10,126 10,047 10,140

8 Q, S-1 16,163 16,163 15,721 15,635

9 Q, S-1, Q-1 15,036 14,832 12,059 12,580

10 Q,Q-1, Q-2, Q-3, S-1, S-2, S-3 15,245 15,146 14,699 15,497

Bold values showed minimum RMSE for RF, PR, ICO-RF and ICO-PR

Table 5 Comparison of the best models in terms of R2, MAE, and
RMSE

Model Training Testing

MAE RMSE R2 MAE RMSE R2

RF 3829 20,512 0.44 2600 8675 0.64

PR 4794 21,204 0.40 3288 7634 0.73

ICO-RF 4021 20,800 0.42 2252 6329 0.81

ICO-PR 4685 21,316 0.40 2880 6436 0.80

MAE, RMSE bold value showed minimum and R2 bold value showed
maximum value for RF, PR, ICO-RF and ICO-PR
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was carried out in Pairi Watershed, Chhattisgarh, India. It is
found that MUSLE model for sediment yield has been found
to be most reliable as compared to RUSLE (Kumar et al. 2019).
The soil loss estimated by the RUSLE method was quite close
to the direct field measurement (Nigam et al. 2017).

Despite the AI-based models, promising implementation in
the many fields of scientific research has been implemented and
demonstrated, but there are still some notable challenges attrib-
uted to AI-based models. The main drawback of the ANNmod-
el is weak generalization potential, lack of strict design programs
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Fig. 4 Observed and predicted suspended sediment load for RF, PR, ICO-RF, and ICO-PR during training phase

11645Environ Sci Pollut Res (2021) 28:11637–11649



with theoretical basis, and difficult to manage the training pro-
cess, and slow convergence and inefficiency-related issues.

Since the random forest (RF) can be used to identify and
regression, it is common because it can be applied to a wide
range of predictive problems, it has a few parameters to
change, it is easy to use, and it has been applied successfully
tomany practical problems and can handle small sample sizes,

high-dimensional feature spaces, and complex data structures
(Tyralis and Papacharalampous 2017).

The pace regression may be an improvement over the other
regression, as it includes measuring the impact of each vari-
able and using a clustering approach to strengthen the statis-
tical basis (Wei 2016). As indicated in Wang and Witten
(1999), the pace regression is outperforming, because it in a
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Fig. 5 Observed and predicted suspended sediment load for RF, PR, ICO-RF, and ICO-PR during testing phase
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general sense contradicts the least squares theory. According
to Naing and Htike (2015), RF algorithm performs well in
short time series one-step ahead of prediction.

Conclusions

In this study, the efficiency of four artificial intelligent
techniques of the stand-alone models of RF, PR, and hy-
brid models of ICO-RF and ICO-PR, was assessed for
estimation of the suspended sediment load over a station
in the Seonath river basin located in India. Daily discharge
and suspended sediment load data of one-three ahead his-
torical records are used for the modeling. Different input
combinations were examined on all studied models to se-
lect the best scenario for further analysis. Comparison of
the developed models based on the variety of statistical
error measurement indices showed that the hybrid ICO-
RF and ICO-PR techniques provide better performance
for estimating the suspended sediment load, and have been
performed as the best-ranked 1st and 2nd models, respec-
tively. The results obtained in this study show a satisfactory
basis for integrating the ICO as an optimizer technique to
promote RF and PR model performance in prediction prob-
lems. Results show that optimization of RF with ICO ap-
proach enhances the model performance by a factor of
27%. The stand-alone models of RF and PR significantly
underestimate suspended sediment load. Hybrid models of
ICO-RF and ICO-PR can accurately capture the extreme
suspended sediment load values, demonstrating their ro-
bustness for application in hydrological problems.
Considering the results, the potential alternative optimizer
techniques such as fire fly algorithm, multi-verse optimiza-
tion can be used to boost the single RF and PR model for
suspended sediment load prediction and applied to alterna-
tive hydrological problems which may be considered future
research directions.
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