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Abstract
The investigation of sediment transport in tropical rivers is essential for planning effective integrated river basin management to
predict the changes in rivers. The characteristics of rivers and sediment in the tropical region are different compared to those of the
rivers in Europe and the USA, where the median sediment size tends to bemuchmore refined. The origins of the rivers are mainly
tropical forests. Due to the complexity of determining sediment transport, many sediment transport equations were recommended
in the literature. However, the accuracy of the prediction results remains low, particularly for the tropical rivers. The majority of
the existing equations were developed using multiple non-linear regression (MNLR). Machine learning has recently been the
method of choice to increase model prediction accuracy in complex hydrological problems. Compared to the conventional
MNLR method, machine learning algorithms have advanced and can produce a useful prediction model. In this research, three
machine learningmodels, namely evolutionary polynomial regression (EPR), multi-gene genetic programming (MGGP) andM5
tree model (M5P), were implemented to model sediment transport for rivers in Malaysia. The formulated variables for the
prediction model were originated from the revised equations reported in the relevant literature for Malaysian rivers. Among
the three machine learning models, in terms of different statistical measurement criteria, EPR gives the best prediction model,
followed byMGGP andM5P.Machine learning is excellent at improving the prediction distribution of high data values but lacks
accuracy compared to observations of lower data values. These results indicate that further study needs to be done to improve the
machine learning model’s accuracy to predict sediment transport.
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Introduction

Sediment transport is a vital element related to river engineer-
ing problems. It is important because many issues related to
rivers are dependent on sediment mobility. Failure to manage
the sedimentation process creates problems such as the reduc-
tion of river capacity, flooding, riverbank erosion, riverbed
degradation, structure and infrastructure losses, navigation is-
sues and water quality deterioration (van Vuren et al. 2015;
Speed et al. 2016; Harun et al. 2020). The input and output of

the sediment and the regular disturbance that happened along
the river have to be adequately managed to provide a sustain-
able ecosystem (Templeton and Jay 2013; Frings and Ten
Brinke 2017). An estimation of the total bed material load is
essential to determine a stable channel design, solving sedi-
mentation problems, predicting scour and floodplain manage-
ment and preparing hydraulic structure design (Chang 1985;
Sinnakaudan et al. 2003; Chang et al. 2005; DID 2009a).
There are two main components in total bed material load:
suspended load and bed load (Subhasish 2011; Haddadchi
et al. 2013; Sulaiman et al. 2017a). The total material load
can be estimated by applying direct and indirect approaches
(Subhasish 2011). The direct method considers the combina-
tion of both bed load and suspended load, whereas the indirect
approach separates the bed load and suspended load transport.
Many of the total material load equations were derived based
on laboratory set up data, which simplified the description of
the sedimentation complex phenomenon (Sinnakaudan et al.
2006; Chang et al. 2012; Ab Ghani and Azamathulla 2014).

The uncertainty in the river watershed area presents a chal-
lenge in predicting the total bed material load precisely due to
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the different river data profile and the need to consider
sediment properties and characteristics (Molinas and Wu
2001; Syvitski et al. 2014). According to Nagy et al.
(2002), sediment transport equations were developed by
various theoretical concepts. Bagnold (1996) and
Engelund and Hansen (1967) used the power concept to
simulate sediment transport processes. Later, Ackers and
White (1973) applied stream power and represented
sediment transport in the form of dimensionless analysis.
Yang (1976) also introduced a sediment transport function
based on the analytic power model by stream power per
unit weight of the fluid. Laursen (1958), on the other
hand, used the functional relationship to establish a con-
nection between sediment discharge and flow condition.
Shen and Hung (1972) have used regression analysis
based on laboratory results to develop a sediment trans-
port equation. Indeed, Brownlie (1981) also used the same
method to develop an equation for sediment transport.
This is followed by multiple non-linear regression
(MNLR) analysis by Karim and Kennedy (1981) and
Karim (1998). All the developed equations have the same
downside—the range of the data and the characteristics of
the sediments were different from one equation to anoth-
er. The equations developed by Ackers and White (1973),
Engelund and Hansen (1967) and Yang (1976) used data
from a flume experiment, where water depth was less than
0.5 m.

For sediment prediction in Malaysian rivers, Saleh et al.
(2017) and Sinnakaudan et al. (2006) reported that, for the
tropical region, particularly forMalaysian rivers, the equations
were less suitable because the hydraulic characteristics and
sediment properties were different from the rivers investigated
to for developing the existing equation. The same trend also
applied to the neighbouring tropical country of Indonesia,
where the reported discrepancy ratio (DR) was found to be
below 28% (Gunawan et al. 2019). Inspired by the MNLR
technique of predicting sediment transport in pipes by Ab
Ghani (1993), Ariffin (2004) and Sinnakaudan et al. (2006)
used the same approach to produce equations that suited the
characteristics of rivers in Malaysia. Harun and Ab Ghani
(2020) and Harun et al. (2020) later improved the MNLR
equation by introducing a revised version of both Ariffin’s
(2004) and Sinnakaudan et al.’s (2006) equations, which are
shown in Table 1.

The findings of Harun and Ab Ghani (2020) and Harun
et al. (2020) suggested that there is a lack of accuracy in
predicting the total material load when applying the conven-
tional method (MNLR), particularly with higher data ranges,
which results in low accuracy rates and low R2 (coefficient of
determination) and MAE (mean absolute error) values. The
data from the three rivers adopted in this study were analysed
by using the commonly used sediment transport equation; the
results are shown in Table 2. The R2 of all equations is less

than 0.7 and the MAEs are in the range of 2.784–11.955,
indicating that improvements are needed in order to increase
model prediction accuracy.

Of late, the use of machine learning to predict sediment
transport is gradually becoming the method of choice.
Relevant literature (Shaghaghi et al. 2018a; Ebtehaj
et al. 2019) revealed that machine learning techniques
could produce better model prediction because they are
more complex and can evolve to suit the model better,
unlike the traditional regression method. Often, re-
searchers used single and hybrid methods as an approach
to improve the accuracy of the predictions (Yahaya 2019).
Single methods, such as MNLR, artificial neural networks
(ANN) and gene expression programming (GEP), were
utilised to develop sediment transport models (Chang
et al. 2012; Ab Ghani and Azamathulla 2014; Ara
Rahman and Chakrabarty 2020), whereas hybrid models
combined the methods to get the most appropriate model
for the model predictions (Ab Ghani et al. 2010; Ab
Ghani and Azamathulla 2014). According to Yahaya
(2019), the performance of the hybrid methods is better
than that of the single methods in most cases. In water
resources engineering, the application of hybrid methods
is widely used to predict stable channel dimensions, flow
discharge, sediment transport modelling, scour depth and
rainfall forecasting (Tayfur et al. 2003, 2013; Tayfur and
Guldal 2006; Ulke et al. 2009; Nourani et al. 2012, 2016,
2019; Balouchi et al. 2015; Safari and Danandeh Mehr
2018; Shaghaghi et al. 2018b; Danandeh Mehr et al.
2019; Sharghi et al. 2019; Khosravi et al. 2020; Shiri
et al. 2020). The studies conducted by Ara Rahman and
Chakrabarty (2020), Sahraei et al. (2018) and Kitsikoudis
et al. (2015) show that machine learning can successfully
be applied in predicting sediment transport in rivers with
high prediction accuracy. However, according to Rajaee
and Jafari (2020), more precaution should be considered
because machine learning is often influenced by extreme-
ly low- and high-value data. Among others, evolutionary
polynomial regression (EPR), multi-gene genetic pro-
gramming (MGGP) and the M5 tree model (M5P) are
becoming the emerging machine learning tools used to
develop model prediction. According to Bonakdari et al.
(2020) and Ahmad Abdul Ghani et al. (2019), EPR is a
robust prediction modelling method because the model
can give high accuracy results with fewer errors.

The purpose of this study is to implement machine learning
in sediment transport prediction modelling to enhance the
existing total material load formulae accuracy. Revised equa-
tion parameters adopted by Harun et al. (2020) were used as
the basis to generate the prediction model. Three machine
learning algorithms—EPR, MGGP and M5P—were applied
to investigate the effectiveness of the respective algorithms
towards the total bed material load estimation.
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Material and methods

Study area

This research uses data from the Malaysian Department of
Irrigation and Drainage (DID 2009a). Three different rivers
were investigated in this study, and they were separated by
differences in length and hydraulic characteristics. Muda
River, Langat River and Kurau River stretch about 180 km,
120 km and 92 km, respectively. Sediment samplings were
carried out at a cross section for each site. According to
Molinas and Wu (2001), rivers can be categorised by observ-
ing their flow depths. A wide river has a flow depth of more
than 4 m, a medium river has a flow depth between 1.5 and 4
m and a small river has a flow depth of less than 1.5 m. Muda
River represented the wide category river, followed by Langat
River (medium river) and Kurau River (small river). Each
river consisted of six sampling locations. Figure 1 depicts
the location of the rivers within Peninsular Malaysia.

Muda River Basin

The Muda River Basin is located in the northern region of
Peninsular Malaysia. The river originates in the hilly area in
the district of Sik and closes at Thailand’s border. It is the

largest river in Kedah State and is essential in providing water
to the three states of Kedah, Perlis and Pulau Pinang (Sim et al.
2015). The river flows from the northeast to the southwest
before turning westward, forming a natural boundary with
Pulau Pinang state before rushing to the sea. The drainage area
is approximately 4210 km2. The upper and middle reaches of
the river are entirely located within the state of Kedah; mean-
while, its downstream stretch, with a length of about 30 km
from the sea, is shared between Kedah and Pulau Pinang
states. The length of the river is about 180 km long, with a
slope of ½,300 (or 0.00043) from its estuary to the upper
reaches. In terms of river width, it is typically around 10 m
upstream, 100 m mid-stream and widest at its estuary, aver-
aging 300 m (DID 2009b). The locations of the sampling
points are shown in Fig. 2.

Langat River Basin

The Langat River Basin covers three different states—
Selangor, Negeri Sembilan and the Wilayah Persekutuan.
There are four main rivers in the Selangor state, and the
Langat River makes up one of them. Langat River is a
medium-sized river about 180 km long. The average annual
flow is 35 m3/s, and the mean annual flood is 300 m3/s. The
basin occupies the east of Titiwangsa Range and flows to-
wards the sea (Straits of Malacca). A diverse topography
was observed within the river basin, ranging from the hilly
areas in the northeast, undulating in the middle hill and gentle
in the southwest area (Fig. 3).

The river flows from the highland of Negeri Sembilan
and then runs through Selangor and Wilayah Persekutuan
before finally discharging into the Straits of Malacca. The
Langat River Basin has a total catchment area of 2396 km2.
The basin in the Selangor state has an area totalling 1900
km2. In contrast, the basin areas within the Federal
Territories of Putrajaya and Kuala Lumpur are only 41
km2 and 5 km2, respectively. Negeri Sembilan state covers

Table 1 Total bed material load equations for Malaysian rivers

Reference Equation

Ariffin (2004) Cv = 1.156 × 10−5( Rd50 )
0.716(U

*

ωs
)−0.975(U

*

V )0.507(V
2

gy )
0.524 (1)

Sinnakaudan et al. (2006)
Cv = 1.811 × 10−4(VSoωs

)0.293( Rd50 )
1.390(

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g Ss−1ð Þd503

p
VR ) (2)

Harun et al. (2020) Cv = 4.032 × 10−2 (U
*

V )2.178(V
2

gy )
0.795 (revised Ariffin 2004) (3)

Cv = 6.237 × 10−3(VSoωs
)0.712( Rd50 )

1.068(
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g Ss−1ð Þd503

p
VR ) (revised Sinnakaudan et al. 2006) (4)

Cv is the sediment concentration by volume, Ss is the specific gravity of the sediment, R is the hydraulic radius, d50 is the median size of bed material,U*
is the shear velocity, So is the bed slope, ws is the fall velocity of the bed material, V is the average flow velocity, g is the standard gravity, and y is the
average depth of the water

Table 2 Summary of performance of the revised equations and the
current commonly used equations

Equation R2 MAE

Revised Ariffin (2004) 0.616 2.854

Revised Sinnakaudan et al. (2006) 0.465 2.784

Ariffin (2004) 0.021 11.955

Sinnakaudan et al. (2006) 0.260 6.577

Engelund and Hansen (1967) 0.295 4.996

Yang (1979) 0.355 3.650
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Fig. 1 Study area location

Fig. 2 Location of sampling points at the Muda River

Environ Sci Pollut Res



the remaining 450 km2 of the basin area (DID 2009c).
Sampling locations are shown in Fig. 3.

Kurau River Basin

The basin sits on the floodplains of Perak state and closes at
the sea. The basin can be considered as a small river basin with
a drainage area of approximately 682 km2 comprised of flood-
plains and swamps. It has a low-lying flat land characteristic.
Bintang and Main Range make up the origin of the Kurau
River, where the topography is found to be steep highland.
Into the mid-stream, medium to undulating terrain was ob-
served. As the river nears the sea, the topography changes
quickly into flat and broad floodplains. Moderate elevation
heights were observed at the river headwaters, ranging from
900–1200 m. In terms of slope, the upper reach and the lower
reach range from 0.25–5%. The average velocity ranges be-
tween 0.45 and 0.636 m/s, and the highest sediment load re-
corded was 0.878 kg/s (Saleh et al. 2017). The Kurau River
basin and the sampling points can be observed in Fig. 4.

A dam was constructed at the river mid-section (Bukit
Merah reservoir) to serve as the primary irrigation source for
paddy plantation. In the upstream of the reservoir, there are

two major river systems that are drained into the reservoir—
the Kurau River and theMerah River. Kurau River andMerah
River land areas are occupied with tree crop agriculture, main-
ly palm oil farms. The river is located in the district of Larut,
Matang and Selama (upper part) and flows toward the Kerian
district (downstream part). The Kurau River basin is mostly
rural, and many riverine villages were built along the river
(DID 2009d).

This study was conducted using a much more comprehen-
sive data range than the studies performed by Ariffin (2004)
and Sinnakaudan et al. (2006). Tables 3 and 4 list the data
range difference between the current study and past studies.

Field data collection

The collection of the data was done by referring to the guide-
line produced by Ab Ghani et al. (2003). The guideline con-
sists of two different parts—field data collection and sediment
analysis. Field data collection comprises flow measurement
and river surveys. River surveys focused on measuring a riv-
er’s cross section and bed elevation using electronic distance
metre (EDM); meanwhile, data collection includes water sur-
face slope, flow discharge, bed load and suspended load. The

Fig. 3 Location of sampling points at the Langat River
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type of equipment used is dependent on the flow of the river.
At the selected cross section, thalweg and bed level were
measured to determine the stability of the rivers. The stability
of a river can be observed by comparing the bed height and the
river’s thalweg with the suggested height proposed by the
empirical and analytical method (Copeland 1994; Julien and
Wargadalam 1995; Lee and Julien 2007; Jang et al. 2016;
Harun et al. 2020). The wading technique was adopted for a

low-flow river; meanwhile, for a high-flow river, the measure-
ments were done by suspension from the bridge. An electro-
magnetic current metre was used in the wading method. For
the high-flow river, the flow was measured by using Neyrflux
Type 80 Universal current metre. Bed material was obtained
by using a Van Veen sampler. Bed load was collected using
the wading type Helley Smith and suspended type Helley
Smith. The DH-48 sampler was used tomanage the suspended

Fig. 4 Location of sampling points at the Kurau River

Table 3 Range of river data for
the study conducted by
Sinnakaudan et al. (2006) and
Ariffin (2004)

Variable/parameter Sinnakaudan et al. (2006) Ariffin (2004)

Number of data 346 165

Discharge Q (m3/s) 0.74–87.79 0.74–87.79

Average velocity V (m/s) 0.19–1.42 0.19–1.18

River width B 13.50–30.00 13.80–33.00

Flow depth Yo 0.22–3.23 0.228–3.25

Area (m2) 3.42–96.83 3.4–96.80

Hydraulic radius R (m) 0.22–2.66 0.22–2.66

Bed slope So 0.0004–0.0167 0.0004–0.0167

Sediment bed material, d50 (mm) 0.37–4.00 0.542–2.288

Total load (kg/s) 0.10–118.95 0.06–118.95
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load in the low-flow river, and a DH-59 sampler was used in
the high-flow river. The final amount of total material load can
be determined by summarising both the bed load and
suspended load. Figure 5 showed the process of collecting
the bed load and suspended load by using a suspended type
Helley Smith and DH-48 sampler.

Revised total bed material load equations using MLR

According to Haddadchi et al. (2013) and Sulaiman et al.
(2017b), total bed material load is the combination product

of suspended loads and bed loads. The total bed material load
(Qt) was derived from the following relation:

Qt ¼ CvQρs ð5Þ
where Cv is the sediment concentration by volume (di-
mensionless form), Q is the discharge and ρs is the den-
sity of the sediment. Sediment transport was influenced
by the combination of significant parameter groups,
namely mobility, sediment, conveyance and shape and
flow resistance. Further explanation can be found in
Harun et al. (2020). Since all the test cases were
expressed in a single power-law equation, the possible
regression analysis was analysed by applying statistical
analysis software, SPSS. This study adopted ln Cv as the
dependent variable; meanwhile, ln U*/V and lnV2/2gy
were adopted as independent variables for Ariffin’s
(2004) equation. For the revised Sinnakaudan et al.
(2006) equation, the dependent variable is log phi and
the independent variables are log R/d50 and log VSo/Ws.
The model was analysed further to find outliers using the
standardised residual. This was later confirmed with influ-
ential outlier checking so that the outliers did not change
the accuracy of the regression model dramatically.

EPR

EPR can be considered a data processing tool driven by the
hybrid regression technique (Giustolisi and Savic 2006,
2009). This method uses a single genetic algorithm to concen-
trate on the formula symbol space to provide a few alternative
models for prediction purposes (Giustolisi and Savic 2006,
2009). It is a non-linear stepwise regression that involves
non-linear functions among variables but is linear to the re-
gression parameters (Zahiri and Najafzadeh 2018).

Table 4 Range of river data for
the present study Variable/parameter The present study (Muda

River)
The present study
(Langat River)

The present study
(Kurau River)

Number of data 76 60 78

Discharge Q (m3/s) 2.59–343.71 2.75–120.76 0.63–28.94

Average velocity V (m/s) 0.14–1.45 0.23–1.01 0.27–1.12

River width B 9.0–90.00 16.4–37.60 6.30–26.00

Flow depth Yo 0.73–6.90 0.64–5.77 0.36–1.91

Area (m2) 6.12–278.34 8.17–153.57 1.43–33.45

Hydraulic radius R (m) 0.55–3.90 0.45–3.68 0.177–1.349

Bed slope So 0.00008–0.000235 0.00065–0.00185 0.00050–0.000210

Sediment bed material,
d50 (mm)

0.29–2.10 0.31–3.00 0.41–1.90

Total load (kg/s) 0.099–15.644 0.525–99.398 0.089–2.970

Fig. 5 Data collection of bed load and suspended load by using
suspension from the bridge
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EPR has a unique general structure that combines additive
terms multiplied by many coefficients that can be described as
follows:

bY ¼ ao þ ∑m
j¼1a j X 1ð ÞES j;1ð Þ…:: X kð ÞES j;kð Þ: f X 1ð ÞES j;kþ1ð Þ…:: X kð ÞES j;2kð Þ

� �
ð6Þ

where m can be defined as the maximum number of additive

terms, X1 and bY are model input and output variables, function
f is the exponents of the variables and ES can be chosen by the
user beforehand (Giustolisi and Savic 2006, 2009). Ultimate
regression expressions are linear to the coefficient aj and often
estimated using classical numeral regression (Giustolisi and
Savic 2006, 2009).

MGGP

Originating from the GP, MGGP enhances the fitness of solu-
tions by combining low depth GP to the monolithic GP (Safari
and Danandeh Mehr 2018; Danandeh Mehr et al. 2019;
Danandeh Mehr and Safari 2020). Danandeh Mehr et al.
(2018) explained that the smaller tree application in MGGP is
more straightforward compared to the monolithic GP. The sum-
mation of weighted outputs of two or more GP trees in a multi-
gene programme produces the output variable; meanwhile, the
bias depends on the stochastic term. The pseudo-linear MGGP

model is represented by the output variable bY , which combines
three genes. Each gene represents the function of a given input
variable x1 and x2. Figure 6 shows an example of how MGGP
operates. In this example, each multi-gene consists of three
genes. Equation (5) describes the MGGP mathematical expres-
sion, where do is the bias term, d1 and d2 represent the gene
weight and C1 is the constant value.

bY ¼ do þ d1 x1 � cosx2 þ x2 � sinx1ð Þ
þ d2 x1 � x2 sinx1ð Þ þ d3 C1 � x1 þ x1 þ x2ð Þ ð7Þ

Linear regression was applied in theMGGP to suit the non-
linear condition of the physical system (Danandeh Mehr et al.
2018). Danandeh Mehr et al. (2018) also explained that any

data pre-processing technique that can enhance the accuracy
of the results could be used to optimise the gene weight.

M5P model tree

M5P is a linear tree-based model introduced by Quinlan
(1992). An M5P decision tree is convenient because multivar-
iate linear models can be operated within the model, and,
indeed, it can be managed very flexibly (Balouchi et al.
2015; Khosravi et al. 2020). The main steps involved in de-
veloping M5P are constructing the tree, pruning the tree and
smoothing the tree. In growing the trees, the best model was
achieved by maximising the standard deviation reduction
(SDR). SDR is explained in Eq. (5), where E is defined as
the set of cases, Ei is ith subset of cases splitting the tree,
SDE is the standard deviation of E and SD(Ei) is the standard
deviation of Ei

SDR ¼ SDE−∑
i

Eij j
Ej j xSD Eið Þ ð8Þ

The overfitting problem, in which the model is excellent in
the dataset but does not performwell in the testing dataset, can
be solved through the pruning step. In this step, subtrees were
eliminated to maximise the results, and the attribute was re-
duced to minimise the error. Next, the smoothing step will
continue to take place by adjusting the discontinuity at the
leaves of the pruned tree (Khosravi et al. 2020). More details
can be found by referring to the research done by Shaghaghi
et al. (2018b) and Kargar et al. (2020).

The goodness of fit of model performance

Evaluation of the developed models was done based on sev-
eral indices, which are coefficient of determination (R2),
Nash-Sutcliffe coefficient of Efficiency (NSE), root mean
square error (RMSE), mean absolute error (MAE) and discrep-
ancy ratio (DR). R2 represents the correlation between mea-
sured and modelled values. Root mean square error (RMSE)
represents the data unit squared for root mean error.
Meanwhile, MAE shows the absolute error of the measured
and modelled value.MAEmakes use of absolute value to help
reduce the bias towards the large event of prediction and

Fig. 6 Example of three genes of
MGGP
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observation data (Bennett et al. 2013).NSE is used to describe
how much the modelling differs from the observed data. The
NSE value of unity is the perfect result. Less than zero means
underestimation of the model, and closer to the unity repre-
sents high accuracy of the predicted model (Bonakdari et al.
2020; Danandeh Mehr and Safari 2020). Discrepancy ratio
(DR) is the comparison between the computed and measured
total bed material load. The acceptable range ofDR is 0.5–2.0
(Julien and Wargadalam 1995; Molinas and Wu 2001; Wu
et al. 2008; Harun et al. 2020). Relationships for the compu-
tation of R2, NSE, MAE, RMSE and DR can be written as
follows

R2 ¼
∑N

i¼1 Oi−Oi

� �
Pi−Pi

� �
∑N

i¼1 Oi−Oi

� �2
∑N

i¼1 Pi−Pi

� �2��
2664

3775
2

ð9Þ

NSE ¼ 1−
∑N

i¼1 Oi−Pi

� �2
∑N

i¼1 Oi−Oi

� �2 ð10Þ

MAE ¼ 1

N
∑N

i¼1 Oi−Pij j ð11Þ

RMSE ¼ 1

N
∑N

i¼1 Oi−Pið Þ2
� �0:5

ð12Þ

DR ¼ Pi

Oi
ð13Þ

where Oi and Pi are observed and predicted values; mean-
while, Oi and Pi are the mean observed and predicted values,
respectively.

Results and discussion

Revised total bed material load equation

Results from the MNLR, as discussed by Harun et al. (2020),
showed that, for the revised version of Ariffin’s (2004) equa-
tion, only two parameters were significant for sediment con-
centration computation. The values of R2 andMAE turned out
to be 0.616 and 2.526, respectively. Results from the regres-

sion indicate that the slope for variable U*

V is 2.178 and for the

variable V2

gy, the slope is 0.795. The intercept coefficient was

found to be − 3.211. The revised version of Ariffin’s (2004)
equation can be re-written as follows:

Cv ¼ 4:032� 10−2
U*

V

� �
2:178

V2

gy

� �
0:795 ð14Þ

Sinnakaudan et al.’s (2006) equation was revised by using
the original parameters. The R2 value is 0.482, and the MSE
value is 2.784. Slope coefficient for VSoωs

is 0.712 and for R
d50
, the

slope coefficient is 1.068. This model intercepts at − 2.205.
The yielded equation by implementing Sinnakaudan et al.
(2006) parameter relationship can be described as Eq. (15).

Cv ¼ 6:237

� 10−3
VSo
ωs

� �
0:712

R
d50

� �
1:068

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g Ss−1ð Þd503

p
VR

 !
ð15Þ

The parameters for the inputs of EPR, MGGP and M5P
machine learning models are selected based on the past re-
search done by Harun et al. (2020). The parameters of the
revised equation after applying MNLR were in the form of

Qt = f(Q, ρs, U
*

V , V
2

gy ) (revised version of Ariffin’s equation

(2004)) andQt = f(Q, ρs,
VSo
ωs
, R
d50
,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g Ss−1ð Þd503

p
VR ) (revised version

of Sinnakaudan et al.’s equation (2006)). Sensitivity analysis
was done to test the significance of the parameters used. The
parameters that are not significant to the prediction model are
omitted. As a result, the parameters for the revised
Sinnakaudan et al. (2006) equation are reduced to four param-

eters in the form of Qt = f(Q, VSo
ωs
, R
d50
,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g Ss−1ð Þd503

p
VR ), and

parameters for the revised Ariffin (2004) equation are reduced

to three parameters in the form of Qt = f(Q, U
*

V ,
V2

gy ). It was

observed that parameter ρs does not contribute a significant
improvement to the prediction model, as the correlation coef-
ficient (R) tends to be low. MSE tends to be higher in both
revised equations. This study utilised 214 data in total. The
dataset is split into two different parts: training and testing.
The data used for training and testing were chosen by adopting
the Kennard-Stone algorithm. The training process employs
70% of the data, and the testing process uses the remaining
30% of the data.

EPR

Equations (16) and (17) respectively are the yielded results for
the revised Ariffin (2004) and revised Sinnakaudan et al.
(2006) equations using EPR. The values of βi, x1, x2, x3 and
x4 are shown in Table 5 and Table 6. The equation is further
analysed in the training and testing dataset.

Qt ¼ ∑13
i¼1PiPi ¼ βi � Qx1 � u*

V

� �x2

� V2

gy

� �x3

ð16Þ
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Qt ¼ ∑13
i¼1PiPi ¼ βi � Qx1 � R

d50

� �
x2 � VS0

ws

� �
x3

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g Ss−1ð Þd503

q
VR

0@ 1Ax4 ð17Þ

Figure 7 showed the performances of EPRmodels (training
and testing) for both revised Ariffin (2004) and Sinnakaudan
et al. (2006) parameters. For the revised Ariffin (2004) equa-
tion, the R2 for training and testing are 0.949 and 0.892,
respectively. Meanwhile, for RMSE, the training and testing
are 2.564 and 4.596, respectively. As for the revised
Sinnakaudan et al. (2006) equation, the R2 for the training
stage is 0.946, and for the testing stage, the value is 0.806.

In terms of RMSE, the value is 2.912 (training) and 6.646
(testing).

MGGP

MGGP, on the other hand, depicts the following relationships
for the revised Ariffin (2004) and Sinnakaudan et al.’s (2006)
equations, respectively:

Qt ¼ 25:8
u*

V
ee

u*
V −0:869

V2

gy
log

V2

gy

� �� �

−200
u*

V
−4:2log Qð Þ−6:15log V2

gy

� �
−0:787Q

V2

gy

−0:135Qþ 1311Q
u*

V

� �2 V2

gy
−1:96

ð18Þ

Qt ¼ 0:953

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g Ss−1ð Þd503

q
VR

Q Qþ R
d50

� �
þ Q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g Ss−1ð Þd503

p
VR

 !

−10:7Q
VS0
ws

−0:0724Qlog

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g Ss−1ð Þd503

q
VR

0@ 1A−0:00157Q2

þþ1:16Q2log

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g Ss−1ð Þd503

q
VR

0@ 1A
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g Ss−1ð Þd503

p
VR

0BBBB@
1CCCCA

−2000Q2 VS0
ws

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g Ss−1ð Þd503

q
VR

log

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g Ss−1ð Þd503

q
VR

0@ 1A

ð19Þ

Results from the modelling by using MGGP show the
moderate R2 value for both revised equations. Revised
Ariffin (2004) R2 value for training is 0.796, and for the
testing stage, the value is 0.781. RMSE for both training and
testing stages are found as 10.578 and 12.727, respectively.
The R2 value for the revised Sinnakaudan et al. (2006) equa-
tion is slightly higher compared to the revised Ariffin (2004)
equation’s, which is 0.815 for training and 0.740 for testing
stages. However, the RMSE is observed to be slightly higher
in the revised Sinnakaudan et al. (2006), whereas the values
for testing and training are found as 10.689 and 12.383. More
details can be found in Fig. 8.

M5P

Summaries for the M5P regression tree for the revised Ariffin
(2004) equation and the revised Sinnakaudan et al. (2006) are
shown in Fig. 9 and Fig. 10. M5P gives mixed predictions for
both the revised equations. Figure 11 gives an outlook on the
predicted and observed values of both revised equations. The
R2 values for training were observed to be higher compared to
the values of the testing stage. The R2 values are 0.939

Table 5 Value of βi, x1,
x2, x3 and x4 for revised
Ariffin (2004)

(βi) (x1) (x2) (x3)

P1 1.03E-06 4 1 0

P2 2.95E+00 3 2 2

P3 4.49E-04 4 0 3

P4 − 1.39E-03 4 1 2

P5 − 8.01E+03 0 0 7

P6 4.56E+03 2 3 2

P7 5.06E+01 2 0 5

P8 − 3.82E-08 5 2 0

P9 − 5.79E-05 3 1 0

P10 − 4.10E+02 2 2 2

P11 1.39E-11 6 0 1

P12 − 2.30E-01 2 1 1

P13 7.54E+03 0 5 1

Table 6 Value of βi, x1, x2, x3 and x4 for revised Sinnakaudan et al.
(2006)

(βi) (x1) (x2) (x3)

P1 − 0.004537924 4 0 2

P2 0.001396894 0 3 4

P3 1.80E-14 7 0 0

P4 5.33E+15 0 0 5

P5 807.2764724 4 0 2

P6 − 5.33E-10 6 0 1

P7 17428117874 1 1 0

P8 − 436934172.4 1 0 6

P9 − 3.32E+15 1 0 0

P10 2.02E-13 5 1 0

P11 − 7.34E-12 6 0 0

P12 − 51610.82939 3 0 1

P13 − 1.38064E+11 1 0 5
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(training) and 0.553 (testing) for the revised Ariffin (2004)
equation. RMSE values for training and testing stages were
11.388 and 14.108, respectively. The revised Sinnakaudan
et al. (2006) equation, in turn, produced R2 values of 0.718
(training) and 0.443 (testing). Compared to the revised Ariffin
(2004) equation, RMSE for the revised Sinnakaudan et al.
(2006) equation is 12.383 for training and 11.405 for testing.

Prediction modelling summary

The two revised equations using EPR were compared with the
existing revised equations, as well as with the revised models
that used MGGP and M5P machine learning algorithms. The
results were also compared with existing results regarding
non-tropical rivers introduced by Ackers and White (1973)
and Karim (1998) respectively given as follows:

Cs ¼ 106c
ρs
ρ
d50
R

V
U*

� �n Fgr

Aaw
−1

� �m

ð20Þ

qt ¼ ϕt Ss−1ð Þgd350
	 
0:5 ð21Þ

where Cs is defined as sediment concentration by weight, ρs is
the soil mass density, ρ is the water mass density, Fgr is mo-
bility numbers, qt is the total load per unit time and width,фt is
the total load transport intensity, c and Aaw are the coefficients
and n and m are the exponents depending on the dimension-
less grain size Dgr defined as

Dgr ¼ d50
Ss−1ð Þg
v2

� �1=3

ð22Þ

where is the fluid kinematic viscosity. Table 7 listed the
coefficient and exponents for the Ackers and White (1973)
equation.

Fgr and U ′ ∗ is calculated by the following relation:

Fgr ¼ U*nU
0*1−nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ss−1ð Þgd50
p ð23Þ
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Fig. 7 Training and testing results of the revised Ariffin (2004) (a, b) and Sinnakaudan et al. (2006) (c, d) by using EPR
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Fig. 8 Training and testing results of the revised Ariffin (2004) (a, b) and Sinnakaudan et al. (2006) (c, d) by using MGGP

Fig. 9 M5P regression tree for revised Ariffin (2004)
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U
0
* ¼ Vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

32log 10
R
d50

� �s ð24Þ

Meanwhile, for Karim (1998) equation, фt and Fd can be
expressed as follows:

ϕt ¼ 1:39 x 10−3Fd
2:97 U*

ωs

� �1:47

ð25Þ

Fd ¼ Vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
Ss−1

� �
gd50

r
0BB@

1CCA ð26Þ

All the machine learning programmes use the same param-
eters, as discussed in the “Revised total bed material load
equation” section. The overall machine learning performance
is summarised in Table 8. Indeed, all machine learningmodels
are able to increase prediction accuracy with low error in com-
parison to the existing revised equations. The revised model
using EPR was found to produce better prediction results in
contrast to the MGGP and M5P models. The revised Ariffin
(2004) EPR model has the highest R2 and NSE values, which
are 0.922 and 0.913, respectively, followed by the revised
Sinnakaudan et al. (2006) EPR (R2 = 0.884, NSE = 0.848),
revised Ariffin (2004) MGGP (R2 = 0.787, NSE = 0.784),
revised Sinnakaudan et al. (2006) MGGP (R2 = 0.787, NSE
= 0.784), revised Ariffin (2004) M5P (R2 = 0.786, NSE =
0.762), revised Sinnakaudan et al. (2006) M5P (R2 = 0.622,
NSE = 0.615), Karim (1998) (R2 = 0.051, NSE = − 0.133) and

Ackers and White (1973) (R2 = 0.003, NSE = − 1.100).
Among all the revised models, the revised Ariffin (2004)
EPR model has the lowest RMSE (3.305) and MAE (1.552).
Interestingly, Ackers and White’s (1973) equation has the
highest RMSE (16.254) andMAE (4.923). All machine learn-
ing seems to be able to increase the accuracy of the model.
However, in terms ofDR, only the revised Ariffin (2004)M5P
and the revised Sinnakaudan et al. (2006) M5P give betterDR
prediction results than the revised MNLR results. Figures 12,
13, 14 explain the results in terms of DR for each respective
machine learning programme. From Table 7, the revised
Sinnakaudan et al. (2006) M5P turned out to have the highest
DR of 73.36%, followed by the revised Ariffin (2004) M5P
with 72.43%, revised Ariffin (2004) with 66.36%, revised
Sinnakaudan et al. (2006) with 64.49%, revised Ariffin
(2004) EPR with 34.58%, revised Sinnakaudan et al. (2006)
MGGP with 31.31%, revised Ariffin (2004) MGGP with
21.03% and revised Sinnakaudan et al. (2006) EPR with
14.49%. It is also important to note that, even though the
DR for M5P is considerably good (exceeding 73%), the data
did not distribute well and is rather flattening at the lower total
bed material load rate.

The results from the non-tropical equations from Ackers
and White (1973) and Karim (1998), on the other hand, sug-
gested that the equation is not suitable to be used in the trop-
ical region. Although Ackers and White (1973) use a much
more comprehensive range of sediment bed material (0.04–
4.00 mm), the prediction accuracy is low and the equation
only manages to achieve R2 and NSE values of 0.003 and −
1.100, respectively.

Fig. 10 M5P regression tree for revised Sinnakaudan et al. (2006)
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From the summary, EPR was found to improve the predic-
tion distribution value the most by producing higher R2 and
NSE values and lower RMSE and MAE values, followed by
MGGP and M5P. EPR is able to predict better results in both
revised Ariffin (2004) and Sinnakaudan et al. (2006) equa-
tions, resulting in a better prediction model compared to those
produced by MGGP and M5P. More importantly, despite the
lack of accuracy in model prediction in terms of R2 and NSE
values using the M5P programme, in terms of the DR, M5P

shows better prediction accuracy and gives better prediction
results compared to the revised equations. Rajaee and Jafari
(2020) suggest that machine learning is very sensitive. This
research shows that machine learning is better at predicting
total bed material load at a high value than at a lower value.

Sediment rating curve

The sediment rating curve is significant in giving general in-
formation about the relation between a river’s flow rate and
sediment yield. When the data is limited, the sediment rating
curve can be a useful tool in predicting a river’s sediment
yield. The sediment rating curve can also be derived from
the expected sediment transport prediction (Asselman 2000;
Mohammadi et al. 2021). The predicted equation’s data fit-
ness can be measured by plotting the derived sediment predic-
tion results to the present sediment rating curve. Figure 15
shows the derived sediment rating curve using the revised
equation by using MNLR and machine learning programmes.

Table 7 Coefficient and exponents for Ackers and White (1973)

Parameter Dgr > 60 60 ≥ Dgr > 1

c 0.025 Log (c) = 2.86 log (Dgr) − [log (Dgr)]
2 − 3.53

Aaw 0.17 0.23/Dgr
0.5 + 0.14

n 0 1–0.56 log (Dgr)

m 1.5 9.66/Dgr + 1.34
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Fig. 11 Training and testing results of the revised Ariffin (2004) (a) and Sinnakaudan et al. (2006) (b) by using M5P
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From Fig. 15, the revised Ariffin (2004) and
Sinnakaudan et al. (2006) equations using MNLR show
better prediction results compared to the revised equations
using machine learning. The revised equations, particular-
ly the revised Ariffin (2004) equation, show smaller dif-
ferences compared to the data from DID (2009a). As for
the machine learning programme, the low prediction ac-
curacy of sediment yield was observed at the low river
discharge. The results are aligned with the findings earli-
er, whereby the machine learning algorithm is better at
predicting higher rates of total bed material load.

Limitation of the proposed model

The current study focuses on developing a new prediction
model for sediment transport with a median bed material
between 0.29 and 3.00 mm. This study is limited by its
number of samples (214 river data) and the river’s lack of
data with higher river discharge and sediment of 343.71
m3/s and 15.64 kg/s. The application of machine learning
in this study only focuses on EPR, MGGP and M5P. For
better total material load model prediction, different

machine learning algorithms can be further explored to
increase the model prediction efficiency, especially for
lower volume river discharge.

Conclusions

This study emphasises the great potential of machine learn-
ing in increasing sediment transport prediction accuracy,
particularly for rivers in the tropical region. The findings
suggest that machine learning can enhance the model pre-
diction distribution data more than the conventional meth-
od, MNLR, but is lacking in terms of DR. Three types of
machine learning algorithmswere investigated in this study:
EPR, MGGP and M5P. As a representation of the tropical
region, 214 river data from three different Malaysian rivers
were used in this study. Overall, compared to equations
using MGGP and M5P, the revised equations using EPR
gave better predictions of the total bed material load in
terms of data distribution. EPR is able to improve the data
prediction distribution of the revised Ariffin (2014) and re-
vised Sinnakaudan et al. (2006) models, followed by
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Fig. 12 Comparison results between measured and predicted total bed material load for the revised Ariffin (2004) (a) and Sinnakaudan et al. (2006) (b)
by using EPR

Table 8 Summary of
performance of the models Model R2 NSE RMSE MAE DR (0.5–2.0) %

Revised Ariffin (2004) 0.616 0.228 9.462 2.526 66.36

Revised Sinnakaudan et al. (2006) 0.482 0.221 9.902 2.784 64.49

Revised Ariffin (2004) EPR 0.922 0.913 3.305 1.552 34.58

Revised Sinnakaudan et al. (2006) EPR 0.884 0.848 4.377 2.137 14.49

Revised Ariffin (2004) MGGP 0.787 0.784 5.217 3.054 21.03

Revised Sinnakaudan et al. (2006) MGGP 0.787 0.784 5.207 3.011 31.31

Revised Ariffin (2004) M5P 0.786 0.762 5.467 1.561 72.43

Revised Sinnakaudan et al. (2006) M5P 0.622 0.615 6.961 1.994 73.36

Ackers and White (1973) 0.003 − 1.100 16.254 4.923 21.03

Karim (1998) 0.051 − 0.133 11.938 3.823 38.32
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Fig. 14 Comparison results between measured and predicted total bed material load for the revised Ariffin (2004) (a) and Sinnakaudan et al. (2006) (b)
by using M5P

Fig. 15 Derived sediment rating
curves using the previous revised
Ariffin (2004) and Sinnakaudan
et al. (2006) equations and those
derived from this present study
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Fig. 13 Comparison results between measured and predicted total bed material load for the revised Ariffin (2004) (a) and Sinnakaudan et al. (2006) (b)
by using MGGP
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MGGP and M5P. The results showed that, among all the
model predictions, the new revised Ariffin (2004) EPR
model produced the lowest amount of errors (RMSE =
3.305,MAE = 1.552) and had excellent prediction accuracy
(R2 = 0.922, NSE = 0.913). However, the improvement is
found to be limited, particularly at lower river discharge.
Machine learning was observed to be affected by the range
of data and preferred to focus more on high prediction data.
The improvement is less significant compared to the pro-
posed revised equations reported in the literature. TheDR of
the EPR and MGGP revised equations is low compared to
the proposed revised equations using MNLR. Even though
M5P can give a better DR prediction ratio, the data is not
well distributed at lower river discharges. The current study
was limited by the river’s hydraulic and sediment character-
istics. Median sediment bed material (d50 (mm)) and
streamflow range are within 0.29–3.00 mm and 0.63–343
m3/s, respectively. Further research should be conducted to
investigate a broader range of data with a different river
profile to improve model prediction accuracy, particularly
for low values of total bed material load.
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