• Türkçe
    • English
  • Türkçe 
    • Türkçe
    • English
  • Giriş
Öğe Göster 
  •   DSpace Ana Sayfası
  • ARAŞTIRMA ÇIKTILARI (WoS-Scopus-TR-Dizin-PubMed)
  • WoS İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
  •   DSpace Ana Sayfası
  • ARAŞTIRMA ÇIKTILARI (WoS-Scopus-TR-Dizin-PubMed)
  • WoS İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
JavaScript is disabled for your browser. Some features of this site may not work without it.

Ensemble and optimized hybrid algorithms through Runge Kutta optimizer for sewer sediment transport modeling using a data pre-processing approach

Thumbnail
Tarih
2023
Yazar
Gul, Enes || Safari, Mir Jafar Sadegh || Dursun, Omer Faruk || Tayfur, Gokmen
Üst veri
Tüm öğe kaydını göster
Özet
Uncontrolled sediment deposition in drainage and sewer systems raises unexpected maintenance expenditures. To this end, implementation of an accurate model relying on effective parameters involved is a reliable benchmark. In this study, three machine learning techniques, namely extreme learning machine (ELM), multilayer perceptron neural network (MLPNN), and M5P model tree (M5PMT) || and three optimization approaches of Runge Kutta (RUN), genetic algorithm (GA), and particle swarm optimization (PSO) are applied for modeling. The optimization and ensemble hybridization approaches are applied in the modeling procedure. For the case of hybrid optimized models, the ELM and MLPNN models are hybridized with RUN, GA, and PSO algorithms to develop six hybrid models of ELM-RUN, ELM-GA, ELMPSO, MLPNN-RUN, MLPNN-GA, and MLPNN-PSO. Ensemble hybrid models are developed through coupling the ELM and MLPNN models with the M5PMT algorithm. The data pre-processing approach is applied to find the best randomness characteristic of the utilized data. Results illustrate that the RUNbased hybrid models outperform the GA- and PSO-based counterparts. Although the MLPNN-RUN and MLPNN-M5PMT hybrid models generate better results than their alternatives, MLPNN-M5PMT slightly outperforms MLPNN-RUN model with a coefficient of determination of 0.84 and a root mean square error of 0.88. The current study shows the superiority of the ensemble-based approach to the optimization techniques. Further investigation is needed by considering alternative optimization techniques to enhance sediment transport modeling. (c) 2023 International Research and Training Centre on Erosion and Sedimentation/the World Association for Sedimentation and Erosion Research. Published by Elsevier B.V. All rights reserved.
Bağlantı
0
https://dspace.yasar.edu.tr/handle/20.500.12742/19716
Koleksiyonlar
  • WoS İndeksli Yayınlar Koleksiyonu





Creative Commons License
DSpace@YASAR by Yasar University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace software copyright © 2002-2016  DuraSpace
İletişim | Geri Bildirim
Theme by 
Atmire NV
 

 




| Politika | Rehber | İletişim |

sherpa/romeo

Göz at

Tüm DSpaceBölümler & KoleksiyonlarTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre göreYayıncıya göreDile göreBu KoleksiyonTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre göreYayıncıya göreDile göre

Hesabım

GirişKayıt

DSpace software copyright © 2002-2016  DuraSpace
İletişim | Geri Bildirim
Theme by 
Atmire NV