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ABSTRACT 

CONTROL OF A MULTI-SERVER MAKE-TO-STOCK  

PRODUCTION SYSTEM WITH SETUP COSTS 

ÖZKAN, Sinem 

MSc in Industrial Engineering 

Supervisor: Asst. Prof. Dr. Önder BULUT 

February 2016, 61 pages 

 This study considers production and inventory control problems for a make-to-

stock queue with production setup costs, several customer classes and lost sales. At 

any system state, production decision is to specify whether to activate new production 

channels or to continue with the currently active ones. If the decision is to activate 

new channels, a fixed/setup cost is incurred per channel. At the decision epochs 

where the system experiences demand from any customer class, the controller should 

also decide whether to satisfy the arriving demand or to reject it. The literature of the 

control of make-to-stock queues is extended by considering fixed system costs and 

multiple servers at the same time. Firstly, the structure of the optimal production and 

rationing policies are characterized and then new/alternative policies that have well-

defined structures and are easier to apply are proposed. Numerical and theoretical 

studies are carried out to assess the performances of the proposed policies. The 

expected average cost of the optimal production policy for the single-server make-to-

stock queue is obtained conducting a renewal analysis. 

 

 

Keywords: Fixed/Setup cost, inventory and production control, stock rationing, 

make-to-stock, multiple servers, optimal control.  
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ÖZET 

PARALEL ÜRETİM KANALLI VE HAZIRLIK MALİYETLİ  

STOĞA-ÜRETİM SİSTEMLERİNİN KONTROLÜ 

Sinem ÖZKAN 

Yüksek Lisans Tezi, Endüstri Mühendisliği Bölümü 

Tez Danışmanı: Yrd. Doç. Dr. Önder BULUT  

Şubat 2016, 61 sayfa 

 Bu çalışmada paralel üretim kanalları olan, birden çok müşteri sınıfına sahip, 

hazırlık ve kayıp satış maliyetli Stoğa-üretim sistemleri için üretim ve stok tayınlama 

kontrol problemleri ele alınmaktadır. Üssel dağılıma sahip üretim zamanı içeren bu 

sistem 𝑀 /𝑀 /s stoğa-üretim kuyruk modeli olarak incelenmektedir. Herhangi bir 

sistem-durumunda, üretim kararı ya aktif olan üretim kanal sayısının arttırılmasını ya 

da aktif olan kanal sayısı ile devam edilmesini belirtir. Karar anlarında, eğer herhangi 

bir müşteri sınıfından talep gelirse, tayınlama kararı ya gelen talebin karşılanmasını 

ya da reddedilmesini sağlar. Bu çalışmayla, hazırlık maliyetli Stoğa-üretim 

sistemlerini şimdiye kadar tek bir üretim kanalıyla modelleyen çalışmaları içeren 

teknik yazına önemli katkıda bulunulmaktadır. Öncelikle, en iyi üretim ve tayınlama 

politikalarının yapıları belirlenmiş, daha sonra ise en iyi politikalara benzer ve 

uygulaması daha kolay olan alternatif politikalar sunulmuştur. Sunulan politikaların 

performanslarının ölçülebilmesi için nümerik ve teorik çalışmalar yapılmıştır. Tek 

kanallı sistem için en iyi üretim politikasının beklenen ortalama maliyeti hesabı için 

Yenileme Ödül Teoremi kullanılmıştır.  

 

 

Anahtar sözcükler: Sabit/Hazırlık maliyeti, envanter ve üretim kontrol, stok 

tayınlama, Stoğa-üretim, paralel üretim kanalları, en iyi kontrol. 
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1 INTRODUCTION 

 The joint production and inventory control arises when there is limited number 

of production channels and the underlying system is make-to-stock. In general, 

production controllers desire to produce the ideal amount of products to meet random 

demand so as to balance holding and shortage costs. Today, in addition to these 

features, most of the production systems experience demands from the several 

different customer classes. Differentiation among customer classes is based on either 

the shortage costs or the service level requirements.  If the customers have different 

shortage costs/service level requirements, reservation of inventory gains importance 

at this stage. It is a good strategy to reserve the inventory by not satisfying demand 

from lower priority classes in anticipation of future demand from the higher priority 

classes.  

 In this thesis, we consider the problem of production control and stock rationing 

of a single-item, make-to-stock production facility with parallel production channels 

and several demand classes. Contrary to the vast majority of the literature, this 

problem, which is considered in the lost sales environment, is considered under 

existence of fixed production cost. There are two essential decisions should be jointly 

addressed for managing such a system: The first one is the production control 

decision that dictates when to start production and how much to produce i.e., how 

many production channels should be activated. The second control is concerned with 

inventory rationing. Stock-rationing is mainly to reserve inventory for the future 

demand from more valuable demand classes by rejecting demands from less valuable 

demand classes. Thus, the joint management of production and inventory control has 

a huge potential to decrease the total production and inventory related costs.  

 In the most general setting, this joint problem is hard to solve and can be even 

intractable. The system-state should dynamically keep track of the number of 

outstanding production orders, the indices of the active channels (processing time 

distributions might be different for different channels), and the age information (or 
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the remaining completion times) of all these random number of orders. Hence, the 

structure of the unknown optimal policy would be highly dynamic and would not 

possess a systematic behaviour for all practical purposes. Thus, in addition to 

characterize the optimal production and rationing policies as much as possible, 

introducing and analyzing new/alternative policies which are well-performing and 

have well-defined structures would be very beneficial for both literature and practice.  

 Although the general setting is too complex to analyze and we make some 

assumptions, in our model we still allow parallel channels which is not typical in the 

literature. That is, we have the flexibility of changing the number of channels/servers. 

This provides us to consider our problem under different settings that can be grouped 

in two main categories: Capacitated and Uncapacitated systems. For Capacitated 

production-inventory systems, the number of production channels is limited and most 

of the time all of them are utilized. The extreme of such a system has only a single 

production channel. In the production control literature, the optimal production policy 

for such a single-server system is to produce until a threshold inventory level and stop 

the production (Ha (1997a, 1997b)) which is the well-known Base-Stock Policy. 

Moderate values of number of production channels are analyzed as parallel 

production channels. For this case, the optimal production and rationing policies are 

more dynamic and the optimal rationing policy is state-dependent threshold type 

(Bulut and Fadıloğlu (2011)). As the number of servers approaches to infinity, 

capacitated production systems converge to Uncapacitated systems: At any time 

needed, a new order can be triggered. Hence, the infinite number of channels helps us 

to analyze typical inventory systems having ample supply. 

 Another problem addressed in this study is allocation of inventory among 

several demand classes from a common stock pool. The common stock pool provides 

not to have excessive inventory and to use system resources effectively. In inventory 

systems, rationing is a well-known strategy and is observed frequently in real life. 

Also, customer differentiation is often observed in different service industries such as 

hotels, banks or airline management etc. While we differentiate customers to manage 
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the inventory, service industry uses customer differentiation strategy in queuing and 

revenue management.  

End-customers 
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Figure 1.1 A Supply Chain Example 

 In order to better understand the problem, let us consider the following supply 

chain example depicted in Figure 1.1 where we can face with our problem at different 

echelons: Suppose there is a television manufacturer that produces televisions and 

gives services to many different brands or companies. It has parallel production lines 

that produce with a fixed cost to a common buffer stock. All the items in the buffer 

stock are identical and semi-finished. After a demand occurs, work in process is 

pulled and differentiated based on different requests of the customers. This strategy is 

known as Delayed Differentiation in the literature (Lee and Tang (1997)). TV 

manufacturer has many customers and each of them order televisions that have 

different priorities. For instance, one of the customers of the manufacturer might be 

the world’s number one and hence this specific brand would have the highest priority 

for the TV manufacturer because lost sales cost of this brand would be the highest. 

Demand arrival Demand fulfillment 
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We can also consider the lower echelon of the supply chain from our problem 

perspective. In order to trigger the production, TV manufacturer needs raw materials. 

Hence, the TV manufacturer has raw material suppliers to supply them. If we 

consider one of these suppliers, our TV manufacturer is one of the customers of this 

raw material supplier. The raw material supplier should also have its own production 

and rationing strategies to meet demands from several TV manufacturers. On the 

other hand, at the higher echelon of the supply chain, end-customer demands come to 

any brand which is one of the customers of TV manufacturer. This company has to 

decide to satisfy or not to satisfy the demand based on customer differentiation. This 

decision is related with typical inventory rationing. Occurrence of end-customer 

demand leads to order the televisions from TV manufacturer. Then, our TV 

manufacturer starts to the differentiation of semi-products to satisfy the demand of 

the company. As seen from this example the problem we consider in this thesis can 

be experienced at different levels of the supply chains of many industries. 

 In this thesis, we first characterize the structural properties of the optimal 

production and rationing policies for a single product, multi-server, make-to-stock 

production system with fixed production costs, multiple customer classes and lost 

sales. We then propose well-performing alternative policies and conduct the 

performance analyses. In order to analyze such a system we assume the following: 

Demands from different customer classes are generated according to independent 

stationary Poisson processes. Processing times at each identical server are 

independent Exponential random variable with rate 𝜇. Hence, we model production-

inventory system as an 𝑀/𝑀/𝑠 make-to-stock queue. In this model, at any system 

state the controller decides the number of new channels/servers that should be 

activated in conjunction with the rationing decision. The cancellation of previously 

placed production orders is not permitted.  

 The remainder of this thesis is organized as follows: We review the related 

literature in Chapter 2. In Chapter 3 we present problem formulation and numerical 

characterization of the optimal production and rationing policies. In Chapter 4 we 
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propose new policies and compare their structure, applicability and performances 

with the optimal ones. In this chapter, we also provide the renewal analysis for 

𝑀/𝑀/1 make-to-stock queue. We finally provide an overall summary of the thesis 

and discuss possible directions for future research in Chapter 5. 
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2 LITERATURE REVIEW 

 The related literature can be classified into two categories from both 

chronological and methodological perspectives. The first category is defined as the 

literature published before Ha (1997a) and the second category is defined as the 

literature published after Ha (1997a). In earlier studies such as Sobel (1968), Gavish 

and Graves (1980,1981), Graves and Keilson (1981), single-server, single-demand-

class settings with setup costs are considered and analyzed using queueing theory 

techniques. In the second category, starting with Ha (1997a), in almost all the studies, 

problem is attacked using Markov Decision Process (MDP) analysis techniques. 

Interestingly, all such studies assume that setup/startup cost is zero. On the other 

hand, in this second research stream, studies consider more than single customer class 

and accordingly rationing policies. In parallel with the first category, the studies in 

this second category also assume a single processing channel with only one exception 

which is Bulut and Fadıloğlu (2011). Mainly, our study extends the literature before 

Ha (1997a) by increasing the number of production channels and the literature after 

Ha (1997a) by considering the fixed cost per each active production channel.      

 The earlier studies including fixed costs start with Sobel (1968) and analyze 

queueing systems with a single server. Sobel (1968) analyzes a service system under 

general service time distributions and general arrival processes with fixed start-up and 

shut-down costs. He presents a queue control strategy based on a given cost structure. 

He proves that two-critical-number policy, which resembles the (𝑠, 𝑆) policy for the 

typical inventory systems, is the optimal service policy. This policy includes two 

control variables denoted by 𝑋∗ and 𝑋∗∗ such that 𝑋∗ < 𝑋∗∗. If queue length is less 

than or equal to 𝑋∗, service is not provided until queue length reaches to 𝑋∗∗ , 

whereupon service starts and continues until queue length drops to 𝑋∗, again. Based 

on the work of Sobel (1968), Gavish and Graves (1980) reconsiders a similar problem 

in a production-inventory setting. Actually, the queue length in Sobel’s study 

correspond to the number of backorders in this study. They assume unit Poisson 

demand arrivals, constant demand size and fixed setup cost for production. If demand 

is rejected, it is backlogged.  They model their system as 𝑀/𝐷/1 queue. They derive 
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cost expressions and propose an efficient search procedure to find the optimal policy 

parameters. Gavish and Graves (1981) extends the work of Gavish and Graves (1980) 

by allowing general service times. They generate a procedure to find the steady-state 

probabilities of each inventory level and used this procedure to search optimal 𝑋∗ and 

𝑋∗∗ control levels. Graves and Keilson (1981) extends the previous works by 

including an exponential random variable which is the size of the demand requests. 

They generate a compensation method for the backordering case that finds a closed-

form expression for the expected system cost. They used this procedure to find 

optimal 𝑋∗ and 𝑋∗∗ control levels. If inventory is less than 𝑋∗,  production channel is 

triggered to start with a fixed setup cost and continues until inventory level reaches to 

𝑋∗∗. While the production is continuing, the fixed setup cost is not incurred. If 

inventory level hits to 𝑋∗∗, the production is turned off and stays off until inventory 

level drops to below 𝑋∗. 

  Tijms (1980) studied the similar system with Poisson demands and random 

service times. The optimal control values are found by using Semi-Markov decision 

process techniques. Besides, the model also includes the time taken to activate the 

production channels. Altiok (1986) considers a system with compound Poisson 

demands and phase-type service times. Steady-state probabilities are calculated for 

each inventory level. This study can be adapted to both lost sales and backordering 

environments. Another important study is Lee and Srinivasan (1989) considers a 

system includes single item and a production channel with fixed start-up costs. The 

processing time has a general distribution and each demand arrives according to 

Poisson process. If there is not enough inventory, demands are backordered. The 

importance of this article is enabling to calculate the cost function by not calculating 

the steady-state probabilities. They succeed to achieve this using a renewal anaysis. 

Later on, Lee and Srinivasan (1991) extended the previous work by adding 

compound Poisson structure.  

 Ha (1997a) is the first to model the problem by using Markov Decision Process 

techniques. The setting includes an exponential server with no fixed cost, multiple 
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demand classes with Poisson arrivals and lost sales. He shows that the optimal 

production policy is Base-stock policy for such a system. Also, the stock rationing 

problem in production environment was analyzed first by Ha (1997a) and he shows 

that a static threshold level policy is optimal for rationing. A stationary analysis is 

performed of a system with two demand classes. The comparisons between the 

performances of optimal rationing policy and FCFS policy are also conducted.  

 Ha (1997b) considered the same system with two demand classes, exponential 

production times and backordering. He defines the system-state with two variables. 

The first variable denotes to the inventory level. For zero and negative values of the 

first variable, it corresponds to the number of class 1 backorders. For positive values 

of the first variable, it corresponds to the units of inventory and the second variable 

denotes the number of class 2 backorders. He shows the optimal policies are 

characterized by a single monotone switching curve. Optimal production policy is 

Base-stock and optimal rationing policy is applied by a threshold level. Vericourt et 

al. (2002) included multiple demand classes to the work of Ha (1997b). The 

characterization of the optimal rationing policy is provided and an efficient algorithm 

is generated to compute optimal control parameters which are the optimal rationing 

levels for each demand class. 

 Bulut and Fadıloğlu (2011) included multiple production channels to the work 

of Ha (1997a). Until our study, this research was the unique study that considers 

multi-servers. They characterized the properties of the optimal cost function, the 

optimal production and rationing policies. The optimal production policy is a state-

dependent base-stock policy, and the optimal rationing policy is threshold type.  

 Erlangian service times in the lost sales and backordering environments were 

considered by Ha (2000) and Gayon, Vericourt and Karaesmen (2009). Ha (2000) 

analyzes the optimal production and rationing policies in lost sales environment and 

defines a work storage level as a state of the system. Work storage level is number of 

completed production stages and has information about inventory level and the status 

of the production. There are optimal threshold levels for both production and 
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rationing. If work storage level is less than a pre-determined level, the optimal is to 

produce until the work storage level hits to target value. Also, the work storage level 

is higher than target level, the optimal rationing decision is to satisfy the arrival 

demand class. Gayon et al. (2009) also considers the previous model in backordering 

environment. They show that work-storage type policy is optimal for rationing by 

providing a partial characterization. 

 Lee and Hong (2003) extends the work of Ha (1997a, 2000) by integrating 

setup cost to a production system with multi demand classes and lost sales. Demands 

arrive according to a Poisson process and processing time for each single item 

follows a 2-phase Coxian distribution. This system is modeled as continuous time 

Markov chain and the steady state probabilities are calculated by an efficient 

algorithm. For given optimal (𝑠, 𝑆) obtained, they propose a heuristic algorithm to 

determine the threshold levels for stock rationing. Recently, Pang et al. (2014) study a 

system with several customer classes in a lost sales make-to-stock production 

environment with single channel and no fixed costs. In this study, they allow batch 

demand and consider general, phase-type and Erlang processing time distributions. It 

is shown that the optimal rationing policies are time-dependent threshold type. 

 The studies in stock rationing area were started in the 1960s. Most of the 

studies are for classical inventory systems. Critical level rationing is the first 

introduced by Veinott (1965). The model includes zero lead times and backordering 

costs. His model provides different service levels to several demand classes in 

periodic inventory system. These service levels provide to allocate on-hand inventory 

among distinct demand classes. Under the static rationing policy, Nahmias and 

Demmy (1981) consider two demand classes with Poisson arrivals and apply static 

rationing with zero lead time. The derivations to find expected number of backorders 

are performed. This study is the first to analyze stock rationing in continuous time. 

Deshpande et al. (2003) extend the work of , Nahmias and Demmy (1981) by 

providing the flexibility to number of outstanding orders. Arslan et al. (2007) 

consider a system with multiple demand classes, Poisson arrivals and constant lead 
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time. They also provide a heuristic to obtain optimal rationing levels. Fadiloglu and 

Bulut (2010) proposes a dynamic rationing policy for continuous-review inventory 

systems. Here, dynamic rationing implies that the rationing levels are functions of the 

number of outstanding orders and their ages. In general, the optimal rationing policy 

would be of dynamic type. However, for sake of analysis most of the studies in 

inventory rationing literature assume static rationing levels. 

 Liu, Feng and Wong (2014) analyze different inventory rationing policies for 

an inventory system includes two demand classes. The steady-state probabilities are 

calculated and the performances of policies are explored. A heuristic algorithm is 

generated to find the optimal values of control variables. Wang and Tang (2014) 

address an inventory system with multiple demand classes of backorder and lost sales 

type. The penalty costs of backorders changes as time progresses. Hence, the 

importance of demand classes change with time. They analyze a dynamic rationing 

policy and model a Markov decision process (MDP) to observe optimal dynamic 

threshold levels for inventory rationing. The optimal rationing policy is shown to be a 

myopic base stock policy and dynamic rationing policy. A heuristic dynamic 

inventory policy is introduced to facilitate the solution of the complex problem. Liu 

and Zhang (2015) analyze an inventory system with two demand classes, Poisson 

demand with holding and penalty costs in backordering environment. They introduce 

an efficient method to obtain closed-form expressions for the dynamic threshold 

levels to overcome the computational complexity. 

 We would like to conclude the literature of the control of production-inventory 

systems with Table 2.1 that summarizes the related milestone works. In this table, the 

studies are classified on number of servers and fixed cost value. Our problem is 

closely related to the works of Bulut and Fadıloğlu (2011) and Graves and Keilson 

(1981). We extend the work of Bulut and Fadıloğlu (2011) by adding the fixed 

production cost per channel and the work of Graves and Keilson (1981) to multi-

server case using a two-dimensional state space.  
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Table 2.1 Summary of the Related Literature on Production-Inventory Control  

 Service Time 
Single-server  

with Fixed Cost 

Single-server 

without Fixed Cost 

Multi-

server with 

Fixed Cost 

Multi-server 

without 

Fixed Cost 

Backordering 

General 

Sobel (1965) 

Gavish et al.(1981) 

Lee et al. (1989) 

Lee et al. (1991) 

 

 

 

Erlang  

Ha (2000)  

Vericourt et al. 

(2002) 

Gayon et al. (2009) 

 

 

Phase-type   
 

 

Exponential Graves et al.(1981) Ha (1997b) 
 

 

Deterministic Gavish et al.(1980)  
 

 

Lost Sales 

General  Pang et al. (2014)   

Erlang  Pang et al. (2014)   

Phase-type 
Lee and Hong 

(2003) 
Pang et al. (2014)   

Exponential Our Study Ha (1997a) Our Study 
Bulut et al. 

(2011) 

Deterministic     
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3 MODEL 

 In this chapter, we first characterize the structural properties of the optimal 

production and rationing policies for a single product, identical-multi-server, make-

to-stock production with fixed production costs, multiple customer classes and lost 

sales. In order to analyze such a system we assume following: Demands from 

customer class 𝑖 are generated according to a stationary Poisson process with rate 

𝜆𝑖, 𝑖 ∈ {1,2, … , 𝑁} and production times are independent Exponential random 

variables with mean 1/𝜇. Each demand class is prioritized by its lost sales cost 𝑐𝑖 that 

incurred when class 𝑖 demand is not satisfied. Without loss of generality, it is 

assumed that 𝑐1  ≥  𝑐2 . . .  ≥ 𝑐𝑁. The fixed cost to activate a new server is 𝐾, the 

holding cost per item in the inventory is ℎ, the discount rate is 𝛼 and order-

cancellation is not allowed. If the cancellation is allowed, we have a flexibility to 

cancel all previously placed production orders. If almost all available production 

channels are active until the inventory hits a specific level and one of the servers is 

completed at that level; the rest of the orders can be cancelled. Based on these 

assumptions, we model production-inventory system under consideration of 𝑀/𝑀/𝑠 

make-to-stock queue where s is the number of identical production channels/servers. 

 As mentioned in Chapter 2, there is no work that considers production control 

and stock rationing in a multi-server make-to-stock production system with fixed 

costs. Our problem is mostly related with the works of Bulut and Fadıloğlu (2011) 

and Graves and Keilson (1981). We extend Bulut and Fadıloğlu (2011) by adding the 

fixed production cost per channel and extend Graves and Keilson (1981) to multi-

channel environment.  

 In the next subsection, our modeling approach, which is based on Markov 

Decision Analysis, and the corresponding dynamic programming formulation are 

provided. Afterwards, in Section 3.2, optimal production and rationing policies are 

characterized with numerical studies. The chapter concludes with Section 3.3 that 

provides a numerical study that illustrates how optimal policies respond to the 
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changes in system parameters which define arrival and processing rates and cost 

structure. 

3.1 Dynamic Programming Formulation 

 In order to formulate the problem, the system state should be defined with two 

variables: 𝑋(𝑡) and 𝑌(𝑡). 𝑋(𝑡) is the inventory level and 𝑌(𝑡) is the number of active 

channels at time 𝑡. Contrary to the systems with only a single-server, in addition to 

the inventory level information, we also ought to keep track of the number of active 

channels in order to identify the inventory replenishment rate at time 𝑡. As the 

number of active servers varies, the production completion times also change. The 

state space of our state vector (𝑋(𝑡), 𝑌(𝑡)) is the following: 

SS={(𝑋(𝑡), 𝑌(𝑡))  | 𝑋(𝑡), 𝑌(𝑡) ∈ 𝑍+ ∪ {0}, 𝑌(𝑡) ≤ 𝑠} 

 At any decision epoch 𝑡, the system decides either to continue with the same 

number of active channels or to activate more. The production decision at time 𝑡 is 

expressed as 𝑢𝑝(𝑡) such that 𝑢𝑝(𝑡) ∈ {𝑌(𝑡), 𝑌(𝑡) + 1,… , 𝑠}. The second decision is 

related to the inventory rationing, if a class 𝑖 demand occurs at time 𝑡, the system 

decides either or not to satisfy the arriving demand. The rationing decision for class 𝑖 

demand at time 𝑡 is expressed as 𝑢𝑟𝑖(𝑡) such that 𝑢𝑟𝑖(𝑡) ∈ {0,1}, 𝑖 ∈ {1,2, … ,𝑁}. If 

𝑢𝑟𝑖(𝑡) = 1, class 𝑖 demand is satisfied; else, it is rejected. Given a control policy 𝜋, 

the process {(𝑋𝜋(𝑡),   𝑌𝜋(𝑡))|𝑡 ≥  0} is a continuous time Markov process where the 

transition rate at state (𝑥,  𝑦) is 𝑣(𝑥,𝑦) = ∑ 𝜆𝑖𝑢𝑟𝑖 + 𝑢𝑝𝜇
𝑁
𝑖=1 . Since the process is 

Markovian, it is possible to only focus on event occurrences (demand arrivals and 

production completions). Furthermore, using the uniformization technique proposed 

by Lippman (1975), we can obtain an equivalent discrete-time problem whose 

statistical characteristic is the same with statistical characteristic of the original 

continuous time problem. The uniform transition rate is defined as 𝑣 = ∑ 𝜆𝑖 + 𝑠𝜇𝑛
𝑖=1 . 

Let 𝛼 be the discount rate and the optimal cost-to-go function can be written as the 

following: 
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𝐽(𝑥, 𝑦) =
1

𝛼 + 𝑣
min
𝑦≤𝑢≤𝑠

{ℎ𝑥 + (𝑢 − 𝑦)𝐾 + ( 𝑠 − 𝑢)𝜇𝐽(𝑥, 𝑢)

+ 𝑢𝜇min { 𝐽 (𝑥 + 1, 𝑢 − 1), 𝐽 (𝑥 + 1, 𝑢)} 

     +𝑇R(𝑥, 𝑢)}       (1) 

 

where 𝑇𝑅(𝑥, 𝑦) = ∑ 𝑇𝑅𝑖(𝑥, 𝑦)
𝑁
𝑖=1 , 𝑖 ∈ {1,2, … ,𝑁} and 

 

𝑇𝑅𝑖(𝑥, 𝑦) = {
 𝜆𝑖min{ 𝐽 (𝑥 − 1, 𝑦), 𝑐𝑖 + 𝐽 (𝑥, 𝑦)} , 𝑥 > 0

𝜆𝑖(𝑐𝑖 + 𝐽 (0, 𝑦)) , 𝑥 = 0
  (2)  

 Equation (1) minimizes the expected discounted cost through deciding the 

number of active channels when there are 𝑥 units on hand and 𝑦 channels are active. 

Each time a production channel is switched on, a fixed cost 𝐾 is incurred. The term 

(𝑠 − 𝑢)𝜇𝐽(𝑥, 𝑢) corresponds to the fictitious self-transitions due to uniformization. 

This term has a difference because of using production decision 𝑢 instead of number 

of active channels 𝑦 in the cost-to-go function. Because, production decision affects 

the number of active channels at any time 𝑡 and changes 𝑦 with 𝑢 instantaneously. 

The term 𝑢𝜇min { 𝐽 (𝑥 + 1, 𝑢 − 1), 𝐽 (𝑥 + 1, 𝑢)} corresponds to production 

completion. The minimization operator provides the continuation decision after 

production completion. That is, if there are active production channels, system can 

continue to produce with the same number of active channels without paying fixed 

cost. 𝑇𝑅𝑖(𝑥, 𝑦) corresponds to the rationing decision for class 𝑖. When a demand of 

class 𝑖 arrives, system checks the inventory and decides whether to satisfy or reject 

the demand. If there is no on-hand inventory, all the arriving demands are lost. 

3.2 Characterization of the Optimal Policies 

 In this section, we aim to characterize the structure of the optimal production 

and rationing policies. We achieve this aim via Value Iteration Algorithm coded in 

MATLAB. We run the value iteration algorithm for many different setting to obtain 

the optimal decisions and the corresponding system costs. Although we provide the 

DP formulation for the discounted cost criterion, we conduct the numerical analyses 
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under the average system cost criterion using this formulation. The rationale behind 

this decision is twofold: i. Under the average cost criterion all the states converge to 

the same long-run average cost. However, the long-run discounted cost is state 

dependent and for such cases it is difficult to compare and interpret the performances 

of different policies. ii. We would like to exclude the discussion/decision about the 

determination of the discount rate 𝛼 and directly focus on the impacts of the real 

system parameters.   However, we utilize the modified version of the discounted DP 

formulation given in Equation (1) to calculate the average system cost using the value 

iteration algorithm. To find the average cost, we set the discount rate to zero and at 

each stage divide the value of the cost-to-go function to the completed number of 

stages (otherwise the cost-to-go function would not converge to the finite average 

value) in the algorithm. Afterwards, we propose three different termination criteria 

for the value iteration:  

1. The maximum of the absolute values of the difference between the average 

costs of two consecutive steps for all states is smaller than epsilon (a small 

number representing the tolerance for termination), 

2. For each state, the maximum of the absolute value of the difference between 

the averages of the all state costs at the current step and all state costs at the 

previous step is smaller than epsilon, 

3. For any step, the absolute value of the difference between the average costs of 

all states is smaller than epsilon, 

 When we use one of these termination conditions, the system cost can become 

finite. Either one of the above criteria can be utilized but we have decided to use the 

final one. The third one is the most reliable algorithm that checks the differences of 

the average costs for all the states. Using the first and second algorithms is risky, 

because the algorithm can be terminated before the all states converge to the same 

average cost. Pseudo-code of three value iteration algorithms is given in the following 

where k is for the current stage/step, 𝑖 represents whether we use the discounted cost 

criterion (𝑖 =  0) or the average (𝑖 =  1), and 𝑗 is the input for the above three 

termination criteria when 𝑖 =  1: 
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𝑉𝑎𝑙𝑢𝑒 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 (𝑖, 𝑗): 

k = 0 

𝐴𝑠𝑠𝑖𝑔𝑛 𝑎𝑛 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 𝑓𝑜𝑟 𝐽0 (𝑓𝑜𝑟 𝑒𝑥𝑎𝑚𝑝𝑙𝑒: 𝑧𝑒𝑟𝑜) 

    𝑊ℎ𝑖𝑙𝑒 (𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 > 𝑒𝑝𝑠𝑖𝑙𝑜𝑛) 

    k = k+1 

𝐿𝑜𝑜𝑝: 𝐹𝑜𝑟 𝑎𝑙𝑙 𝑠𝑡𝑎𝑡𝑒𝑠 

𝐿𝑜𝑜𝑝: 𝑢 = {𝑠𝑒𝑡 𝑜𝑓 𝑎𝑙𝑙 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑠} 

𝑇𝐾 = 𝑅𝑎𝑡𝑖𝑜𝑛𝑖𝑛𝑔 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑢) 

𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝐽𝑘
𝑐𝑎𝑛𝑑(𝐽𝑘−1, 𝑠𝑡𝑎𝑡𝑒(𝑢), 𝑇𝐾) 

𝐸𝑛𝑑 𝑙𝑜𝑜𝑝 

𝐽𝑘(𝑠𝑡𝑎𝑡𝑒) = 𝑚𝑖𝑛
𝑢

( 𝐽𝑘
𝑐𝑎𝑛𝑑(𝐽𝑘−1, 𝑠𝑡𝑎𝑡𝑒(𝑢), 𝑇𝐾)) 

𝐸𝑛𝑑 𝑙𝑜𝑜𝑝 

𝐼𝑓 𝑖 = 0 

𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = 𝑚𝑎𝑥  |𝐽𝑘 (𝑠𝑡𝑎𝑡𝑒) − 𝐽𝑘−1(𝑠𝑡𝑎𝑡𝑒)| 

𝐸𝑛𝑑 𝑙𝑜𝑜𝑝 

𝐼𝑓 𝑖 = 1 

𝐼𝑓 𝑗 = 1 

𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = 𝑚𝑎𝑥 |
𝐽𝑘 (𝑠𝑡𝑎𝑡𝑒)

𝑘
− 

𝐽𝑘−1 (𝑠𝑡𝑎𝑡𝑒)

𝑘 − 1
| 

𝐸𝑛𝑑 𝑙𝑜𝑜𝑝 

𝐼𝑓 𝑗 = 2 

𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = 𝑚𝑎𝑥 |(
1

|{𝑠𝑒𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑡𝑎𝑡𝑒}|
∑

𝐽𝑘−1(𝑠𝑡𝑎𝑡𝑒)

𝑘 − 1
𝑠𝑡𝑎𝑡𝑒

) −
𝐽𝑘 (𝑠𝑡𝑎𝑡𝑒)

𝑘
| 

𝐸𝑛𝑑 𝑙𝑜𝑜𝑝 

𝐼𝑓 𝑗 = 3 

𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = max
𝑠𝑡𝑎𝑡𝑒∈𝑆𝑆

  max
𝑠𝑡𝑎𝑡𝑒′∈𝑆𝑆/{𝑠𝑡𝑎𝑡𝑒}

|
𝐽𝑘 (𝑠𝑡𝑎𝑡𝑒)

𝑘
− 

𝐽𝑘(𝑠𝑡𝑎𝑡𝑒
′)

𝑘
| 

𝐸𝑛𝑑 𝑙𝑜𝑜𝑝 

𝐸𝑛𝑑 𝑙𝑜𝑜𝑝 

Figure 3.1 The Pseudo-code of Value Iteration Algorithms 

 Our value iteration algorithm is verified with Ha (1997a) and Bulut and 

Fadıloğlu (2011) in the literature. The optimal production and rationing decisions 

mentioned in their studies are checked with our results. Besides these studies, it is 

known that the optimal policy is two-critical number policy (𝑋∗∗, 𝑋∗) for the 

exponential systems include the setup cost. For such a system, we decide to start the 

numerical analysis with the setting (𝐾, 𝑠, 𝜇, ℎ,  𝜆1,  𝜆2,  𝑐1,  𝑐2) = (2,  1,  3,  1,  3,  1,  4, 

1). 
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Table 3.1 Optimal Production Decisions up when s=1 

 Fixed cost 

𝐾 = 0 

 

Fixed cost 

𝐾 = 2 

 

Fixed cost 

𝐾 = 4 

 
Inventory 

Level 

When

𝑦 = 0  

When

𝑦 = 1  

When

y = 0  

When

𝑦 = 1 

When

𝑦 = 0  

When

𝑦 = 1 

0 1 1 1 1 1 1 

1 1 1 1 1 1 1 

2 1 1 1 1 1 1 

3 1 1 0 1 0 1 

4 0 0 0 1 0 1 

5 0 0 0 1 0 1 

6 0 0 0 0 0 1 

7 0 0 0 0 0 0 

 X*   = 4 

X** = 4 
 

X*   = 3 

X** = 6 
 

X*   = 3 

X** = 7 
 

 Table 3.1 shows the optimal production decisions when production is on 

(𝑠 = 𝑦 = 1) and off (𝑦 = 0). If there is no fixed cost to activate a new channel, the 

optimal production policy behaves like Base-Stock (𝑋∗ = 𝑋∗∗ = 𝑆 = 4). While the 

setup cost is a positive value, the system tries to extend the production process not to 

give extra cost to activate a channel again. There is a widening gap between the 

production control parameters while 𝐾 increases. According to the results of the 

table, we have similar optimal production policy properties mentioned in the 

literature.  

 In the remaining part of this section and in the following sections, the 

parametric observations are analyzed and how the system parameters affect to the 

optimal decisions are shown using the base setting: (𝐾, 𝑠, ℎ, 𝜇, 𝜆1, 𝜆2, 𝑐1, 𝑐2) =

(2, 4, 1, 1, 3, 1, 4, 1). The holding cost (ℎ = 1), the production rate (𝜇 = 1), demand 

rates of customer classes (𝜆1 = 3, 𝜆2 = 1) and the lost sales cost of these classes 

(𝑐1 = 4, 𝑐2 = 1) are determined. The optimal decisions for this system are shown in 

Table 3.2. Each row shows the inventory level and each row shows the number of 

active channels. For example, the first cell of the first row shows that the inventory 
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levels equals to zero (𝑥 = 0) and the production is off (𝑦 = 0). The value in the each 

cell of the decision matrix illustrates the number of servers is needed to be active. 

Table 3.2 Optimal Production Decisions up 

 (𝐾, 𝑠, ℎ, 𝜇, 𝜆1, 𝜆2, 𝑐1, 𝑐2) = (2, 4, 1, 1, 3, 1, 4, 1) 

 
Number of Active Servers 

𝑦 

Inventory 

Level 

𝑥 

0 1 2 3 4 

0 4 4 4 4 4 

1 3 3 3 3 4 

2 2 2 2 3 4 

3 2 2 2 3 4 

4 0 1 2 3 4 

5 0 1 2 3 4 

 If there is no active server and no inventory on-hand, the production decision is 

to use all of the limited capacity 𝑢𝑝(𝑥 = 0, 𝑦 = 0) = 4. While the number of active 

servers is fixed and the inventory level is increasing one by one, the optimal 

production decisions decrease by one or more units. That means, there is no constant 

order-up-to level. Instead, the target inventory of any state is state dependent. There is 

an order-up-to level for each inventory level 𝑆𝑥 = 𝑥 + 𝑢𝑝
∗ (𝑥, 0). Because, the system 

does not want to give extra holding and setup cost by activating more channels.  

 For positive values of active servers, the cancellation cost of the production 

equals to infinity, so the production decisions decrease to at least the number of 

current active servers. For instance, when 𝑦 = 1 and while the inventory level is 

increasing, the optimal decision cannot be lower than 1 because no-order 

cancellation. Thus, the system controls the production by deciding the trade-off 

between holding and lost sales costs.  
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Table 3.3 Optimal Inventory Rationing Policy for Class 1 

 (𝐾, 𝑠, ℎ, 𝜇, 𝜆1, 𝜆2, 𝑐1, 𝑐2) = (2, 4, 1, 1, 3, 1, 4, 1) 

 
Number of Active Servers 

𝑦 

Inventory 

Level 

𝑥 

0 1 2 3 4 

0 0 0 0 0 0 

1 1 1 1 1 1 

2 1 1 1 1 1 

3 1 1 1 1 1 

 

Table 3.4 Optimal Inventory Rationing Policy for Class 2 

 (𝐾, 𝑠, ℎ, 𝜇, 𝜆1, 𝜆2, 𝑐1, 𝑐2) = (2, 4, 1, 1, 3, 1, 4, 1) 

 
Number of Active Servers 

𝑦 

Inventory 

Level 

𝑥 

0 1 2 3 4 

0 0 0 0 0 0 

1 0 0 0 0 0 

2 0 0 0 0 1 

3 1 1 1 1 1 

 

 Table 3.3 and 3.4 show the optimal rationing decisions for the customer class 1 

and 2, respectively. In Table 3.3, if there is inventory on-hand, the system always 

satisfies an arriving demand of class 1. Because, the customer class 1 has the highest 

lost sales cost and is the most valuable class in the system. Table 3.4 shows that as 

inventory level and number of active servers increase, the willingness to satisfy a 

class 2 demand also increases. Hence, threshold inventory level for class 2 is a 

function of 𝑥 and 𝑦. Therefore, the inventory rationing policy is provided for just 

class 2.  

 Stock rationing gains importance when there are more than one demand class 

and each of them has different lost sales cost. If the lost sales costs of the classes are 

the same, the customer of the system becomes just a one class. When the lost sales 

costs are different, the production and rationing decisions are made jointly. 
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 Table 3.5 and 3.6 show the optimal production and rationing decisions under 

the discounted cost criterion. For this example, the discount rate (𝛼) equals to 0.4.  

Even if the decisions in Table 3.2 and 3.5 are not the same, the characteristics of the 

production policies are not so different. This situation is also valid for stock rationing 

decisions.  

Table 3.5.Optimal Production Decisions Under Discounted Cost Criterion 

 
Number of Active Servers 

𝑦 

Inventory 

Level 

𝑥 

0 1 2 3 4 

0 3 3 3 3 4 

1 2 2 2 3 4 

2 1 1 2 3 4 

3 0 1 2 3 4 

4 0 1 2 3 4 

5 0 1 2 3 4 

 

Table 3.6 Optimal Rationing Decisions Under Discounted Cost Criterion 

 
Number of Active Servers 

𝑦 

Inventory 

Level 

𝑥 

0 1 2 3 4 

0 0 0 0 0 0 

1 0 0 0 0 0 

2 0 0 0 0 1 

3 1 1 1 1 1 

3.3 The Impact of the System Parameters on the Optimal Policies 

 This section includes the analysis of how the system parameters affect the 

optimal policies of 𝑀/𝑀/𝑠 make-to-stock queues with fixed cost. The most 

important parameters for such a system are the fixed cost (𝐾) and number of 

available servers (𝑠). First of all, the impacts of the fixed cost and number of servers 

on optimal production and rationing decisions are analyzed, and then the impacts of 

the other parameters are shown in the following sections. 
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Table 3.7 The Impact of the Fixed Cost on Optimal Decisions 

Optimal Production Decisions 

Inventory 

Level 

𝑥 

Fixed Cost 

𝐾 = 1 

Fixed Cost 

𝐾 = 2 

Fixed Cost 

𝐾 = 3 

Fixed Cost 

𝐾 = 4 

Fixed Cost 

𝐾 = 5 

Number of 

Active Servers 

𝑦 

Number of 

Active Servers 

𝑦 

Number of 

Active Servers 

𝑦 

Number of 

Active Servers 

𝑦 

Number of 

Active Servers 

𝑦 

0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 

0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 3 3 3 3 4 3 3 3 3 4 

1 3 3 3 3 4 3 3 3 3 4 3 3 3 3 4 3 3 3 3 4 3 3 3 3 4 

2 2 2 2 3 4 2 2 2 3 4 2 2 2 3 4 2 2 2 3 4 2 2 2 3 4 

3 1 1 2 3 4 2 2 2 3 4 2 2 2 3 4 2 2 2 3 4 2 2 2 3 4 

4 0 1 2 3 4 0 1 2 3 4 1 1 2 3 4 1 1 2 3 4 1 1 2 3 4 

5 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 

Average 

Cost 
5.021 5.280 5.481 5.602 5.636 

Optimal Rationing Decisions 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2 0 0 0 1 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 

3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

 In Table 3.7, when there is a small fixed cost to activate a new channel, the 

system operates with more channels than when there is a larger fixed cost to activate 

a new one.  Because, the system chooses to pay the lost sales cost instead of paying 

the fixed cost.  As 𝐾 increases, the production continues not to give setup cost more 

than one, even if inventory level is higher. For example, when 𝐾 = 4 and (𝑥, 𝑦) =

(4,0) the optimal production decision is to continue to production with one active 

server. However, when 𝐾 = 1 and (𝑥, 𝑦) = (4,0) the optimal decision equals to zero. 

Also, the average cost increases as 𝐾 increases. 

 The impact of the fixed cost on optimal rationing policy is not very significant 

for this example. Because, the demand rate of class 2 is very low. If the demand rate 

increases, the effect of the fixed cost can be observed. For this example, the rationing 

decision for class 2 demand is expressed as 𝑢𝑟 such that 𝑢𝑟 ∈ {0,1}. If 𝑢𝑟 = 1, class 2 

demand is satisfied; else, it is rejected. When 𝐾 = 1 and (𝑥, 𝑦) = (2,3) the optimal 
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rationing decision is to satisfy the arriving class 2 demand. However, when 𝐾 > 1 

and (𝑥, 𝑦) = (2,3) the decision is not to reject the arriving class 2 demand. When 

there is a high fixed cost to activate a new channel, the system satisfies the demand in 

higher inventory position.  

Table 3.8 The Impact of Number of Servers on Optimal Decisions 

Optimal Production Decisions 

Inventory 

Level 

𝑥 

Number 

of 

Servers 

𝑠 = 3 

Number of 

Servers 

𝑠 = 4 

Number of 

Servers 

𝑠 = 5 

Number of Servers 

𝑠 = 6 

Number of Servers 

s = 7 

Number 

of Active 

Servers 

𝑦 

Number of 

Active 

Servers 

𝑦 

Number of 

Active Servers 

𝑦 

Number of Active 

Servers 

𝑦 

Number of Active 

Servers 

𝑦 

0 1 2 3 0 1 2 3 4 0 1 2 3 4 5 0 1 2 3 4 5 6 0 1 2 3 4 5 6 7 

0 3 3 3 3 4 4 4 4 4 4 4 4 4 4 5 4 4 4 4 4 5 6 4 4 4 4 4 5 6 7 

1 3 3 3 3 3 3 3 3 4 3 3 3 3 4 5 3 3 3 3 4 5 6 3 3 3 3 4 5 6 7 

2 2 2 2 3 2 2 2 3 4 2 2 2 3 4 5 2 2 2 3 4 5 6 2 2 2 3 4 5 6 7 

3 2 2 2 3 2 2 2 3 4 2 2 2 3 4 5 2 2 2 3 4 5 6 2 2 2 3 4 5 6 7 

4 1 1 2 3 0 1 2 3 4 0 1 2 3 4 5 0 1 2 3 4 5 6 0 1 2 3 4 5 6 7 

5 0 1 2 3 0 1 2 3 4 0 1 2 3 4 5 0 1 2 3 4 5 6 0 1 2 3 4 5 6 7 

Average 

Cost 
5.503 5.280 5.280 5.280 5.280 

Optimal Rationing Decisions 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 1 1 1 0 0 0 0 1 1 1 1 

3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

 Table 3.8 shows the effect of number of servers on optimal decisions. If 

available processing channels are scarce (𝑠 = 3), the optimal production policy tries 

to use all of the limited capacity. When 𝑠 > 4, the system is equivalent to a system 

with uncapacitated replenishment channel, because it always activates less than the 

available 𝑠 channels and therefore additional channels do not provide further gain. 

Also, the average costs do not change because there is no difference in production 

decisions after 𝑠 = 4. 
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 If available processing channels are scarce (𝑠 = 3), the system satisfies an 

arriving class 2 demand in high inventory levels. As number of available servers 

increases, the system also reserves the inventory for class 2 demand. Because, if more 

inventory is needed, it can be replenished in a short time by using all limited capacity.  

Like production decisions after 𝑠 = 4 there is no difference in rationing decisions. 

Table 3.9 The Impact of Holding Cost on Optimal Decisions 

Optimal Production Decisions 

Inventory 

Level 

𝑥 

Holding Cost 

ℎ = 1 

Holding Cost 

ℎ = 2 

Holding Cost 

ℎ = 3 

Number of 

Active Servers 

𝑦 

Number of Active 

Servers 

𝑦 

Number of 

Active Servers 

𝑦 

0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 

0 4 4 4 4 4 3 3 3 3 4 3 3 3 3 4 

1 3 3 3 3 4 2 2 2 3 4 1 1 2 3 4 

2 2 2 2 3 4 1 1 2 3 4 0 1 2 3 4 

3 2 2 2 3 4 0 1 2 3 4 0 1 2 3 4 

4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 

5 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 

Average 

Cost 
5.278 7.500 9.076 

Optimal Rationing Decisions 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

2 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 

3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
 

 In Table 3.9, as the holding cost increases, the system operates with fewer 

channels. Because, the system does not prefer to stock not to give extra holding cost. 

This decision should be made by evaluating the balance of the holding and lost sales 

cost. While the holding cost increases, the average cost increases unsurprisingly.  

 When ℎ = 1, an arriving demand class 2 is satisfied if the inventory level 

equals 3 or (𝑥, 𝑦) = (2,4). As the holding cost increases, the threshold level 

decreases and the system starts to satisfy an arriving class 2 demand in lower 

inventory levels. 
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Table 3.10 The Impact of Production Rate on Optimal Decisions 

Optimal Production Decisions 

Inventory 

Level 

𝑥 

Production Rate 
𝜇 = 1 

Production Rate 
𝜇 = 2 

Production Rate 
𝜇 = 3 

Number of 

Active Servers 
𝑦 

Number of Active 

Servers 
𝑦 

Number of 

Active Servers 
𝑦 

0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 

0 4 4 4 4 4 2 2 2 3 4 2 2 2 3 4 

1 3 3 3 3 4 2 2 2 3 4 1 1 2 3 4 

2 2 2 2 3 4 1 1 2 3 4 1 1 2 3 4 

3 2 2 2 3 4 1 1 2 3 4 0 1 2 3 4 

4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 

5 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 

Average 

Cost 
5.280 5.044 4.837 

Optimal Rationing Decisions 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 

2 0 0 0 0 1 0 0 1 1 1 1 1 1 1 1 

3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

 Table 3.10 shows the effect of increasing the production rate on optimal 

decisions and the average cost. As the production rate increases, the system does not 

activate all of the limited capacity. If the production rate is high, the processing time 

takes a short time. Hence, the system activates fewer channels. For example, when 

the production rate is small (𝜇 = 1), the system is willing to operate with all available 

channels. However when 𝜇 = 3, the system does not need to activate all channels. 

Thus, the system activates more channels when the production rate is low otherwise; 

the system activates fewer channels when the production rate is high. To activate 

more channels when there is high production rate causes to increasing the average 

cost because of the fixed and holding costs. 

 When the production rate is low, an arriving class 2 demand is satisfied in 

higher inventory levels. The system wants to reserve the inventory in anticipation of 

future demand from class 1. However, the production rate is high (𝜇 = 3) the system 

starts to satisfy class 2 demand is fewer inventory levels. Because of low production 

time the production is completed in a short time and arriving class 1 demand can be 

also satisfied in a short time. 
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Table 3.11 The Impact of Demand Rates on Optimal Decisions 

Optimal Production Decisions 

Inventory 

Level 

𝑥 

Demand rate 

𝜆1 = 3, 𝜆2 = 1 

Demand rate 

𝜆1 = 2.5, 𝜆2 = 1.5 

Demand rate 

𝜆1 = 2, 𝜆2 = 2 

Demand rate 

𝜆1 = 1.5, 𝜆2 = 2.5 

Demand rate 

𝜆1 = 1, 𝜆2 = 3 

Number of 

Active Servers 

𝑦 

Number of 

Active Servers 

𝑦 

Number of 

Active Servers 

𝑦 

Number of 

Active Servers 

𝑦 

Number of 

Active Servers 

𝑦 

0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 

0 4 4 4 4 4 4 4 4 4 4 3 3 3 3 4 3 3 3 3 4 3 3 3 3 4 

1 3 3 3 3 4 3 3 3 3 4 3 3 3 3 4 2 2 2 3 4 2 2 2 3 4 

2 2 2 2 3 4 2 2 2 3 4 2 2 2 3 4 2 2 2 3 4 1 1 2 3 4 

3 2 2 2 3 4 1 1 2 3 4 1 1 2 3 4 1 1 2 3 4 0 1 2 3 4 

4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 

5 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 

Average 

Cost 
5.280 5.007 4.680 4.359 4.112 

Optimal Rationing Decisions 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 

2 0 0 0 0 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

 In Table 3.11, when class 1 demand rate is higher than class 2 demand rate, the 

system tries to produce with more servers. Because, class 1 is the most valuable 

demand class and its demand occur in a short time. Hence, the system desires to 

satisfy class 1 demand by activating more production channels (𝜆1 = 3, 𝜆2 = 1). If 

the system activates fewer channels, it may pay the lost sales cost. As class1 demand 

rate decreases and class 2 demand rate increases, the balance changes. Because, the 

amount of class 1 demand is less than the amount of class 2 demand in a unit time 

(𝜆1 = 1, 𝜆2 = 3). Hence, the system does not activate all of the limited capacity 

because of a low demand of the most valuable class.  

 When the class 1 demand rate is high, class 2 demand is satisfied while 

increasing of inventory level and number of active channels. As the class 2 demand 

rate exceeds the demand rate of class 1, the rationing level decreases. The system 

starts to satisfy less valuable demand class in low inventory levels.  
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Table 3.12 The Impact of Lost Sales Costs on Optimal Decisions 

Optimal Production Decisions 

Inventory 

Level 

𝑥 

Lost sales cost 
𝑐1 = 3, 𝑐2 = 1 

Lost sales cost 
𝑐1 = 4, 𝑐2 = 1 

Lost sales cost 
𝑐1 = 5, 𝑐2 = 1 

Number of 

Active Servers 
𝑦 

Number of Active 

Servers 
𝑦 

Number of 

Active Servers 
𝑦 

0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 

0 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 

1 3 3 3 3 4 3 3 3 3 4 3 3 3 3 4 

2 3 3 3 3 4 2 2 2 3 4 3 3 3 3 4 

3 1 1 2 3 4 2 2 2 3 4 2 2 2 3 4 

4 0 1 2 3 4 0 1 2 3 4 1 1 2 3 4 

5 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 

Average 

Cost 
4.862 5.280 5.664 

Optimal Rationing Decisions 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2 1 1 1 1 1 0 0 0 0 1 0 0 0 0 0 

3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

 Table 3.12 exhibits the effect of lost sales cost of class 1 on optimal production 

and rationing decisions. If the lost sales cost of class 1 is small, the optimal 

production decisions are less than the others. Even if the system cannot satisfy the 

demand of class 1, the lost sales cost will be paid is small (𝑐1 = 3, 𝑐2 = 1). However, 

as the lost sales cost increases, the system starts to use all of the available servers in 

order to increase average inventory level and not to pay high lost sales cost per item 

(𝑐1 = 5, 𝑐2 = 1). As the lost sales cost increases, the average cost increases as well. 

 While the lost sales cost of class 1 is close to the lost sales cost of class 2, the 

system satisfies an arriving class 2 demand in low inventory levels but as the 

difference of the lost sales cost increases, the system starts to reserve inventory for 

more valuable demand class in order not to pay the lost sales cost of class 1.  

 Based on above numerical observations the detailed characterization of optimal 

production and rationing polices can be provided with the following conjectures. For 

a given state (𝑥, 𝑦), if the number of active channels is less than or equal to the 

optimal number of active channels at state (𝑥, 0), the production decision equals to 
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𝑢𝑝
∗ (𝑥, 0); else the production decision is not to change the number of active channels 

(𝑖). 

i. 𝑢𝑝
∗ (𝑥, 𝑦) = {

𝑢𝑝
∗ (𝑥, 0)        , 𝑦 ≤ 𝑢𝑝

∗ (𝑥, 0)  

𝑦                  , 𝑦 > 𝑢𝑝
∗ (𝑥, 0)

 

 

 The optimal number of active channels at state (𝑥, 0) decreases by one or more 

units for each unit increase in the on-hand inventory level and then it remains 

constant at zero.  It is non-increasing in inventory on hand (ii). There are different 

order-up-to levels for each inventory level (iii). The optimal number of production 

channels is non-increasing in the inventory level (iv). 

 

ii. 𝑢𝑝
∗ (𝑥, 0) − 𝑢𝑝

∗ (𝑥 + 1,0) ≥ 1 . 

iii. 𝑆𝑥 = 𝑥 + 𝑢𝑝
∗ (𝑥, 0), ∀𝑥. 

iv. 𝑢𝑝
∗ (𝑥, 𝑦) ≥ 𝑢𝑝

∗ (𝑥 + 𝑘, 𝑦), ∀𝑥, 𝑦, 𝑘 ≥ 1. 

 The effects of the system parameters which are fixed cost (𝐾), holding 

cost (ℎ), production rate (𝜇) and traffic rates (𝜆1, 𝜆2) on optimal production and 

rationing policies are shown as the following. 𝑢𝑝
∗ (𝑥, 𝑦) and  𝑢𝑟𝑗

∗ (𝑥, 𝑦) are expressed 

as optimal production and rationing decisions, respectively (v, vi, vii, viii). 

v. 𝑢𝑝,𝐾1
∗ (𝑥, 𝑦) ≥ 𝑢𝑝,𝐾2

∗ (𝑥, 𝑦) 𝑎𝑛𝑑  𝑢𝑟𝑗,𝐾1
∗ (𝑥) ≥ 𝑢𝑟𝑗,𝐾2

∗ (𝑥) 

 , ∀𝑥 𝑎𝑛𝑑 𝑦, 𝐾1 ≤ 𝐾2,  𝑗 = 1,2. 

vi. 𝑢𝑝,ℎ1
∗ (𝑥, 𝑦) ≥ 𝑢𝑝,ℎ2

∗ (𝑥, 𝑦) 𝑎𝑛𝑑  𝑢𝑟𝑗,ℎ1
∗ (𝑥) ≤ 𝑢𝑟𝑗,ℎ2

∗ (𝑥) 

 , ∀𝑥 𝑎𝑛𝑑 𝑦, ℎ1 ≤ ℎ2,  𝑗 = 1,2. 

vii. 𝑢𝑝,𝜇1
∗ (𝑥, 𝑦) ≥ 𝑢𝑝,𝜇2

∗ (𝑥, 𝑦) 𝑎𝑛𝑑  𝑢𝑟𝑗,𝜇1
∗ (𝑥) ≤ 𝑢𝑟𝑗,𝜇2

∗ (𝑥)  

 , ∀𝑥 𝑎𝑛𝑑 𝑦, 𝜇1 ≤ 𝜇2,  𝑗 = 1,2. 

viii. 𝑢𝑝,𝜆1
∗ (𝑥, 𝑦) ≤ 𝑢𝑝,𝜆2

∗ (𝑥, 𝑦)  , ∀𝑥 𝑎𝑛𝑑 𝑦, 𝜆1 ≤ 𝜆2. 

ix. There exists a threshold inventory level 𝑅𝑥
𝑖 (𝑦) for demand class 𝑖 ≥ 2, which 

is a function of active production channels 𝑦. If the inventory level is more 
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than 𝑅𝑥
𝑖 (𝑦), it is optimal to satisfy; else it should be rejected. 𝑅𝑥

𝑁(𝑦) ≥

𝑅𝑥
𝑁−1(𝑦) ≥ ⋯ ≥ 𝑅𝑥

2(𝑦) ≥ 0 and 𝑅𝑥
𝑖 (𝑦 + 1) ≤ 𝑅𝑥

𝑖 (𝑦) for 𝑖 ∈ {2,… ,𝑁}. 

x. There exists a threshold number of active channels 𝑅𝑦
𝑖 (𝑥) for demand class 

𝑖 ≥ 2, which is a function inventory level 𝑥. If the number of active 

production channels is more than 𝑅𝑦
𝑖 (𝑥), it is optimal to satisfy; else it should 

be rejected. 𝑅𝑦
𝑁(𝑥) ≥ 𝑅𝑦

𝑁−1(𝑥) ≥ ⋯ ≥ 𝑅𝑦
2(𝑥) ≥ 0 and 𝑅𝑦

𝑖 (𝑥 + 1) ≤ 𝑅𝑦
𝑖 (𝑥) 

for 𝑖 ∈ {2, … , 𝑁}. 
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4 THE PROPOSED PRODUCTION AND RATIONING POLICIES 

 According to the numerical observations of the optimal policies, optimal 

policies are highly dynamic and do not have systematic behaviour for practical 

purposes. It is not so easy to be applied in the firms. Hence, proposing 

new/alternative policies whose performances are close to performances of the optimal 

policy and have a general behaviour to be applied can be beneficial. In this section, 

the characteristics and behaviours of the alternative production and rationing policies 

are deeply analyzed.  

 The rest of this section is organized as follows. In Section 4.1, we introduce 

three different production policies and discuss the properties of these policies. The 

Sub-section 4.1.2.2 includes Continuous Time Markov Chain analysis to get the 

steady-state probabilities of the production policy 2. In Sub-section 4.1.3.3, a renewal 

analysis utilizing renewal reward theorem is conducted to calculate the average cost 

for production policy 3 when s = 1, which is the optimal policy for single-server case. 

Also, we compare the performances of the proposed policies with optimal and Base-

stock policies in the literature. 

4.1 The Proposed Production Policies 

 The performances of the proposed policies can be compared with the Base-

stock and optimal policies. Base-stock policy has only one critical level which is 

called as 𝑆. When inventory level drops to below 𝑆, the production is triggered and 

starts. In other words, the system turns to (𝑆, 𝑆 − 1). When inventory level hits to 

𝑆 − 1, the production starts and continues until inventory level reaches to 𝑆. Base-

stock policy is the optimal production policy for 𝑀/𝑀/1 make-to-stock queues with 

no fixed cost.  

 The optimal production policy for  𝑀/𝑀/1 make-to-stock queues with fixed 

cost is (𝑋∗, 𝑋∗∗). Base-stock policy is a special case of (𝑋∗, 𝑋∗∗) policy. If 𝑋∗∗ =

𝑋∗ = 𝑆, the production policy turns to Base-stock policy. However, when there is a 
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fixed cost to activate a new channel, two-critical number policy is better than Base-

stock. Because, the system wants to activate a new channel when the inventory is 

fewer and it wants to extend the production time with this activated channel. The 

decision function is shown in the following: 

𝑢(𝑋, 0) = {
1 𝑓𝑜𝑟 𝑋 < 𝑋∗

0 𝑓𝑜𝑟 𝑋 ≥ 𝑋∗ 

𝑢(𝑋, 1) = {
1 𝑓𝑜𝑟 𝑋 < 𝑋∗∗

0 𝑓𝑜𝑟 𝑋 ≥ 𝑋∗∗ 

 In this policy, if inventory level is less than the triggered point 𝑋∗, the 

production starts and continues to produce until inventory level hits to 𝑋∗∗. Since our 

model includes the fixed cost to activate a new channel, our policies are similar to the 

two-critical number policy but, our problem is analyzed on a system with 𝑠 parallel 

production channels. 

 The Proposed Production Policy 1 4.1.1

 The first proposed production policy has two inventory levels. These are 𝑋∗ and 

𝑋∗∗ are called as trigger point and order-up-to level, respectively. Our policy has 

some differences with two-critical number policy mentioned in the literature. Our 

model includes 𝑠 parallel production channels and checks the inventory position i.e. 

the information of inventory level and number of active servers. The system decides 

to or not to activate a server or servers by looking how many items is replenished in 

the inventory soon. The optimal decision at state (𝑥, 𝑦) can be expressed as: 

𝑢(𝑥, 𝑦) = {

𝑚𝑖 𝑛(𝑿∗∗ − 𝑥, 𝑠) (𝑥 + 𝑦) < 𝑋∗

𝑦 𝑋∗ ≤ (𝑥 + 𝑦) < 𝑋∗∗

𝑦 (𝑥 + 𝑦) ≥ 𝑋∗∗
 

 If the inventory position is less than 𝑋∗, the system tries to reach inventory level  

𝑋∗∗. The function  𝑚𝑖𝑛 (𝑋∗∗ − 𝑥, 𝑠) serves to this purpose. If the inventory position is 
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more than 𝑋∗, the production is not triggered and the number of active channels is not 

changed. At the epoch production completion occurs, 

𝑁𝑒𝑥𝑡 𝑠𝑡𝑎𝑡𝑒 = {

(𝑥 + 1,𝑚𝑖 𝑛(𝑿∗∗ − 𝑥 − 1, 𝑠)) (𝑥 + 𝑦) < 𝑋∗

(𝑥 + 1, 𝑦) 𝑋∗ ≤ (𝑥 + 𝑦) < 𝑋∗∗

(𝑥 + 1, 𝑦 − 1) (𝑥 + 𝑦) ≥ 𝑋∗∗
 

 The inventory level is increased one unit, the number of active servers can be 

changed according to the new inventory position. If the new inventory position hits to 

𝑋∗∗, a server is turned off after production is completed. If a demand occurs, next 

states are shown in the following: 

𝑁𝑒𝑥𝑡 𝑠𝑡𝑎𝑡𝑒 = {

(𝑥 − 1,𝑚𝑖 𝑛(𝑿∗∗ − (𝑥 − 1), 𝑠)) (𝑥 + 𝑦) < 𝑋∗

(𝑥 − 1, 𝑦) 𝑋∗ ≤ (𝑥 + 𝑦) < 𝑋∗∗

(𝑥 − 1, 𝑦 − 1) (𝑥 + 𝑦) ≥ 𝑋∗∗
 

 The Behaviour of Proposed Production Policy 1 4.1.1.1

 This section includes the analysis of how the most important system parameters 

affect the proposed policy (PPP1). As mentioned in the previous sections, the most 

important parameters are fixed cost (𝐾) and number of available servers(𝑠). For 

other system parameters, behaviour of the proposed production policy 1 behaves like 

the optimal policy. 

 Table 4.1 shows the effect of number of servers on PPP1. If available 

processing channels are scarce (𝑠 = 3), PPP1 and the optimal policy activate all of 

the limited capacity. When 𝑠 > 4, the system turns to an uncapacitated system. It 

should activate less than the available 𝑠 channels because of no further gain. Also, the 

average costs of optimal policy do not change because there is no difference in 

production decisions after 𝑠 = 4. As the optimal policy does not activate additional 

channels, PPP1 uses almost all available servers after 𝑠 = 4. It also causes to increase 

the average cost. As activating more servers, the system has to pay the fixed cost per 

each server.  
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Table 4.1 The Impact of Fixed Cost on Optimal Production and PP1 Policies 

Optimal Production Decisions 

Inventory 

Level 

𝑥 

Number 

of 

Servers 

𝑠 = 3 

Number of 

Servers 

𝑠 = 4 

Number of 

Servers 

𝑠 = 5 

Number of Servers 

𝑠 = 6 

Number of Servers 

s = 7 

Number 

of Active 

Servers 

𝑦 

Number of 

Active 

Servers 

𝑦 

Number of 

Active Servers 

𝑦 

Number of Active 

Servers 

𝑦 

Number of Active 

Servers 

𝑦 

0 1 2 3 0 1 2 3 4 0 1 2 3 4 5 0 1 2 3 4 5 6 0 1 2 3 4 5 6 7 

0 3 3 3 3 4 4 4 4 4 4 4 4 4 4 5 4 4 4 4 4 5 6 4 4 4 4 4 5 6 7 

1 2 2 2 3 2 2 2 3 4 2 2 2 3 4 5 2 2 2 3 4 5 6 2 2 2 3 4 5 6 7 

2 1 1 2 3 1 1 2 3 4 1 1 2 3 4 5 1 1 2 3 4 5 6 1 1 2 3 4 5 6 7 

3 0 1 2 3 0 1 2 3 4 0 1 2 3 4 5 0 1 2 3 4 5 6 0 1 2 3 4 5 6 7 

Average 

Cost 
12.743 12.699 12.699 12.699 12.699 

The Proposed Production Policy 1 

0 3 3 3 3 4 4 4 3 4 5 5 5 3 4 5 5 5 5 3 4 5 - 5 5 5 3 4 5 - - 

1 3 3 2 3 4 4 2 3 4 5 5 2 3 4 5 4 4 2 3 4 - - 4 4 2 3 4 - - - 

2 3 1 2 3 4 1 2 3 4 4 1 2 3 4 - 3 1 2 3 - - - 3 1 2 3 - - - - 

3 0 1 2 3 0 1 2 3 - 0 1 2 3 - - 0 1 2 - - - - 0 1 2 - - - - - 

𝑋∗ 

 
3 3 3 3 3 

𝑋∗∗ 

 
6 6 6 5 5 

Average 

Cost 
12.864 13.023 13.305 13.318 13.318 

 PPP1 decisions differ from the optimal policy decisions. As fixed cost and 

number of available servers increase, the cost difference between optimal and PPP1 

increases as well. We can conclude that there are some drawbacks of proposed 

production policy. These are: 

 For small values of 𝑠 and 𝐾, there is no cost difference. As 𝑠 and 𝐾 increases, 

the percentage is getting higher.  

 If 𝑋∗∗ is much higher than 𝑠, the policy decides to activate almost at all 

available servers. (If 𝑋∗∗ − 𝑥 > 𝑠, the decision becomes number of available 

servers (𝑠)). 
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 The Proposed Production Policy 2 4.1.2

 In order to avoid the undesirable behaviours, a new production policy is needed 

to be proposed (PPP2). Proposed Production Policy 2 (PPP2) has two control 

parameters as PPP1. We can define them as 𝑋∗ and 𝑋∗∗. However, the production 

decision is made according to inventory level not inventory position as PPP1. If the 

inventory level is less than 𝑋∗, the system tries to the inventory level hits to 𝑋∗ by 

using 𝑚𝑖𝑛 (𝑋∗ − 𝑥, 𝑠) function. This decision structure is similar to PPP1; however 

the primary objective is to reach 𝑋∗ not 𝑋∗∗ as in PPP1. If the inventory level is 

between 𝑋∗ and 𝑋∗∗, the production is not triggered to activate additional channels. If 

the production starts below 𝑋∗ and continues with one server until the inventory level 

hits to 𝑋∗∗ otherwise if the inventory level hits to 𝑋∗∗ and decreases with arrival 

demands the number of active servers should be zero. Lastly, when the inventory 

level reaches to 𝑋∗∗, the last server is turned off and non-production period starts. 

𝑢(𝑥, 𝑦) = {
𝑚𝑖 𝑛(𝑋∗ − 𝑥, 𝑠) 𝑥 < 𝑋∗

𝑚𝑎𝑥 (𝑦 − 1,1) 𝑋∗ ≤ 𝑥 < 𝑋∗∗

𝑦 𝑥 ≥ 𝑋∗∗
 

 At the epoch production completion occurs,  one unit is added to the inventory 

and the number of active servers can be changed according to the new inventory 

level. If the new inventory level hits to 𝑋∗∗, the server is turned off after production 

completion 

𝑁𝑒𝑥𝑡 𝑠𝑡𝑎𝑡𝑒 = {

(𝑥 + 1,𝑚𝑖𝑛(𝑋∗ − 𝑥− 1, 𝑠)) 𝑥 < 𝑋∗

(𝑥 + 1,𝑚𝑎𝑥(𝑦 − 1,1)) 𝑋∗ ≤ 𝑥 < 𝑋∗∗

(𝑥 + 1, 𝑦 − 1) 𝑥 ≥ 𝑋∗∗

 

 If a demand occurs, next states are shown in the following: 

𝑁𝑒𝑥𝑡 𝑠𝑡𝑎𝑡𝑒 = {

(𝑥 − 1,𝑚𝑖 𝑛(𝑋∗ − 𝑥, 𝑠)) 𝑥 < 𝑋∗

(𝑥 − 1,𝑚𝑎𝑥 (𝑦 − 1,1)) 𝑋∗ ≤ 𝑥 < 𝑋∗∗

(𝑥 − 1, 𝑦 − 1) 𝑥 ≥ 𝑋∗∗
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 The Behaviour of Proposed Production Policy 2 4.1.2.1

 Table 4.2 depicts the decision matrixes of optimal, PP1 and PP2 policies as the 

fixed cost increases. When fixed cost is not incurred to activate a channel, there is no 

difference in decisions of policies. As the fixed cost increases, the average cost of 

PPP2 increases and passes the average cost of PPP1 for any given positive fixed cost. 

For larger values of 𝐾, the performance of PPP2 gets worse. The reason of this 

situation is to produce with one active server when the inventory level is between 𝑋∗ 

and 𝑋∗∗. If many demand arrivals occur in this interval, the system tries to activate 

more servers. If the production completes, the server is turned off and turned on with 

paying fixed cost. In other words, a system which has a larger fixed cost should not 

apply PPP2 because of turning off the servers in small inventory levels. 

Table 4.2 The Impact of Fixed Cost on Optimal, PP1 and PP2 Policies 

Optimal Production Decisions 

Inventory 

Level 

𝑥 

Fixed Cost 
𝐾 = 0 

Fixed Cost 
𝐾 = 1 

Fixed Cost 
𝐾 = 2 

Fixed Cost 
𝐾 = 3 

Number of 

Active Servers 
𝑦 

Number of 

Active Servers 
𝑦 

Number of 

Active Servers 
𝑦 

Number of 

Active Servers 
𝑦 

0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 

0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 3 3 3 3 4 

1 3 3 3 3 4 2 2 2 3 4 2 2 2 3 4 2 2 2 3 4 

2 0 1 2 3 4 1 1 2 3 4 1 1 2 3 4 1 1 2 3 4 

3 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 

4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 

Average 

Cost 
10.493 11.833 12.699 13.082 

PPP1 Decisions 

0 4 4 4 4 4 4 4 4 3 4 4 4 4 3 4 4 4 4 3 4 

1 3 3 3 3 - 4 4 2 3 4 4 4 2 3 4 4 4 2 3 4 

2 2 2 2 - - 3 1 2 3 - 4 1 2 3 4 4 1 2 3 4 

3 1 1 - - - 0 1 2 - - 0 1 2 3 - 0 1 2 3 - 

4 0 - - - - 0 1 - - - 0 1 2 - - 0 1 2 - - 

5 - - - - - 0 - - - - 0 1 - - - 0 1 - - - 

𝑋∗ 4 3 3 3 

𝑋∗∗ 4 5 6 6 
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Average 

Cost 
10.613 12.180 13.023 13.684 

PPP2 Decisions 

0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 3 3 3 3 4 

1 3 3 3 3 - 3 3 3 3 4 3 3 3 3 4 2 2 2 3 4 

2 2 2 2 - - 2 2 2 3 - 2 2 2 3 4 1 1 2 3 4 

3 1 1 - - - 1 1 2 - - 1 1 2 3 - 0 1 2 3 4 

4 0 - - - - 0 1 - - - 0 1 2 - - 0 1 2 3 - 

5 - - - - - 0 - - - - 0 1 - - - 0 1 2 - - 

𝑋∗ 4 4 4 3 

𝑋∗∗ 4 5 6 7 

Average 

Cost 
10.614 12.924 15.110 17.081 

 The effects of number of available servers on optimal, PP1 and PP2 policies are 

shown in Table 4.3. We mention that PPP1 has some disadvantages in previous 

sections. These situations are also valid for PPP2. As number of server increases, the 

average costs of the policies are getting larger while the optimal policy does not 

change the decisions. According to these observations, we understand that we need to 

fine tune these policies. 

Table 4.3 The Impact of Number of Servers on Optimal, PP1 and PP2 Policies 

Optimal Production Decisions 

Inventory 

Level 

𝑥 

Number 

of 

Servers 
𝑠 = 2 

Number of 

Servers 
𝑠 = 3 

Number of Servers 
𝑠 = 4 

Number of Servers 
𝑠 = 5 

Number 

of Active 

Servers 
𝑦 

Number of 

Active Servers 
𝑦 

Number of Active 

Servers 
𝑦 

Number of Active Servers 
𝑦 

0 1 2 0 1 2 3 0 1 2 3 4 0 1 2 3 4 5 

0 2 2 2 3 3 3 3 4 4 4 4 4 4 4 4 4 4 5 

1 2 2 2 2 2 2 3 2 2 2 3 4 2 2 2 3 4 5 

2 1 1 2 1 1 2 3 1 1 2 3 4 1 1 2 3 4 5 

3 0 1 2 0 1 2 3 0 1 2 3 4 0 1 2 3 4 5 

4 0 1 2 0 1 2 3 0 1 2 3 4 0 1 2 3 4 5 

Average 

Cost 
13.900 12.743 12.699 12.699 

PPP1 Decisions 
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0 2 2 2 3 3 3 3 4 4 4 3 4 5 5 5 3 4 5 

1 2 2 2 3 3 2 3 4 4 2 3 4 5 5 2 3 4 5 

2 2 1 2 3 1 2 3 4 1 2 3 4 4 1 2 3 4 - 

3 0 1 2 0 1 2 3 0 1 2 3 - 0 1 2 3 - - 

4 0 1 2 0 1 2 - 0 1 2 - - 0 1 2 - - - 

5 0 1 2 0 1 - - 0 1 - - - 0 1 - - - - 

𝑋∗ 3 3 3 3 

𝑋∗∗ 6 6 6 6 

Average 

Cost 
13.906 12.864 13.023 13.305 

PPP2 Decisions 

0 2 2 2 3 3 3 3 4 4 4 4 4 4 4 4 4 4 5 

1 2 2 2 3 3 3 3 3 3 3 3 4 3 3 3 3 4 5 

2 2 2 2 3 3 3 3 2 2 2 3 4 2 2 2 3 4 - 

3 2 2 2 2 2 2 3 1 1 2 3 - 1 1 2 3 - - 

4 1 1 2 1 1 2 - 0 1 2 - - 0 1 2 - - - 

5 0 1 - 0 1 - - 0 1 - - - 0 1 - - - - 

𝑋∗ 5 5 4 4 

𝑋∗∗ 6 6 6 6 

Average 

Cost 
14.181 14.103 15.110 15.110 

 Continuous Time Markov Chain Analysis for PP2 4.1.2.2

 This section exhibits a Continuous Time Markov Chain analysis to find steady 

state probabilities and the cost structure of the system. Each state is defined and 

named, balance equations are established and the probabilities are computed, 

respectively. 

 As mentioned previously, the state of the system is defined with two variables: 

𝑋(𝑡) and 𝑌(𝑡). 𝑋(𝑡) denotes the inventory level at time 𝑡 and 𝑌(𝑡) denotes the 

number of active channels at time 𝑡. However, we use only one variable instead of 

these two variables. The new system-state is defined as: 0,1, … , 2𝑋∗∗ − 𝑋∗. This 

variable denotes the inventory level until 𝑋∗∗ state. The state transition diagram of 

proposed policy 1 is depicted in Figure 4.1. The below of the figure shows the 

production period and above of the figure shows the non-production period. The 
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values between 𝑋∗∗ + 1 and 2𝑋∗∗ − 𝑋∗ shows the non-production and the states that 

inventory level decreases one by one. For example, 𝑋∗∗ + 1 depicts the inventory 

level is 𝑋∗∗ − 1 and the number of active servers is zero. This situation equates 

(𝑋∗∗ − 1,0) in two-parameter system state. If the system-state is 2𝑋∗∗ − 𝑋∗, the 

inventory level decreases as 𝑛 units while the inventory level is 𝑋∗∗. Then, 𝑛 is 

computed as  𝑋∗∗ + 𝑛 = 𝑋∗∗ + 𝑋∗∗ − 𝑋∗ = 2𝑋∗∗ − 𝑋∗. The transitions in the diagram 

are provided by 𝜆 and 𝜇. 𝜆𝑛 denotes the demand rate when the inventory level is 𝑛. 

The system satisfies the demands from two different classes, so 𝜆𝑛 is either sum of 𝜆1 

and 𝜆2 or just 𝜆1. The reason of this situation is value of the rationing level 𝑅. Hence, 

𝜆𝑛 is equal to ∑ 𝜆𝑖𝑅𝑖≤𝑛
. 𝑅𝑖 is the rationing level for demand class 𝑖 and 𝜆𝑖 denotes the 

demand rate of class 𝑖. 

 𝑃𝑛 is determined as  a steady-state probability for each state. The production 

system behaviour is modelled by Continuous Time Markov Chain and state balance 

equations are derived as given below. 

 

Figure 4.1 State Transition Diagram 

(1) 𝑃0𝜇0 = 𝑃1λ1, 

(2) 𝑃𝑛(𝜇𝑛 + λ𝑛) = 𝑃𝑛−1𝜇𝑛−1 + 𝑃𝑛+1λ𝑛+1,    𝑛 = 1,2, … , 𝑋∗ − 2, 

(3) 𝑃𝑋∗−1(𝜇𝑋∗−1 + λ𝑋∗−1) = 𝑃𝑋∗−2𝜇𝑋∗−2 + 𝑃𝑋∗λ𝑋∗ + 𝑃2𝑋∗∗−𝑋∗λ2𝑋∗∗−𝑋∗, 

(4) 𝑃𝑛(𝜇𝑛 + λ𝑛) = 𝑃𝑛−1𝜇𝑛−1 + 𝑃𝑛+1λ𝑛+1,    𝑛 = 𝑋∗, 𝑋∗ + 1,… , 𝑋∗∗ − 2, 

(5) 𝑃𝑋∗∗−1(𝜇𝑋∗∗−1 + λ𝑋∗∗−1) = 𝑃𝑋∗∗−2𝜇𝑋∗∗−2, 

(6) 𝑃𝑋∗∗λ𝑋∗∗ = 𝑃𝑋∗∗−1𝜇𝑋∗∗−1, 
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(7) 𝑃𝑛λ𝑛 = 𝑃𝑛−1λ𝑛−1,    𝑛 = 𝑋∗∗ + 1, 𝑋∗∗ + 1,… , 2𝑋∗∗ − 𝑋∗, 

 The Steady state probabilities, 𝑃𝑛(𝑛 = 0, 1, … , 2𝑋∗∗ − 𝑋∗) are computed with 

using the balance equations above and the following normalization equation: 

∑ 𝑃𝑛 = 1

2𝑋∗∗−𝑋∗

𝑛=0

. 

 The state (2𝑋∗∗ − 𝑋∗) = (𝑋∗, 0) is set as a boundary state to solve the system. 

All the steady-state probabilities are computed as a linear function of the steady-state 

probability of  𝑃2𝑋∗∗−𝑋∗  by deriving recursive equations. The steady-state 

probabilities are obtained by using MATLAB. 

1. 𝑃𝑛 =
(𝑃2𝑋∗∗−𝑋∗)∗(λ2𝑋∗∗−𝑋∗)

λ𝑛
, 𝑛 = 2𝑋∗∗ − 𝑋∗, … , 𝑋∗∗. 

 

2. 𝑃𝑋∗∗−1 =
(𝑃2𝑋∗∗−𝑋∗)∗(λ2𝑋∗∗−𝑋∗)

𝜇𝑋∗∗−1
= (𝑃2𝑋∗∗−𝑋∗) ∗ (λ2𝑋∗∗−𝑋∗). 

 

3. 𝑃𝑛 = (𝑃2𝑋∗∗−𝑋∗) ∗ (λ2𝑋∗∗−𝑋∗)[1 + λ𝑛+1 + λ𝑛+1λ𝑛+2 +⋯+ λ𝑛+1λ𝑛+2…λ𝑋∗∗−1], 

𝑛 = 𝑋∗∗ − 2, 𝑋∗∗ − 3,… , 𝑋∗ − 1. 

 

4. 𝑃𝑛 =
(𝑃2𝑋∗∗−𝑋∗)∗(λ2𝑋∗∗−𝑋∗)[λ𝑛+1λ𝑛+2+λ𝑛+1λ𝑛+2λ𝑛+3+⋯+λ𝑛+1λ𝑛+2…λ𝑋∗∗−1]

𝜇𝑛𝜇𝑛+1…𝜇𝑋∗−2
, 

𝑛 = 𝑋∗ − 2, 𝑋∗ − 3,… ,1,0. 

 The Proposed Production Policy 3 4.1.3

 We propose two production policies in the previous sections. We mention the 

disadvantages of each policy. While the average costs of PPP1 is better than the 

average costs of PPP2, for larger values of the most important parameters (𝑠 and 𝐾) 

the performance of PPP1 deteriorates. Also continuing to production with one active 

server is not enough to satisfy the demand. Hence, we can propose a new policy 

which has the best aspects of the proposed policies. We use again two control 

variables which are 𝑋∗ and 𝑋∗∗. When the inventory position is less than 𝑋∗, the 
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system tries to reach 𝑋∗. The concept of inventory position comes from PPP1 and 

trying to reach 𝑋∗ comes from PPP2. The optimal decision at any state (𝑥, 𝑦), 

𝑢(𝑥, 𝑦) = {

𝑚𝑖𝑛(𝑿∗ − 𝑥, 𝑠) (𝑥 + 𝑦) < 𝑋∗

𝑦 𝑋∗ ≤ (𝑥 + 𝑦) < 𝑋∗∗

𝑦 (𝑥 + 𝑦) ≥ 𝑋∗∗
 

 If the inventory position is less than 𝑋∗(trigger point), the system tries the 

inventory position equate 𝑋∗ value. When the inventory position is equal to trigger 

point, the production continues with the same number of active servers. If the 

inventory position hits to 𝑋∗∗ (maximum stock level), each active server completes 

the production then is turned off. If a demand occurs and reduces the inventory 

position below 𝑋∗, servers are activated based on demand quantity. Between 𝑋∗ and 

𝑋∗∗, the production can continue with more than one server i.e. PPP2 is a special case 

of PPP3. At the epochs of production completion and a demand occurrence, next 

states can be shown respectively as: 

𝑁𝑒𝑥𝑡 𝑠𝑡𝑎𝑡𝑒 = {

(𝑥 + 1,𝑚𝑖𝑛(𝑿∗ − 𝑥 − 1, 𝑠)) (𝑥 + 𝑦) < 𝑋∗

(𝑥 + 1, 𝑦) 𝑋∗ ≤ (𝑥 + 𝑦) < 𝑋∗∗

(𝑥 + 1, 𝑦 − 1) (𝑥 + 𝑦) ≥ 𝑋∗∗
 

𝑁𝑒𝑥𝑡 𝑠𝑡𝑎𝑡𝑒 = {

(𝑥 − 1,𝑚𝑖𝑛(𝑿∗ − (𝑥 − 1), 𝑠)) (𝑥 + 𝑦) < 𝑋∗

(𝑥 − 1, 𝑦) 𝑋∗ ≤ (𝑥 + 𝑦) < 𝑋∗∗

(𝑥 − 1, 𝑦 − 1) (𝑥 + 𝑦) ≥ 𝑋∗∗
 

 The Behaviour of Proposed Production Policy 3 4.1.3.1

 Table 4.4 shows the production decisions matrixes of optimal, PPP1, PPP2 and 

PPP3, respectively. The most similar proposed policy to the optimal is easily noticed 

that it is PPP3. 
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Table 4.4 Optimal and Proposed Production Policies Decisions 

 
Optimal Production 

Policy 
PPP1 PPP2 PPP3 

 

Number of Active 

Servers 

y 

Number of Active 

Servers 
𝑦 

Number of Active 

Servers 
𝑦 

Number of Active 

Servers 
𝑦 

Inventory 

Level 

𝑥 

0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 

0 4 4 4 4 4 4 4 4 3 4 4 4 4 4 4 3 3 3 3 4 

1 2 2 2 3 4 4 4 2 3 4 3 3 3 3 4 2 2 2 3 4 

2 1 1 2 3 4 4 1 2 3 4 2 2 2 3 4 1 1 2 3 - 

3 0 1 2 3 4 0 1 2 3 - 1 1 2 3 - 0 1 2 - - 

𝑋∗ - 3 4 3 

𝑋∗∗ - 6 6 5 

 Table 4.5 shows the effect of number of the active server for production 

decision and compares optimal and proposed policies decisions. As can be easily 

observed from the table, production decisions are similar and there is a low cost 

difference between optimal and proposed policy 3. 

Table 4.5 Optimal and Proposed Policy 3 Production Decisions for larger 𝒔 

(𝐾, 𝑠, ℎ, 𝜇, 𝜆1, 𝜆2, 𝑐1, 𝑐2) = (2, 10, 1, 1, 3, 1, 4, 1) 

Inventory 

Level 

𝑥 

Number of Active Servers 

𝑦 
Average 

Cost 
0 1 2 3 4 5 6 7 8 9 10 

0 4 4 4 4 4 5 6 7 8 9 10 

5.2835 

1 3 3 3 3 4 5 6 7 8 9 10 

2 2 2 2 3 4 5 6 7 8 9 10 

3 2 2 2 3 4 5 6 7 8 9 10 

4 0 1 2 3 4 5 6 7 8 9 10 

(𝐾, 𝑠, ℎ, 𝜇, 𝜆1, 𝜆2, 𝑐1, 𝑐2, 𝑋
∗, 𝑋∗∗) = (2, 10, 1, 1, 3, 1, 4, 1,4,9) 

Inventory 

Level 

𝑥 

Number of Active Servers 

𝑦 
Average 

Cost 
0 1 2 3 4 5 6 7 8 9 10 

0 4 4 4 4 4 5 6 7 8 9 10 

5.3073 

1 3 3 3 3 4 5 6 7 8 9 10 

2 2 2 2 3 4 5 6 7 8 9 10 

3 1 1 2 3 4 5 6 7 8 9 10 

4 0 1 2 3 4 5 6 7 8 9 10 
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 Figure 4.2 shows the percentage of cost differences of the proposed policies 

based on optimal policy. The cost difference of Base-stock policy is increasing while 

K increases. Base-stock policy does not provide the continuation in the production. It 

is not appropriate policy for the systems include fixed cost for production. The best 

percentage of cost difference is shown in PPP3. 

 

Figure 4.2 The Cost Differences of Optimal and Proposed Policies as K increases 

 Figure 4.3 shows the percentage of cost differences of the proposed policies 

based on optimal policy as number of available servers increases. It is obviously 

noticed that PPP3 has the best results among the other proposed policies. The 

performance of PPP3 is close to performance of the optimal production policy and 

has a general behaviour. 
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Figure 4.3 The Cost Differences of Optimal and Proposed Policies as s increases 

 Table 4.6 summarizes the proposed policies and shows the differences between 

them in terms of their structures. When inventory position drops to below X∗, the 

production is triggered and continued until inventory position hits to 

X∗∗. The Continuation column denotes the number of active servers as production is 

continued.  

Table 4.6 Comparison of Production Policies in terms of their structures 

Policies 
Trigger 

Level 

Order-up-to 

Level 
Continuation 

Maximum 

Stock Level 

PP1 𝑋∗ 𝑋∗∗ 
with more than or 

equal to one server 
𝑋∗∗ 

PP2 𝑋∗ 𝑋∗∗ with one server 𝑋∗∗ 

PP3 𝑋∗ 𝑋∗ 
with more than or 

equal to one server 
𝑋∗∗ 
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 Continuous Time Markov Chain Analysis 4.1.3.2

 It is obvious that the performance of PPP3 is closer to the performance of 

optimal production policy than the performances of the other proposed policies. 

Hence, CTMC analysis is conducted to obtain steady-state probabilities. The number 

of states and transition rates in PPP3 differ from the number of states and transition 

rates in PPP2. We mentioned that the production continues with one server when the 

inventory level is between 𝑋∗ and 𝑋∗∗ in PPP2. However, the number of active 

servers can differentiate when the inventory level is between this two critical 

variables. We foresee the diagrams and the process of analysis becoming 

complicated. 

 The primarily analyses are carried out for the largest and smallest 𝑋∗ values. 

Figure 4.4 illustrates the state transition diagram when 𝑋∗ equals to 𝑋∗∗ (i.e. the 

largest value 𝑋∗ can take). When 𝑋∗ = 𝑋∗∗, the process converts to Birth-death 

process and the production policy behaves like Base-stock policy. For such a system, 

the steady-state probability of each state can be obtained via the recursive equations. 

Then, the average cost function is obtained by using the steady-state probabilities.  

 As mentioned in CTMC of PPP2, 𝜆(𝑥, 𝑦) values are related to the rationing 

levels of demand classes.  𝜆(𝑥, 𝑦) can be equal to either  𝜆1 +  𝜆2 or  𝜆1. However, 

this situation does not change the structure of Birth-death process but can change the 

decisions. 

 

Figure 4.4 X
*
=X

**
=6 State Transition Diagram 

 The state transition diagram when 𝑋∗ equals to 1 (i.e. the smallest value 𝑋∗ can 

take) is depicted in Figure 4.5. When 𝑋∗ = 1, the process has an analyzable structure 
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and the diagram is not so complicated. Thus, the steady-state probabilities and the 

average cost can be obtained by calculating the recursive equations. 

 

Figure 4.5 X
*
=1, X

**
=6 State Transition Diagram 

 If 𝑋∗ does not equal to the minimum and maximum value, the diagram becomes 

complicated and can be depicted in Figure 4.6. This example is enough to sense the 

characteristics of the policy. The diagram is getting complex when 𝑋∗ takes the 

moderate values. It is obvious that calculating the steady-state probabilities is very 

difficult and time-consuming for such a system. Actually, our objective is to find the 

average cost and we can obtain the expression of the average cost by not calculating 

the steady-state probabilities.  

 

Figure 4.6 X
*
=4, X

**
=6 State Transition Diagram 
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 As mentioned in the literature, Lee and Srinivasan (1989, 1991) calculate the 

average cost function by not using the steady-state probabilities. This method is 

called Renewal Reward Theorem. In order to use the theorem, we need a regeneration 

point which decomposes the complex system into two sub-systems.  

 Figure 4.7 illustrates the theorem in the (𝑠, 𝑆) policy typical inventory system. 

The regeneration point is defined as every time inventory level reaches to 𝑆. As soon 

as the inventory level hits to specified 𝑆 value, the production is turned off and non-

production period starts. During a non-production period, the inventory level 

decreases because of demand arrivals. When the inventory level drops to 𝑠, the non-

production period ends and the production period starts instantaneously. During a 

production period, the inventory level increases and sometimes decreases because of 

demand occurrences. When the inventory level reaches to 𝑆 again, the production is 

completed and non-production period begins. Thus, it initiates a new cycle for such 

an inventory system. 

 

Figure 4.7 (S,s) Policy 

 In the following section, we find an expression for the average cost per unit 

time for 𝑀/𝑀/1 make-to-stock queues with lost sales when the critical values are 𝑋∗ 

and 𝑋∗∗.  
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 Renewal Analysis for 𝑴/𝑴/𝟏 4.1.3.3

 The control values are set to 𝑋∗ for lower control value and 𝑋∗∗ for upper 

control value. Notations are defined as: 

𝐾   = Fixed cost, 

ℎ   = holding cost, 

𝑐   = lost sales cost, 

𝑈   = the processing time to produce a product, 

𝐷   = the number of demands which arrive during a processing time 

    𝑈, 

𝑑𝑗   = the probability of 𝑗 demands occur during a processing time i.e. 

    𝑃(𝐷 = 𝑗) = 𝑑𝑗, 𝑗 = 0,1,2, …∞, 

𝐶𝑁(𝑋
∗, 𝑋∗∗) = expected cost during a non-production period, 

𝐶𝑃(𝑋
∗, 𝑋∗∗) = expected cost during a production period, 

𝐿𝑁(𝑋
∗, 𝑋∗∗) = expected length of a non-production period, 

𝐿𝑃(𝑋
∗, 𝑋∗∗) = expected length of a production period, 

𝐴𝐶(𝑋∗, 𝑋∗∗) = average cost per unit time. 

 The purpose of this theorem is to find the expected cost per unit time when the 

control values are 𝑋∗ and 𝑋∗∗. The regeneration point is defined as every time 

inventory level reaches to 𝑋∗∗. The average cost per unit time is obtained by 

𝐴𝐶(𝑋∗, 𝑋∗∗) =
𝐶𝑁(𝑋

∗, 𝑋∗∗) + 𝐶𝑃(𝑋
∗, 𝑋∗∗) + 𝐾

𝐿𝑁(𝑋∗, 𝑋∗∗) + 𝐿𝑃(𝑋∗, 𝑋∗∗)
                                (3) 

 By the Renewal Reward Theorem, the long-run average cost equals to the 

expected cost over a cycle divided by the expected cycle length (Equation 3). In order 

to find the average cost, we need to find 𝐶𝑁(𝑋
∗, 𝑋∗∗), 𝐶𝑃(𝑋

∗, 𝑋∗∗), 𝐿𝑁(𝑋
∗, 𝑋∗∗) and 

𝐿𝑃(𝑋
∗, 𝑋∗∗) terms. First of all, we determine the expected cost during a non-

production period. Let 𝑔𝑥,𝑥−1 denotes the expected cost during a non-production 
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period when the inventory level drops to 𝑥 − 1 from 𝑥 (Equation (4)). Then, the total 

expected cost during a non-production period is calculated by the Equation (5).  

𝑔𝑥,𝑥−1 =
ℎ𝑥

𝜆
                                                          (4) 

𝐶𝑁(𝑋
∗, 𝑋∗∗) =  ∑ 𝑔𝑥,𝑥−1

𝑋∗∗

𝑥=𝑋∗+1

                                          (5) 

 In order to calculate the total expected cost during a production period, we need 

to determine the expected first passage cost during a production period when the 

inventory level increases to 𝑥 + 1 from 𝑥 (𝑓𝑥,𝑥+1) and also  𝑓𝑥,𝑥 = 0 for any 𝑥. The 

total expected cost during a production period is calculated by the Equation (6). 

𝐶𝑃(𝑋
∗, 𝑋∗∗) =  ∑ 𝑓𝑥,𝑥+1

𝑋∗∗−1

𝑥=𝑋∗

                                             (6) 

 In Equation (7), 𝐸𝑥 is defined as the expected cost during a processing time 

when the processing starts with 𝑥 units in inventory. During a processing time, 𝑗 

demands occur with probability 𝑑𝑗. Number of demands can take any integer value 

between 0 and ∞. Hence, 𝑗 demands take the inventory level to max(𝑥 − 𝑗, 0) before 

production completion. The reason of using maximum function is the inventory level 

cannot take negative values because of lost sales environment. When the production 

completes, the outstanding order is added to the maximum function max(𝑥 − 𝑗, 0) +

1.  

𝑓𝑥,𝑥+1 =  𝐸𝑥 +∑𝑑𝑗𝑓max(𝑥−𝑗,0)+1,𝑥+1                                   (7)

∞

𝑗=0

 

 Equation (7) has two unknown values. One of them is 𝐸𝑥 and the other is 𝑑𝑗. 

The computation of 𝑑𝑗 which is the probability of 𝑗 demands occur during a 

processing time is expressed in the following equations: 
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𝑑𝑗 = ∫ 𝑃(𝑁(𝑢) = 𝑗 | 𝑈 = 𝑢)

∞

𝑢=0

𝑓𝑈(𝑢)𝑑𝑢                                   (8) 

𝑑𝑗 = ∫
𝑒−𝜆𝑢(𝜆𝑢)𝑗

𝑗!
𝜇𝑒−𝜇𝑢𝑑𝑢

∞

𝑢=0

                                             (9) 

 To obtain 𝐸𝑥, we use the expected arrival time of 𝑥𝑡ℎ demand during a 

processing time 𝜏𝑥 = 𝐸[𝛵𝑥]. If the number of products demanded during a processing 

time is less than 𝑥, 𝑥𝑡ℎ item is held during the whole processing time, otherwise is 

removed from inventory. The second term of Equation (10) corresponds to lost sales 

interval. After the arrival of 𝑥𝑡ℎ demand, all products are demanded and there is no 

product in inventory. Lost sales cost should be paid as the expected number of 

demand during 𝑈 − 𝛵𝑥, i.e. 𝐸[𝑁(𝑈 − 𝛵𝑥)]. 

  𝐸𝑥 =∑ℎ𝜏𝑖 + 𝑐

𝑥

𝑖=1

𝜆(𝐸(𝑈) − 𝜏𝑥)                                       (10) 

 

 Let 𝑈𝑗 be the length of the processing time given that 𝑗 demands occurred 

within the processing time. Given 𝑗 demand arrivals during (𝑈𝑗), the joint distribution 

of these arrivals have the same distribution as the order statistics of 𝑗 independent 

random variables uniformly distributed on [0, 𝑈𝑗]. If the number of arrival demands 

during a processing time is less than 𝑖, is denoted as 𝑗, 𝑖𝑡ℎ product is held in the 

inventory during whole processing time and the expected holding time of 𝑖𝑡ℎ product 

equals to 𝑢𝑗 , otherwise 𝑖𝑡ℎ product is removed from inventory and the expected 

holding time of 𝑖𝑡ℎ product expressed as 
𝑖

𝑗+1
𝑢𝑗. 

𝜏𝑖 =∑𝑑𝑗𝑢𝑗

𝑖−1

𝑗=0

+∑𝑑𝑗(
𝑖

𝑗 + 1
𝑢𝑗

∞

𝑗=𝑖

)                                       (11) 

𝑢𝑗 = 𝐸[𝑈𝑗] = 𝐸[𝑈 | 𝐷 = 𝑗] 
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= ∫ 𝑓𝑈|𝐷=𝑗(𝑢|𝐷 = 𝑗)𝑢𝑑𝑢

𝑢

 

= ∫
𝑓𝑈,𝐷=𝑗(𝑢, 𝐷 = 𝑗)

𝑃(𝐷 = 𝑗)
𝑢𝑑𝑢

𝑢

 

=
1

𝑑𝑗
∫ 𝑃(𝐷 = 𝑗 | 𝑈 = 𝑢)𝑓𝑈(𝑢)𝑢𝑑𝑢

𝑢

 

𝑢𝑗 =
1

𝑑𝑗
∫
𝑒−𝜆𝑢(𝜆𝑢)𝑗

𝑗!
𝜇𝑒−𝜇𝑢𝑢𝑑𝑢

𝑢

                                      (12) 

 We compute recursive expressions for variables to expedite our algorithm in 

MATLAB. 

𝐸𝑥+1 = 𝐸𝑥 + ℎ𝜏𝑥+1 − 𝑐 ( ∑ 𝑑𝑗

∞

𝑖=𝑥+1

)                                     (13) 

𝜏𝑥+1 = 𝜏𝑥 +
1

𝜆
(1 −∑𝑑𝑗

𝑥

𝑗=0

) = 𝜏𝑥 +
1

𝜆
∑ 𝑑𝑗

∞

𝑗=𝑥+1

                          (14) 

𝑓𝑥,𝑥+1 =
𝐸𝑥 + ∑ 𝑓𝑖,𝑖+1(∑ 𝑑𝑗

∞
𝑗=𝑥 ) +𝑥−1

𝑖=0 ∑ 𝑑𝑗 ∑ 𝑓𝑘,𝑘+1
𝑥
𝑘=𝑥+1−𝑗

𝑥−1
𝑗=2

𝑑0
 ,   𝑓0,1 = 𝐸0           (15) 

 Expected length of a non-production period is easily computed. To complete a 

non-production period, the difference between  𝑋∗∗ and 𝑋∗ demands should occur. 

Hence, expected length of a non-production period is expressed as: 

𝐿𝑁(𝑋
∗, 𝑋∗∗) =

𝑋∗∗−𝑋∗

𝜆
                                                 (16)  

 In order to calculate length of a production period, we carry out the first 

passage time analysis for our process. For a small example, suppose there 4 states 
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from 0 to 3. The transition rate is defined as 𝜆𝑖𝑗 from state 𝑖 to 𝑗. The termination 

state is determines as state 3 and we try to find the expected first passage time from 

state 1 to 3 (𝑚13). Figure 4.8 shows the transition diagram for this example system. 

Equations are derived as follows: 

 

Figure 4.8 A sample state diagram 

𝑚13 =  
1

𝜆10 + 𝜆12
+

𝜆10
𝜆10 + 𝜆12

𝑚03 +
𝜆12

𝜆10 + 𝜆12
𝑚23 

(𝜆10 + 𝜆12)𝑚13 = 1 + 𝜆10𝑚03 + 𝜆12𝑚23 

0 = 1 + 𝜆10𝑚03 + 𝜆12𝑚23 − (𝜆10 + 𝜆12)𝑚13 

0 = 1 + 𝜆10𝑚03 + 𝜆12𝑚23 + 𝜆11𝑚13 

0 = 1 +∑𝜆1𝑘𝑚𝑘3

𝑘≠3

                                                     (17) 

 The Equation (18) for any continuous time Markov process, the mean first 

passage times 𝑚𝑖𝑗 (𝑓𝑜𝑟 𝑖 ≠ 𝑗) satisfy, 

0 = 1 +∑𝜆𝑖𝑘𝑚𝑘𝑗

𝑘≠𝑗

                                                     (18) 

 We can get the first passage time by using a matrix form. Firstly, the 

infinitesimal matrix Λ which denotes the rates departing from each state 𝑖 and 
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arriving in each state 𝑗 is prepared. If our objective is to reach state 𝑗 first time, 𝑗𝑡ℎ 

row and 𝑗𝑡ℎ column in Λ has to be changed with zeros and put 1 to (𝑗, 𝑗) cell. Finally, 

we have a modified transition matrix Λj
+. These replacements are executed in order to 

invert the matrix to get 𝑚𝑗 array. Then the matrix form of the equations is expressed 

in Equations (19, 20). The result 𝑚𝑗 array is a column vector whose elements are the 

first passage times from each 𝑖 to given 𝑗. If we are interested in find first passage 

time from any state 𝑖 to 𝑗, we need to read the value of  𝑖𝑡ℎ element in the array.  

0 = 1 + Λj
+𝑚𝑗                                                       (19) 

𝑚𝑗 = −(Λj
+)−1Ι                                                      (20) 

 Finally, we calculate each part of the expected cost per unit time. In order to 

find the expected cost for any different system parameters and control values, the 

algorithms are coded in MATLAB for MDP and RA. We have considerable 

computation times by using this programming tool. 

Table 4.7 CPU Times of MDP & RA 

𝑋∗ 𝑋∗∗ − 𝑋∗ 
CPU Time 

of MDP 
CPU Time 

of RA 

1 9 18.33 0.22 

3 7 20.20 0.23 

5 5 21.23 0.23 

7 3 22.15 0.23 

9 1 23.15 0.24 

10 0 23.90 0.24 

 Table 4.7 shows that as 𝑋∗ increases, the computation times for 𝑀/𝑀/1 is still 

quite short for RA. The difference between CPU times is getting larger as 𝑋∗ 

increases for 𝑀/𝑀/1. We can foresee that the computation times of MDP for 

different service times are distributed as Erlang or Coxian should be longer than the 

computation times of MDP for 𝑀/𝑀/1. However, we have a robust tool which 

calculates the average cost in milliseconds. This study can be adapted for the systems 

with different service times such as Erlangian and Phase-type.  
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4.2 The Proposed Rationing Policy 

 Stock-rationing is actually an inventory policy which decides how much stock 

should be reserved in anticipation of future demand of more valuable demand class. If 

there is only one demand class, there is no meaning of stock rationing; otherwise the 

meaning of inventory rationing gains importance. 

 Customers can be classified according to their shortage costs or their service 

levels. For example, if one of the classes has the largest unit shortage cost, this 

demand class can be named by the highest priority demand class (i.e. demand class 1) 

or if one of them has the smallest unit shortage cost, the demand class is named by 

the lowest priority demand class (i.e. demand class 𝑁). In our problem, customer 

classes are prioritized based on different shortage costs of customers. Hence, rejecting 

the demand of less valuable classes provides to keep inventory for the future demand 

of a more valuable class. 

 Any rationing policy can be implemented by determining critical levels to 

satisfy the different demands. These critical levels can be either static or dynamic. 

Static rationing policies check only the inventory level and decide to satisfy the 

demand or not. If the inventory level is more than or equal to the critical level of 

arriving demand class, the demand is satisfied; otherwise the unsatisfied demand is 

lost. Dynamic rationing policies have different critical levels that change on a time. 

There are only a couple of studies that consider dynamic rationing levels. The one of 

them is mentioned before Fadiloglu and Bulut (2010) that analyze dynamic rationing 

policy is based on inventory level and number of outstanding orders. In our model, it 

can be easily seen that the optimal rationing decisions change according to inventory 

level and number of active servers at the same time. Hence, the critical level should 

be a function of inventory level (𝑥) and number of active servers (𝑦). 

 This section is addressed on an alternative inventory policy. The proposed 

policy uses the number of outstanding orders and on-hand inventory to decide 

whether a less valuable demand class should be satisfied or lost. Thanks to 
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information technology, any firm can control the number of active server status and 

decide by incorporating this information. Therefore, the critical level 𝑅 is defined and 

changes with the different values of 𝑥 and 𝑦. 

 The first function at the following is rationing decision for class 1 customer. 

For the highest priority class, 𝑅 equals to 1. Even if there is only one inventory on-

hand, it is optimal to satisfy the demand of the highest customer class. For the other 

customer classes, the decision to meet or not to meet the demand can change 

according to the defined critical levels. 

𝑅𝑎𝑡𝑖𝑜𝑛𝑖𝑛𝑔 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑓𝑜𝑟 𝑐𝑙𝑎𝑠𝑠 1 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟 = { 
1 (𝑥 + 𝑎𝑦) ≥ 𝑅𝑦

𝑥

0 (𝑥 + 𝑎𝑦) < 𝑅𝑦
𝑥    (𝑅𝑦

𝑥 = 1) 

𝑅𝑎𝑡𝑖𝑜𝑛𝑖𝑛𝑔 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑓𝑜𝑟 𝑐𝑙𝑎𝑠𝑠 𝑖 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟 = { 
1 (𝑥 + 𝑎𝑦) ≥ 𝑅𝑦

𝑥

0 (𝑥 + 𝑎𝑦) < 𝑅𝑦
𝑥    (𝑅𝑦

𝑥 > 1)  

𝑓𝑜𝑟 𝑖 ∈  {1,2, … , 𝑁} 

 Besides the inventory level and number of active servers, the critical level 𝑅 

includes another variable 𝑎 that is a ratio, denotes the value of one outstanding order 

with respect to one unit of inventory. For instance, if 𝑎 = 0.5, 𝑥 = 3, and 𝑦 = 2, two 

active servers indicates as one unit of inventory (2 𝑎𝑐𝑡𝑖𝑣𝑒 𝑠𝑒𝑟𝑣𝑒𝑟𝑠 ∗ 0.5 𝑖𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦/

𝑎𝑐𝑡𝑖𝑣𝑒 𝑠𝑒𝑟𝑣𝑒𝑟 = 1 𝑖𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦). A modified inventory level is provided by summing 

both inventories (2 + 1 = 3 𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑 𝑖𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦). Thus, this equation has the 

information of how many products will be replenished in the future.  

 The Behaviour of Proposed Rationing Policy 4.2.1.1

 In this section, numerical analysis is conducted to show similarities and 

differences between optimal rationing policy and the other policies. First of all, Table 

4.8 compares the rationing decisions of the static, dynamic, and FCFS policies with 

the optimal policy decisions. The dynamic rationing policy has similar behaviour 

with the optimal one. When inventory level is less than 2, the rationing decision is not 
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to satisfy. However, when the inventory level equals to 2, the decisions are not the 

same for each number of active servers. While the number of active servers increases, 

the decision turns to satisfy the demand. Because the production rate is getting higher 

and the processing time is getting smaller. 

Table 4.8 Optimal, Static, FCFS, and The Proposed Rationing Policy Decisions 

(𝐾, 𝑠, ℎ, 𝜇, 𝜆1, 𝜆2, 𝑐1, 𝑐2) = (2, 4, 1, 1, 3, 1, 4, 1) 

Optimal Rationing Policy When 𝑎 = 𝑎* 

 
Number of Active Servers 

𝑦 

Number of Active Servers 

𝑦 

Inventory 

Level 

𝑥 

0 1 2 3 4 0 1 2 3 4 

0 0 0 0 0 0 0 0 0 0 0 

1 0 0 0 0 0 0 0 0 0 0 

2 0 0 0 0 1 0 0 0 0 1 

3 1 1 1 1 1 1 1 1 1 1 

When 𝑎 = 0 FCFS Policy 

 
Number of Active Servers 

𝑦 

Number of Active Servers 

𝑦 

Inventory 

Level 

𝑥 

0 1 2 3 4 0 1 2 3 4 

0 0 0 0 0 0 0 0 0 0 0 

1 0 0 0 0 0 1 1 1 1 1 

2 0 0 0 0 0 1 1 1 1 1 

3 1 1 1 1 1 1 1 1 1 1 

 Table 4.9 shows the effect of number of the active server for rationing decision 

and compares optimal and proposed policy 3 decisions. As can be easily observed 

from the table, the threshold inventory rationing levels for demand class 2 are non-

increasing as number of active servers increases and are decreasing as on-hand 

inventory increases. It means that if there are many active servers in production, 

arriving demands of class2 are satisfied in lower values of on-hand inventory because 

of high production rate.  
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Table 4.9 Optimal and Proposed Policy Rationing Decisions for larger 𝒔 

(𝐾, 𝑠, ℎ, 𝜇, 𝜆1, 𝜆2, 𝑐1, 𝑐2) = (2, 10, 1, 1, 3, 1, 4, 1) 

Inventory 

Level 

𝑥 

Number of Active Servers 

𝑦 
Average 

Cost 
0 1 2 3 4 5 6 7 8 9 10 

0 0 0 0 0 0 0 0 0 0 0 0 

5.2835 
1 0 0 0 0 0 0 0 0 0 1 1 

2 0 0 0 0 1 1 1 1 1 1 1 

3 1 1 1 1 1 1 1 1 1 1 1 

(𝐾, 𝑠, ℎ, 𝜇, 𝜆1, 𝜆2, 𝑐1, 𝑐2, 𝑎, 𝑅) = (2, 10, 1, 1, 3, 1, 4, 1,0.4,3) 

Inventory 

Level 

𝑥 

Number of Active Servers 

𝑦 
Average 

Cost 
0 1 2 3 4 5 6 7 8 9 10 

0 0 0 0 0 0 0 0 0 0 0 0 

5.2893 
1 0 0 0 0 0 0 1 1 1 1 1 

2 0 0 0 1 1 1 1 1 1 1 1 

3 0 1 1 1 1 1 1 1 1 1 1 

 Figure 4.10 shows the cost differences of FCFS, static and the proposed 

policies according to the optimal policy while the total traffic intensity is the same but 

the ratio of 𝜆2 (𝜆1 + 𝜆2⁄ ) = 𝑝 changes. In the extreme points of the graph, there is no 

cost difference. Because, there is only one customer class in the system and the stock 

rationing is not so significant for only one customer type. In the middle points of the 

graph, the figure starts to change since there are two different demand classes. One of 

them is more valuable than the other. Hence, the stock rationing becomes significant 

and dynamic rationing policy can be ideal for such a system. 

 
Figure 4.9 The Impact of the ratio of p 
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 Figure 4.11 shows the cost differences of FCFS, static and the proposed 

policies according to the optimal policy while number of servers increases. For small 

values of s, there is no difference between the static and dynamic policies. While the 

number of servers increases, the performance of static policy is getting worse. The 

reason of this situation is the static policy does not use number of server information. 

Therefore, the proposed dynamic policy is the same as optimal policy for each 

number of servers.  

 

Figure 4.10 The Impact of Number of Servers 
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5 CONCLUSION  

 In this thesis, we consider a joint production and inventory problem in a make-

to-stock production system with fixed start-up cost, limited parallel servers and 

several different customer classes at the same time. This work is a direct extension of 

the literature which considers a single server with fixed cost and multi-server with no 

fixed cost.  

 First of all, we model the system as an 𝑀/𝑀/𝑠 make-to-stock queue and 

characterize the structures of the optimal production and rationing policies via 

numerical studies. Because of dynamic structures of the optimal policies, we propose 

new policies which are well-defined, well-performing and easier to be applied in real 

life. We demonstrate three alternative production policies and one dynamic rationing 

policy. To assess the performances of the proposed policies, we analyze the impact of 

each system parameter on proposed policies. We also calculate the steady-state 

probabilities for proposed production policy 2 and conduct the renewal reward 

analysis for 𝑀/𝑀/1 make-to-stock queue with fixed cost in lost sales environment. 

For such a system, the proposed production policy 3 is optimal. Renewal analysis 

enables us to calculate the expected average cost without calculating the steady-state 

probabilities. Hence, we can provide considerable computation times between RA 

and MDP. 

 A direct extension of our renewal analysis can be for multi-server or general 

processing times. It can provide us to calculate the expected average cost quickly. 

Another future extension of the study can be on make-to-stock production systems 

with multi-item. If multiple products are included in the problem, the sequence of the 

production of different products gains importance and change over costs can arise. 

Also, arriving demands can occur in batches and each server can complete production 

with batches.   
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