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ABSTRACT 

EMOTION CLASSIFICATION WITH EEG SIGNALS USING 

CONVOLUTIONAL NEURAL NETWORKS 

  

Dönmez, Hayriye 

MSc, Electrical and Electronics Engineering 

Advisor: Assist.Prof.Dr. Nalan ÖZKURT 

August 2021 

Assistive technologies for human-machine interface studies are one of the important 

research areas of the today’s technology. Emotion perception for this interaction 

mechanism is one of the valuable requirements to provide communication with 

interface and person. Emotion classification studies are an improving field and 

several approaches have been proposed by the researchers. In the literature emotion 

definition mainly given according to two view. In this study, these views which are 

discrete emotion model and dimensional model-based approaches were examined. 

Since EEG signals have nonlinear and nonstationary characteristics, several feature 

extraction and classification algorithms applied in literature. Furthermore, deep 

learning models have reached significant accuracy for various types of data in recent 

years, thus, it was aimed to get accurate results for emotion classification by 

examining Convolutional Neural Networks (CNN) algorithms.  

In our thesis, three different study were accomplished. The first study investigates 

the emotion classification performance of single electrode EEG recordings with 

commercial Neurosky EEG device with CNN using spectrogram features. A second 

approach is to use spectrogram features again for multiple channel recordings with 

publicly accesible DEAP dataset. Finally, to improve the performance and reduce the 

computation complexity, Fourier and wavelet transform features of all channels were 

classified with CNN. To understand the performance of CNN model and make a 

reliable comparison with signal transformations, also raw signal image features used 

in this thesis. 

Key Words: Electroencephalogram (EEG), emotion, convolutional neural networks 

(CNN), valence, arousal, human machine Interaction (HMI), emotion classification, 

wavelet, fast fourier transform (FFT), spectrogram, DEAP database 
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ÖZ 

EEG SİNYALLERİNDEN EVRİŞİMSEL SİNİR AĞLARI KULLANIMI İLE 

DUYGU SINIFLANDIRMASI 

 

Dönmez, Hayriye 

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği 

Danışman: Dr.Öğr.Üy. Nalan ÖZKURT 

Ağustos 2021 

İnsan-makine arayüz çalışmaları için yardımcı teknolojiler, günümüz teknolojisinin 

önemli araştırma alanlarından biridir. Bu etkileşim mekanizması için duygu algısı, 

arayüz ve kişi ile iletişimi sağlamak için değerli gereksinimlerden biridir. Duygu 

sınıflandırma çalışmaları gelişen bir alandır ve araştırmacılar tarafından çeşitli 

yaklaşımlar önerilmiştir. Literatürde duygu tanımı temel olarak iki teoriye göre 

verilmektedir. Bu çalışmada, dairesel model ve boyutlu model temelli yaklaşımlar 

olan bu görüşler incelenmiştir. 

EEG sinyalleri doğrusal ve durağan olmayan özelliklere sahip olduğundan literatürde 

birçok öznitelik çıkarma ve sınıflandırma algoritması uygulanmaktadır. Ayrıca, derin 

öğrenme modelleri son yıllarda çeşitli veri türleri için önemli bir doğruluğa 

ulaştığından, Evrişimsel Sinir Ağları (ESA) algoritmaları incelenerek duygu 

sınıflandırması için doğru sonuçlar elde edilmesi hedeflenmiştir. 

Tezimizde üç farklı çalışma gerçekleştirilmiştir. İlk çalışma, spektrogram 

özelliklerini kullanarak ESA'lı ticari Neurosky EEG cihazı ile tek elektrotlu EEG 

kayıtlarının duygu sınıflandırma performansını araştırmaktadır. İkinci bir yaklaşım, 

genel kullanıma açık DEAP veri seti ile çok kanallı kayıtlar için spektrogram 

özelliklerini tekrar kullanmaktır. Son olarak, performansı iyileştirmek ve hesaplama 

karmaşıklığını azaltmak için tüm kanalların Fourier ve dalgacık dönüşümü özellikleri 

ESA ile sınıflandırılmıştır. Ayrıca bu tezde, ESA modelinin performansını anlamak 

ve sinyal dönüşümleri arasında güvenilir bir karşılaştırma yapmak amacıyla ham 

sinyal görüntü öznitelikleri kullanılmıştır. 
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CHAPTER 1 

INTRODUCTION 

1.1. Motivation of Study 

In the recent years, emotion classification studies become a growing research topic 

for various fields in engineering since the analysis and perception of emotional 

reactions by machines or interfaces provide significant improvement in these fields. 

Human-Machine Interaction (HMI) is one of these fields which is interesting and 

important considering that emotional responses play an important role in social 

communication. It is required to provide the relevance between humans’ emotional 

reactions and perception of these reactions by the machines. And moreover, it may be 

answered how can a machine or an interface earns these skills by using interaction 

with human brains. All these points are fundamental aims of affective computing 

research field. It was firstly introduced in 1997 (Picard, 1997). Affective computing 

includes interdisciplinary works between computer science, psychology, cognitive 

neuroscience etc. In this field, various healthcare, educational and daily life 

applications have been produced observing the main aims of affective computing 

studies. Humanoid robot studies, paralyzed patients’ assistive applications (in order 

to provide communication ability), neuromarketing (in order to determine consumer 

reactions for products), online gaming, monitoring mental health, recommender 

systems and smart homes are some of the examples for this area. All these studies 

need adaptive systems which use the outcomes of the emotional detections and 

provide a user-friendly interaction. According to emotion regulation steps, first we 

experience the emotion (visual, auditorial etc.), and then our physiological reactions 

occurred (handshake, heart rate etc.) and finally our body gives physical reaction 

(facial expressions or body movements). To detect emotions, human body’s sensory 

data of physiological reactions are used due to the fact that when a person experience 

an emotion, her or his body also affected by it.  
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1.2. Literature Survey  

In order to detect the emotions, some features are extracted from these affected 

conditions with various modalities. In the literature, these modalities mainly 

introduced as visual, auditorial and physiological. It is considered that all these 

modalities include some cues related with the experienced emotion. 

Facial expressions are commonly used and non-verbal visual data forms for emotion 

recognition. Facial expression analysis is used to extract information of affected face 

reaction for emotion recognition in HMI applications. Facial actions firstly 

introduced by Ekman in psychology. The Facial Action Coding System (FACS) was 

proposed, system provided a measurement standard for the emotions. Changes in the 

muscular movements of the face was examined due to the fact that emotional states 

cause these changes. Concordantly, different codes are created according to changes 

of muscular movements and named as Action Units (AUs).  According to FACS, 

recorded reactions of the participants are used to make emotion detection (such as 

sad, happy, anger etc.) (Ekman et al., 1980).  After this priori research, various face 

recognition analyses were made with several techniques in engineering. FER (facial 

emotion recognition) studies are generally divided in 2 sub-groups which are called 

as dynamic based and static based FER. If FER studies include spatial information 

(such as morphology and complexion) from single image, it is a static based FER. If 

they include temporal relation between frames of a video, it is a dynamic based FER. 

Mainly system has three stages which are face detection, feature extraction, feature 

selection and classification. Existing feature extraction methods mainly divided in 

three groups: Geometric-based approaches, Appearance-based approaches, hybrid 

approaches (combination of appearance-based and geometric-based features) (Ko, 

2018). Several FER feature extraction and classification techniques such as Gabor 

Filter/Energy, Active Appearance Model (AAM) and using Local Binary Pattern 

(LBP), Principal Component Analysis (PCA), Linear Discriminate Analysis (LDA), 

Adaboost, Neural Network and Independent Component Analysis (ICA), Deep Belief 

Network (DBN), Hidden Markov Model (HMM), Support Vector Machine and deep 

learning algorithms are used in this study area (Ko, 2018) (Vinola et al., 2015) 

(Revina et al., 2021).  Some of the studies results examined on this area are given in 

Table1.1., highly preferred databases and self-generated databases used studies 

preferred to present general overview. 
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Table 1.1. Some of the literature studies performances for facial emotion 

classification. 

 

Although there are many studies accomplished in this study area. There are some 

disadvantages that affect the performance in facial expression detection studies. 

Occlusion, pose normalization, illumination, dynamic background, age, gender are 

some of the main problems that affects the performance of the FER systems since all 

of them affects face view thus the proper feature extractions become though.  

Speech is one of the major and verbal stage of the communication, it is affected from 

the emotional states during the conservation of a person. Utterances which are the 

little portions of the speech naturally include emotional state cues of a person hence 

speech becomes a modality for emotion recognition. Acoustic difference which is 

occurred when speaking about the same thing is studied for emotion recognition 

under divergent emotional situations. This situation inspired engineers to study on 

speech emotion recognition for several HMI systems and assistive technologies 

(Ayadi et al., 2011). Due to the fact that speech signals have dynamic characteristics, 

in these studies speech signals are splitted into small frames generally. These frames 

can be accepted as almost stationary portions. Speech emotion recognition has two 

main processes feature extraction from the speech data, and a classification to decide 

the emotional state of an utterance. Several local and global features exist in these 

portions such as prosodic speech features (pitch, energy etc.) are extracted from each 

frame and these features grouped in local features. On the other hand, calculating the 

statistics of speech utterances method is grouped in global features. Although these 

features are grouped in terms of the local and global features, and furthermore, 

speech feature types can also be categorized with four main titles technically. These 

are continuous speech features (such as pitch, energy, formants), voice quality 

Previous Studies Approaches Database and Accuracy

Number of 

Emotions

Zhang et al.

Gabor 

Features+Adaboost

Gabor 

Features+SVM

   JAFFE, 92,93%    

 CK database,  94,48% 6

Happy et al. LBP+SVM JAFFE, CK 93,3% 6

Taylor et al. PCA, ICA+HMM Self-generated,  98% 6

Sujono and Gunawan AAM+Fuzzy Logic Self-generated, 95,87% 3

Zhao et al. DBN+MLP JAFFE, CK+ 90,95% 98,57% 7

Jain et al. CNN JAFFE, CK+ 95,23%, 93,24% 6
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features, spectral-based speech features and nonlinear TEO (Teager energy operator)-

based features (Ayadi, 2011). The studies presented thus far have examined in 

various recognition methods. Some of the methods which are used to feature 

extraction and classification are PCA, LDA, acoustic features, HMM (Hidden 

Markov Model) Classifier, Gaussian Mixture Models, Neural Networks, Support 

Vector Machine, Multiple Classifier Systems and Deep learning etc. (Abbaschian et 

al., 2021) (Ayadi et al., 2011) (Basharirad et al, 2017). In the given Table.1.2. some 

of these researches presented. 

Table 1.2. Some of the literature studies performances for speech emotion 

classification. 

 

However, since speech recognition is needed to be studied in terms of the speech 

utterances, dynamics and lingual characteristics of a language should be considered, 

hence this prevents the production of universal solutions and creates a challenge. 

Additionally, expressions are highly related with speakers’ cultures and environment 

this also effects making certain classification emotional state. Lastly, in 

Previous Studies Approaches Database  Accuracy

Chen et al.

Energy, pitch, 

frequency etc.

SVM +ANN

Beihang University Database 

of Emotional Speech 

(BHUDES)

86,5%, 

68,5% and 

50,2%

 for 

different 

level

Albornoz et al.

Mean of the log-

spectrum (MLS), 

MFCCs

and prosodic 

features+HMM, 

GMM,

MLP and

hierarchical

model Berlin dataset 

HMM 

68,57,

Hierarchic

al model 

71,75

You et al.

PCA+LDA

SVM Mandarin language dataset

83,4% for 

males and 

78,7% for 

females

Eskimez et al.

Log-Mel 

Spectrogram+

Variational 

Autoencoder(VAE), 

CNN IEMOCAP 48,54%
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computational manner limited data samples creates inadequate datasets especially for 

deep learning applications (Abbaschian et al., 2021) (Ayadi et al., 2011). 

Emotion recognition related HMI studies use some neurophysiological analysis’s that 

include markers related with emotional experience. Physiological signals are affected 

from the emotional experiences by reason of the fact that human body reacts with 

respect to these experiences. Since, these body reactions are under unvoluntary 

control of human, physiological signal data becomes valuable. In these studies, 

specially designed experiments are preferred to induce emotions and measured with 

both invasive and non-invasive measurement methods. Some of these methods are as 

follows. 

EOG (Electrooculography): Electrooculography measures the cornea-retinal 

potential that exists between in human eye’s front and back area 

ECG (Electrocardiography): Electrocardiography interpret the electrical activity of 

heart in voltage-time domain.  

EMG (Electromyography): Electromyography provides the activity of muscles via 

measuring the frequency of muscle tensions in voltage-time domain. 

Skin temperature: The temperature that is measured from the skin. Due to the 

muscles and blood vessels movements’ changes, it is affected. 

Respiration: Respiration sensors measures the deepness of the breathing.  

Plethysmography: A plethysmograph is a device display the changes of human body 

volume. 

Galvanic skin response (GSR): Galvanic skin response measures the conductivity of 

the skin. 

EEG (Electroencephalography): EEG signals shows the electrical activity of human 

brain, in voltage-time domain (Haag. et al., 2004). 

Physiological signal used studies are mainly categorized according to which type of 

data is selected for the recognition task. Generally, recognition steps are data 

preprocessing, feature extraction and classification. Data recordings are preprocessed 

with filtering operations because due to the nature of these signal types they might 

carry environmental and bodily noises. Various feature extraction methods are 

examined for this area in engineering field, especially time-frequency domain 
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analysis (Wavelet Transform), statistical calculations (Mean, Standard Deviation 

etc.), and unsupervised methods (PCA, LDA, Autoencoders etc). Additionally, 

diverse classification algorithms are selected such as SVM (Support Vector 

Machine), ANN (Artificial Neural Network), KNN (k-nearest neighbors algorithm), 

CNN, DBN (Deep Belief Networks), LSTM (Long Short Term Memory) etc. (Shu et 

al., 2018) 

In this thesis, EEG signals are chosen to recognize emotional experience of human 

brain for affective state aspect in this research. Accordingly, for this purpose, DEAP 

(A Database for Emotion Analysis using Physiological Signals) dataset was applied 

(Koelstra et al., 2012)  

1.3. Aim of the Study 

The main goal of this thesis study is to provide an emotion classification system via 

EEG signals to improve the performance of the previous classifiers by using the 

learning ability of deep learning tools and basic signal processing methods such as 

Fourier transform and time-frequency transformations such as Short Time Fourier 

Transform (STFT) and wavelet transform. EEG signals are highly nonstationary and 

it is hard to find patterns simply. Thus, our aim is to extract some useful information 

using the time-frequency information. Also, convolutional neural network models 

were employed to grasp the hidden patterns inside data to improve the classification 

accuracy.  

The study includes three parts 

 The classification of basic emotions while watching movie clips with 

spectrogram and GoogleNet CNN model by using single electrode EEG 

recordings from Neurosky Mindwave Mobile 2 device were implemented. 

 Binary classification of valance and arousal states with spectrogram of multiple 

channel recordings from trusted and highly chosen public database DEAP 

with custom designed CNN was proposed as a second study. The novelty of 

the study comes from the construction of the input matrices from wavelet 

transform coefficients. 

 To improve the accuracy and to reduce the computational complexity in binary 

classification of valance and arousal states for DEAP dataset, a new classification 
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system was proposed. This system uses all channel recordings together and classifies 

with custom designed CNN model. The input image was constructed from FFT and 

wavelet coefficients individually. Raw data was also used in classification tasks to 

better understand the performances of transformed signals. 

 

1.4. Outline of the Thesis 

Thesis outlines are as follows in below: 

• Chapter 1 – Provides a brief explanation of the study’s motivation. Moreover, 

introduces the state-of-the art in emotion recognition. Also gives information 

with the general usages and mentions the challenges of them. 

• Chapter 2 – Gives the general information for emotion and guided emotion 

model which DEAP database created accordingly. Then mentions about the 

chosen DEAP database. Also defines the EEG devices 

• Chapter 3 –Presents general overview for the signal processing techniques that 

were used in this study which are STFT, FFT and Wavelet transforms. 

Additionally, theoretical background of our study’s classification method 

which is CNN algorithm was given briefly. 

• Chapter 4 – Includes the emotion classification implementation approaches 

which were examined in this thesis. Spectrogram images of our own single 

electrode EEG recordings were used in the first task. Then spectrogram task 

was examined with multichannel electrode public DEAP dataset selected. 

Lastly, DEAP database was classified with CNN with three different 

approaches such as raw images, FTT and wavelet transform images features.

  

• Chapter 5 – Draws the conclusions of our study and covers some future 

development ideas for these tasks. 
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CHAPTER 2 

EMOTION AND EEG 

2.1. Emotion 

Emotions are biological reactional states for the external stimulus which relate to 

various neurophysiological, behavioral and cognitive processes. For a general 

emotion definition, scientists do not have a common judgement or opinion yet. 

Mainly, literature definitions can be divided into two groups. One of it, discrete and 

limited set of basic emotions point of view and the other one, dimensional models’ 

point of view. The prior study in discrete set of basic emotions theorem was firstly 

introduced by Ekman et al.  according to this theorem emotions are expected to be 

experienced separately from one another and people experience same emotions under 

same situations (Ekman et al., 1980). Also, as it is mentioned in Chapter 1, he 

proposed the idea that expressions are results of the emotional experiences and 

patterns of these expressions are considered related with the corresponded emotions. 

He defined emotions in six basic titles such as happy, sad, anger, fear, surprise and 

disgust. He claimed the other emotions are the combinations of these basic emotions. 

Although Ekman proposed such kind of theorem which is discrete emotion 

experiences as it is stated in above, it is pointed out by Feldman Barrett that 

generally subjects in researches describe their emotional experiences not only with a 

single state but also with other close positive or negative emotions (Feldman Barrett, 

1998). On account of this situation, dimensional models presented, and these models 

provided an opportunity to describe affective experience of emotional experience 

without limiting to give a name for a single and distinct emotion. Affect is accepted 

as a consequence of the interactive relation of experienced emotions. Russel’s 

circumplex model is one of the models in these theorems and associated with valence 

(which an emotion is pleasant or unpleasant) and arousal (which it is behaviorally 

active or deactive) dimension scales and describes affective states according to these 

levels (Russel, 1980). According to this model, participants experience emotions 

active / deactive and pleasant/ unpleasant intensity levels. 

This approach makes the emotion classification task results more trustable since it 

provides a general expression with intensity levels. The database we selected for our 

study was also created according to this model. 
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Figure 2.1 The circumplex model of emotion (Posner et al., 2005) 

 

2.2. Electroencephalography     

Electroencephalography (EEG) is an electronical device which measures and records 

the activity of brain electrical potentials. A German psychiatrist Hans Berger 

invented the EEG device for humans in 1924. EEG device provides the recording via 

metal electrodes on it, these electrodes work as a receiver-nodes, they might be 

placed outside or inside of the brain and collect data from the points which they 

touch on the skin. If electrodes are placed inside of the head skin it is called as 

invasive and if it is placed on the headskin, it is called as non-invasive type. Invasive 

types are placed bottom of head skin by surgical operations. On the other hand, non-

invasive electrodes are placed on the head skin, using licra scalps and sticky jels, so 

it provides a significant usage practice if we compare with invasive types. EEG 

might have several channel-numbers; such as 1, 16, 32, 64, 128 etc. Electrodes are 

positioned referencing standard electrode position systems. Signal processing is done 

with different sampling frequencies (Dzedzickis et al, 2020). 
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Figure 2.2. EEG 10-20 electrode position system.  

 

Figure 2.3. EEG device (Koelstra et al., 2012). 

2.3. DEAP Dataset 

Our proposed study examined on the DEAP dataset. DEAP dataset was presented in 

2012 for human affective state analysis (Koelstra, 2012). It is a multimodal dataset 

which includes 32 channels EEG signals and 8 peripheral signals channels (EOG, 

EMG, Respiration, GSR, Plethysmography, Temperature) also some of the 
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participants’ facial response video recordings. While the dataset was created, a 

specially designed experiment was presented for total 32 participants (16 males and 

16 females). Each participant watched 40 music videos that were intentionally 

selected to induce dimensions of emotion’s circumplex model. Duration of the music 

videos were 60s. Since the selected videos are music videos, both auditorial and 

visual stimulus were used during emotion induction. For each participant recorded 

data file includes 40x40x8064 matrix which is named as ‘data’ and 40x4 matrix 

which is named as ‘label’. For data matrix, first dimension represents the video 

number, second dimension represents the channel, and third dimension represents the 

data length. For the label matrix, 40 represents the video numbers and 4 represents 

the labels.  

Table 2.1. Data file description. 

   Name Shape Contents 

Data 40x40x8064 

video number x channel x 

data 

Labels 40x4 video number x label 

While the participants watched the videos, simultaneously they rated their feeling’s 

scale for the videos choosing the scores between 1-9 by using SAM (Self assestment 

manikin). Since SAM does not require verbal expression it provides valuable 

fastness hence provides the continuous experiment trial without delays. SAM is 

picture based rating system and provides rating scores for valence, arousal and 

dominance labels. In DEAP database liking label also included to this rating system 

via thumbs are up or down options. Therefore, ratings were recorded for 4 different 

labels as follows valence, arousal, dominance, liking. 
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Figure 2.4. The Self-Assessment Manikin (SAM) rating pictures the affective 

dimensions of valence (top line), arousal (second line), dominance (third line), liking 

(bottom line) (Koelstra et al., 2012). 

 

Enabling both the physiological peripheral responses and subjective views provided 

an extensive study for scientists. During the recordings of signals, Biosemi active 2.0 

EEG device was used at 512 Hz sampling frequency. It is a non-invasive clinical 

EEG device and has 32 channels. After the recording, band-pass filtering and re-

referencing in common average mode was examined for preprocessing and 

preprocessed data presented in the dataset for the usage.  For our thesis study, this 

extensive database was selected, and we examined two different approaches on this 

dataset for arousal and valence scale classifications. 
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CHAPTER 3 

EEG PROCESSING AND MACHINE LEARNING 

3.1.  Frequency and Time-Frequency Domain Transforms  

Signal processing methods are commonly used in various fields of science since last 

century. Traditional transform methods such as Laplace and Fourier transform are 

most widely used spectral analysis methods of digital signal processing. 

Furthermore, to provide time-frequency domain features Short Time Fourier 

Transform and Wavelet Transform were proposed. Therefore, with these analyses, 

characteristic or abnormal patterns can be obtained, and these patterns provide a 

great potential when they joined with various machine learning studies.  

3.1.1. Fast Fourier Transform 

Fast Fourier transform is one of the signal analysis method and basically derived 

from the discrete Fourier transform (DFT). Computational complexity of DFT is 

reduced with FFT and transform process became faster therefore FFT is accepted as 

a fast computational algorithm of DFT.  DFT algorithm of time signal 𝑥(𝑗) is, 

FFT (k) = ∑ 𝑥(𝑗)𝑛
𝑗=1 ∗ 𝑊𝑛

(𝑗−1)(𝑘−1)
             𝑘 = 0, … . 𝑛. (1) 

where     𝑊𝑛 = 𝑒𝑥𝑝(−2𝜋𝑖)/𝑛                         

 𝑛 is roots of the unity.           

Computation of this DFT equation wit 𝑛  points sequence includes O ( n2 ) of 

multiplications and additions on the other hand FFT algorithm computes the DFT 

using O (𝑛 log 𝑛) numbers of operation so this provides a significant speed advantage 

especially if n is a big number (Heckbert, 1998). 

3.1.2. Short Time Fourier Transform (STFT) 

Short-time Fourier transform (STFT) is another spectral analysis technique. It 

calculates Fourier transforms of portioned forms of signal with sliding window. 

STFT provides the frequency resolution in time domain, while FFT provides 

frequency resolution in frequency domain. STFT equation for time signal 𝑥(𝑡) is 

defined as, 
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STFT (t, 𝜔) = ∫ 𝑥(𝑡′) 𝑤(𝑡′ − 𝑡)exp {−𝑗𝜔𝑡′}𝑑𝑡′ (2) 

As it can be seen from the above equation, main difference between the FFT and 

STFT is w(t) which is called as window function. This function provides the 

resolutions of small pieces of signal. This definition provides a shifting operation on 

signal and divides it into sequential portions; thus, it can be seen the transformations 

of the small-time durations of signal. Additionally, magnitude squared of STFT 

calculation gives us spectrogram images. It is important to choose a proper window 

size since if it is chosen too big or small for the pattern of the signal, meaningful data 

can be missed (Gonzalez, 2007). 

3.1.3. Wavelet Transform 

Another type of time-frequency analysis method is wavelet-transform. The Wavelet-

transform splits the signal into its frequency components and computes each of them 

with their pattern resolutions in their scales. Hence, it provides multiresolution 

information. Wavelet analysis creates wavelets from mother wavelet in different 

scales and translations. To express a function or image as a linear combination of the 

wavelets and scaling function discrete wavelet transform (DWT) uses those wavelets. 

Besides variation of the wavelets play an important role capturing of different scaled 

patterns. Wavelet-transform differs from STFT in the point of varying scales 

windows. In our study, 2D discrete wavelet transform was computed, it can be seen 

in the following equation, 

𝑊ɸ (𝑗𝑜, 𝑘) = 
1

√𝑀
∑ 𝑥(𝑡, 𝑧)𝑡 ɸ𝑗𝑜,𝑘 (𝑡, 𝑧)  

𝑊Ψ (j, 𝑘) = 
1

√𝑀
∑ 𝑥(𝑡, 𝑧)𝑡 Ψ𝑗,𝑘 (𝑡, 𝑧) 

(3) 

where  𝑊ɸ (𝑗𝑜, 𝑘) and 𝑊Ψ (j, 𝑘) represent scaling and wavelet coefficients, 

respectively. They are determined by the inner product of the 2D function or 

𝑥(𝑡, 𝑧)  with the scaling function and wavelets at that specific scale and 

translation. The set of scaled and translated functions are called as scaling 

function. These are basis functions of composed translations and scalings in 

wavelet transformation. Main wavelet which is called as mother wavelet and 

its variously scaled functions can be seen in the following two equation 
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(Gonzalez, 2007). 

Ψ𝑗,𝑚,𝑛
𝑖 (𝑡, 𝑧)= 2

𝑗

2Ψ𝑖(2𝑗t − m, 2𝑗z − n)    

 

(4) 

ɸ𝑗,𝑚,𝑛(𝑡, 𝑧)= 2
𝑗

2ɸ(2𝑗t − m, 2𝑗z − n) , where I = {H, V, D} 

 

(5) 

2D wavelet transforms are given as,  

LL= ɸ(𝑡, 𝑧) =  ɸ(𝑡)ɸ(𝑧)   

LH= Ψ𝐻 (𝑡, 𝑧) = Ψ(𝑡)ɸ(𝑧) 

HL= Ψ𝑉  (𝑡, 𝑧) = ɸ(𝑡)Ψ(𝑧) 

HH= Ψ𝐷 (𝑡, 𝑧) = Ψ(𝑡)Ψ(𝑧) 

 

Figure 3.1. describes the wavelet decomposition in 2D. After applying the suitable 

wavelet and scaling filters, diagonal, vertical, horizontal and approximation 

coefficients are created in one level of decomposition. 

 

Figure 3.1. Decomposition steps of wavelet transformation.  

 

 

 

Because of the downsampling operation at each step size of the matrix will be 

reduced into its half at both directions. Thus after decomposition the coefficents can 

fit into the original matrix as shown in Figure 3.2. 
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Figure 3.2. Resulting decomposition of wavelet transformation. 

 

In our study, two level of decomposition of raw 40 channel of EEG signals was 

obtained with Symlet 4 wavelet and then reconstructed into single image to feed 

CNN.  

3.2. Convolutional Neural Network (CNN) 

Convolutional neural networks are one of the popular neural network algorithms in 

nowadays. It was inspired from human vision system. It can extract valuable abstract 

features. CNN reduces the complexity of systems and improves generalization. CNN 

algorithm may include one or more convolutional layers, pooling layers, dropout 

layers, batch norm layer, fully connected layers and softmax layer in its structure. 

Algorithm starts with convolutional layer, in this layer after the convolution 

operation, extracted feature maps go through the pooling layer. Convolution 

operation is made with different sized and different number kernels and so it 

provides filtering of the feeded inputs of the network and as model continue to train, 

in each step of the training these features become to include related patterns of the 

inputs. Kernel is slides with specified intervals on the image or feature map layer and 

these intervals are named as “strides”. For each stride step weighted sum of the 

filtering operation is calculated and written as the convolution result on the feature 

map. This process reduces the size of the features. However, in some 

implementations feeded input size might be wanted to protect for such cases 

“padding” operation is used. This operation puts zeros around the feature map 

matrixes and convolution operation is executed on this padded form, with this way at 
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the end of the convolution operation result size can be stay same with the input. A 

sample convolution operation was given in Figure 3.3. 

 

Figure 3.3. Convolution operation. 

 

 After the convolution operation, feature maps are applied to Relu activation 

function. The reason behind the usage of this process is introducing the non-linearity 

to the model (Bengio, 2016). After this layer feature maps feeded through the pooling 

layers. Pooling layers are used to reduce the dimensions of the feature map in width 

and height scales. This process is used to decrease the computational complexity and 

overfitting since it reduces the size of the feature maps. Size and stride of the pooling 

operation is adjustable it can be executed in various parameters. An example of max 

pooling operation was given in Fig. 3.4. 
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Figure 3.4. Max pooling operation. 

 

Another CNN layer is dropout layer. Dropout layers deactivate some neurons during 

training with certain probability values. It prevents model to become overfit. Batch 

normalization layer is another CNN layer. While model is in the training stage, input 

distributions change hence it is needed to adjust it, batch normalization is a step that 

calibrates each layer's inputs.     

The input to the fully connected layer is the output from the final Pooling or 

Convolutional Layer, which is flattened and then fed into the fully connected layer. 

Finally, softmax layer provides keeping total probability distribution summation to 1 

hence limits the outputs in a specific range (Li et al., 2016).  
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CHAPTER 4 

EEG EMOTION CLASSIFICATION WITH CNN 

This chapter summarizes the EEG emotion classification studies accomplished with 

CNN. The first part includes an emotion classification experiment implemented with 

single electrode measurements and the results of classification using spectrogram 

features. The second part expands spectrogram study into multiple electrode 

recordings from DEAP dataset. Finally, the last part introduces the valance and 

arousal state classifications with CNN using DEAP dataset by using different feature 

sets such as FFT and wavelets compared with raw data.  

4.1 Single Electrode Spectrogram Emotion Classification  

As it is mentioned in Chapter 1, emotion classification is one of the important areas 

of HMIs. For this purpose, various methods are examined in the literature. During 

our emotion classification research, we implemented single channel electrode 

emotion classification task. A special experiment was designed where the participants 

watched a video, meanwhile EEG signals were recorded with single channel 

Neurosky headset (Donmez et al., 2019). Then STFT of segmented EEG signals 

were obtained for labeled time durations of the emotional scenes. After that extracted 

images classified in pretrained Googlenet CNN. 

 

4.1.1. Materials and method 

It was stated in Chapter 2 emotion mainly defined with two titles, in this 

implementation discrete emotion theory followed and specially edited video was 

chosen. The video was created for another study in the literature and three emotion 

elicitation examined which are fear, sadness and fun. 10 participants involved in the 

experiment all of them were female and ages varied between 24-33. Neurosky 

Mindwave Mobile 2 single channel EEG device is used in order to collect EEG data 

as shown in Fig. 4.1. 
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Figure 4.1. Neurosky Mindwave Mobile 2. 

 

Experiment was applied in specially isolated room and participants are informed to 

do not make any body movement. EEG device had a single dry-sensor electrode 

attached to the forehead at position frontal polar - left hemisphere (Fp1) position 

according to 10-20 electrode placement system. Fp1, plus a reference electrode on 

the ear clip, having a sampling rate of 512 Hz was used to record raw EEG data. 

Neurosky’s thinkgear chip library for MATLAB was used to take raw data.  

 

Figure 4.2. The flow chart of single channel electrode used EEG. 

 

The diagram of the proposed system is given in Fig. 4.2. After the recording data was 

segmented and segmented portions transformed with STFT. Spectrogram images 

extracted and resized in 224x224x3 size form. In the next step, extracted data feeded 

the pretrained CNN network Googlenet in MATLAB with deep learning toolbox. 

Googlenet includes 22 deep layers, 9 inception modules and it was trained on subset 

of the ImageNet database. During the training learning rate used as 0.0001 and model 



40 

trained with 20 epochs. Stochastic gradient descent used as an optimizer. The layers 

of GoogleNet is given in Fig. 4.3. 

 

Figure 4.3. The structure of Googlenet. 

 

Figure 4.4 show a segment from the raw signal. As shown in the graph, blink signals 

are visible in the recording. 

 

Figure 4.4. Raw signal plot. 

 

Data was segmented for spectrograms according to time duration of each emotion in 
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the video. Approximate sample numbers calculated for three of the emotions by 

checking the sampling frequency and durations. MATLAB’s spectrogram comment 

used for this purpose, it used with default parameters so signals were divided into 8 

windows. A sample of the obtained spectrogram is shown in Fig. 4.5. 

 

 

Figure 4.5. Spectrogram image. 

 

4.1.2. Results and Discussion 

After STFT extractions, each participant contributed with 49 spectrogram images and 

so in total 490 created for study. 80% of images was used for training and 20% of it 

used for testing. CNN executed in MATLAB with 20 epochs and 26 iterations per 

each epoch.  

Classification performance was evaluated in terms of accuracy sensitivity, specificity 

which are defined as 

Accuracy=
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
*100 (6) 

Sensitivity=
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (7) 

Specificity=
𝑇𝑁

𝑇𝑁+𝐹𝑃
 (8) 

where TP (True positive) indicates that the correct prediction of given class. TN 

(True negative) states that actual emotion does not belong to given class and the 

prediction is not the given class. FP (False positive) is the number of instances which 
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are not classified correctly, where prediction is the given class and actual emotion 

does not belong to the given class. Similarly, FN (False negative) occurs when 

prediction is not the given class and actual emotion belongs to the given class.  

 

Figure 4.6 summarizes the results of the tests as a confusion matrix. As can be seen, 

84.69% overall training accuracy was accomplished 

 

Figure 4.6. Confusion matrix of implementation. 

Whole performance metrics related with the emotional states is given in Table 4.1. 

Table 4.1. Performance measurements for classification. 

 

 

According to the results, it was indicated that fear is an intense and generally 

includes common reactions for people. Although, the number of participants is 

limited, this study shows that single electrode carries information about emotional 

state. The study can be expanded with more participants and changing the video with 
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more proper for academic usage to induce emotions. Additionally, self-evaluation 

systems thought as should be placed in the future studies also. 

4.2 Multi Electrode Spectrogram Emotion Classification 

After the previous study, it was concluded that single electrode was limited for 

extracting big amounts of data, so it was required to use multichannel EEG device 

usage. However, since 2020 March, world have been struggling with Covid-19 

pandemic distribution meanwhile social distancing and isolation became one of the 

prerequisites for people to survive because of this situation.  We couldn’t make our 

own data recordings with multichannel electrodes. However, a suitable dataset for 

this purpose in the literature was searched and DEAP dataset was chosen. It was the 

one of the commonly used dataset of emotion classification studies and provides 40 

biosignals. 

 For this task, spectrogram feature extraction made to DEAP dataset in the same 

manner that was applied for the single electrode implementation. Since participants 

made a rating choice between 1 - 9 for their experiences during the recording as it is 

pointed out in dataset description in Chapter 2, these ratings were followed. 5 was 

selected as threshold and any value greater than 5 is assumed as valence or arousal 

and any value less than 5 or equal is assumed as not valence and not arousal. So, 

there is one binary classifier for arousal and one binary classifier for valance.  All 

recordings segmented with 3.75 s windows which is heuristically found that optimal 

in computational sense. 40 channel recording of 32 participants of the DEAP dataset 

was included in our study.  

Since total length of the data had 8064 samples and total duration was 60s, after the 

segmentation each window had 504 samples. MATLAB’s spectrogram tool is used, it 

calculates the spectrogram with 8 default segments for windowing, we did not 

change this and followed it. Spectrogram image size is 224x224x3, its model’s input 

has 224x224x3 dimension. Training image numbers varied for every participant since 

we define 5 as the upper boundary limit for rating results of each participant. 

However, for each participant, extracted feature images splitted 75% for training, 

15% for validation and 10% for testing executions. 
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Figure 4.7. Spectrogram image sample. 

The last block of the system is the binary classification of the constructed images. 

Six CNN models were created and executed for the classification purpose. All 

models were following the same main order for different layers (convolutional + relu 

layer, dropout layer, max pooling layer) and 3x3 kernels. However, four of them had 

three convolutional layers with (4-4-4), (8-8-8), (4-8-16), (16-16-16) numbers of 

kernels in each layer and rest of the two models had four and five convolutional 

layers with (4-8-16-32) and (4-8-16-32-64) numbers of kernels. After the execution 

of these models, it was seen that the model that had (16-16-16) numbers of kernels 

with three convolutional layer model has relatively better performances than others. 

Due to this fact in this thesis three convolutional layers with (16-16-16) numbers of 

kernels used structure selected. In Figure 4.8, selected CNN structure is presented. 

 

Figure 4.8. CNN architecture for spectrogram inputs feeded tasks. 
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For this task, minimum computation time was approximately 45 minutes and 

maximum 160 minutes. Results for most of the subjects were close to each other and 

presented in Table 4.2 and Figure 4.9. For some subjects such as S22, a high 

performance such as 79.23% and 79.36% for both valance and arousal were 

obtained. But performance changes from subject to subject. When compared to 

literature, we have observed that spectrogram does not contributes much considering 

its computational complexity. Since the signal is highly nonstationary and variable 

even for one subject constant window size might be the cause of this low accuracy. 

Additionally, since spectrograms are the square of the STFT’s magnitude, phase 

information is also lost. Adding phase as another matrix, on the other hand, would 

increase the complexity. 

Table 4.2. Spectrogram features used valence and arousal classification accuracy 

results for all participants. 

 

 

Spectrogram Valence Arousal

S1 52,71 57,46

S2 65,57 67,58

S3 62,86 65,87

S4 73,11 76,32

S5 64,11 57,15

S6 61,10 61,67

S7 58,32 57,95

S8 57,72 59,80

S9 59,60 64,48

S10 58,80 62,29

S11 75,77 73,92

S12 63,02 62,70

S13 63,85 66,54

S14 58,98 62,82

S15 54,36 56,45

S16 61,37 54,84

S17 60,02 61,95

S18 64,45 61,37

S19 60,89 62,01

S20 62,65 59,33

S21 55,44 64,07

S22 79,23 79,36

S23 57,36 56,57

S24 64,06 69,78

S25 68,33 73,94

S26 62,63 60,96

S27 59,95 60,19

S28 65,73 64,80

S29 59,94 59,78

S30 60,06 55,20

S31 60,05 54,82

S32 55,99 62,45

Average 62,13 62,95
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Figure 4.9. Spectrogram performance results for each subject. 

 

4.3 Emotion Classification for DEAP Dataset with CNN 

Although spectrogram was accomplished the classification, its computational 

efficiency is very high. For this reason, more efficient methods researched and 

fundamental signal processing methods such as FFT and wavelet transform were 

selected to examine other tasks.  

This section describes the proposed emotion classification system which uses CNN 

fed with raw signals, FFT, and wavelets. As can be seen in Figure 4.10, the input is 

40 channel raw recordings for 32 participants and their emotional labels of valance 

and arousal.  

 

 

  

Figure 4.10. The block diagram of emotion classification system.  
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Figure 4.11. Raw signal sample.  

 

A sample from windowed raw EEG signals are illustrated in Figure 4.11. The second 

block in Figure 4.10 constructs the image for the classifier. The first mode is to 

construct a matrix from windowed raw EEG recording of size 40x504 without 

applying any transformation. In second mode, FFT of raw signals were calculated for 

each channel. Then, the magnitude of FFT coefficients were put together to construct 

a matrix of size 40x504. Figure 4.12 and Figure 4.13. shows a sample of magnitude 

of FFT coefficients and constructed FFT image. 

 

Figure 4.12 Sample of FFT coefficients magnitudes for channels. 

 



48 

 

Figure 4.13 FFT image for classification 

 

The final image transform used for features is wavelet transform. In this application, 

it was seen that Symlet 4 wavelet is commonly used for image classification 

algorithms and similarly best result were obtained for this mother wavelet. Then, the 

2D wavelet transform of 40x504 raw EEG matrices were calculated. As a result four 

matrices approximation, horizontal detail, vertical detail and diagonal detail of 

20x252 were obtained as in Figure 4.14.  

 

Figure 4.14. A sample from first level decomposition of EEG with Symlet 4 mother 

wavelet. 

 

The first level of approximation matrix was then decomposed again to obtain for 

second level wavelet coefficient matrix of 10x126 as can be observed in Figure 4.15. 
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Figure 4.15. Second level decomposition of same EEG with Symlet 4 mother 

wavelet. 

 

The matrices of sizes 20x252 for level 1 and 10x126 for level 2 were combined 

together to obtain 40x504 matrix as described in Chapter 3. This construction is 

illustrated in Figure 4.16. A, H, V and D stands for approximation, horizontal detail, 

vertical detail and diagonal detail respectively, where the number shows the 

decomposition level. The matrices were then saved as png images. 

 

Figure 4.16. Wavelet decomposition illustration. 
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Figure 4.17. CNN architecture for raw, FFT and wavelet transform inputs. 

 

In Figure 4.17, raw, FFT and wavelet transform inputs used CNN model structure 

can be seen. As we mentioned previously, for these methods each of the sample sizes 

was 40x504x1 and so input size for model is 40x504x1. In both usages of our model, 

after the convolutional layers, dropout layer structured also. As it is mentioned in 

Chapter 3, these layers help model to prevent overfitting. Random dropping ratio was 

used as 0.5 in the model execution. Forwardly max pooling operation applied to 

reduce dimension and extracts spatial features. Finally, fully connected layer and 

softmax layer placed and classification examined. While we create the model, 

MATLAB’s Deap Learning Toolbox was used. Learning rate chosen as 0.001 and 

ADAM optimizer used. Model compiled with 100 epochs in MATLAB and 

performed on Nvidia GTX1050. Longest execution time was nearly 2 minutes on the 

other hand slowest one 1 minute. The reason behind this huge difference between the 

previous case and this case is the dimensions of the created inputs from the methods. 

Spectrogram images training durations took relatively more time. Since algorithm 

includes randomness, to get general results, each task executed 10 times and 

averages values calculated, in the upcoming tables these results are presented 

detailly. Until now, we briefly introduced the methods, database and model which 

were used in this study. In the following figures and tables classification results are 

presented for different tasks.  
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4.3.1. Results for Raw Features 

In the Table 4.4 and Figure 4.18, two classes overall classification performance 

results are presented for each participant for raw signals. It can be said with respect 

to these results, maximum and minimum accuracy results are close for each subject. 

This study proved that raw EEG signals have valuable performance results. The 

results obtained from the analysis of this implementation task also shows our CNN 

model’s performance individually since only feature extraction process is applied in 

CNN structure. As can be seen from the table, it can be stated that patterns of the 

classes captured by our CNN model. 

 

Table 4.3. Raw EEG signal features used valence and arousal classification accuracy 

results for all participants. 

 

Raw Signal   Valence Arousal

S1 68,50 70,58

S2 70,51 60,00

S3 70,87 69,23

S4 74,42 71,53

S5 79,03 68,51

S6 73,13 70,00

S7 75,81 63,76

S8 72,93 67,42

S9 78,30 60,77

S10 75,31 54,30

S11 76,34 61,05

S12 63,84 62,26

S13 74,64 70,50

S14 75,95 62,14

S15 80,00 72,80

S16 73,13 72,36

S17 73,62 72,31

S18 79,80 69,60

S19 76,86 70,94

S20 68,20 62,50

S21 67,83 80,39

S22 71,38 77,11

S23 76,83 73,45

S24 66,21 69,53

S25 60,00 70,55

S26 68,88 62,97

S27 70,32 85,96

S28 75,22 62,40

S29 77,19 70,02

S30 63,08 65,17

S31 65,92 68,36

S32 75,80 71,65

Average 72,50 68,44
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Figure 4.18. Raw EEG signal performance results for each subject. 

Additionally, ROC performances of raw features are drawn for valence and arousal 

classes and can be seen in Figure 4.19, Figure 4.20, Figure 4.21, Figure 4.22 also, 

performance measurements specificity, sensitivity and accuracy calculated for two 

participants are given in Table 4.4 and Table 4.5 For raw features, since area under 

the ROC curves for all iterations and overall average is pretty high, it has good 

classification performance. 

 

Figure 4.19. ROC for raw feature performance of subject 15 (valence class). 
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Figure 4.20. ROC for raw feature performance of subject 20 (valence class). 

Table 4.4 Performance measurements for Subject 15 and Subject 20 (valence class) 

classification. 

 

 

Figure 4.21. ROC for raw feature performance of subject 15 (arousal class). 

Case/Subject 

Number
Specificity Sensitivity Accuracy

S15 0,82 0,79 80

S20 0,66 0,73 68,2
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Figure 4.22. ROC for raw feature performance of subject 20 (arousal class). 

Table 4.5. Performance measurements for Subject 15 and Subject 20 (arousal class) 

classification. 

 

4.3.2. Result for FFT Signals  

In the second implementation, FFT image features are used. According to these 

results which is FFT features used are given in Table 4.6 and Figure 4.23, FFT 

feature performance probably in mid-level successful accuracies both for the 

individual and overall average. Also, subject’s maximum and minimum results are 

varying in a wide range for both classes. The reason behind the why FFT did not 

performed well high probably related with the fact that EEG signals have non-

stationary characteristics which varies with time but FFT algorithm is computed by 

assuming the signal samples continue infinitely and steadily in periodic order and 

loses the time information.   

Case/Subject 

Number
Specificity Sensitivity Accuracy

S15 0,73 0,74 72,8

S20 0,62 0,65 62,5
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Figure 4.23. FFT features performance results for each subject. 

 

 

Table 4.6. FFT features used valence and arousal classification accuracy results for  

all participants. 
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Figure 4.24. ROC for FFT feature performance of subject 15 (valence class). 

 

ROC performances for FFT features are drawn for valence and arousal classes 

presented in Figure 4.24, Figure 4.25, Figure 4.26, Figure 4.27. Moreover, 

performance measurements specificity, sensitivity and accuracy calculated for two 

participants can be seen in Table 4.7 and Table 4.8. Areas under ROC curves for 

each iterations and overall averages are smaller if it is compared with the raw signal 

feature results and also, they are almost in mid-level diagonal line, this indicates 

performance was not held as much as it was expected to be. 

 

Figure 4.25. ROC for FFT feature performance of subject 20 (valence class). 
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Table 4.7. Performance measurements for Subject 15 and Subject 20 (valence class) 

classification. 

 

 

Figure 4.26. ROC for FFT feature performance of subject 15 (arousal class). 

 

Figure 4.27. ROC for FFT feature performance of subject 20 (arousal class). 

Table 4.8. Performance measurements for Subject 15 and Subject 20 (arousal class) 

classification. 

 

Case/Subject 

Number
Specificity Sensitivity Accuracy

S15 0,58 0,64 60,01

S20 0,55 0,63 56,11

Case/Subject 

Number
Specificity Sensitivity Accuracy

S15 0,67 0,59 59

S20 0,59 0,75 62,9
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4.3.3. Results for Wavelet Transform Features 

 

Wavelet transform features used method is our last method in this thesis, it has the 

highest accuracy results for both classes and individual tasks. The results shows that 

wavelet transform is suitable to detect patterns of the dynamic EEG signals. It can be 

considered that since FFT provide frequency domain amplitudes and raw signal 

features provide valuable spatial information, Wavelet transform’s time–frequency 

resolution features are suitable, since the window size in wavelet transform varies 

with respect to different frequencies it captures the patterns better.   

Table 4.9. Wavelet transform features used valence and arousal classification 

accuracy results for all participants. 

 

Wavelet  Valence Arousal

S1 71,33 75,57

S2 72,24 73,27

S3 77,06 73,07

S4 73,08 78,84

S5 86,73 68,17

S6 74,07 67,41

S7 70,82 77,30

S8 79,15 73,14

S9 82,51 76,33

S10 81,41 71,39

S11 78,27 77,31

S12 75,34 84,99

S13 75,54 71,00

S14 81,42 75,95

S15 87,04 74,80

S16 76,67 76,42

S17 77,25 75,96

S18 86,54 80,43

S19 77,03 75,95

S20 68,20 77,50

S21 76,00 81,17

S22 76,04 71,15

S23 83,18 86,26

S24 72,24 84,55

S25 74,84 76,10

S26 77,72 81,84

S27 67,83 81,44

S28 78,55 68,62

S29 81,30 73,75

S30 70,47 73,35

S31 81,31 80,83

S32 77,66 78,36

Average 77,15 76,32
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Figure 4.28. Wavelet features performance results for each subject. 

 

Figure 4.29. ROC for wavelet feature performance of subject 15 (valence class). 

 

Figure 4.30. ROC for wavelet feature performance of subject 20 (valence class). 
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Finally, ROC performances for wavelet features were created for valence and arousal 

classes presented in Figure 4.29, Figure 4.30, Figure 4.31, Figure 4.32. Moreover, 

performance measurements specificity, sensitivity and accuracy calculated for two 

participants can be seen in Table 4.10 and Table 4.11. ROC curves for each iterations 

and overall averages are bigger than the previous cases, this situation shows the 

performance of wavelet features for classification with pretty well results. 

 

Table 4.10. Performance measurements for Subject 15 and Subject 20 (valence 

class) classification. 

 

 

Figure 4.31. ROC for wavelet feature performance of subject 15 (arousal class). 

Case/Subject 

Number
Specificity Sensitivity Accuracy

S15 0,86 0,88 87,04

S20 0,63 0,86 68,2



61 

 

Figure 4.32. ROC for wavelet feature performance of subject 20 (arousal class). 

Table 4.11. Performance measurements for Subject 15 and Subject 20 (valence 

class) classification. 

 

4.3.4. Comparison of the General Results  

 

When we checked the performances for classes, it can be seen from the Figure 4.33 

and Figure 4.34, raw signal image features and wavelet transform feature results 

dominate the performance comparison scales, on the other hand FFT features were 

not performed effectively.   

 

Case/Subject 

Number
Specificity Sensitivity Accuracy

S15 0,72 0,8 74,8

S20 0,91 0,76 77,5
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Figure 4.33. Comparison of all methods for valence class individually. 

 

 

 

Figure 4.34. Comparison of all methods for arousal class individually. 

 

 

Figure 4.35. Average performance comparison of all methods for valence and 

arousal classes. 
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Figure 4.35 shows that, wavelet and raw signal image features outperforms FFT and 

spectrogram features. A few important conclusions can be made about the results: 

 All channels contain valuable information in time domain and CNN 

successfully extracts this pattern for raw information. 

 Since time information is lost in Fourier coefficients classification fails. 

 The calculation of spectrogram matrices for each signal individually both 

increases data size and classifier complexity. Even though spectrogram 

results are better than Fourier features, it cannot reach the success rate of raw 

signals. 

 Since the wavelet features includes both time and frequency information and 

all channel information were constructed together in wavelet coefficient 

matrix, a more efficient and accurate classification results were obtained.    

Moreover, average performance results of 4 feature methods are close each other for 

both of the classes. This indicates the consistency of the method performances for 

valance and arousal. 

4.4 Performance Comparison with Literature Studies 

EEG signal used emotion recognition studies investigated several feature extraction 

and classification techniques. Some of the studies that uses DEAP database are as 

follows. Koelstra et al. used PSD and power asymmetry and reached 62,7% and 62% 

accuracies for valence and arousal classes (Koelstra, 2012). Li et al. applied to deep 

belief networks (DBN) for raw EEG signals and reached arousal and valence scale 

accuracies 58,4% and 64,2% respectively (Li et al., 2015). Yoon and Chung 

examined probabilistic classifier based on Bayes' theorem and a supervised learning 

using a perceptron convergence algorithm and used PSD and power asymmetry for 

feature extraction (Yoon et al., 2013). Atkinson et al. examined SVM classifier by 

using minimum-Redundancy-Maximum-Relevance (mRMR) feature extraction 

method reached 73,06/73,14% (arousal/valence) accuracies respectively (Atkinson et 

al., 2016). Liu and Sourina used fractal dimension and statistical features and 

Support Vector Machine (SVM) is used as a classifier 76,51/50,8% (Liu et al., 2014).  

In the recent years, Chao et al. applied CapsNet by using multiband feature matrix 

and succeded  66,73/68,28%  accuracies (Chao et al., 2019 ). On the other hand Xing 
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et al. used Stack autoencoder and LSTM and provided 81,1/74,8% accuracies (Xing 

et al., 2018). Additionally, Wang et al., applied another deep learning method 3D 

CNN and reached 72,1/73,1% accuracies (Wang et al., 2019). Lastly, this year in 

2021 Joshi et al. used Linear Formulation of Differential Entropy and BiLSTM 

structure and succeeded 76 and 75,5 percentage accuracies. Our proposed study on 

the other hand, reached 77,18/76,44% with wavelet features. The results are 

summarized in Table 4.12. 

Table 4.12. Performance comparison of previous studies on DEAP dataset and 

proposed method. 

Previous 

Studies 

Number of 

Channels Methods 

Valence 

Accuracy 

Arousal 

Accuracy 

Koelstra et al. 32 

PSD and power 

asymmetry 62,7 62 

Li et al. 32 Raw+DBN 58,4 64,2 

Yoon and 

Chung 

(32+61*)  

93 

FFT+Bayes 

Theorem 70,9 70,1 

Atkinson et al. 14 Mrmr+SVM 73,14 73,06 

Liu and Sourina 32 FFT+SVM 50,8 76,51 

Chao et al. 32 

Multiband Feature 

Matrix+CapsNet 66,73 68,28 

Xing et al. 32 

Stack 

AutoEncoder+ 

LSTM 81,10 74,38 

Wang et al. 32 3D CNN 72,1 73,1 

Joshi et al. 32 

Linear Formulation 

of Differential 

Entropy+BiLSTM 76 75,5 

Proposed study 

multi electrode 

spectrogram 

 

 

40 

Spectrogram+CNN 

 

 

62,13 

 

 

62,95 

Proposed Study 40 

Raw+CNN 

FFT+CNN 

Wavelet+CNN 

72,49 

58,01 

77,18 

68,35 

57,37 

76,44 

* 61generated virtual channels 

As can be observed from table, the best results were observed with wavelet features 

in valance classification whereas Xing have a slightly better performance at valence 

classification. However, for arousal classification performance our proposed study 

with wavelet features has better accuracy. Additionally, although Liu and Sourina’s 

arousal accuracy is slightly better than our proposed method, their valence scale 

result is in mid-level and two class accuracies far away from each other. Since results 
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of proposed study are close to each other we can say that proposed study has a good 

performance both in terms of accuracy and consistency. 

CHAPTER 5 

CONCLUSIONS AND FUTURE STUDIES 

In this thesis, it was aimed to provide emotion classification by using EEG signals 

for future studies of HMI field since it has a significant place in today’s and future’s 

technology. To examine this task, emotion classification studies and emotion models 

in literature firstly reviewed, and it was seen that there were many feature extraction, 

classification and data recording methods. Also, emotion definitions mainly done 

according to two theories. To examine emotion classification properly for HMI field, 

we aimed to provide an accurate, realiable and efficient study. Thus, one of the 

valuable performance achiever models of literature which is CNN is selected to 

perform our study.  

Therefore, one of emotion definitions followed in our first study of our emotion 

classification study, as it is stated in Chapter 4.1., data recording was done by using 

cost efficient and simply usable single channel EEG device and spectrogram image 

features extracted by using STFT. To understand the pattern performance of these 

features, CNN model was chosen and were classified in a pretrained network 

Googlenet. It was aimed to provide implementation with a cost efficient and simple 

to use EEG device since reachability is also important for future works. Spectrogram 

images selected in order to get time domain frequency changes since EEG signals 

have unstable characteristics and their performance was successful for three emotion 

labels and reached 84,69% general accuracy, but it was seen that there was a 

difference between labels’ sensitivity, specificity results. Since fear is an intensive 

emotion, results of fear were better noticeable.  

Therefore, it was concluded that the emotion model that was followed in this study is 

not proper for general usage of study and more data needed. As it was indicated in 

Chapter 2, responses can be affected from individual factors. Thus, followed emotion 

theory changed and instead of it, circumplex model selected and DEAP database 

which is created according to this emotion theorem is selected. Actually, at first we 

considered to create our own dataset according to this emotion model but due to the 
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Covid-19 pandemic, we followed a publicly available dataset from the literature. 

Another reason for the choice of this dataset was, it was one of the commonly used 

dataset in the literature for emotion classification, so it provides a comparison chance 

also. Moreover, it was created with 32 channel EEG device and includes 40 

biosignals in total. Although single channel EEG device maintains a cost efficiency 

and simple usage chance, it is better the acquire more data for this kind of study. 

Classification model selected as CNN once again but for this time our own model 

created. The spectrogram images crated with valance and arousal states for all 

channels were fed to CNN for classification. Although successful result were 

obtained with spectrogram and CNN approach, the training times were too long. 

Then, more efficient models were searched. 

Two different feature extraction methods namely the FFT and wavelet transforms 

were employed. Thus, physiological signal patterns were examine in different 

resolutions. Accordingly, new CNN models were created. It was aimed to see its 

individual performance so raw signals image features also classified with same CNN 

structure. It was observed that, wavelet transform’s resolution has a significant 

success to capture nonstationary EEG dynamics for valence and arousal classes. The 

classification results were close to each other thus it can be concluded that this 

method is suitable to extract meaningful data from EEG signals for emotion 

classification.  Moreover, feature tasks examined with ROC curves for two subjects 

and as it was expected, AUC of ROC curves for FFT feature used task had smallest 

area contrarily wavelet had the biggest and curve line was too close to 1. This was 

also another proof for the success of proposed classifier. Additionally, proposed CNN 

structure and parameter values also can be stated as suitable for EEG emotion 

classification. One of the contributions of our thesis is, to provide comparison 

between time, frequency and time-frequency features on same CNN classification 

algorithm. It was proved that besides the frequency features time domain information 

also has major importance for emotion classification tasks. Another contribution is to 

use all wavelet coefficients in one matrix formation. Thus, different resolutions were 

obtained in one input. Additionally, since all these executions applied to 40 signal 

channels of DEAP dataset, this might be a standard usage for a multimodal study for 

this research area. 
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As further studies, a multi-channel EEG emotion capture experiment can be 

designed, and raw and wavelet features might be used for emotion classification. 

Except for the binary classification of valance and arousal, different settings could be 

made. Also, those studies could be combined with cognitive and neuromarketing 

researches.  
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