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ABSTRACT

CONTROL AND PERFORMANCE ANALYSIS OF THREE STATION
MAKE-TO-STOCK PRODUCTION LINES

YUCEL, Ozgiin
PhD, Industrial Engineering
Advisor: Assist. Prof. (PhD) Onder BULUT
September 2021

For decades, studies on production systems cope with randomness, customer
requirements, specific features of production processes, and system costs. Make-to-
stock production enhances the level of customer service and facilitates balancing costs
associated with production, inventory and shortages. This thesis considers production
control and performance analysis of production systems consisting of three stations
arranged in series in a make-to-stock environment. First, optimal control problems of
production systems with single-machine stations, intermediate buffers and a finished
goods buffer are studied. Demands arrive at the finished goods buffer according to a
Poisson process, and those that cannot be immediately satisfied are lost. The system
consisting of machines with Exponentially distributed processing times is defined as
the basic model, while two-phase Coxian processing times are included to examine
more complex systems with failure or rework occurrences in extended models. The
objective is to find an optimal control policy that minimizes the long-run average
system cost. The structure of optimal policies is revealed using the Markov decision
process, and the study is enriched with various numerical examples. Secondly, an easy-
to-apply alternative policy is introduced to overcome the challenges of finding optimal
control policies. Computational results show that the proposed policy performs near-
optimal in various instances. The settings with a relatively higher optimality gap are
identified, and a modified version of the proposed approach is developed to improve
the performance. This thesis lastly presents an exact Markovian analysis of production
lines with two-phase Coxian processing times, parallel machines and finite buffers.
Raw materials supply and finished goods demand are generated according to
independent stationary Poisson processes. We model the line as a continuous-time

Markov chain and propose recursive algorithms to generate the transition rate matrix.



Although the general recursive form is specific to 3-station 4-buffer lines, routines for
calculating the number of states and generating the states work for any M-station
(M+1)-buffer systems. The developed model allows us to obtain steady-state
distribution and performance metrics such as throughput, the average number of items
in the system, and average system cost. The proposed methodology can also be used
as a decomposition block for the performance analysis of longer lines.

Key Words: serial production systems, optimal control, performance evaluation, two-

phase Coxian distribution, Markovian analysis
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UC ISTASYONLU STOGA URETIM HATLARININ KONTROLU VE
PERFORMANS ANALIZI

YUCEL, Ozgiin
Doktora Tezi, Endiistri Miihendisligi
Danisman: Dr.Ogr.Uyesi Onder BULUT
Eylul 2021

Uretim sistemleri (zerine yapilan Galigmalar, on yillardir rastgelelik, musteri
gereksinimleri, Gretim sdreclerinin belirli Ozellikleri ve sistem maliyetleri ile basa
cikmaktadir. Stoga iretim, miisteri hizmet duzeyini artirip Uretim, envanter ve
kitliklarla iligkili maliyetlerin dengelenmesini kolaylastirir. Bu ¢alisma, stoga Uretim
ortaminda seri olarak diizenlenmis ii¢ istasyondan olusan iiretim sistemlerinin iiretim
kontrolii ve performans degerlendirmesini ele almaktadir. Ik olarak, tek makineli
istasyonlar, istasyonlar arasinda yer alan yart mamiil stoklar1 ve bitmis iriin stogu
iceren Uretim sistemlerinin eniyi kontrol problemleri incelenmistir. Taleplerin bir
Poisson surecine gore geldigi bu ¢alismada, son iriin stogundan aninda
karsilanamayan talepler i¢in kayip satis bedeli odenir. Ustel olarak dagitilmis islem
surelerine sahip makinelerden olusan sistem ana model olarak tanimlanirken,
genisletilmis modellerde ariza veya yeniden isleme olusumlar1 olan daha karmasik
sistemleri incelemek i¢in iki fazli Coxian islem stireleri dikkate alinmistir. Calismanin
amaci, uzun vade ortalama sistem maliyetini en aza indiren eniyi kontrol politikasini
bulmaktir. Markov karar siireci kullanilarak eniyi politikalarin yapisi ortaya konmus
ve ¢alisma cesitli sayisal drnekler ile zenginlestirilmistir. Ikinci olarak, eniyi kontrol
politikalar1 bulmada karsilasilan zorluklarin iistesinden gelmek adina uygulamasi
kolay bir politika 6nerilmistir. Onerilen politika birgok durumda eniyi politikaya yakin
performans gostermektedir. Performansi eniyi politikadan uzak olan durumlar
iyilestirmek adimna, Onerilen yaklasimin gelistirilmis bir versiyonu da dikkate
alimmustir. Tez kapsaminda yapilan son ¢aligsma, iki-fazli Coxian islem siireleri, paralel
makineler ve sonlu tamponlar igeren iiretim hatlarinin kesin bir Markov analizini

sunar. Hammadde tedarigi ve son uriin talebinin bagimsiz Poisson siirecleri uyarinca

Vil



geldigi bu problem, slrekli zamanli bir Markov zinciri olarak modellenmis ve gegis
hizi matrisini olusturmak igin 0Ozyinelemeli algoritmalar Onerilmistir. Genel
ozyinelemeli form 3-istasyon 4-tampon sistemlerine 6zgt olmasina ragmen, durum
sayisint hesaplama ve durumlar1 Uretme rutinleri herhangi bir M-istasyon (M+1)-
tampon sistemi i¢in galismaktadir. Gelistirilen model, kararli durum dagilimini ve
verim, sistemdeki Uruin sayisi ve ortalama sistem maliyeti gibi performans olgiitlerini
hesaplamaya olanak saglar. Onerilen metodoloji, daha uzun hatlarn performans

analizi i¢in bir ayristirma blogu olarak da kullanilabilir.

Anahtar Kelimeler: seri retim sistemleri, eniyi kontrol, performans degerlendirmesi,

iki-fazli Coxian dagilimi, Markov analizi
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CHAPTER 1
INTRODUCTION

Production systems have been challenged between excess inventory, shortages and
production-related costs for decades. A production system may be composed of a
single-machine or parallel-machine station or stations arranged in series. Different
processing time distributions, rework/repair characteristics, demand structures,
capacity, and cost components are the main characteristics of production control
problems. If incoming customer demand is not directly satisfied by a production
facility, backordering/lost sales costs, or service level constraints are likely to be
encountered through the shortage. Moreover, capacity constraints, randomness,
failure-prone characteristics of production lines cause line inefficiency. The system
characteristics directly affect the production/inventory strategies, problem modeling
and computational effort. Analytical and simulation models have been developed to
understand, optimize and make decisions about different types of systems. A vast
amount of research has been conducted in modeling production-inventory systems to
either find and implement optimal policies or to develop alternative mechanisms and
evaluate the performance in the last four decades, although modeling of those systems
is started in the 1950s. Control and performance analysis of serial production systems
have been studied in a broad field, from automobiles and computers to large

appliances.

This thesis investigates production systems with three workstations arranged in series
by considering various configurations of machines, processing time distributions,
capacity constraints, and raw-material supply structure. The research of production
systems in this thesis is revealed in threefold: (i) The first study consists of optimal
control problems of three-station production lines. The general setting comprises
ample raw-material supply, intermediate buffers between stations and a finished goods
buffer with no capacity restrictions. Demands for finished goods follow a Poisson
process, and those that cannot be immediately satisfied are assumed to be lost. The
objective is to find the optimal control policy that minimizes long-run average system



cost composed of holding and lost sales costs. Optimal production control poses a
challenge due to the curse of dimensionality. Thus, alternative approaches have
become crucial. (ii) Secondly, an easy-to-apply alternative policy called no intentional
idleness policy, and its variants are studied. The proposed policies reduce the
production control burden, and the problems turn into parameter optimization within
these policies. They also constitute a near-optimal solution to the optimal control
problems. (iii) The last study presents an exact Markovian analysis of make-to-stock
production lines with parallel machines and limited supply. The developed model
allows obtaining steady-state distribution and performance metrics such as throughput,
the average number of items in the buffers, and average system cost consisting of

production, holding, and shortage costs.

Production control is the main tool for optimizing the performance of the systems. The
control mechanisms are developed based on ‘what to/ how to/ when to/ how much to
produce’ management decisions. In general, production control strategies are
classified as push or pull types. Mechanisms that are run by future demand forecasts
are known as push-type. Due to the forecasts, production control is handled with a
schedule. On the other hand, if real demand occurrences are imposed upon production
control, the corresponding mechanism is called pull-type. The idea behind the pull
control mechanisms is a just-in-time manufacturing philosophy that aims to reduce the

production cost by eliminating waste (T. Ohno, 1988).

In this thesis, we adopt ‘when to produce’ and ‘how much to produce’ decisions to
solve the optimal control problems of three-station make-to-stock production systems.
The system is built to produce a single item with ample raw material supply, single-
machine workstations, intermediate buffers and a finished goods buffer. Demands
arrive at the finished goods buffer according to a Poisson process. The objective is to

minimize the long-run average system cost composed of holding and lost sales costs.

The basic model of the control problem consists of machines with Exponential
processing times. In addition, to examine even more complex systems, we incorporate
real-world features where rework operations, machines handling multi-stage
operations, or failure-prone characteristics could be observed in production lines.
From the modeling perspective, we consider two-phase Coxian (Cox-2) processing
times. A two-phase Coxian random variable consists of independent Exponential

phases and a certain visiting probability from phase one to phase two. The first phase



is considered as the main service, while the second phase as inspection, rework or
remanufacturing operation. Furthermore, the service completion time distribution of a
machine with Exponential processing times, times to failure and repair times is shown

to be equivalent to two-phase Coxian (Altiok & Stidham, 1983).

The first contribution of this research is investigating optimal control problems of
three-station make-to-stock lines. Optimal policies have been studied in various single-
stage production systems for decades. The first study that uses MDP techniques in
make-to-stock queues shows that a single critical level policy, base stock policy, is
optimal to control a single-machine single-stage make-to-stock system with lost sales
(Ha, 1997a). Another important finding states that the optimal policy of a parallel
machine system with Exponential processing times and lost sales is a state-dependent
base-stock policy (Bulut & Fadiloglu, 2011). Once having looked at the problems of
serial production systems, the optimal control studies have been known to be limited
to two-station systems.

Major progress is achieved with the findings of (Veatch & Wein, 1994), revealing that
optimal control of two-station tandem production system is maintained by switching
curves. The study assumes that each station has Exponential processing times, a
finished goods inventory meets a Poisson demand, and the objective is to minimize
the holding and backordering costs. It is acknowledged that control problems are
computationally intense due to the curse of dimensionality. However, solutions of
certain multi-stage production models are feasible to be obtained with a reasonable
computational load. We study optimal control problems of three-station production-
inventory systems considering Exponential and phase-type processing times in
Chapter 3. A dynamic programming formulation is developed for each model to
achieve the optimal policy and long-run average system cost. The structure of the

production policies is characterized by propositions and numerical experiments.

Optimal production control requires taking actions at each system state, which
obstructs implementing the optimal policies as state spaces grow. As the
dimensionality problem has been encountered while finding the structure of optimal
policies, alternative control mechanisms have become a concentrated research field of
production-inventory systems. Analyses under given production policies would
relatively reduce the complexity of the problems. Pull type control policies have been

widely studied in multi-stage production (Karaesmen & Dallery, 2000; Khojasteh &



Sato, 2015). Structural properties of more complex mechanisms such as generalized
Kanban (Buzacott, 1989), flexible Kanban (Gupta & Al-Turki, 1997), extended
Kanban (Dallery & Liberopoulos, 2000) are adaptive to the systems with variability;

however, they require a higher number of parameters.

In the second part of our study, we propose an alternative policy called no intentional
idleness with the idea of eliminating production control actions. In the proposed
approach, machines operate whenever possible. Buffer capacities are assumed to be
finite; hence production is interrupted due to blocking and starvation. A station is
blocked if its service is completed, but there is no room in its downstream buffer. A
station is starved if it is idle because its upstream buffer is empty. The proposed no
intentional idleness (NI) policy is defined with three parameters, each representing the
capacity of a buffer. The objective is to identify buffer capacities to minimize the long-
run average cost. A simulation model is developed for the proposed policy, and
optimal buffer capacities are obtained via exhaustive search over the state space of the
policy.

The second contribution of the thesis falls into quantifying how good the proposed
approach is against the optimal policy. The proposed policy has been recognized in the
performance evaluation of serial production systems (Diamantidis et al., 2020; H. T.
Papadopoulos et al., 1989, 1990). The long-run behavior of systems is observed under
the given policy to achieve certain metrics such as throughput and inventory held.
However, a performance comparison of optimal and proposed policies has not been
carried out for multi-stage make-to-stock systems. Chapter 4 presents the
implementation of the no intentional idleness policy for the basic model with
Exponential processing times and the extended models with Cox-2 processing times.
The performance evaluation is conducted with an extensive numerical study revealing
that it performs near-optimal in various cases. Additionally, a set of variants of the
proposed policy is considered to improve the performance of the instances when the

policy deteriorates.

Production systems have been analyzed for performance evaluation using several
measures like throughput, machine utilization, the number of items in the system, or
service level. Performance analysis has been an integral part of production/
manufacturing systems due to rapidly emerging industries. Analytical and simulation

models have been developed with the main objectives of throughput maximization,



buffer size determination, buffer allocation to optimize a reward function. Throughput,
the average service completion rate of the system (Ross, 2014), is a well-accepted
performance measure in practice. However, the general assumption in performance
analysis indicates no finished goods buffer to meet the demand. Under this assumption,
multi-stage systems with single machines (H. T. Papadopoulos et al., 1990; Vidalis &
Papadopoulos, 1999) have been studied. In addition, there are a few studies
considering parallel machines with exact (Diamantidis & Papadopoulos, 2009) and

approximate (Van Vuuren et al., 2005) analyses.

In terms of performance evaluation, the third contribution involves an exact Markovian
analysis of production lines with parallel machines having two-phase Coxian
processing times. The setting is designed to scrutinize raw material replenishment and
intermediate and finished goods buffers with capacity limits. Raw material supply and
demand for finished goods are generated according to independent stationary Poisson
processes. The system is modeled as a continuous-time Markov chain, and the
transition rate matrix is recursively generated. The general recursive form is developed
up to 3-station 4-buffer systems. However, the number of states calculation and state
generation routines work for any M-station (M+1)-buffer systems. The steady-state
distribution of the developed model is obtained using eigenvalue decomposition,
which allows finding performance metrics such as throughput, the average number of
items in the buffers, and average system cost consisting of production, holding, and
shortage costs. Furthermore, an extensive numerical study demonstrates the impact of
buffer capacities, parallel machines, and production rates on system performance. The
exact analysis provided in Chapter 5 could also be used as the decomposition block

for the performance analysis of longer lines.

Figure 1.1 presents the research structure of the thesis. Analytical and simulation
models are developed for control problems and performance evaluation of serial
production systems within the scope of our research. Due to the computational load,
the literature presents the exact analysis of production systems covering a limited
number of machines with serial/parallel structures (Diamantidis & Papadopoulos,
2009; Veatch & Wein, 1994). However, our study covers optimal control problems of
three-station lines with both memoryless and phase-type processing times. The
performance evaluation of three-station lines seeking exact analysis considers parallel-

machine stations with two-phase Coxian processing times. Another important aspect



of the thesis is considering the make-to-stock environments in which the objective
function covers the finished goods-related costs. It should be noted that the parallel-
machine and phase-type processing times assumptions increase the complexity of the
models. Although our problems acknowledge the cost of exact techniques, our

numerical studies reveal a range of tractable experiments.

Analysis of Serial
Production Systems

Y

. . Alternative Production .
Optimal Production Control d . Performance Evaluation
Control Mechanisms
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Figure 1.1. Research structure of the thesis

From the optimal control framework, we obtain a value iteration solution of a Markov
decision process. Dynamic programming numerically finds an optimal policy, as we
provide in Chapter 3. With the help of dynamic programming results, insights into the

optimal policy structure can be revealed, and policy characterization can be done.

Nevertheless, simulation is still attractive due to advances in software development
and the facilities that such programs provide for analyzing complex systems. In the
event that finding optimal policies requires extreme effort or are not practically
applicable, easy-to-apply approaches can be proposed and imposed on the production
settings. Simulation tools are effective not only for modeling a problem but also for
verification purposes. A simulation model can be developed to quantify how good a
proposed strategy is, as is done in Chapter 4.

Scientific research is prevalently accompanied by simulation studies applicable for

many systems, including production lines, with the help of artificial intelligence over



a decade. However, we rely on that the exact analytical results of computationally
tractable systems in this line of research nourish the simulation studies. We focus on
the algorithmic construction of a matrix generation to conduct performance analysis
for make-to-stock production lines with parallel machines, phase-type processing

times, limited buffers and finite supply, as it is presented in Chapter 5.

The perspective in our study and the exact analysis we conduct would contribute to
the literature in two ways. First, our study provides a theoretical background up to 3-
station 4-buffer lines with failure-prone parallel machines. A secondary contribution
IS maintaining a longer decomposition block than those considered in the literature
(Diamantidis et al., 2020; Van Vuuren et al., 2005). Time complexities of the proposed

algorithms are also discussed.

The remainder of this thesis is organized as follows. Chapter 2 presents a literature
review for the control mechanisms, performance analysis, and design problems of
production systems. Optimal control problems of three station make-to-stock lines are
defined in Chapter 3. Problem formulation and analysis of optimal control policy for
the basic model with Exponential processing times are provided in Chapter 3.1.
Chapter 3.2. presents the studies of the extended models with two-phase Coxian
processing times. Chapter 4 proposes an alternative production control mechanism to
the optimal policy. The policy implementation and a comprehensive numerical study
for performance analysis are provided in Chapter 4.1. Chapter 4.2 presents the variants
of the proposed policy with improvements. Markovian analysis of make-to-stock
production lines with parallel machines, limited buffers and finite raw-material supply
is presented in Chapter 5. Chapter 5.1 gives a system description. A recursive method
to calculate the number of states is provided in Chapter 5.2 as the first routine of the
general algorithm structure. The second routine for state generation is presented in
Chapter 5.3. The main algorithm is developed in Chapter 5.4. Chapter 5.5 provides
numerical experiments. Lastly, concluding remarks and suggestions for future research

are provided in Chapter 6.



CHAPTER 2
LITERATURE REVIEW

This chapter provides a review of production control and performance evaluation
problems of serial production systems. Production control approaches manage the
tradeoff between production-related costs, costs of excess inventory and shortages. In
a make-to-stock (MTS) environment, optimal production control requires starting
production at the right time and producing with the optimum number of channels
(servers, lines, or machines) to build up sufficient inventory. In this research channel,
the majority of the analyses are based on queueing theory techniques and Markov
Decision Process (MDP). Markovian structure of problems enables the development
of MDP formulation to control MTS systems. The first studies using MDP techniques
are (Veatch & Wein, 1994) for backorder and (Ha, 1997a) for lost sale cases. For the
serial production lines, to the best of our knowledge, optimal control studies based on

MDP formulations are limited to two-station production lines.

Moreover, pull-type control mechanisms have been studied where actual demand
occurrences are used instead of demand forecasts. Just-in-Time manufacturing
philosophy, the driving force behind pull mechanisms, has gained importance since
Taiichi Ohno aimed at meeting customer demands with minimum delays (T. Ohno,
1988). Since then, several control policies have been proposed where Kanban,
CONWIP and Base Stock are well-known pull mechanisms. The literature on optimal
control and other control mechanisms for production lines are presented in Chapter

2.1.

Apart from optimal control, routines can be developed to control production, buffer
sizes or production capacities of the machines. Buffer allocation problem, which has
been attracted for years, is one of the main design problems of production systems.
Several optimization techniques have been used for different configurations of
production lines in the literature of buffer allocation problem. On the other hand, a vast
amount of research has been conducted on optimizing throughput and average system

cost composed of holding, shortage, and production costs. Performance evaluation of
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production systems has been undertaken mostly based on the throughput metric as it
is one of the most acknowledged performance measures in practice (J. Li et al., 2009).
Although performance evaluation of production systems has mostly been based on
steady-state analysis, studies considering transient behavior have also been presented
in the literature. Another assumption that has been commonly held is to have a single
machine/server at each stage of the line. Only a few studies consider the exact analysis
of multi-server lines (Diamantidis & Papadopoulos, 2009). Chapter 2.2 provides a

review of the performance evaluation of production lines in several settings.

2.1. Optimal Control and Other Control Mechanisms in Serial Production

Systems

Control mechanisms can be explained into two main streams as single-stage and multi-
stage production systems. In early studies of optimal production control in single-stage
systems, problems are mostly formulated as a queueing model, and the analyses are
mostly based on queueing theory techniques (Gavish & Graves, 1980, 1981). In the
studies of (Gavish & Graves, 1980, 1981), the system is modeled as M/D/1 and M/G/1
make-to-stock queues with backorders, and the optimal production policy is shown as
a two-critical-number policy. The first study that uses MDP techniques in single-stage
systems is based on M/M/1 make-to-stock queues with multiple demand classes and
lost sales (Ha, 1997a), which the optimal control policy is proven as base-stock. The
problem of (Ha, 1997a) is then analyzed in a backordering case (Ha, 1997b). Erlang
processing time extensions of (Ha, 1997a) are also studied for both lost sales (Ha,
2000) and backordering (Gayon et al., 2009) cases. A model with multiple parallel
servers, Exponential processing times and lost sales in single-stage make-to-stock
systems is first presented in the work of (Bulut & Fadiloglu, 2011). The problem is
modeled as M/M/s make-to-stock queue and the optimal production policy is shown
as a state-dependent base-stock. A two-phase Coxian processing times extension of
(Bulut & Fadiloglu, 2011) is proposed in (Yucel & Bulut, 2019), the optimal
production policy is numerically characterized and an easy-to-apply production policy

IS proposed.

In multi-stage production systems, both queueing models and MDP approaches
continue to contribute to the literature. Tandem queueing systems with Poisson

arrivals, Exponential service times and finite capacity waiting rooms are presented by



(K. Ohno & Ichiki, 1987a). A modified policy iteration algorithm is proposed to find
an optimal control policy that minimizes the expected discounted cost of the system.
However, it is stated that the form of optimal control policy of the system has no
distinct structure. A two-station tandem queueing system with no intermediate buffer
is studied by (Chao et al., 1997). The objective is to maximize expected discounted
profit with control of arrival and departure processes. It is shown that the optimal
policy has a threshold type structure. (Veatch & Wein, 1994) is the first study
considering make-to-stock production systems with two stations in tandem having
Exponential processing times, Poisson demands and backorders. The objective is to
minimize long-run average system cost composed of holding and backordering costs,
and a dynamical programming formulation is developed to obtain numerical results. It
is shown that the optimal control policy is defined by switching curves where state
space is divided into two as idle and busy sets. It is further established in (Veatch &
Wein, 1994) that some policies are shown to be optimal under certain conditions, and

the base stock policy is never optimal.

The recent studies of this line of research also follow two station systems. To the extent
of our knowledge, the structure of the optimal control policies has been identified only
for two stations in tandem in multi-stage production systems. The optimal production
and rationing policy of a two-station tandem system is presented in (Xu et al., 2017),
and optimal policy is characterized as dynamic switching curves. The system is built
with Exponential processing times, partial-batch production, intermediate and finished
goods buffers, bulk demands and lost sales, and the objective is to maximize the
expected profit. Examples of real-life applications for production systems are
provided. (Papachristos & Pandelis, 2020) study optimal server assignment in a two-
stage Markovian tandem queueing system and present structural properties of optimal
policies for discounted and average cost. An optimal pricing problem modeled as a
tandem queueing system is studied in (Wang et al., 2020a). The structure of the optimal

policy is characterized to maximize the expected revenue.

Another point is the evaluation of alternative control policies. Pull type production
proposes various well-known control mechanisms. In pull type control, information of
actual demand occurrences is considered instead of demand forecasts. The idea behind
the pull control mechanisms is the Just-in-Time manufacturing philosophy proposed
by (T. Ohno, 1988). Kanban, CONWIP and Base-stock have been well-known pull
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control policies. Kanban control policy sends demand requests from finished product
inventory to the upstream stations using production authorization cards. The first
studies of Kanban modeling are presented by (Tabe et al., 1980) and (Kimura &
Terada, 1981). Then, various extensions of Kanban policy has been introduced to the
literature, such as generalized Kanban (Buzacott, 1989), flexible Kanban (Gupta & Al-
Turki, 1997), extended Kanban (Dallery & Liberopoulos, 2000). CONWIP, proposed
by (Spearman et al., 1990), controls the amount of work-in-process in the system and
aims to keep it constant. CONWIP policy can be defined as a single-stage Kanban,
which also uses production authorization cards. Another control mechanism is a base-
stock policy, which keeps the maximum number of finished products in a single
production facility and has shown to be optimal in several settings (Ha, 1997a, 1997b).
In multi-stage production systems, a base-stock level is defined for each production
stage. It is likewise production authorization cards that are limited for each stage in
Kanban. However, these policies differ while transferring demand requests to
upstream stages. Performance comparisons of the pull policies have been widely
studied in the literature (Bonvik et al., 1997; Duri et al., 2000; Karaesmen & Dallery,
2000; Khojasteh & Sato, 2015).

Since the Just-in-Time idea is suitable to be operated in environments where machines
are synchronized/free from non-value-added operation times, its performance would
be affected by variations in production times and demand process. Therefore,
alternative Kanban policies, which dynamically change the number of cards in the
system, have been developed. Although these policies are more likely to fit into a
dynamic environment, more parameters are necessary to define the policies.
An adaptive Kanban control is proposed in (Tardif & Maaseidvaag, 2001) for
backordering cases. The proposed policy allows the system to release or capture
kanbans cards depending on the system state. An adaptive Kanban mechanism for
multi-stage systems is presented in (Sivakumar & Shahabudeen, 2008). (Xanthopoulos
et al., 2018) define an adaptive Kanban production control for single-stage multi-
server systems having different demand levels due to seasonality. A comparison of

optimal, classical Kanban and extended Kanban policies is provided.

Furthermore, learning-based approaches have been studied in the literature.
Reinforcement learning is a part of machine learning where an agent interacts with the

environment and selects actions to maximize the future reward. (Xanthopoulos et al.,
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2008) consider serial production lines with backorders. Control policies are derived
with an average reward reinforcement learning algorithm, and it is shown that the
derived algorithm outperforms Kanban, Base Stock and CONWIP. The study of
(Paternina-Arboleda & Das, 2001) considers a four-station production line and solve
the control problem to minimize the average WIP of the system. The setting is defined
with random processing times, times to failures and repair times, and lost sales. The
performance of the algorithm is compared with the pull control policies. In
(Xanthopoulos et al., 2019), optimal adaptive control policies for CONWIP-type
manufacturing systems are studied. The reinforcement learning approaches are

compared to the special cases of CONWIP and Kanban systems.

(Lage Junior & Godinho Filho, 2010) present literature review and classification for
the Kanban system. (Kumar & Panneerselvam, 2007) review the Just-in-Time Kanban
system and discuss the performance measures in many cases. A review of the CONWIP

production control system is presented in (Framinan et al., 2003).

2.2. Performance Evaluation of Serial Production Systems

Performance analysis of production lines has been essential due to investment of
machinery, revenue/cost account, randomness, variability in production, among other
motives. The behavior of systems is observed over some period to determine certain
measures such as throughput, inventory held or service level. In the general
framework, steady-state analysis has been widely considered. However, performance
evaluation problems with transient analysis have also been studied in the literature
(Gokee et al., 2012; Meerkov et al., 2009; Meerkov & Zhang, 2008; Zhang et al.,
2013). Analyses are mostly conducted while machines operate whenever possible,
which we call no intentional idleness (NI) policy. This approach eliminates the
production control and allows for performance analyses of production lines, and

production is interrupted if there is blocking, starvation or failures at stations.

Throughput analysis has been vital in performance evaluation (J. Li et al., 2009). On
the other hand, a vast amount of research has been conducted to optimize system cost,
machine, and inventory in addition to throughput. There is a broad literature on the
analysis of production lines. Recently, (C. T. Papadopoulos et al., 2019) provide a
comprehensive review of Markov models of manufacturing systems. Earlier studies

on performance analysis of throughput focus on two station tandem systems with
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intermediate buffers under different service time distributions: Exponential (Hatcher,
1969), Phase-type (Buzacott & Kostelski, 1987), Erlang (Berman, 1982), and General
(Gershwin, 1987). Processing times as a mixture of Exponential and Erlang are also
studied (Hillier & Boling, 1967; Rao, 1975).

Serial line studies are evolved into settings where there are more than two stations.
However, the assumption ‘single machine at each station’ stayed. Reliable production
lines with Exponential and Erlang processing times are studied by (H. T. Papadopoulos
etal., 1989, 1990). (Perros & Altiok, 1986) propose an approximation of the system’s
steady-state distribution for Coxian processing times. For the same processing time
distribution, (Vidalis & Papadopoulos, 1999) perform a Markovian analysis to obtain
the transition matrix of two station lines where the first station is never starved and the
last station is never blocked. (Heavey et al., 1993) provide an approximate steady-state

analysis for unreliable multistation systems.

In the further studies of this line of research, researchers focus on the systems with
parallel machine tandem stations. (Diamantidis et al., 2007) provide an approximate
analysis based on decomposition for parallel machine stations with Exponential
production times. An exact analysis of a two-station one-buffer system with unreliable
parallel servers is conducted by (Diamantidis & Papadopoulos, 2009). (Van Vuuren et
al., 2005) and (Diamantidis et al., 2020) further propose decomposition-based
approximations for the performance analysis of multi-server production lines with
general and unreliable exponential service times, respectively. Two-station tandem
queues with multiple servers and phase-type service times are studied by (Baumann &
Sandmann, 2017). Furthermore, modeling real manufacturing systems has also been
studied where stations might consist of single or parallel machines (Patchong et al.,
2003; Patchong & Willaeys, 2001).

Furthermore, the buffer allocation problem has been extensively researched. Reliable
lines with Exponential processing times are studied by (Meester & Shanthikumar,
1990) and (Spinellis & Papadopoulos, 2000). However, the effect of breakdowns at
stations are presented to the literature earlier (Buzacott, 1971; Conway et al., 1988;
Freeman, 1964). An allocation of a periodic pull production system with M stages in
tandem is studied to maximize throughput, and the system's dynamics is characterized
in the study of (Kirkavak & Dinger, 1999). A system with M operation stations with
M-1 intermediate buffers with single servers is studied by (Altiok & Stidham, 1983).
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Ample supply for raw materials and an infinite capacity of finished products buffer are
assumed, and production continues whenever possible, i.e. production is controlled
with no intentional idleness policy. However, the study defines a reward/cost-based
objective function and optimization is done based on buffer capacities. Each station is
subject to operation dependent breakdowns. It is proven using Laplace transform that
a machine with Exponential processing times, times until failure and repair times are
equivalent to one having Cox-2 processing times. For the given service completion
time distribution, a steady-state analysis is performed to determine the optimal
allocation of buffer capacities that maximizes long-run average profit. The result
presented in (Altiok & Stidham, 1983) is then used to model flow lines with failure-
prone machines (Helber, 2005; Hillier & So, 1991). Furthermore, flow lines with
phase-type processing times (Yamashita & Altiok, 1998) and approximate analysis for
general distributions (Altiok & Ranjan, 1989; So, 1997) are also studied. Over the
recent years, throughput analysis (L. Li, 2018; Tan & Lagershausen, 2017) and buffer
allocation problem (Shi & Gershwin, 2016; Weiss et al., 2018) still constitute the main
research themes on production systems. Moreover, recent studies still focus on two-
station single server lines (Gebennini et al., 2015; Matta & Simone, 2016; Tolio &
Ratti, 2018) since two-station lines can be used as building blocks to analyze larger
systems. Table 2.1 presents a classification of the related literature of production

systems.

Table 2.1. Classification of the literature

Optimal Control of Production-Inventory Systems

Single-station optimal control problems
(Gavish & Graves, 1980, 1981; Ha, 1997a, 1997h, Control problems of a single machine systems
2000)

(Bulut & Fadiloglu, 2011) Control problems of parallel machine systems
(Yicel & Bulut, 2019) Control problems with Cox-2 processing times
Multi-station optimal control problems

(K. Ohno & Ichiki, 1987a) Optimal control for a tandem queueing system
(Veatch & Wein, 1994) Optimal Control of a two-station tandem system
(Xuetal., 2017) Optimal policies of a two-stage tandem system
(Papachristos & Pandelis, 2020) Optimal server assignment in a two-stage tandem

gueueing system

(Wang et al., 2020a) Revenue maximization in two-station systems
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Table 2.1 (cont’d). Classification of the literature

Pull control mechanisms

(Spearman et al., 1990)

(Buzacott, 1989; Dallery & Liberopoulos, 2000;
Gupta & Al-Turki, 1997)

(Bonvik et al., 1997; Duri et al., 2000; Karaesmen
& Dallery, 2000; Khojasteh & Sato, 2015)

CONWIP: a pull alternative to Kanban

Variants of Kanban systems

Pull control mechanisms in multi-stage systems

(Sivakumar & Shahabudeen, 2008; Tardif & Adaptive Kanban mechanisms

Maaseidvaag, 2001; Xanthopoulos et al., 2018)

(Paternina-Arboleda & Das, 2001; Xanthopoulos Reinforcement learning-based control of pull

et al., 2008, 2019)

production systems

Performance Analysis of Single-machine Multi-station Production Systems

(Berman, 1982; Buzacott & Kostelski, 1987;
Gershwin, 1987; Hatcher, 1969; Matta & Simone,
2016)

(Hillier & Boling, 1967; Rao, 1975)

(Gebennini et al., 2015, 2017)

(Vidalis & Papadopoulos, 1999)

(H. T. Papadopoulos et al., 1989, 1990)

(Heavey et al., 1993)

(Perros & Altiok, 1986)

(Kirkavak & Dinger, 1999)

(Tan & Lagershausen, 2017)

(Gokce et al., 2012; Meerkov et al., 2009;
Meerkov & Zhang, 2008; Zhang et al., 2013)

Throughput analysis of two-station lines with an
intermediate buffer

Throughput analysis of two-station lines with an
intermediate buffer with mixture service times
Two-machine one-buffer models with restart
policy

Markovian analysis of two-station lines with Cox-
2 service times

Markovian analysis of multi-station production
lines with intermediate buffers

The throughput rate of multistation unreliable
production lines

Approximate analysis to steady-state distribution
of tandem queues with Cox-2 service times
Throughput maximization in pull systems

Output dynamics of systems subject to blocking

Transient analysis of serial lines

(L. Li, 2018)

Detecting throughput bottlenecks

Buffer Allocation Problem in Single-machine Multi-station Production Systems

(Buzacott, 1971; Conway et al., 1988; Freeman,
1964)

Analysis of the effect of breakdowns at stations

(Meester & Shanthikumar, 1990; Spinellis & Analysis of reliable lines with Exponential

Papadopoulos, 2000)

processing times

(Altiok & Stidham, 1983; Helber, 2005; Hillier & Modeling flow lines with failure-prone machines

So, 1991)
(Altiok, 1989; Yamashita & Altiok, 1998)

Modeling flow-lines with phase-type distributions
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Table 2.1 (cont’d). Classification of the literature

Buffer Allocation Problem in Single-machine Multi-station Production Systems

(Altiok & Ranjan, 1989; Powell, 1994; So, 1997)

(Liberopoulos, 2020)

(Shi & Gershwin, 2016)
(Weiss et al., 2018)

Approximate analysis of flow-lines with general
service time distributions
buffer

production control policies

Optimal allocation under different

A segmentation approach in large systems

Optimization in flow lines with limited supply

Analysis of Parallel-machine Multi-station Production Systems

(Diamantidis et al., 2007)
(Diamantidis & Papadopoulos, 2009)

(Diamantidis et al., 2020; Van Vuuren et al., 2005)

(Baumann & Sandmann, 2017)

(Patchong et al., 2003; Patchong & Willaeys,
2001)

Decomposition for large production systems
Exact analysis of a two-workstation one-buffer
flow line

Decomposition-based approximate analysis with
finite buffers

Performance analysis of multi-server 2-station
tandem queues with phase-type service times
Modeling real manufacturing systems with single

or parallel structures

Review Papers

(C. T. Papadopoulos et al., 2019)

(Weiss et al., 2019)

(J. Lietal., 2009)

(Framinan et al., 2003; Kumar & Panneerselvam,
2007; Lage Junior & Godinho Filho, 2010)

Timed Markov models of manufacturing systems
The buffer allocation problem in production lines
Throughput analysis of production systems

Pull production control systems
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CHAPTER 3
OPTIMAL CONTROL PROBLEMS OF THREE-STATION MAKE-
TO-STOCK PRODUCTION LINES

This chapter considers optimal control problems of production systems consisting of
three stations arranged in series, intermediate buffers between stations and a finished
goods buffer. The structure of optimal policies for single-station (Bulut & Fadiloglu,
2011; Gayon et al., 2009; Ha, 1997a, 1997b, 2000) and two-station (K. Ohno & Ichiki,
1987b; Veatch & Wein, 1994; Wang et al., 2020b; Xu et al., 2017) systems has been
discussed in the literature. However, to the extent of our knowledge, optimal control
problems have not been studied for three stations in tandem. This chapter presents a
characterization of optimal production control policies for three-station tandem lines

in various settings. Further to that, the study is enriched with numerical experiments.

The setting contains single-machine stations, ample raw-material supply to produce a
single item. It is assumed no capacity restrictions of intermediate buffers and the
finished goods buffer. Since each station has a single machine, this chapter could use
the terms machine and station interchangeably. Demands for finished goods are
generated according to a Poisson process, and those who cannot immediately be
satisfied from the finished goods buffer are lost. The objective is to find an optimal
control policy that minimizes the long-run average system cost. The system cost is
composed of holding and lost sales costs. Due to the Markovian structure of the
problems, a dynamic programming formulation is developed, and minimum system

cost is obtained via a value iteration algorithm.

We first model a system considering the Exponential processing times of machines,
which is called the basic model. The effects of system parameters on optimal policies
are examined by considering different production rates, demand rates, and lost sales
costs, as shown in Chapter 3.1. In extended models, we incorporate real-world features
where failure, rework, or repair can happen in production lines. Therefore, we consider
two-phase Coxian (Cox-2) processing times. A Cox-2 random variable has two

independent Exponential phases, and there is a certain visiting probability from phase
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one to phase two. A busy machine with Cox-2 processing times would be either at the
first or second phases at a given time. In that sense, the first and second phases can be
considered as the main operation and inspection/rework/remanufacturing operation,
respectively. Also, it is known that the service completion time distribution of a
machine having Exponential processing times, times to failure and repair times is
equivalent to two-phase Coxian (Altiok & Stidham, 1983). One can also consider the
first phase of Coxian as the service time and the second phase as the repair time of the
unreliable exponential machine. The probability that the first event is a breakdown
corresponds to the certain visiting probability of the Coxian-2 random variable. This
result has been used to model flow lines with failure-prone machines (Helber, 2005;
Hillier & So, 1991). Optimal policies are studied and presented for extended models
in Chapter 3.2.

3.1. Basic Model with Exponential Processing Times

We consider a make-to-stock production line with Exponential processing times (see
Figure 3.1). Each station has a single machine with an Exponential production rate of
uj,j = 1,2,3. It is assumed that the raw material supply is ample, and demand arrives
according to a Poisson process with rate A. A lost sales cost ¢ is incurred for each
demand that cannot be met from the finished goods (FG) buffer. Holding cost rate h;
is charged for items in j* buffer (and the item being produced its downstream station).

System parameters of the basic model are shown in Table 3.1.

Raw , Demand
material Stationl Station 2 Station 3 o 1)
) (lul) > WIP1 ] (llz) I 7 WIP2 > (/13) 1 » FG
L J J
X1 X3 X3

Figure 3.1. A make-to-stock production line with Exponential processing times

Table 3.1. System parameters of the basic model

Station index, j=1,2,3

A FG demand rate

c Lost sales cost

h; Holding cost rate of buffer j (and the item being produced its downstream
station)

U Production rate of station j
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The system state is defined as a vector of three wvariables. Let X ) =
(Xl(t),Xz(t),X3(t)) be the state vector where X;(t),j € {1,2} is the number of
elements in j* buffer plus the item that is currently being produced its downstream
station, and X5 (t) is the number of items in the finished goods (FG) buffer at time t.
The state vector does not include a variable for station-1 due to the single machine
assumption and the memoryless property of the processing time distribution. The

system state space is expressed as follows:

SS ={(X,(0), X,(©), X3(1)) | X;(t) e Z* v {0},j = 1,2,3} (1)
The events are defined as production completions at stations and demand arrivals.
Thus, the control policy requires whether or not to produce at each station. Let a;(t) €
{0,1},j = 1,2,3 be a control variable that keeps the status of machine-j at time t: the
machine is busy if a;(t) = 1, otherwise it is idle. The structure of the problem is
Markovian due to Exponential processing times and inter-demand arrival times
assumptions. The Markovian property refers to the memoryless property of the process.
Due to the memoryless nature of the model, control decisions at time t will depend on
only the current state of the system. Through the Markovian property, decisions can be
made at a production completion or a demand arrival. For this reason, the system state

definition can be used as independent from the time dimension.

Given a control policy 7, the process {XT(t), X7 (t), X7 (t)|t = 0} constitutes a
continuous-time Markov chain. The discrete-time equivalent of the problem is
obtained using the uniformization technique as proposed by (Lippman, 1975). The
uniform transition rate v could be defined as greater than or equal to the summation of
all transition rates in the system, which we define asv =1 + Zizl U;j. As it is stated
in (Bertsekas, 2000), an optimal control policy ™ exists and can be obtained through

the solution of the below cost-to-go function:

V(xq,x5,x3) = min {h;x; + hyxy + hyxg + AL(xq, X2, X3)

V+ aayazaz

Fa gV (xy + 1,x5,x3) + appp Ty (X1, X2, X3) + agpsTo(xq, X, X3)
+(Z?=1(1 - a]) Hj)V(xl,xZ,X3)} (2)
where « is a discount rate, and T;, T, are production-related operators such that

Vix,—1,x,+1,x3), x; >0

Ty(x1, %2, X3) = { V(x1,%2,%3), %1 =0
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V(xl, xz - 1,x3 + 1), xz > O

T » X2, =
2 (X1, X2, X3) { V(x1,%2,%3), X3 =0

L is a lost sales operator such that

V(xy,x5,x3 —1), x3 >0 3)
c+ V(xll X2, 0)) X3 = 0

The optimal discounted cost VV* of the problem satisfies Bellman’s equation given in

L(xy,%2,%3) = {

(2). The minimization operator is based on production control variables a4, a,, as.

Production completion at station- j occurs with probability % and the term

(X311 — a) )V (1, x2,%3) is added for fictitious self-transition due to
uniformization. The lost sales operator L is defined in (3): an incoming demand is
immediately satisfied if there is an item in the finished goods buffer; otherwise, it is
rejected, which causes a self-transition, and the lost sales cost c is charged. As stated
in (1), state variables are not upper-bounded. Thus, the solutions are based on a
truncated state space of x;, x,, x5 such that the optimal policy and the optimal long-

run average cost of the system are not affected.

Initialize VO (state) arbitrarily for each state

k=0

while (dif ference > ¢)

k=k+1
Repeat for each state:
Repeat for each possible control action:
Calculate VX, ;i 140 (State(action))

Vk(state) = min VE didate (State(action))

vk (state)  vK-1(state)
k k-1

dif ference = max

end while

Figure 3.2. Pseudocode of the value iteration algorithm

The DP formulation is developed under the expected discounted cost criterion.
However, system performance has been widely measured under the infinite horizon
average cost criterion (Ha, 1997a; Karaesmen & Dallery, 2000; Veatch & Wein, 1994).
We conduct numerical experiments under the average cost criterion, eliminating both

the discount factor and the system's dependence on the initial state. We apply a value
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iteration algorithm to the formulation provided in (2)-(3) by setting discount rate a to
zero (see Figure 3.2). Firstly, the value function at step 0 (V) is arbitrarily initialized.
Then, for each state, the system cost VX ... . is calculated considering control
actions. The value function is updated based on the best next state with the
minimization operator. The long-run average system cost is calculated as the
convergent ratio of the value of the optimal cost-to-go function and the number of
iterations. The value iteration algorithm is terminated when the absolute value of the
difference between average costs in two consecutive steps is less than €. The algorithm

is developed in MATLAB 2018b program.

Table 3.2. Control action representation of the optimal policy

Control |Do not  |Produce [Produce |Produce |Produce |Produce |Produce |Produce

Action |produce |only atlonlyat |onlyat |at stations|at stations |at stations |at all

at all station 1 |station 2 |station3 |[land2 |2and3 |land3
but not 3 |butnot1 |butnot?2
Label |0 1 2 3 4 5 6 7

Color -7

Table 3.3. An example of the optimal policy with 1 = 4

x3 x3 x3

01 2 3 456 7/01 2 3 456 7(01 2 3 45 6 7

0 0 0 0
116 6 6 6 6 6 0 0|7 7 7 ¢ 7 5 0 Of(7 7 7 7 5 5 0 O
2/6 6 6 6 6 3 0 0|7 7 7 7 5 3 0 0|7 7 7 5 5 3 0 O
%2 3/6 6 6 6 3 3 0 0|7 7 7 3 3 3 0 07 555 3 3 00
416 6 6 3 3 3 0 07 5 3 3 3 3 0 0|5 5 3 3 3 3 0 O
5/6 3 3 3 3 3 0 0|3 3 3 3 3 3 0 03 3 3 3 3 3 0O
6/3 3 3 3 3 3 0 0|3 3 3 3 3 3 003 3 3 3 3 30O
7/3 3 3 3 3 30 0|3 3 3 3 3 3 0033 3 3 3 300

x1=0 x1=1 x1=2
x3 x3 x3

01 2 3 456 7/{01 2 3 456 7(01 2 3 45 6 7

0 0 0 0
117 7 5 5 5 5 0 05 5555500555555 00
2f5 5 555 3 0055555 30055555 300
%2 3/ 555 3 3 005555 3 3005555 3 300
415 5 3 3 3 3 0 05 5 3 3 3 3 0 0|5 5 3 3 3 3 0 O
5/3 3 3 3 3 3 0 0|5 3 3 3 3 3 0 05 3 3 3 3 3 00
6/3 3 3 3 3 3 003 3 3 3 3 3 003 3 3 3 3 300
7/3 3 3 3 3 3003 3 3 3 3 3 003 3 3 3 3 300

x1=3 x1=4 x1=5

Let A be the action space for the production control actions. Since the actions to be
taken are produce and do not produce for each station, A is a vector of size 23 = 8. It

is denoted that A = {0,1,..,7} and the details of the control actions are shown in Table
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3.2. In addition, a color is assigned to each action to represent the optimal policy. To
the extent of our knowledge, the structure of the optimal control policy of three station
make-to-stock lines with lost sales has not been studied yet. Thus, a series of
computational experiments are designed and conducted to analyze the optimal policy
of the basic model. The experiments are carried out on a Core 17, 2.80 GHz, 16 GB

RAM computer. In the experiments, the error bound ¢ is set to 1072,

First, a base case scenario is defined with holding cost rates of [h4, h,, h3] = [1, 1.5, 2],
lost sales cost of ¢ = 50, identical production rates of yu; = u, = u3 = 10 and
demand rate of A = {1,2..,10}. An example of the optimal policy with 1 = 4 is
presented in Table 3.3. The three-dimensional state space is transformed into a two-
dimension for representation. Some of the decisions are affected by the boundary
conditions: production cannot be authorized (i.) at station-2 if there is no item in buffer-

1 (x; = 0), (ii.) at station-3 if there is no item in buffer-2 (x, = 0).

We first express the general behavior of the optimal control policy, which also is

observed in the example of Table 3.3. At a given demand rate A = {1,2..,10},

a) station-1 tends not to produce as x;, x, Or x3 increases.

b) for any x; and x,, it is optimal not to authorize production in the line (production
control action is O for all states) after a certain level of xs.

c) after a certain level of x,, it is optimal to produce only at station-3 until a certain

level of x5, then not to produce at all.

d) after a certain level of x;, a switching curve type structure is observed in the
optimal policy. The switching curves (see Figure 3.3) are shown to be optimal for
two-station make-to-stock flow lines with backorders by (Veatch & Wein, 1994).
In our setting, there is a threshold that a certain number of items is accumulated in
buffer-1. Beginning from the threshold, buffer-1 pretends to provide ample supply
for station-2, and switching curves are observed. Consider Table 3.3 when x;=5
and Figure 3.3: dark green area of Table 3.3 represents the busy set of station-2
that corresponds to the area of B; in Figure 3.3; the light green area represents the
intersection of busy sets of stations 2 and 3, i.e. where both stations are busy, that
corresponds to the area of B; N B, in Figure 3.3; the grey area represents the busy

set of station-3 that corresponds to the area of B, in Figure 3.3.
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Figure 3.3. Switching curves (Veatch & Wein, 1994) where B, (B,) is the busy set
of station-1 (station-2), x; and x, are the number of items in buffer-1 and buffer-2

As demand rate A increases, it is observed that
e) the number of states where all three machines are busy increases (control action 7).
f) production continuity lasts longer at each dimension of the state variables.

g) it is optimal to stop producing first at station-1 and then at station-2 as x; or x,
increases until a certain value of A (A < 7 in base case scenarios). However, this
order of operation is reversed at lower x; values (see x;=1 of Table Al.l in
Appendix 1), then it is reversed again after a certain point of x; (see x;=3 of Table
Al.1 in Appendix 1). This behavior is interpreted as a transitional phase and is

noticeably observed at higher A values.
Proposition. There is a threshold T; for x; = 0,i € {1,2} such that it is optimal not to

produce at station-i when x; > T; for all x;, j € {1,2,3} — {i}.

Proof. For i = 1, Let EgO be the below equation representing the discounted DP

formulation of the system:
1
V(xq,%2,x3) = ;<h1x1 + hyxy + haxs

+ Alc-1-(x3 =0)+ V(xy, x,, max{x; — 1,0})]
Fuymin{V (xq + 1, x5, x3),V(xq, x5, x3)}
Fu,min{V(x; — 1, x5, + 1,x3), V(xq, X2, x3)}
Fusmin{V (xq, x, — 1,x3 + 1), V(x1, X2, x3)3) (Eq0)

where v =21+ py + puy + u3 + a and x4, x,, x3 = 0. « is defined as the discount rate.
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Suppose for k = 0

pamin{V¥ (g + 1, x5, %3), VE(xy, X2, x3)} = paV*(xq, x5, x3), or similarly

Vk(x1;x2;x3) =< Vk(x1 + 1, x5, x3)
We need to show that V¥ (x, x5, x3) < VE* 1 (x; + 1, x5, x3).

Property is true for k=0: VO°(xy,x,,x3)=0<V%x +1,x,,%3) since

Vo(xl, X3, x3) =0 fOf a” X1,X2,X3 = 0.
Let Eql be the following equation:

VR (xy, x5, %3) = hyxy + hyxy + h3xs
+A[c- 1 (x3 = 0) + V*(xy, xp, max{x; — 1,0})]
+uymin{VF (g + 1, %, %3), V*(x1, X2, x3)}
+u,min{V*(x; — 1, x5 + 1,x3), VE(xq, x5, x3)}
+usmin{V*(xy, x, — 1,x3 + 1), V¥(x;, %2, %3)}  (EqL)

Let Eq2 be the following equation:

VE L (xy 4+ 1,x5,x3) = hy(xq + 1) + hyx, + hsxs

+Alc1-(x3 =0) + V*(x; + 1, x5, max{x; — 1,0})]
+uymin{V¥(x; + 2,x5,x3), VF¥(x; + 1, x5, x3)}
+,min{V¥(xy,x, +1,x3), V¥(x; + 1, x5, x3)}
+usmin{V¥(x; + 1,x, — 1,x3 + 1), VE(x; + 1, x5, x3)}
(Eq2)

So, each term should separately be considered:

[1].hyxy + hyxy + haxs < hy(x; + 1) + hyx, + hyxg holds due to positive holding

cost rates

[2].1f x3 > 0, then AVX(x;, x5, x5 — 1) < AV¥(x; + 1,x,,x3 — 1) holds due to the
supposition
If x3 = 0, then A[c + V¥(xy,x,,0)] < Alc + VF(x; + 1, x,,0)] holds due to the

supposition

[3]. ua VE(xq, x5, x3) < puVE(x; + 1, x5, x3) holds for Eql and
Ve + 1, x5, x3) < uVF(xg + 2, x5, x3) holds for Eq2 due to the supposition
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[4]. For the decisions regarding u, and us, there are 4+4=8 possible combinations of

control actions in Eql and Eq2.

Consider control actions regarding u,:

a.

It is optimal for station-2 to produce in both Eql and Eq2.
Eql returns V¥(x; — 1,x, + 1,x3) and EQ2 returns V¥ (xy, x, + 1, x3)

Hence, V¥(x; — 1,x, + 1,x3) < V*(x1,x, + 1, x3) holds due to the supposition.

It is optimal for station-2 not to produce in both Eql and Eq2.
Eq1l returns V¥ (x, x5, x3) and Eq2 returns VE(x; + 1, x5, x3)

Hence, V¥ (xy, x5, x3) < V¥(x; + 1, x5, x3) holds due to the supposition.

It is optimal for station-2 to produce in Eql but not to produce in Eg2.

Eql states that V¥ (x; — 1,x, + 1,x3) < VF(xy, x5, x3)

Eq2 states that V*(x; + 1,x,,x3) < VF(xy, x5 + 1, x3)

Hence, V¥(x; — 1,x, + 1,x3) < V¥(x; + 1, x,, x3) holds due to
Ve —1,x, + 1,x3) < VE(xy, x5, x3) S VF(x; — 1,x, + 1,x3)

< VR + 1, x5, x3)

It is optimal for station-2 not to produce in Eql but to produce in Eq2.
Eq1 states that V*(xy, x5, x3) < VF(x; — 1,x, + 1,x3)
Eq2 states that VX (xy, x, + 1,x3) < VF(x; + 1, x5, x3)

Hence, V¥ (xy, x5, x3) < V¥(x1,x, + 1, x3) holds similarly to the part c.

Consider control actions regarding p5:

e.

It is optimal for station-3 to produce in both Eq1 and Eq2.
Eql returns V¥ (x;, x, — 1,x3 + 1) and Eq2 returns VF(x; + 1,x, — 1,x3 + 1)
Hence, V¥(xy,x, — 1,x3+1) < V¥(x; + 1,x, — 1,x3 + 1) holds due to the

supposition.

It is optimal for station-3 not to produce in both Eql and Eqg2.

Eql returns V¥ (x,, x5, x3) and Eq2 returns V¥ (x; + 1, x5, x3)

Hence, V¥ (xy, x5, x3) < VF(x; + 1,x,, x3) holds.

It is optimal for station-3 to produce in Eq1 but not to produce in Eq2.
Eql states that V¥ (xy, x, — 1, x5 + 1) < V¥(xq, x5, x3)

Eq2 states that V¥(x; + 1,x5,x3) < VF(x; + 1,x, — 1,x3 + 1)

Hence, V*(x,x, — 1,x3 + 1) < V¥(xy,x, — 1,x3 + 1) holds similarly to the
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part c.

h. It is optimal for station-3 not to produce in Eql but to produce in Eqg2.
Eq1 states that V*(xy, x5, x3) < VF(xy,x, — 1,x3 + 1)
Eq2 states that V¥(x; + 1,x, — 1,x3 + 1) < VF(x; + 1, x5, x3)

Hence, V¥ (xy, x5, x3) < VF(x; + 1,x, — 1,x3 + 1) holds similarly to the part c.

We can conclude that the property holds for k+1. As k — o, value function V
converges with a given epsilon error, and the optimal value is found for the problem.
Also, the average cost is obtained while setting a to 0 and dividing the value function

by time steps. For i = 2, the proof is provided in Appendix 2.m

Figure 3.4 represents the optimal average cost and computation time (in minutes) of
the base case scenario as A increases. Since no upper boundaries are assigned to the
state variables (x;, X5, X3), a truncated state space of the variables is considered in
computational studies. In Figure 3.4, the traffic intensity of the system increases with
A, which causes larger state spaces for convergence of the optimal control problem and
sharp rises in the long-run average system cost. The number of states required for the
basic model in the figure equals 125 when A = 1. However, it reaches 2000 at A =5 and
exceeds 28,000 when A = 10.

100.0 7 600.0

. 800 1 500.0%
S 1 400.0 E
© 60.0 c
& 1 3000 < A Cost
— (5]
:% 40.0 | ZO0.0.E verage o.s |
—— Run Time (in minutes
20.0 1 1000 5 ( )
o
0.0 0.0

1 2 3 4 5 6 7 8 9 10
Demand Rate (A)

Figure 3.4. Average cost and run time versus demand rate

We carry out two experiments to analyze the effect of system parameters on the optimal
behavior. The first experiment is to examine the impact of lost sales cost ¢ €
{25, 50, 75} on the optimal average cost, as shown in Figure 3.5. At any value of 4,
the average cost is increasing in c. Although average cost responds slightly to changes

in ¢ at relatively lower A values, it varies with ¢ as A increases.
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Figure 3.5. Average cost versus ¢

The second experiment is designed to study the effect of production rates on the
optimal control problem. The base case scenario is defined as case 0, while six more
cases are created, as shown in Table 3.4. Average system costs of the optimal control
policies are presented in Figure 3.6 for all cases of Table 3.4, while A varies from 1 to
10. For every value of A in Figure 3.6, it is observed that case 6 produces the minimum
system cost where a faster machine is located downstream (u; = 15). The second and
the third minimum are cases 5 and 4, with the fastest machine is located at the

intermediate station and upstream, respectively.

Table 3.4. Production rates of the cases

Case 0 Case 1 Case 2 Case 3 Case 4 Case 5 Case 6
u, |10 5 10 10 15 10 10
w, |10 10 5 10 10 15 10
us |10 10 10 5 10 10 15

On the other hand, case 3 produces the maximum system cost when a slower machine
is assigned to the downstream station (u; = 5). The second and third maximum belong
to cases 2 and 1, respectively. If the production rate of any machine in the system is
increased, then the average cost is decreased. However, the location of the non-
identical station affects the system cost, and case 0 is placed between partitions of
cases 1,2,3 and 4,5,6. As it is shown in Figure 3.6, it is observed that the cost
deterioration due to a slower machine is distinctively higher than the cost improvement

due to a faster machine, when A > 5.
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Figure 3.6. Average cost versus production rates

The optimal production policies of the cases are examined, and it is observed that the
abovementioned observations a to d are still valid for all cases of the basic model at a

given A.

3.2. Extended Models with a Cox-2 Distributed Machine

This chapter considers extended models of three station make-to-stock systems to
investigate the effect of failure-prone machines, rework/remanufacturing operations
on a production line using two-phase Coxian (Cox-2) processing times. We examine
three different models: while keeping the processing time distributions of remaining
stations as Exponential, we assign Cox-2 processing times to upstream, intermediate
and downstream stations. These models allow us to investigate the effect of system
parameters and the location of the two-phase Coxian distributed machine on the

optimal control problems.

A Cox-2 random variable has two independent Exponential phases, and there is a
certain visiting probability from phase one to phase two (see Figure 3.7). A busy
machine with Cox-2 processing times should be either at the first phase or the second
phase at any given time in a production environment. Two-phase Coxian processing

times allow us to

e consider machine breakdowns-repairs, rework or inspection operations: if
processing times, times to failure and repair times of a machine are exponentially
distributed, then the distribution of the total time spent processing at the machine is
Cox-2 (Altiok & Stidham, 1983). For instance, frequent breakdowns with quick

repairs or rare breakdowns with long repairs can be studied.
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e model different system characteristics like incorporating customer requests in
products: exclusive features of products that require additional stage before their
production completion can be modeled, such as accessories of cars.

e approximate general service time distributions (Altiok, 1985; van der Heijden,
1988).

Figure 3.7. A representation of station-j with Cox-2 processing times

The system parameters are kept as they are defined for the basic model in Chapter 3.1.
Since phases of a Cox-2 random variable are exponentially distributed, i; represents
the production rates of the first Coxian phase and the machine with Exponential
processing times, depending on the processing time distribution of station j. The
additional parameters belong to Coxian processing times, where y is defined as the
production rate of the second phase of the Cox-2 distributed machine, and § is the
visiting probability from phase one to phase two. The notation of the extended models

is shown in Table 3.5.

Table 3.5. Notation of the extended models

Station index, j=1,2,3
A FG demand rate

c Lost sales cost

h; Holding cost rate of buffer-j (and the item being produced its downstream
station)

U Production rate of (i) the machine if its distribution is Exponential, (ii)

phase-1 of the machine if its distribution is Cox-2, at station-j
y Production rate of the second phase of the Cox-2 distributed machine

B Second phase visiting probability of the Cox-2 distributed machine

The extended models are presented in Figures 3.8, 3.9, 3.10, where the Cox-2
distributed machine is assigned to upstream, intermediate, and downstream locations.

Cox-2 processing times do not have the memoryless property. However, they have
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Exponentially distributed phases that are memoryless. In order to keep track of the
phase information, additional state variables are defined for each model: let y; and y,
be binary state variables defined to keep track of the production status of a Cox-2
distributed machine such that y; = 1 if i*" phase of the machine is busy, otherwise
y; =0,i=12.

In the extended models, the system state is defined as a vector of five variables. Let
(y1, Y2, X1, X2, X3) be the state vector of model 1 (see Figure 3.8), where y, and y, are
for the status of station 1, x; (x,) is the number of items in buffer-1 (buffer-2) plus the
item being processed its downstream station - due to Exponential processing times of
stations 2 and 3, and x5 is the number of items in the finished goods buffer. In model
2 (see Figure 3.9), (xq, y1, Y2, X3, X3) is the state vector such that x, is the number of
items in buffer-1, y; and y, are for the status of station 2, x, is the number of items in
buffer-2 plus the item being processed its downstream station - due to the Exponential
processing time assumption of station 2, x5 is the number of items in the finished
goods buffer. Model 3 has a state vector of (x;, x5, V1, Y2, x3) as shown in Figure 3.10.
The variable x; keeps the number of items in buffer-1 plus station-1, x, keeps the
number of items in buffer-2, y; and y, are for the status of station-3 that has Cox-2
distributed processing times, and x5 is defined for the finished goods buffer. Control

variables a; € {0,1},j = 1,2,3 are defined for each production stage such that a; = 1

if station-j is busy, it is idle otherwise.

Raw . Demand
material Wy, B) o N| (12) > (3) K
/ WIP1
L

.
/ WIP2 FG
L

Y1)z X1 X2

A J

Ny

X3
Figure 3.8. Extended model 1

The extended model 1 consists of a Cox-2 distributed machine at the upstream station
(Figure 3.8), and the domain of the control variable a, depends on the state variables
¥1,V, suchthata, € {0,1}ify, + y, = 0,and a; = y; if y; + y, = 1. That is if both
phases of Cox-2 are idle (y, + y, = 0), then control actions 0 and 1 are feasible for
the control variable a,. If the first phase is busy (y; = 1), then action a; = 1 has to
be taken because we assume that ongoing production cannot be cancelled. If the second

phase is busy (y, = 1), then action a; = 0 is the only feasible solution because
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production cannot be authorized at the first phase while the second phase is busy. The
DP formulation of the extended model-1 is given as follows:

min {hyx; + hyxy + haxs + AL(y1, Y2, X1, X2, X3)
v + a a;,an,as

V(y1, Y2, X1, X2, X3) =
+a iy Ty (Y1, Y2, X1, X2, X3) + Y2 ¥ To (Y1, V2, X1, X2, X3)

+ayu, T3(¥1, Y2, X1, X2, X3) + AspzTa (Y1, Y2, X1, X2, X3)

+ ((1 —y)y + 2?:1(1 - ) Hj) V(y1, Y2, X1, xz,x3)} (4)
where « is a discount rate, v=21+y + Z?zluj, and T;, T,, T5, T, are production-
related operators such that

BV(a;, —1,y, +1,x1,x,,%x3) +

T1(y1, Y2, X1, X2, x3) =3 (L = B)V(a; — 1,2, %1 + 1, x5, %3)
V(ay, ¥2,%1,%2,%3), a3 =0

a, >0

(V(ay, vy, —1,x1 +1,x5,%3), ¥y, >0

TZ(le y2’x1'x2'x3) = V(apJ’z, X1;x2;x3): V2 = 0

(V(ay,yy,x1—1,x, +1,x3), x>0

T =
371 Y2 %1, %2, Xs) V(ay, y2,x1,%2,%3), X1 =0

V(ay,yz, %, —Lxz3+ 1), x>0
V(all Y2, X1, X7, x3), Xy = 0

T4(y11 Y2, X1, X2, X3) =

L is a lost sales operator such that

V()’L}’z,xpxz.?% - 1), X3 >0

5
C+V(y1'y2'x1'x2'0)' X3 = 0 ( )

L(ylr yZ'x1'x2!x3) = {

Whenever a control action a; is taken, the system state (y;, ¥, X1, X2, X3) makes an
instantaneous transition to state (a,,y,, X1, X3, x3). Due to the nature of Coxian
processing times, there are three possible transitions regarding station-1 in the DP
formulation, as shown in (4): (i) the term a,u;BV(a; —1,y, + 1,xq, x5, X3)
corresponds to a transition from phase-1 to phase-2 of the machine, (ii) the term
au (1 —=pB)V(a; —1,y,,x1 + 1,x,,x5) is for a transition from phase-1 of the
machine to buffer-1, (iii) the term y,yV(a;,y, —1,x; +1,x,,x3) represents a

transition from phase-2 of the machine to buffer-1. The remaining terms are for

production completion at stations 2 and 3, and the term ((1 —yz)y+2§=1(1 -

a;) ltj) V(yq1, V2, X1, X2, x3) is self-transition due to uniformization.
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Figure 3.9. Extended model 2

In the extended model 2, a Cox-2 distributed machine is assigned to intermediate while
remaining machines operate with Exponential processing times (Figure 3.9). Control
variable a, depends on the state variables y,, y, such that a, € {0,1} if y; +y, =0,
and a, =y, if y; +y, = 1, while other control variables are defined as a,,a; €

{0,1}. The DP formulation of model 2 is given as

1
V (X1, Y1, Y2, X2, X3) = y min {h;(x; +y; +y2) + hax, + h3xs

+ a ay,az.a;3

+AL(x1, Y1, Y2, X2, X3)

+a gV (xy + 1, a5, Y2, %2, x3) + axuo Ty (X1, Y1, Y2, X2, X3)
+y2YTo (X1, Y1, Y2, X2, X3) + a3tz T3(X1, Y1, Y2, X2, X3)

+(A -y + 230 - a) ) Vv y2. 02 x3))  (6)
where « is a discount rate, v =1+ 7y + Zleuj and Ty, T,, T5 are production-related
operators such that
BV(x; —1,a, — 1,y, + 1,x,,x3) +

T1 (X1, Y1, Y2, %2, %3) =1 (1 = B)V(x; — La, — 1,y2,x, + 1,x3)
V(xy,a5,¥,,%x5,%x3), 0.W.

X1,a, >0

V(xy,a,,y, —1,x, +1,x3), vy, >0

Ta (X0, Y1, Y2 X2, %3) = { V(x1,a2,¥2,%2,%3), y2 =0

(x1,a5, V2, %3 — 1, x5+ 1), x, >0

T. =
3(x1,y1,y2,x2,x3) { V(xy, az:Yz»X2:X3): X, =0

L is a lost sales operator such that

V(xX1, Y1, Y2, X2, 63 — 1), x3 >0

7
c+V(x1,Y1,Y2,%2,0), x3=0 0

L(X1,Y1,¥2,X2,X3) = {

The system state (x,yq,V2, X2, x3) makes an instantaneous transition to state
(x1,a5,¥2,%2,x3) When a control action a, is taken. The operators T, and T,
represent the transitions from the first and second phases of the Coxian distributed

machine. The operator T; is defined for the production completion event at station-3.
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Figure 3.10. Extended model 3

Model 3 consists of Cox-2 processing times at the downstream station (Figure 3.10).
Exponentially distributed stations 1 and 2 are controlled with variables a;, a, € {0,1}.
The domain of control variable a5 is defined as a; € {0,1} ify; +y, = 0,and a; =
y1 if y; +y, = 1, which causes an instant transition from state (x;, x5, y1, V2, X3) t0

(x1, x5, a3, ¥y, x3). The DP formulation of model 3 is developed as follows:

V(x1,%X2, Y1, Y2, X3) = mirzl {hixs + hy(x + y1 +y2) + haxs

V + a ai,az,a3
+AL(x1, X3, Y1, Y2, X3)
FauV(xy + 1, %5, a3, 7, X3) + aguaVTy (X1, X2, Y1, Y2, X3)
taspsT, (X1, X2, Y1, Y2, X3) + Y2y T3(x1, X2, Y1, V2, X3)

+ (= 2y + Zioa(l = @) i) V ey, 0, 71, Y2, %)} (8)
where « is a discount rate, v=A1+y + 2?:1#1' and and Ty, T,, T5 are production-
related operators such that

V(x; —1,x,+1,a3,y2,x3), X1 >0

Tl(xly xZ! 3’1' J’Z: x3) = { V(x1;x2; a3J’2' xs), xl = O

ﬁV(Xl,XZ - 1, a3 - 1,y2 + 1, X3) +
T, (x1, %2, Y1, Y2, %3) =3 (1 = BV (xy,x, — 1,a3 — 1,y5,x3 + 1)’
V(xllXZl a3;3’2:x3); 0.w.

Xy,a3 >0

V(xl, Xp,A3,Y2 — 1, X3 + 1), Vo >0

TS(X1,X2,}’1:3’2,X3) = { V(xl,xz,a3,yz,x3), v, =0

L is a lost sales operator such that

V(x1,%2, Y1, Y2, %3 — 1), x3 >0

9
C+V(X1,X2,y1,y2,0), X3 = 0 ( )

L(x1,X2, Y1, Y2, X3) = {

In the extended model 3, the operator T; represents the production completion event
at station-2. The operators T, and T5 are defined for the transitions from the first and

second phases of the Coxian distributed machine.
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The dynamic programming formulations developed for the extended models are based
on a discounted cost criterion with a discount rate of a as in the basic model. The
average system cost is obtained via the value iteration algorithm given in Figure 3.2

of Chapter 3.1.

In the extended models, the optimal policy decides whether fo produce or not to
produce at each machine, similar to the basic model developed in Chapter 3.1. Thus,
there are eight different production control actions. Let A = {0,1,..,7} be the action
space for the production control actions. The details of the control actions are presented
in Table 3.2 of Chapter 3.1. For numerical experiments, we define a set of parameters
as given in Table 3.6 below. Lost sales cost c is set to 50, holding cost rates are defined
as [hq, hy, hs] = [1, 1.5, 2], and demand rate is A € {3,4,5,8}. Production rates of
Exponentially distributed stations and the first phase of Cox-2 distributed station are
set to 10. The production rate of the second phase of Cox-2 is set as y € {5,10,20}.
Visiting probability f has a range of {0, 0.1, ..., 0.9, 1}. For simplicity, § = 0
corresponds to an Exponential random variable where its parameter is the phase-1
parameter of Cox-2, f = 1 corresponds to a generalized Erlang random variable. For
each extended model, 132 instances are created, and the optimal control problem is
solved. In numerical studies, the termination criterion for the value iteration algorithm

issetto e = 1072,

Table 3.6. Set of parameters defined for the numerical studies

[hy, Ry, hs] [1,1.5, 2]

A {3, 4,5, 8}

c 50

(i1, t2, 3] [10, 10, 10]

14 {5, 10, 20}

B {0.0,0.1, ..., 0.9, 1.0}

The optimal policies of the extended models depend on the Cox-2 phases. The results
are represented for the states when (i.) both phases are idle, (y,,y,) = (0,0); (ii.) the
first phase is busy, (y4,y,) = (1,0); (iii.) the second phase is busy, (y,,v,) = (0,1).
Table 3.7 presents an example of the optimal policy for model-2 with parameters of

A=4,y=5p=06
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4y =58=06

Table 3.7. An example of the optimal policy for model 2, 4
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Control actions are observed to change under Cox-2 stage information. Consider the
states where it is optimal to produce at all stations (action 7). It is observed for every
x, in Table 3.7, the area of action (7) under the information that the first or second
Coxian phase is busy is greater than when both Coxian phases are idle. In addition, the
policy has slight changes depending on the busy stages of Cox-2.
action{(xy, X2, x3|y1,v2) = (2,3,5/1,0)} = 4 states that it is optimal for station 3 to
remain idle and stations 1 and 2 to produce if the first Coxian phase is busy. On the
other hand, it is optimal to activate stations 1 and 3 if the second Coxian phase is
operating, i.e. action{(xq, x5, x3|v1,y2) = (2,3,5]0,1)} = 6. Such observations are
general to any extended models depending on the values of Cox-2 parameters 8,y and
demand rate A. The effect of stage information on the optimal policy is prevalent at

higher A values.

The observation leading to the proposition of Chapter 3.1 “ There is a threshold T; for
x; = 0,1 € {1,2} such that it is optimal not to produce at station-i when x; > T; for all
Xj,J € {1,2,3} — {i}.” for the basic model is also identified in the extended models.
The threshold for the example in Table 3.7 is shown as T; = 4 when (y;,y,) = (0,0),
itis T; = 5 when (y4,y,) = (1,0) and (y4,y,) = (0,1).

The numerical results for the extended models are presented in Figures 3.11 — 3.19.
For the sake of interpretation of the Coxian parameters, the results are shown as
optimal average cost versus visiting probability § considering three different values of
y in each model. In addition, four different demand levels are considered. The

parameters used in numerical studies are shown in Table 3.6.
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Figure 3.11. Optimal cost versus f (y=5), Model-1
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Figure 3.17. Optimal cost versus 3 (y=5), Model-3
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Figure 3.19. Optimal cost versus 3 (y=20), Model-3

It is observed for all models that

At a given A, the average cost is an increasing function of  for each v, and it is

a decreasing function of y for each B. The effect of B on the average cost is

noticeable at relatively higher values of A and y. As A decreases and y increases,

the cost curve flattens.

For any y — P pair, the average cost is an increasing function of A. The

percentage cost increment due to A increases with B and decreases with vy.

Although the cost structure follows a similar pattern between models, at any

intersection of A, B and vy, locating a Cox-2 distributed machine at the

downstream stage (model- 3) produces the highest system cost. In contrast, the



minimum system cost consists of a system with a Cox-2 distributed machine at

the upstream stage (model-1).

The optimal policy is observed to be highly sensitive to visiting probability B when
y < 20. For those instances, state space, hence the action space increases with . On
the other hand, it is observed at y = 20 that the optimal policy does not change after a
certain value of B. As y — oo, it is expected that the effect of B on both optimal policy

and optimal cost would be diminished.
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CHAPTER 4
PROPOSED PRODUCTION POLICIES

This chapter proposes alternative approaches to the optimal control problems of three
station make-to-stock systems. Optimal production control requires action at each state
of the system. Thus, it poses a challenge on computation time of production lines as
state spaces enlarge. The fact that the curse of dimensionality in finding optimal
policies remains, alternative approaches have become prominent. Alternative policies
would be expected to be easy to apply and perform near-optimal. In this chapter, an
alternative policy called no intentional idleness, which corresponds to an approach
where machines operate whenever possible, is considered. Production is merely
interrupted with the occurrence of blocking and starvation, and failures if exist. A
station is blocked if its service is completed, but its downstream buffer has no room.
If a station is idle because its upstream buffer has no item, then it is starved.

The proposed policy eliminates production control decisions (control actions) and
constitutes an approximate solution to the optimal control problems. A substantial
amount of research has been conducted to analyse production lines under the no
intentional idleness approach. However, throughput is one of the most studied metrics
for systems considering several configurations of machines and buffers (J. Li et al.,
2009).

Another important aspect is the -no finished goods buffer to meet the demand-
assumption (Diamantidis et al., 2020; H. T. Papadopoulos et al., 1989, 1990) in the
performance analysis under no intentional idleness. This chapter presents an important
contribution to the production systems literature by considering three-station make-to-
stock flow lines under the proposed approach and its performance comparison to the
optimal policy. The proposed approach and the optimal policy have not been compared

in three-station make-to-stock systems to the extent of our knowledge.

The proposed policy is presented for the basic model and extended models in Chapter

4.1. The basic model consists of Exponential processing times, while extended models
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include Exponential and two-phase Coxian processing times to incorporate real-world
features into our problems. It is observed that the proposed policy performs near-
optimal for models with Cox-2 processing times. The average optimality gap is
calculated as less than 3% in numerical experiments conducted with 396 instances. For
the basic model with Exponential processing times, the performance of the proposed
policy alternates depending on the demand rate and production rates of machines. The
performance of the proposed policy deteriorates in cases with lower demand rates. A
modified version of the proposed approach is developed for such cases and presented

in Chapter 4.2.

4.1. No Intentional Idleness Policy

The proposed no intentional idleness (NI) policy relies on eliminating production
control decisions and letting machines produce whenever possible. Production could
be temporarily suspended due to blocking and starvation. In the optimal control
problem described in Chapter 3, buffer capacities are assumed to be infinite, i.e.
blocking does not occur. However, NI policy may let infinitely many finished goods
be produced under this assumption. While imposing the policy, we set finite buffer
capacities for the make-to-stock flow line model to indirectly control the production.
Blocking and starvation interrupt production; although a station is operational, it could
not operate on an item. The cost structure is defined as follows: Holding cost rate h; is
charged for the items in jt* buffer. The same cost is incurred for the item in j¢" station
if the station is blocked. For each demand that cannot be met from the finished goods

buffer, lost sales cost c is paid.

Let m; = 0 be the capacity of buffer j, j=1,2,3. In case of m; = 0, a completed item

at station j causes blocking at the station until the machine at its downstream becomes
idle. Our objective is to find optimum buffer capacities mj, m3, m; that minimize the

long-run average system cost composed of holding and lost sales costs.

The proposed policy is modeled using ARENA Simulation Software 2019. Our
problem is a steady-state simulation model which has no natural termination criterion.
However, we define a stopping criterion based on a certain number of events occurring
in the system, revealing that the statistics stabilize. Then, the long-run average system
cost and throughput is collected for given values of m;,m, and ms. A single

replication is considered; a counter variable is defined to keep a count of the number
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of times station-3 has seized an entity, which terminates the replication after reaching
a specified number. Figure 4.1 depicts an example of the system throughput and
average cost as functions of the counter variable (which keeps a count of the number
of times station-3 has seized an entity). It is noted that the statistics approach steady-
state after the counter reaches 2.75 million, two-digit accuracy after the decimal
separator is obtained in both statistics.

8.91 1.984
8.90 Average Cost 1.983
1.982
g 889 1981 =
< 888 1980 £
o =}
©
S 887 Throughput —| 1979 2
[«5)
z /\ 1.978
8.86
1.977
8.85 1.976
8.84 1.975

Figure 4.1. System throughput and average cost as functions of event occurrence

The cost structure is observed by inspection: a wide range of elements are considered
for variables m,, m,, ms in several settings and the buffer capacities mj, m3, m3 that
minimize the average system cost is obtained. Assuming the cost structure is convex
based on numerical inspection, optimal buffer capacities are obtained with an
exhaustive search over the state space of the proposed policy. The experiments are
carried out on a Core i7, 2.80 GHz, 16 GB RAM computer. The no intentional idleness
policy results are then compared to the optimal policy studied in Chapter 3. In addition
to the time-average cost criterion, simulation allows us to obtain the system’s

throughput.

We first consider the basic model with Exponential processing times as described in
Chapter 3.1. The system parameters are set as A = {1,..,10},c = 50,h; = 1,h, =
1.5, h; = 2. In total, seven cases are created with different production rates, as shown
in Table 3.4 of Chapter 3.1. The base case scenario is defined as case 0 with production
rates of (uq, 4y, u3) = (10, 10, 10) while the remaining cases are designed as follows:
(5, 10, 10) in case 1, (10, 5, 10) in case 2, (10, 10, 5) in case 3, (15, 10, 10) in case 4,
(10, 15, 10) in case 5 and (10, 10, 15) in case 6, as shown in Table 3.4 of Chapter 3.1.
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The optimality gap (%) of the proposed policy is presented in Figures 4.2 and 4.3 as 1
increases. In both figures, holding costs constitute most of the system cost of the
proposed policy at lower A values. However, the optimality gaps of cases 1-2-3
converge to zero as A increases, as shown in Figure 4.2. In Figure 4.3, optimality gaps
of remaining cases 0-4-5-6 follow the same pattern, while case 4 presents the
maximum gap. On the other hand, gaps are obtained as 1.55% (case 0), 2.24% (case
4), 1.17% (case 5) and 1.01% (case 6) at A = 10.
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Figure 4.3. Optimality gap (%) of cases 0-4-5-6 versus demand rate

Figure 4.4 presents throughput of the cases 0-6 under given that the optimal buffer
capacities mj, m3, mj that minimize the long-run average system cost. The first three
cases consist of a machine with a production rate of 5, reaching their maximum

throughput values at A = 6. In addition, those cases produce higher system costs than
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case 0 in optimal production control policy, as shown in Chapter 3.1. The throughput
values of cases 0-4-5-6 increase with A, while case 0 provides a slightly lower
throughput than cases with a faster machine. Case 6, in which a faster machine is
assigned to the downstream location, has the maximum throughput, with the second
maximum being case 5 having a faster machine at the intermediate stage. In optimal
control problems of the basic model in Chapter 3.1, it is observed that cases 6 and 5

produce the minimum and the second minimum system costs.

It is shown in (Buzacott & Shanthikumar, 1993) that the throughput of a three-station
flow line is maximized if the fastest station is located in the middle stage and the
slowest stations are located in the first and third stages. The study assumes finite
intermediate buffers but no finished goods buffer. On the contrary, our study consists
of a make-to-stock production setting with a well-defined cost objective. In numerical
experiments, the maximum throughput is obtained in case 6, where the faster machine

is assigned to station-3, and case 5 provides a slightly lower throughput.

10.0
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8.0
70 —B—Case0
g_ 6.0 ——Case 1l
g’ 5.0 —+—Case 2
E 4.0 —X%— Case 3
3.0 —6—Case 4
2.0 —A—Case 5
L0 —=—Case 6
0.0

Figure 4.4. Throughput of the cases under mj, m3, m3

The optimal buffer capacities (m7j, m3, m3) of the cases under the proposed policy are
presented in Table 4.1. For any given A, it is observed in cases 1-2-3 that while the
location of the slower machine moves downstream, mj tends to decrease and m3 tends
to increase. On the contrary, while the location of the faster machine moves

downstream (cases 4-5-6), m] tends to increase and mj; tends to decrease.

Moreover, for the systems having a slower machine, a non-monotone trend is observed

in the optimal capacity of its downstream buffer as A increases. Consider the results of
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mj in case 1, as shown in Table 4.1: m] increases until A = 6, and then it decreases,
recalling that case 1 represents the model with a slower machine at the first station.
The same structure is preserved in the results of m; in case 2 and m3 in case 3, the
same breaking point at A = 6 represents their convergence point of throughput, as
shown in Figure 4.4. On the other hand, for cases 4 to 6 and 0, optimal buffer capacities

increase with A.

Table 4.1. Optimal buffer capacities of the cases

Case 0 Case 1 Case 2 Case 3 Case 4 Case 5 Case 6
Am; my mi|mi my, mi|m; mi mi|m; m), mi|m; mi mi|m; mi, mi|m] mi mj
1,0 0 10 0 20 0 2|0 0 2|0 O 1|0 O 1|0 0 1
20 0 2y0 0 240 0 2|0 O 3|0 O 2|0 0 2|0 0 2
3| o 3j1. 12 3(0 2 3(0 O 5(0 O 3(0 O 3|0 0 3
410 1 4|4 1 4|1 4 5({0 1 90 1 4|0 0 4|0 1 3
5/1 1 612 2 5|3 10 6|0 3 150 1 6|1 1 5|1 2 4
612 2 7127 2 5|4 24 6|1 4 261 2 7|1 1 7|2 2 5
713 4 9124 2 5|4 19 5|1 5 23|11 4 9|2 2 9|3 4 6
8|5 6 12|19 2 5|4 17 5|1 5 19(2 6 1244 3 126 6 7
9/8 10 17|15 3 5|4 16 5|1 5 17(3 9 176 5 1619 10 9
10111 17 16|13 3 6|4 13 6|1 5 16|4 15 24|11 7 24|17 18 10

In addition to the basic model with Exponential processing times, the performance of
extended models with Cox-2 processing times under the proposed approach is
compared with the optimal policy. Extended models consist of three different designs,
and their optimal control problems are presented in Chapter 3.2. While processing
times of remaining machines are Exponentially distributed, Model-1 consists of a Cox-
2 distributed machine at the upstream stage (Figure 3.8), processing times are Cox-2
at the intermediate station in Model-2 (Figure 3.9), and Cox-2 processing times are

assigned to station at the downstream stage in Model-3 (Figure 3.10).

Numerical experiments of extended models are based on the set of parameters given
in Table 3.6 of Chapter 3.2. Holding cost rates are set to [hq, h,, h3] = [1,1.5,2], lost
sales cost c is set to 50. Production rates of Exponentially distributed machines and
the first phase of Cox-2 distributed machine are equal to 10. The production rate of the
second Coxian phase is defined as y € {5,10,20}. The last Coxian parameter, visiting
probability 3, varies from 0 to 1. Four different demand rates are considered such that

A = {3,4,5,8}. The set of parameters selected for the experiments creates different
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processing time moments for Coxian and analyzes different rework/failure

characteristics considering moderate and higher demand rates.

Figures 4.5 — 4.13 present the optimality gap (%) of the proposed policy for extended
models. In total, 360 instances are created and solved, and the maximum optimality
gap of a single instance is recorded as less than 6%. It is important to note that the
performance of the extended models against the optimal policy is quite similar to each
other. However, when y = 5, it is observed that Model-3 produces the highest average
optimality gap at every demand rate. Model-1 delivers a slightly higher optimality gap
considering all of the instances. The overall gap (%) of the models are calculated as
2.33 (Model-1), 1.89 (Model-2), and 2.14 (Model-3). At 4 = 8, the average cost of the
proposed policy converges to the optimal policy as S increases. The expected time to
production completion increases with visiting probability. The expected value of a

Cox-2 random variable X denoting the processing time of a machine with parameters
(w, v, B) is calculated as i + g In general, lower y and higher S constitute the worst-

case scenario in terms of production completion time. Production control policy tends
to produce whenever possible, according to the observed optimality gap results. On

the other hand, the performance of the proposed policy slightly deteriorates at higher

y values.
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Figure 4.5. Optimality gap (%) of Model-1, y=5
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Figure 4.9. Optimality gap (%) of Model-2, y=10
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Figure 4.11. Optimality gap (%) of Model-3, y=5
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Figure 4.12. Optimality gap (%) of Model-3, y=10

Figure 4.13. Optimality gap (%) of Model-3, y=20

49

B3
—o— =4
—A =5
0 )=8

Y=5
—8-1=3

o \=4
—A =5
0 )=8

o \=4
—A =5
—0—)=8



Table 4.2. Throughput under mj, m;, ms

Model-1

=5

A=3
vy=10

=20

=5

=4
=10

=5

A=5
v=10

=20

Y=5

=8
=10

v=20

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

2.96
2.94
2.95
2.94
2.93
2.94
2.92
2.92
2.92
2.90
2.88

2.96
2.95
2.95
2.94
2.94
2.93
2.95
2.95
2.95
2.94
2.94

2.96
2.95
2.95
2.95
2.95
2.95
2.95
2.95
2.94
2.94
2.94

3.94
3.94
3.92
3.91
3.91
3.89
3.87
3.82
3.73
3.56
3.33

3.94
3.93
3.95
3.94
3.94
3.93
3.92
3.93
3.92
3.91
3.91

4.93
491
4.89
4.88
4.85
4.74
451
4.16
3.85
3.57
3.33

4.93
4.91
4.90
4.91
4.89
4.90
4.91
4.86
4.87
4.82
4.76

4.93
4.92
4.92
491
491
4.90
4.93
4.92
491
4.90
4.89

7.76
7.66
7.12
6.25
5.56
5.00
4.55
4.17
3.85
3.57
3.33

7.76
7.73
7.67
7.51
7.13
6.67
6.25
5.88
5.56
5.26
5.00

7.76
7.75
7.74
7.72
7.69
7.63
7.53
7.36
7.14
6.90
6.67

Model-2

v=5

A=3
y=10

=20

v=5

r=4
vy=10

=20

v=5

A=5
y=10

=20

v=5

A=8
y=10

=20

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

2.96
2.93
2.95
2.93
2.95
2.92
2.93
2.90
2.89
2.86
2.87

2.96
2.95
2.94
2.94
2.96
2.96
2.95
2.95
2.94
2.93
2.93

2.96
2.95
2.95
2.95
2.95
2.94
2.94
2.94
2.94
2.93
2.96

3.94
3.93
3.92
3.92
3.90
3.88
3.82
3.76
3.68
3.53
3.32

3.94
3.93
3.91
3.93
3.92
3.93
3.92
3.91
3.93
3.91
3.88

3.94
3.93
3.93
3.93
3.92
3.92
3.94
3.93
3.93
3.92
3.92

4.93
4.90
4.88
4.86
4.78
4.69
4.47
4.14
3.82
3.56
3.33

4.93
491
4.92
4.90
4.90
4.87
4.87
4.85
4.82
4.80
4.72

4.93
4.92
491
4.90
4.90
4.92
4.92
491
4.90
4.88
4.90

7.76
7.60
7.03
6.20
5.51
4.96
4.53
4.15
3.84
3.56
3.33

7.76
7.71
7.63
7.42
7.05
6.60
6.22
5.85
5.52
5.24
4.97

7.76
7.74
7.71
7.69
7.65
7.56
7.46
7.29
7.05
6.84
6.63

Model-3

=5

v=10

=20

=5

v=10

v=20

Y=5

v=10

=20

=5

v=10

v=20

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

2.96
2.96
2.94
2.92
2.93
291
291
2.88
2.88
2.84
2.82

2.96
2.95
2.94
2.97
2.96
2.95
2.95
2.94
2.93
2.92
2.95

2.96
2.95
2.95
2.95
2.94
2.94
2.94
2.93
2.97
2.96
2.96

3.94
3.93
3.92
3.91
3.88
3.85
3.79
3.72
3.61
3.45
3.27

3.94
3.92
3.95
3.93
3.92
3.90
3.92
3.90
3.88
3.90
3.87

3.94
3.93
3.93
3.92
3.92
3.95
3.95
3.94
3.93
3.93
3.92

4.93
4.88
4.87
4.83
4.75
4.62
4.43
4.10
3.82
3.54
3.32

4.93
4.90
491
4.88
4.89
4.89
4.85
4.83
4.80
4.75
4.69

4.93
4.92
491
4.90
4.89
4.92
4.90
4.89
4.88
4.90
4.89

7.76
7.56
6.97
6.17
547
4.95
451
4.13
3.81
3.55
3.32

7.76
7.70
7.57
7.35
7.00
6.55
6.17
5.82
5.51
5.22
4.95

7.76
7.73
7.70
7.67
7.60
7.51
7.39
7.23
7.01
6.79
6.60
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Throughput rates of the instances under the proposed policy with optimal buffer
capacities (mj, m3, m3) are presented in Table 4.2 for every instance of the extended

models. According to the results,

e Throughput is an increasing function of demand rate A at any values of visiting
probability S.

e Throughput sharply decreases in instances when y =5 as B increases.
However, the effect of £ on throughput is reduced as y increases.

e Throughput is less sensitive in changes of parameters at lower demand rates.

e Although effects of system parameters on throughput pursue a similar pattern
in every model, Model-1, which constitutes a design with Cox-2 processing

times at the upstream stage, produces a slightly higher throughput rate.

Table 4.3. An example of optimal buffer capacities of the extended models

A=5, y=5 A=8, y=5
Model-1 Model-2 Model-3 Model-1 Model-2 Model-3

m; m; m;|m; m; m;|m; mi; mi;|mi m; mij|m; mi; mi;|m; m; mj

1 1 6 1 1 6 1 1 6 |5 6 12|5 6 12|5 6 12

01| 2 1 6 1 2 6 1 1 711 7 12| 7 11 13| 4 8 19
02| 3 2 5 1 4 6 1 2 8 |26 8 118 24 12| 4 8 32
03| 4 2 6 2 5 6 1 2 10|25 5 8|7 25 8|3 7 27
04| 7 2 6 2 7 6 1 2 12|25 3 6|5 19 6|2 5 21
05|12 2 513 10 6 1 3 14|19 2 5|4 18 5|1 5 20
0619 1 513 17 5 1 3 19|16 2 4|4 15 5|1 4 14
07124 1 4 | 3 22 5 1 3 24|14 1 43 12 4|1 3 11
08|22 1 3 2 24 4 1 2 24,9 1 3|3 11 4|1 2 10

09|16 O 3 2 23 3 1 2 247 1 32 8 3|1 2 8

1114 0 3 2 18 3 1 2 22|19 1 3(2 7 3|1 2 8

Optimal buffer capacities (mj, m3, m3) of the instances are provided in Appendix 3.
The effect of 8 on optimal buffer capacities mj, m;, m3 is significant at y = 5. Table
4.3 presents an example of the buffer capacities for two different demand rates A = 5
and A = 8 when y = 5. Itis observed in all instances that, at y = 5, the optimal capacity
of the downstream buffer of Cox-2 distributed machine rapidly increases until a certain
threshold of £, and then it starts to diminish. For instance, the maximum of mj of
Model-1 is observed when § = 0.7atA =5, and itisf = 0.2at A = 8, as seen in

Table 4.3. However, the instances with higher values of y and lower values of A,
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mj, m;, m3 slightly change with §. For example, when A=3 and y = 20, optimal
capacities are obtained as (mj, m3, m3) = (1,1,3) for every instance of Model-3 (see
Appendix 3). Furthermore, the total space required in buffers decreases in every model

as y increases.

In the analysis of the basic model with Exponential processing times, it is observed
that holding cost constitutes the major part of the system cost of the proposed policy
at lower A values. Due to the nature of the proposed approach, the first station is either
busy or blocked, but it is never starved because the raw material supply is ample. For
this reason, Chapter 4.2. proposes an easy-to-apply control to the supply process of the

basic model to improve the performance of the proposed approach.

4.2. Extended No Intentional Idleness Policies

The proposed no intentional idleness policy authorizes production for every machine
whenever possible. The long-run average system cost consists of holding and lost sales
costs, and the objective is to obtain buffer capacities (mj, m3, m3) that minimize the
system cost. Even though an optimal value for a buffer is zero, holding cost is incurred
for each blocked machine. For the basic model with Exponential processing times, the
performance of the proposed policy depends on the demand and production rates. The
performance of the proposed approach deteriorates in cases with lower demand rates
because holding cost causes a majority of the system cost. For such cases, this chapter
presents a modified version of the alternative approach to improve the performance.

Due to the ample raw material supply assumption, station-1 is never idle; however,
stations 2 and 3 could be starved. The main idea is to propose an easy-to-apply
mechanism for the raw-material supply process. Initially, five different stopping
criteria are defined as follows:

NI Alternative-1 (NI -1): raw material is released when station-2 or station-3 is idle.
NI Alternative-2 (NI -2): raw material is released when station-2 is idle.
NI Alternative-3 (NI -3): raw material is released when station-3 is idle.

NI Alternative-4 (NI -4): raw material is released when both station-2 and station-3 is
idle.

NI Alternative-5 (NI -5): raw material is released when either station-2 or station-3 is
idle.
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In each alternative, station-1 remains idle until the corresponding criterion is met since
the raw material is not released. Thus, the aim is to prevent excessive holding costs

due to ample supply assumption.

A set of test runs are carried out to evaluate the performance of each alternative policy,
and results are presented in Tables 4.4 and 4.5. Cases 2, 3 and 5 are selected for the
test runs while the demand rate varies from 1 to 4. It is observed that every proposed
alternative outperforms the NI policy at A =1. It also noted that every alternative
approach requires more buffer spaces than the proposed policy at every instance (see
Table 4.5). However, Alternative-1 (NI -1) results in the best performance among other
rules, noting that NI -5 performs the same as NI -1 except A =2 of case 3. Table 4.6
presents a performance comparison between the proposed policy, NI-1 and the optimal

policy for all seven cases of the basic model.

According to the average optimality gaps (%) of the proposed policies in Table 4.6,
significant improvement is achieved with NI-1 comparing to NI in every instance
except case 1. In case 1, the cost improvement is observed only at A =1 in NI -1, and
the policy deteriorates as A increases. On the other hand, NI policy provides a

minimum average optimality gap (%) with case 1, as shown in Table 4.6.

Table 4.4. Test results — (1)

Optimal Optimality Gap (%)
» |  Cost NI-L  NI-2  NI-3  NI-4 NI5 NI
1] 620 000 032 0.00 402 000  11.30
~ 2] 9@ 040 498 207 208 040  5.25
8 3| 1447 249 1917 934 5591 249 321
4| 2131 795 4985 1418 7278 795 353
1] 639 779 779 7.79 184 779 1860
@ | 2| 1036 254 327 263 1797 263 807
S 3| 1525 540  7.36 752 5375 540 633
4| 2296 621 978 1930 7073 621 571
1] 549 551 534 3.17 196 551 1879
o |2 804 025 111 0.25 769 025 822
8 3| 1049 287 692 287 2576 287 358
4| 1330 390 1110 614 5290 390  3.48
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Table 4.5. Test results — (2)

Optimal Buffer Capacities (mj, m;, m3)
A NI-1 NI-2 NI-3 NI-4 NI-5 NI
1] (00,) (0,0,1) (0,0,1) (0,0,2) (0,0,1) (0,0,1)
~ 2] (112) (0,1,2) (0,0,3) (0,0,5) (1,1,2) (0,0,2)
S 3] @24 (053 (2,1,5) (0,0,15) (1,24)  (0,2,3)
4| 257 (0,7,6) (4,1,9) (0,0,10) (2,5,7) (1,4,5)
1] (00,1 (0,0,1) (0,0,1) (0,0,2) (0,0,1) (0,0,1)
® 2] (003) (0,0,3) (0,0,3) (0,0,5) (0,0,3) (0,0,3)
8 |3 @iy (0,1,5) (1,0,6) (0,0,15) (1,1,5) (0,0,5)
41 (1,29 (0,3,9) (1,0,12) (0,0,11) (1,2,9) (0,1,9)
1] (0,01 (0,0,1) (0,1,1) (0,1,1) (0,0,1) (0,0,1)
w | 2] (002) (0,0,2) (0,0,2) (0,0,3) (0,0,2) (0,0,2)
8 3] 103 (0,1,3) (1,0,3) (0,0,6) (1,0,3) (0,0,3)
4| (214 (1,2,4) (1,0,5) (0,0,13) (2,1,4) (0,0,4)

Table 4.6. Performance Comparison: Optimal Policy vs NI vs NI -1

Parameters Optimal NI -1 NI
AW Uy s Cost |Gap% Avg Gap% m; m} m;|Gap% Avg Gap% m; m; m;
1 10 10 10 5.84 | 051 0 0 1/13.88 0 0 1
o (2 10 10 10 8.32 | 0.60 0 0 2|641 0 0 2
@ 2.1 6.7
§ |3 10 10 10 | 1119 | 219 1 1 3]219 0 0 3
4 10 10 10 | 14.23 |5.20 1 1 5]4.18 0 1 4
1 5 10 10 6.08 | 0.00 0 0 110939 0 0 1
— |2 5 10 10 941 | 2.89 1 1 2063 0 0 2
@ 6.3 3.1
813 5 10 10 | 13.42 | 6.42 2 2 4147 1 1 3
4 5 10 10 | 19.05 |16.08 3 2 8]1.09 4 1 4
1 10 5 10 6.20 | 0.00 0 0 11130 0 0 1
«~ |2 10 5 10 9.92 | 0.40 1 1 2]525 0 0 2
@ 2.7 5.8
S |3 10 5 10 | 14.47 | 2.49 1 2 4321 0 2 3
4 10 5 10 | 21.31 | 7.95 2 5 71353 1 4 5
1 10 10 5 6.39 | 7.79 0 0 1]18.60 0 0 1
m |2 10 10 5 10.36 | 2.54 0 0 3] 807 0 0 3
8 55 9.7
g3 10 10 5 15.25 | 5.40 1 1 5]6.33 0 0 5
4 10 10 5 22,96 | 6.21 1 2 9571 0 1 9
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Table 4.6 (cont’d). Performance Comparison: Optimal Policy vs NI vs NI -1

Parameters Optimal NI -1 NI
Aoy My U3 Cost |Gap% Avg Gap% m; mj m;|Gap% Avg Gap% m; m; m;
1 15 10 10 | 553 |5.64 0 0 1/|1882 0 01
2 15 10 10 | 8.13 | 0.37 0 0 2887 0 0 2
% 3 15 10 10 | 10.65 | 3.18 35 0 0 3|542 9.0 0 0 3
© 4 15 10 10 | 13.66 | 2.78 1 1 4|554 0 1 4
5 15 10 10 | 16.99 | 5.72 3 2 5|6.29 0 1 6
1 10 15 10| 549 |551 0 0 1/1879 0 01
2 10 15 10 8.04 | 0.25 0 0 2]8.22 0 0 2
g 3 10 15 10 | 1049 | 2.87 4.0 1 0 3] 358 7.9 0 0 3
© 4 10 15 10 | 13.30 | 3.90 2 1 4] 348 0 0 4
5 10 15 10 | 16.53 | 7.24 3 2 6549 1 1 5
1 10 10 15 547 | 2.84 0 0 1]16.49 0 0 1
2 10 10 15 7.83 | 0.25 0 0 2| 756 0 0 2
g 3 10 10 15 | 10.25 | 2.38 3.1 1 0 3]321 6.7 0 0 3
© 4 10 10 15 | 12.93 | 2.86 2 1 4] 3.00 0 1 3
5 10 10 15| 1599 | 7.30 3 2 6|34 1 2 4
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CHAPTER 5
A MARKOVIAN ANALYSIS OF MAKE-TO-STOCK PRODUCTION
LINES WITH LIMITED SUPPLY

This chapter considers production lines with parallel-machine stations and two-phase
Coxian processing times. The setting in this study is designed specifically for scrutiny
of the replenishment of raw materials and finished goods inventories with intermediate
buffers in-between stations. Each buffer has a capacity limit. Raw material supply and
demand for finished goods are generated according to independent stationary Poisson
processes. Two-phase Coxian (Cox-2) processing times can be utilized to model
failure-prone machines with exponential service times, times to failure, and repair
times (Altiok & Stidham, 1983). The second phase of Coxian-2 can also be considered
as a rework operation visited with a certain probability. We model the production
system as a continuous-time Markov chain and propose recursive algorithms to
generate the transition rate matrix. Although the general recursive form is limited to
3-station 4-buffer lines, routines for calculating the number of states and generating
the states work for any M-station (M+1)-buffer systems. The developed model allows
obtaining steady-state distribution and performance metrics such as throughput, the
average number of items in the buffers, and average system cost consisting of
production, holding, and shortage costs. Furthermore, we enrich our study with
numerical experiments and analyze the impacts of buffer capacities, the number of
parallel machines, and the processing rates of machines on the system performance.
Moreover, the exact analysis provided in this study can be used as a decomposition

block for the performance analysis of longer lines.

This study focuses on serial production systems where each station consists of failure-
prone parallel machines modeled using two-phase Coxian distribution. After
completing the first operation, the second stage/phase of Cox-2 is visited at each
station with a certain probability. This structure corresponds to the case where
processing times, times to failure and repair times are all independent exponential

random variables. The second stage of the operations can also be considered rework
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operations frequently encountered in real-life practices. Furthermore, Cox-2, a phase
type-family member, can be used to approximate general processing time distributions
(Altiok, 1985; van der Heijden, 1988).

To the best of our knowledge, neither 2-station 3-buffer nor 3-station 4-buffer lines
with failure-prone parallel machines have been studied. Exact analyses of multi-server
stations in the literature are limited to 2-station lines where raw material
replenishment/finished goods buffers are not considered. It is assumed that the raw
material is always available or finished goods are immediately sent to the customers.
However, our study distinguishes itself from the literature by contributing a novel
model where supply and demand are presented as Poisson processes, and inventory

levels in raw material replenishment and end product buffers are tracked.

We aim to model more implementable and realistic systems incurring holding costs
for the finished goods and raw materials, variability in inter-demand and supply lead
times, and shortages in raw material and finished goods. These are the factors that
affect the variability of production lines (Romero-Silva et al., 2019). Although there
is a tradeoff between modeling a realistic system and its computational load, our
methodology is tractable in computation while being more realistic than the literature.
Moreover, in our modeling approach, it is possible to eliminate the effects of buffers
related to supply and demand by selecting large values for the rates of supply and

demand processes.

The most relevant works in the literature are (Altiok & Stidham, 1983) and
(Diamantidis & Papadopoulos, 2009). However, these studies do not consider
replenishment and finished goods buffers, and our work distinguishes them by keeping
track of the supply and demand processes. Besides, our study extends the performance
analysis of (Altiok & Stidham, 1983) by considering parallel machines. On the other
hand, our recursive approach derives exact solutions of both 2-station 3-buffer and 3-
station 4-buffer lines extending the 2-station 1-buffer study of (Diamantidis &

Papadopoulos, 2009).

The remainder of the chapter is organized as follows: Chapter 5.1 describes the
considered production system, the state vector and the general structure of the matrix
generation algorithm composed of three sub-routines. Chapter 5.2 presents the

recursive method to calculate the number of states, which is the first routine of the
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general algorithm structure. After that, Chapter 5.3 presents the routine for state
generation. The final routine, the matrix generation method, is described in Chapter

5.4. Lastly, Chapter 5.5 provides numerical studies.

5.1. Description of the System and the State Definition

A production system with M stations arranged in series where each station has parallel
machines with two-phase Coxian processing times and (M+1) buffers with their
capacities is considered in this study. Buffer-1 is defined for the raw materials, Buffer-
(M+1) is for the finished goods, and the remaining ones are for the work-in-process
inventories (see Figure 5.1). Cox-2 random variables have two independent
Exponential phases, and phase-2 is visited with a prespecified probability. Hence, each
random variable defined for Exponential phases corresponds to the length of a
particular production stage of the process at each machine. The supply of the raw
materials and the demand for finished goods are generated according to independent
Poisson processes. The notation describing the system parameters is provided in Table

5.1.

Station 1 Station 2 Station M
Yo L i B [ A S
v 70 Hy Hy H2 H3 M H ' /
y u ‘—k ‘—k ’
Buffer 1 I [ Buffer 2 £ | Buffer M B | | Buffer M+1

CH_ A |04 O
By B B2

ETSEIN TR ERE|
By I Bz | B i

Figure 5.1. A production line with M-stations (M+1)-buffers and multiple Coxian-2
servers at stations

During production, machines are not intentionally idle, i.e., items are produced
whenever it is possible. However, the production is interrupted if a machine is starved
or blocked: after completion of its production, a station is starved if its upstream buffer
1s empty, and it is blocked if there is no room left in its downstream bufter. Within this
context, if there is at least one room in buffer-j, then machines at station-j cannot be
idle, and if there exists an idle machine at the station-(j+1), then blocking cannot be

occurred at station-j, j=I1, ..., M.

For any item departing from station-j, j=1,.., M-1, one of the following could happen:

(i) if there is an idle server at the station-(j+1) then the item is immediately transferred
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to the next station, (ii) if there is no idle server at the station-(j+1), but buffer (j+1) is
not full, then the item is held in the buffer until a server becomes available at station-
(j+1); (iii) otherwise, the item has to wait in the server, and the server remains blocked
until an item is released from buffer-(j+1). Thus, in our case, all the stations can be

idle (starved) or blocked, which is not a typical supposition in the literature.

Table 5.1. System parameters
SI={1,..,M} : set of station indices
Bl ={1,..,M + 1} :setof buffer indices

S : number of available parallel servers at station j, j € SI

m; : capacity of buffer j, j € BI

ﬂ} : production rate at phase-i of station j, i € {1,2},j € SI

B; : visiting probability of phase-2 (from phase-1) at station j,
JjESI

B; (1-p;).jeSI

Ao : raw material replenishment rate

A : demand rate

The events of the system can be grouped into three: raw material replenishment,
demand arrival to the finished goods, and production-related events. Due to the phase-
type nature of production times, production-related events are also three types: an item
departing from phase-1 of the server either (i) visits phase-2 or (ii) release the server
without visiting phase-2 if there is room in the downstream buffer; (iii) an item
departing from phase-2 releases the server providing that there is a room in the
downstream. The events defined in (ii) and (iii) lead to production completion at the
server. However, (i) is a phase completion event that changes the status of the
production server, but the total number of busy servers and the number of items in the

buffers remain the same within the occurrence of this event.

State vector should keep track of the status of the servers/machines at each station and
the number of items in each buffer. Hence, the state vector of an M-station system can
be deSCI‘IbEd as VM = [nl, k%, k%, bl, n,, k%, k%, bz, o, Ny, k}/[, kl%/l’ le TlM+1] Wlth the

following state variables:

n; = the number of items in buffer j, j € BI
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k; = the number of busy servers being processed at phase-i of station j, i = 1,2, j € SI

b; = the number of blocked servers at station j, j € SI

In total, there are (1 + 4M) state variables for an M-station system, and the recurrent

state space is defined by (10) — (17) with no intentional idleness in production.

n, € {0,1,...,m;} (10)
k! €{0,1,..,s;},j €SI (11)
kP €{01,..,s; —ki}, j €SI (12)
b; € {{{Sé _kjsl__lzzl}_ k?} Z: Z] Z g’ Jj €Sl (13)
[ ] ] )
n E{{{Tgf}.’.,mj} Z:ijg, j=2.,M+1 (14)
n; =0, j € BI (15)
ki, b =0, jeSLi=1,22 (16)
ki +ki+b; <s; jeSsI (17)

One of the main contributions of this study is presenting a novel methodology to
generate the transition matrix for Cox-2 distributed parallel-machine production lines
having Poisson supply and demand processes. Figure 5.2 illustrates the general
structure of our method consisting of three algorithms. Algorithm 1 calculates NS;,
which is the number of recurrent states of a j-station line. Then, Algorithm 2 uses NSy,
to generate the system's state vector, and Algorithm 3 generates the transition rate
matrix for a given state vector. Algorithms 1 and 2 work for any M, whereas Algorithm

3 is developed up to M=3 due to the computation limitations.

Algorithm 1 Number of states calculation
Input: M,s;,j € SI,m;,j € Bl
Output: NS... the number of states of M-station

Algorithm 2 State generation
Input: NS;,j € SI
Outnut: V... the ordered state vector of M-station

Algorithm 3 Transition rate matrix generation
Input: V,
Output: TM, the state transition rate matrix

Figure 5.2. The routines of the algorithm with their hierarchy
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5.2. Number of States Calculation Method

In this chapter, we propose a recursive algorithm to calculate the number of states for
any M-station (M+1)-buffer system where station-j, j € SI, has s; parallel servers and
buffer-j,j € BI, has a capacity of m;. In Figure 5.3, the procedure of NSy, with inputs
M,s;,j € SI,m;,j € Bl is given as Algorithm 1. Basis step provides a base case

solution for a 1-station 2-buffer system. Solution for any M >1 can then be obtained.

Algorithm 1
Basis Step Recursion Step
station index j=1 for j=2to M do

Xi=my(s; + 1+ Zfio(i +1D | X = (NSJ'—l - Xj—l)(sj + 1) +

i=m @ + Zfiol(lz;l) Xj—1 Zjio(i +1)
NS;=(m,+ DX, + 1, Y, = (NSj_l —Xj_l)sj_l(lzﬁ +
return NS; s;i i(i+1)

Xj_l ZiJ=0 2

NS; = (mjp1 + 1)X; +;

return NSy,

Figure 5.3. Number of states calculation algorithm with complexity O(M *
max(Sq, -, Su))
NS; is defined as a linear function of X; and Y; that are partitions of the state space. X;
calculates the number of non-blocked states, whereas Y; counts the states when there
is a partial or full blocking. X; has the multiplier (m;; + 1) because the state variable

n; has a range of {0,1, e mj} for the non-blocked states as it is defined in Equation

(14).

M=1 M=2 M=3 NS,
15| 15| 15| 1011
14 14 14 102
13 13 13 103
12 12 12| 10M

o 11 o 1 o 11 105

% 10 = 10 2 10 10%6

g9 g 9 g9 1077

S 8 s 8 s 8 1078

5 7 5 7 5 7 109

K G S 6
5 5 5|
4 4 4
3 3 3
2 2 2
1 1 1

T 234506708 9101112131415 12345678 9101112131415 12345678 09101112131415

# of parallel servers # of parallel servers # of parallel servers

Figure 5.4. The number of states growing for M=1,2,3
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Figure 5.4 shows how the number of states changes with the buffer capacities and the
number of parallel servers for M=1,2,3. The figure assumes an equal number of servers
at each station and identical buffer capacities for a given M. In Figure 5.4, the number
of states reaches up to 103 (M=1), 10® (M=2) and 10° (M=3), which reveals that the
dimensionality problem is the main limitation of the studies aiming at exact analysis.
As M increases, the effect of parallel servers on NS, seems to be prominent compared

to buffer sizes.

5.3. State Generation Method

The next step of the study is to generate and order the states. Ordering of the states
could determine the structure of the transition matrix. Thus, the transition structure
explained in Chapter 5.4 depends on the order of states that we propose in this chapter.
State vector V;,j € SI is a dynamic array that keeps and orders the states. The state
generation algorithm with inputs M, s;, NS;, j € SI,m;, j € Bl is given as Algorithm 2

in Figure 5.5.

States are generated based on a recursion where the basis step returns V; =
[ny, ki, k?, by, n,] with all recurrent states. After that, in the recursion step, we make
insertions for each additional state variable that is required for j = 2, and V;

automatically grows to obtain V, = [n, ki, k?, by, n,, ki, k2, by, ns].

We increase the number of dimensions of the vector V; for the state variables
k1, k2, by, ny for the recursion step. For every state defined through V;, only the
recurrent set of k2, k%, b,,n; are generated. That is while generating the states of V,
every state in V; repeats itself as many times as the number of feasible values of
k1, k2, by, ns. Then, the procedure continues until the states are generated for any M >
1. Each time a new state is generated, a row number (index) is assigned to the state,
starting from 1 up to NSy, and the transition matrix is created by relying on the labels

of the states.

The complexity of Algorithm 2 is bounded by the number of states calculated in
Algorithm 1, which is O(NS)y,), as Algorithm 2 is defined in such a way that there is

no redundant state generation takes place during the execution.
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Algorithm 2

Basis Step
station index j=1
x =0;
for vy = 0tom,
forvi =0tos,;
forvi=0tos, — v}
ifvi>0thend =5, — vl —vi
elseA=0
forvi=Atos, —vi —vi
if vl > 0then B = m,
else B=0

for vy = Btom,

Recursion Step

for j=2to M
Vi = Vjmaix = 0;
fori =1toNS;_4

for vlj =0tos;

J— J
forv, =0tos; —v

iva{_1 >0thenA=sj—v1j—v2j

elseA=0

J _ S R |
forv3—At05j v — U

if ] > 0then B = mj,

else B=0

x=x+1 forvi':Btoij
Vl(x) = [vélvll'vzl'v?}:vi]; x=x+1;
return V. i
F [/](x) - []/j—l(l)lv:{rvzji U3], Ui],
return Vy,

Figure 5.5. State generation algorithm with complexity O (NSy)

To better understand the routine, consider an example for a 3-station line with the
following number of servers and buffer capacities: § = [1,1,1] and m = [1,1,2,1].
According to Algorithm 1, the number of states is calculated as NS;= 12 for j=1, NS,=
99 for j=2, and NS3= 553 for j=M=3. After that, states are generated and ordered by
Algorithm 2. Figure 5.6 illustrates the structure of the state generation algorithm with
an example. In the basis step, states are generated and ordered for j=1. Then, recursion

starts with the expansion of the state vector V; to create V, and then V.

In Figure 5.6, the states shown in bold are the ones generated for j=1 and then
repeatedly used in V, and V5. Similarly, italic elements are first generated for j=2 and
then repeatedly used in V5. The repetition pattern of states depends on the last element

of a state vector. Let C1}' and C2}' be repetition coefficients of j*" station for an M
station system where Clj’-” counts the number of repetitions of each state with "n;,; =

0" and 62]’-"’ counts the number of repetitions of each state with "n;,; > 0". These
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coefficients are recursively calculated over stations (see Appendix 4) and carried in

transition rate matrix generation explained in the next chapter. In the example stated
in Figure 5.6, they are calculated as C1% = 7,22 = 10 forM=2,and C12 = 5, C22 =

7 for M=3.
Label Vi Label v, Label V3
1 [0,0,0,0,0] 1 [0,0,0,0,0,0,0,0,0] 1 [0,0,0,000000,0,0,O0,0]
2 [0,0,0,0,1] 2 [0,0,0,0,0,0,0,0,1] 2 [0,0,0,0,0,0,0,0,0,0,0,0,1]
3 [0,0,0,1,1] 3 [0,0,0,0,0,0,0,0,2] 3 [0,0,0,0,0,0,0,00,0,0,1,1]
4 [0,0,1,0,0] 4 [0,0,0,0,0,0,0,1,2] 4 [0,0,0,0,0,00,0,0,0,1,0,0]
5 [0,0,1,0,1] 5 [0,0,0,0,0,0,1,0,0] 5 [0,0,0,0,0,0,0,0,0,0,1,0,1]
6 [0,1,0,0,0] 6 [0,00,00,0,1,0,1] c23 6 [0,0,0,000,00,0,10,0,0]
7 [0,1,0,0,1] 7 [0,0,0,0,0,0,1,0,2] 7 [0,0,0,0,0000,0,10,0,1]
8 [1,0,0,1,1] 8 [0,0,0,0,0,1,0,0,0] 8 [0,0,0,0,0,0,0,0,1,0,0,1,1]
9 [1,0,1,0,0] iic2? 9 [0,0,0,0,0,1,0,0,1] 9 [0,0,0,0,0,00,0,1,0,1,0,0]
10 [1,0,1,0,1] 10 [0,0,0,0,0,1,0,0,2] 10 [0,0,0,0,0,0,0,0,1,0,1,0,1]
11 [1,1,0,0,0] 11 [0,0,0,0,1,0,0,1,2] c1311 [0,0,0,0,0,0,0,0,1,1,0,0,0]
12 [1,1,0,0,1] 12 [0,0,0,0,1,0,1,0,0] 12 10,0,0,0,0,0,0,0,1,1,0,0,1]
13 [0,0,0,0,1,0,1,0,1] . .

14 [0,0,0,0,1,0,1,0,2]

15 [0,0,0,0,1,1,0,0,0]

C1% 16 [0,0,0,0,1,1,0,0,1]

17 [0,0,0,0,1,1,0,0,2]
99 [1,1,0,0,1,1,0,0,2] 553 [1,1,0,0,1,1,0,0,2,1,0,0,1]

Figure 5.6. The state generation algorithm: An explanatory example

The first two routines of the main algorithm, which are explained previously, apply to

any M-station (M+1) buffer lines.

5.4. Transition Rate Matrix Generation Method

The final routine of the general algorithm structure defined in Figure 5.2 is the matrix

generation method. This chapter proposes a novel matrix generation methodology for

failure-prone multi-server production lines with finite buffers. The procedure is based

on recursions over stations. Five different event types drive transitions among the

states. Three of the transitions belong to production-related events, and the other two

are defined for raw material replenishment (supply) and demand arrival events. For

j=1,..,M, events are defined as follows:

P1(j): An item departing from phase-1 of the server at station j visits phase-2 with

rate Bk ;.

P2(j): An item departing from phase-1 of the server at station j leaves the server

without visiting phase-2 with rate Bk u;.

P3(j): An item departing from phase-2 of the server at station j leaves the server
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with rate k7 7.
S: Raw materials are replenished to buffer-1 with a rate A,.
D: Demands arrive at finished goods inventory with a rate A;.

For an M-station system, let T™ be the transition rate matrix of size NSy X NS,
where NS, is defined as the number of recurrent states. Then, T™ can be written as

the summation of the matrices corresponding to the transitions described above:
™ =T + TH' + XL, (TP ) + Thaesy + Trag) (18)

The matrix generation method is developed up to 3-station 4-buffer lines. While
generating the matrix, states are partitioned into classes considering the status of state
variables: they are classified as blocked (b; > 0) and non-blocked (b; = 0). The non-
blocked class consists of states where all the servers at stations are either busy or idle.

On the other hand, buffers are classified as empty (n; = 0) and non-empty (n; > 0).

Table 5.2 represents the partition of states for all event types. While j represents the
station index, M represents the total number of stations in the line. For the transitions
at station 1, there are two partitions, shown as (1) and (2), based on the status of the
upstream buffer. However, for the transitions at stations j=2 and j=3, partitions are

based on the status of first j buffers and (j-1) stations.

Table 5.2. Partition of states

M=123j=1 M=23j=2 M=3j=3
1) n, =0 B n,=0n,=0 8 n,=0n,=0n3=0
2 n,>0 4 n,=0mn,>0 9 n,=0n,=0n3>0

5) n,>0n,=0 (10) n;,=0,n,>0,n;=0

6) n,>0b;,>0n,>0 (11) n;=0,n, >0,b, >0,n3>0

7 n;,>0b;,=0n,>0 (12) n;=0,n, >0,b, =0,n3>0
(13) n;,>0,n,=0,n;3=0
(14) n;,>0n,=0,n3;>0
15 n,;>0,b;, >0,n, >0,n;3 =0
(16) n,>0,b; >0,n, >0,b, >0,n;3 >0
17 n,>0,b;>0,n,>0,b,=0,n3>0
(18) n;>0,b;=0,n,>0,n;3=0
199 n,>0,b;, =0,n,>0,b, >0,n3 >0
(20) n,>0,b;=0,n,>0,b,=0,n3>0

65



Labels (ordering numbers) of the actual states are used while generating the matrix.
Let T¥,,.. be a transition rate matrix of an M station line for a specific Event €
{P1,P2,P3,S,D}. Thenthe property " T _..[F1[T] = rate " represents the transition
from a particular state labeled as F to another state labeled as T by an Event with a

certain rate.

For each partition defined in Table 5.2, the calculation of state labels F and T has
different structures. Thus, several loop blocks are identified for all event types. There
are 22 loop blocks used in a nested manner (see Appendix 5). Let L¥ be the i*" outer
loop block with type k, i = 1,2,3,k = 0, ...,21. The i*" block uses the parameters of
the station at the i position. Each block has its structure to determine the state labels.

The main idea is to use the blocks recursively for the sake of effective computation.

A particular sequence of loop blocks for each event type defines a specific algorithm.
Let Aﬁ;vem(ljl"’ ) symbolize the algorithm-i that corresponds to an Event €
{P1,P2,P3,S,D} occurred at station-j of an M-station line with an input vector 1.
Vector | carries the station related parameters and the repetition coefficients (see the

example given in Chapter 5.3).

M, =21 &M )=03.1) (ML ) =(3,2) ——# Pl

(M, ) =(1,1) M, j)=(2,2) (M, j)=(3.3)

Figure 5.7. Mapping diagram of the production-related algorithms

We first focus on production-related events. Figure 5.7 provides a set representation
of the algorithms where the mappings are defined for P1, P2 and P3. For every feasible
(M, j) pair where M=1,2,3 and j=1,.., M, a set is defined to cover the algorithms. An
algorithm in a set labeled by (M, j) is used for the transitions at the j* station of an M
station line. A specific algorithm can also be used for different (M, j) pairs with other

input vectors IJM . For instance, transitions at station-1 corresponding to the event P1
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can be generated by the algorithm A%, for M=1,2,3 as shown in Figure 5.7.

For each production-related event, first, the base algorithms A%, A%, and AL, are
defined for M=1. Then, the rest of the algorithms are developed by expanding the
structure of the base algorithms. A mapping from algorithms A to B determines the
loop structure of A is a part of B. There are three types of mapping: solid for P1, dotted
for P2 and dashed for P3. For instance, the mapping expressed by solid arrows
represents that A3, is defined first, then A%, is developed by expanding A}, after that
A3, is developed by expanding A2,. However, the mapping diagrams of P2 and P3 are
more complicated than P1 because P1 represents a phase completion rather than a
production completion. Considering the partition of states defined in Table 5.2, the
structure of the algorithms of event P1 that are represented as loop blocks are given in

Table 5.3. The symbol " L, " represents the nested loop blocks.

Table 5.3. Algorithm structure of event P1

Ab, (12722 A3, (1237 A3, (1453
@ Ly @) LiL LY @ LLLLLLY (14 QLI3LIZL IR
@ L3 12° @) 121, 1% © LLLELIZ (15 LOLLYLIZLLY

G) LLiLLY (10 L3LL3LLyY (16 LQLLTL L3 L L3
6 L3LLrLL3° (A1) LALL3LL3® A7) LQLLFLL3L L3
™ BL3LL3° (12) L3413 (18) LQLLFL L3 L LY
(13) LOLLILLELLY (19 LY LIFL L3 LI

(20) LS L L3 L L3 L, L3

Note that every loop block defined in AL,,i = 1,2 are used in ALL! with additional
blocks. Figure 5.8 represents the base algorithm A},. Equation-(j) that is used in k™
loop block and recall the parameters of the station in position-i, i=1,2,3, is denoted as

eq{‘(]-). The detailed equations that are used in base algorithms are in Appendix 6.

1 M=1 _ M=1 M=1
Ap, (4 = CU5Y, €2}, s, my, myyq)

1) Ly
Th oo [eai% | [eqis] = kufudd
pin)€q1(»]1€91(2) 1B
2 L9113

T1>11(1) [qu(n + eqf&)][eqf(l) + eqf?z)] = kiB1iq

Figure 5.8. The base algorithm of event P1: A},

67



P2 and P3 define production completion events for the items departing directly from
phase-1 and phase-2 of a Coxian server, respectively. Since both events result in
releasing a server, they have the same mapping structure in Figure 5.7. Moreover, we
observe that if the event P2 triggers a transition to a specific state with a rate ﬁ]fk}u}
at a station-j, then the event P3 would certainly trigger a transition to that specific state
with a rate k7 u?. The base algorithms A, and Ap; are defined in Figure 5.9, where
both algorithms have precisely the same loop blocks in each partition. The complete
algorithm structures of P2 and P3 are given in Appendix 7.

Ap, (I = s1,my,my) and Ap5 (113! = s1,my,m,)

() 1Y : Toyleai ] [edin)] = kaBimd
TI}3(1) [le(n][le(s)] = kyuf

(2 LiL LY

T1}2(1) [quu) + eQia)][ECIf(U + eq}?z)] = kyBim

T§3(1) [le(n + eq%é)][eqfﬁ) g eq%E‘Z)] = Liuf

L9 L Ly!

If p == 0 then
T lediqy + editn]ledits)] = kiBiud

T§3(1)[eqf(1) + eq%(15)][eq%(13)] = (51 — kg + Dpf
Else

T132(1)[eCIf(1) + eCI%(ln][eCIf(z) + eChl(lz)] = kiBiu

Thsylediay + edits)|[edde + edizy] = (51— ky + D
L9l LY

If p == 0 then

Thmledin) + edity[edits] = kiBiud

T}}3(1) [quu) + eq}a)][eqié)] = (51— ky + Dpf
Else

Tﬁzu)[qu(n + eQ%é)][eQS(Z) + BQ%(ZZ)] = kyBiui

Thsylediay + editn][edde + edity] = (51— ky + D

Figure 5.9. The base algorithms of events P2 and P3: AL, and A%,
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In practice, it is reasonable to expect that raw materials may not be directly received
when needed. Thus, we assume that raw materials are replenished to the first buffer at
an Exponential rate A, (event S) which corresponds to the Exponential lead time of the
supply. The occurrence of event S in the line is twofold. If there is at least one idle
server at station 1 (i), which implies that buffer 1 is empty, then one of the idle servers
switches to the busy state. If there is at least one room at buffer-1 (ii), then the raw
material is held in buffer-1 until a server at station-1 is available.

AISW(IM = C1¥,C2¥, sy, mpy, Mmpg41)
(1) L : T¢ [eqie) | [eq )] = 2o
L1%: T¢ [eaity][eaily ] = 2o

LY T¢[eqity][eqiin] = 2o

(2) 17" : Tsl[eCIf(11)][eCIf(12) = o

Figure 5.10. The algorithm for supply event: A¥

A}) (1M=1 = Sp, Mpy, Mpg41)

(1) 13: Th[eaim))[ediw] = 14
(2) L3 L L§
Tp [96}?(1) + eCIf(z)][eCIfu) + eqf(3)] =
If p == 0 then
Ly L Ly®
Th [eCIfu) + QQ%?Z)][QQ%?LL)] =
If p > 0 then
L3 13
Thleaiay + edi ) l[eaie) + eqiy] = 4
L9 L3P

Tp [quu) + eq%ge)][qu(Z) + eq%(57)] =h

Figure 5.11. The base algorithm for demand arrival: A}

The effects (i) and (ii) apply regardless of how long the production line is. For this
reason, a base algorithm A¢ is defined, then it is recalled with the input vector IM =

(C1¥,C21, sy, mpy, mpg41) to Obtain TM for any M. Event S is the only part of
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Algorithm 3 that is general to any number of stations, and the complete algorithm is
given in Figure 5.10. In total, four different loop blocks are used for generating the

matrix related to event S.

Lastly, event D is defined for demand arrivals to the finished goods buffer. Demands
are generated according to a Poisson process with a rate of 1,. The base algorithm A},
is given in Figure 5.11. A} is expanded to develop A% and A3 recursively (see
Appendix 8).

The set of nested loop blocks used for matrix generation are represented in Appendix
5 with Big-O complexity. Depending on event type and the partition of states, loop
blocks consist of different statements. As M increases, the number of loop blocks and
statements and their combinations increase, hence complexity calculation becomes
more tedious. Therefore, to provide a good complexity approximation in terms of s;
and m; without drowning in details, the execution of the statements in loop blocks is
assumed to be constant. Complexity can be calculated for 1-station 2-buffer systems
with the algorithms given in Figures 5.8 to 5.11, and bounded by max (m;s? +
mym,sy, s; + m,s2). For M=2 and M=3, corresponding loop blocks (in Table 5.3,
Figure 5.10, Appendices 6-7) can be revisited, and complexities can be calculated by
determining the term with the highest power in loop blocks. The runtime to generate
matrix would be a function of s;s,,m;m, ms; for M=2, and a function of

5182, S3, My My, m3, my for M=3.

5.5. Numerical Study

The transition rate matrix is solved to obtain steady-state probabilities. Let P be the
steady-state probability vector, then transition rate matrix of a continuous-time
Markov chain (CTMC) model T satisfies the below balance equation where Tt is the

transpose of T
TP = 0.

While computing the steady-state probabilities, a discrete-time equivalent of a CTMC
solution of T is obtained using the uniformization technique (Lippman, 1975). For an
M-station system, the uniform transition rate v is defined as v =1y + 1, +
Z;”zlsj l?:luj-, and the discrete-time equivalent problem is solved using eigenvalue

decomposition. Our approach is general enough to be executed for the production lines
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up to three stations and four buffers with an arbitrary number of parallel machines and
buffer capacities. The steady-state solution allows obtaining throughput, average
WIPs, stock-out probabilities and average system cost. Furthermore, the effects of
processing times, parallel machines and buffer capacities on these metrics can be
identified. A MATLAB 2018b program is developed for all the routines to compute
the number of states, generate the states and create the transition matrix. A series of
computational experiments are carried out on a Core i7, 2.80 GHz, 16 GB RAM

computer.

The proposed method is first tested with the existing results obtained by (Diamantidis
& Papadopoulos, 2009). Raw material replenishment and finished goods buffers are
not considered in their study. Thus it is assumed that (i) the first station is never
starved, and (ii) the last station is never blocked. In verification studies, we set the
capacities of replenishment and finished goods buffers to 1 and select large-enough
values for 4, and A, to guarantee the almost sure convergence of probabilities
P(ny > 0) =1and P(ny,q < my41) = 1 corresponding to (i) and (ii), respectively.
The throughput results of (Diamantidis & Papadopoulos, 2009) for identical parallel
machines are aligned with ours with an average of 0.02% deviation.

Table 5.4. Numerical results: 1, = 4,4, = 3,5, =s, =3,m; =m3 =1

m, # of States Throughput Run Time (seconds)
10 2,604 1.857 14.6
20 4,564 1.922 48.4
30 6,524 1.947 107.3
40 8,484 1.959 208.5
50 10,444 1.965 350.7
60 12,404 1.968 560.3
70 14,364 1.969 826.2
80 16,324 1.970 1537.4
90 18,284 1.971 1663.0
100 20,244 1.971 2075.9

First, we focus on 2-station 3-buffer lines and examine how throughput changes with
the capacity of the intermediate buffer. Table 5.4 shows the results for the settings
considered in Table 6 of (Diamantidis & Papadopoulos, 2009) with additional
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parameters for the first and last buffers. We set the other parameters as m; = m5; =
1,1y = 4,4, = 3, and present the throughput and the computation time (in seconds).
We obtain reasonable run times in Table 5.4 despite our setting is general than the one
shown in Table 6 of (Diamantidis & Papadopoulos, 2009). Throughput increases up to
a certain level of m,, after that, it becomes constant at 1.971. The level with no
improvement in throughput represents the practical infinite for buffer-2. Hence the

capacity of buffer-2 cease to be a bottleneck in the system.

For the numerical experiments presented below, in addition to the throughput and
computation time (in seconds), we also provide 7;: the long-run average WIP in
buffer-j, and P(S): the probability of stock-out. P(S) can also be interpreted as the
probability of losing an arriving customer due to the PASTA property.

Table 5.5. Numerical results: 1y = 3,4, = 2,5, =2,m; =3,m, = 6,m3 =4

s,  #of States Throughput n; n, ns P(S) Run Time (secs)
1 1,373 0.962 2504 5.924 1037 0519 35

2 2,364 1.621 2.027 5665 2464 0.189 11.8

3 3,578 1.897 1.777 5.374 3.410 0.051 30.1

4 5,030 1.975 1.688 5.181 3.804 0.012 66.8

5 6,735 1.993 1.663 5.093 3.933 0.003 127.1
6 8,708 1.997 1.656 5.059 3.972 0.001 227.8
7 10,964 1.998 1.655 5.047 3.985 0.001 383.4
8 13,518 1.999 1.654 5.042 3.991 0.001 688.7
9 16,385 1.999 1.653 5.039 3.994 0.000 11934
10 19,580 1.999 1.653 5.037 3.996 0.000 1667.3

In Table 5.5, we assess the performance of a 2-station 3-buffer system where s; = 2
and s, varies from 1 to 10. Coxian parameters are set to (ul, u?, ;) = (2,1.2,0.05)
for station 1 and (u3,u2,fB,) = (2,0.4,0.2) for station 2. From raw materials to
finished goods, buffer capacities are defined as my = 3, m, = 6, and m3 = 4. Raw
materials replenishment and demand arrival rates are 4, = 3 and 4; = 2. Increasing
s, implies higher production capacity at station-2, hence the long-run average WIPs in
buffer-1 and buffer-2 decrease while WIP in buffer-3 increases. Moreover, the overall
production capacity increases up to a level, and then throughput converges to 1.999

and P(S) tends to zero, i.e., all incoming demands are satisfied.

72



Table 5.6 presents the numerical results of a 2-station 3-buffer system while the rate
of the first stage at station-2, u3, is changing. Other Coxian parameters are given as
(ul,u2,B) = (2.5,1,0.06) and (u3,B,) = (1.5,0.4). Performance metrics respond

to changes in u3 in the same direction as they do in Table 5.5.

Table 5.6. Numerical results: 1, = 6,4, =3,s;, =2,s, =1,m; =4,m, =7,m; =

3 with # of states of 1,512
ui Throughput 7 n, N3 P(S) Run Time (secs)
1 0.788 3.855 6.991 0.335 0.737 4.9
3 1.587 3.660 6.894 0.935 0.471 5.2
5 1.901 3.556 6.781 1.294 0.366 4.5
7 2.039 3.501 6.699 1.488 0.320 4.6
9 2.112 3.468 6.646 1.600 0.296 4.6
11 2.154 3.448 6.610 1.670 0.282 4.5
13 2.182 3.435 6.586 1.718 0.273 4.7
15 2.201 3.425 6.567 1.752 0.266 4.7

Tables 5.7 and 5.8 present the results for 3-station 4-buffer systems. Table 5.7 assumes
a single machine (server) at each station with parameters (ui, u2, 8;) = (2.5,1,0.06),
(u3,5,) = (1.5,0.4) with u} € {1,2,...,10}, and (ui, u2, B5) = (6,2.5,0.5). In this
experiment, it is observed that the changes in pi mostly affect the immediate
downstream bufter. On the other side, the average number in the immediate upstream
buffer, n,, decreases with ul but with a slower rate when compared to the increase in
n5. It is because of having a bottleneck at the upstream stage, which slows down the
production line. For the raw materials and finished goods inventories, we observe
similar monotone behaviors with n, and ns, respectively, however, it is in much
slower paces. In addition to the effects on average inventories, an increase in u3 first
results in sharp increases in throughput (and thus sharp decreases in stock-out
probability). However, after certain rate values, the system reaches saturation, and no

more significant improvement in throughput is observed.

Table 5.8 examines the effect of the number of parallel servers at the stations for

(‘u,}, M%J ﬁl) = (2) 07; 005)) (l’l‘%l .u%) IBZ) = (271 09' 04) and (l/l%, M?zﬂ B3) =
(5,2.5,0.5). Starting from station-1, the number of parallel servers at each station is

changed from 1 to 5, while the number of servers at the remaining stations is kept at 1.
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Since station-2 has the lowest production rate among all (see the Coxian parameters),

the throughput of the system is maximized as s, increases.

Table 5.7. Numerical results: 4 = 5,4, = 2,5; = 1,j = 1,2,3,m; = 3,
m, = 5,mg = 10, m, = 2 with # of states of 10,406

pi  Throughput 7 n, N3 g P(S) Run Time (secs)

1 0.788 2824 4799 0.158 0.536 0.606 152.8
2 1.280 2677 4220 1266 1.022 0.360 1555
3 1.530 2.585 3.641 3.690 1304 0.235 158.2
4 1.613 2550 3.356 5.500 1.404 0.192 158.0
5 1.642 2537 3.231 6.440 1439 0.177 1585
6 1.655 2532 3.167 6.947 1453 0.171 1557
7 1.662 2529 3129 7.251 1460 0.168 159.4
8 1.666 2527 3.104 7.449 1464 0.166 160.1
9 1.669 2526 3.087 7.587 1466 0.165 158.6
10 1.672 2526 3.075 7.688 1467 0.165 158.1

Table 5.8. Numerical results: 1, = 5,4, =2,m; =3,m, =2,m3 =5my, =2

[s1,52,53] #of States Throughput n; n, ns ng, P(S) RunTime

[1,1,1] 3,412 1.078 2.737 1.373 0.687 0.824 0.461 20.4
[2,1,1] 6,301 1.204 2.693 1.904 1.142 0.990 0.380 61.9
[3,1,1] 10,108 1.214 2.682 1.985 1.181 1.011 0.370 155.9
[4,1,1] 14,930 1.214 2678 1996 1.17/9 1.011 0.370 335.7
[5,1,1] 20,864 1.214 2676 1997 1.1/8 1.011 0.370 660.3
[1,1,1] 3,412 1.078 2.737 1.373 0.687 0.824 0.461 20.4
[1,2,1] 6,114 1.456 2.593 0.710 2.263 1.205 0.275 63.2
[1,3,1] 9,564 1.476 2.538 0.364 2.407 1.229 0.264 144.0
[1,41] 13,825 1.482 2,517 0.211 2.450 1.240 0.259 313.3
[1,5,1] 18,960 1.492 2.510 0.155 2.572 1.252 0.254 579.6
[1,1,1] 3,412 1.078 2.737 1.373 0.687 0.824 0.461 20.4
[1,1,2] 6,194 1.082 2.736 1.364 0.161 0.845 0.459 57.6
[1,1,3] 9,788 1.083 2.737 1.364 0.072 0.849 0.458 152.9
[1,1,4] 14,265 1.085 2.737 1.364 0.037 0.852 0.457 318.9
[1,1,5] 19,696 1.086 2.737 1.364 0.021 0.856 0.456 611.6
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Although the computation time of our algorithm increases with the number of stations,
the number of servers and buffer capacities, we believe that the results are reasonable
and acceptable for such exact analyses, which are required for mid and long-term
planning purposes. Production engineers and decision-makers do not conduct such
analyses for daily or weekly operational activities. Furthermore, with our
computational capacity, the steady-state solution of the transition matrix is obtained
up to 64,000 states for M=1, it is up to 32,000 states for M=2 and M=3. All the statistics
provided in this study were obtained using a standard personal computer and can

further be improved with more powerful workstations.
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CHAPTER 6
CONCLUSIONS AND FUTURE RESEARCH

In this thesis, we focus on control problems and performance analysis of three-station
make-to-stock tandem lines. From the production control perspective, the main
contribution of the studies considered in this thesis is twofold. Firstly, a
characterization of optimal production control policies for three-station tandem lines
is presented in various settings. To the extent of our knowledge, the structure of the
optimal policies has not been investigated for three-station tandem production systems.
Veatch and Wein are the first to study two-station tandem make-to-stock production
systems having Exponential processing times, demands occurring according to a
Poisson process and backorders to minimize long-run average system cost (Veatch &
Wein, 1994). Optimal control policies are obtained using dynamic programming, and
the results are compared with the well-known control mechanisms. It is shown in
(Veatch & Wein, 1994) that the optimal control policy is defined by switching curves

which defines busy sets of machines.

Our considered optimal control study extends the work of (Veatch & Wein, 1994) to
three stations in a make-to-stock environment. Our setting consists of lost sales cases
of three-station systems with ample raw material supply, intermediate buffers, finished
goods buffer and demand occurrences with a Poisson process to minimize long-run
average system cost. The structure of the optimal production policies is characterized
by the results of the value iteration algorithm. In the basic model presented in Chapter
3.1 of the thesis, the processing times of machines are Exponentially distributed.
Numerical studies reveal the effect of different production and demand rates on
optimal policies. Moreover, in a limiting case of the basic model, a switching curve-
type structure is observed, according to the propositions stated and proven in Chapter
3.1. The basic model is observed and shown with the numerical results that T;

represents the threshold of optimal control actions to form a switching curve.

From the optimal control framework, additionally, we integrate complex features of

the production systems. We consider two-phase Coxian processing times that can be
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utilized to model failure-prone machines with exponential service times, times to
failure, and repair times (Altiok & Stidham, 1983). A two-phase Coxian random
variable has independent Exponential phases with a certain visiting probability from
phase one to phase two. The second phase of Cox-2 can also be maintained as a rework
operation occurring with a predefined probability. Three different design problems of
Cox-2 processing times are presented as extended models in Chapter 3.2. The models
are built assigning Cox-2 times to upstream, intermediate and downstream stations
while remaining stations are Exponentially distributed. The optimal policy structure is
observed to be dependent on the Coxian phases. Furthermore, the analyses conducted
with various system parameters show that locating a Cox-2 distributed machine at the
downstream stage produces the highest system cost. On the contrary, the minimum

system cost is observed with a Cox-2 distributed machine at the upstream stage.

The second contribution of control problems involves an alternative mechanism called
the no intentional idleness policy. The proposed policy presented in Chapter 4 relies
on easing production control decisions and letting machines produce as much as
possible. To the best of our knowledge, the performance analysis of the proposed
approach has not been compared to the optimal control policies of three-station make-
to-stock flow lines. Defining finite buffer capacities for our considered make-to-stock
flow line model allows us to sustain production with blocking and starvation. The
policy aims to obtain the buffer capacities that minimize the average system cost. The
proposed approach is modeled using ARENA Simulation Software 2019, and optimal
buffer capacities are obtained with exhaustive search. Then the results are compared
with the optimal control policy. It is observed that the proposed policy performs near-
optimal for extended models with Cox-2 processing times. The optimality gap is
calculated as less than 3% in numerical experiments conducted with 396 instances. For
the basic model with Exponential processing times, the performance of the proposed
policy alternates depending on the demand rate and production rates of machines. The
policy deteriorates in the cases with a lower demand rate due to the holding cost
accumulation. Then, it is modified to improve its performance for the cases of the basic
model with lower demand rates. Presented results identify the improvement in every
case defined for the basic model except Case 1 (see Table 4.6). The best alternative
(NI -1) worsens in case 1, which belongs to a case with a lower production rate at the

upstream station than the existing proposed policy.
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Further to the results of the basic model, the maximum throughput with buffer
capacities that minimize the system cost is observed in case 6, where the faster
machine is assigned to station-3. Case 5 (with a faster machine in the middle) provides
a slightly lower throughput. This result contradicts the findings of (Buzacott &
Shanthikumar, 1993), stating that the throughput of a three-station flow line is
maximized if the fastest station is located in the middle stage and the slowest stations
are located in the first and third stages. However, (Buzacott & Shanthikumar, 1993)
assumes no finished goods buffer and no cost-related objective function. Our study

consists of a make-to-stock production setting with a well-defined cost objective.

In addition to the optimal and alternative control mechanisms, we present an exact
long-run analysis up to 3-station 4-buffer production lines in Chapter 5. The setting
consists of parallel-machine stations with Coxian-2 processing times. Raw materials,
intermediate and finished goods buffers of finite capacities are considered. The
production line is modeled as a continuous-time Markov chain, and a novel recursive
method is developed to generate the transition rate matrix. The method developed as a
MATLAB program consists of three routines calculating the number of states,
generating the states and then the transition matrix. Steady-state distribution is
obtained via Eigenvalue decomposition. Although the last routine is limited to 3-
station 4-buffer lines, the first two routines of the algorithm are general to be executed
with an arbitrary number of stations and parallel machines. Considering parallel
machines, multi-stage operations and raw material and finished goods inventories, we
succeed to obtain the steady-state distribution for quite a general setting. Before this
study, the exact analysis of the lines having parallel machines was specific to 2-station

lines to the best of our knowledge.

Moreover, we enrich the study with numerical experiments that allow us to observe
the effects of processing times, parallel machines and the buffer capacities on
throughput, average number of items in buffers and stock-out probabilities. Although
two of our sub-routines are already designed for any number of stations, the general
structure of the proposed method can be extended to longer lines. However, this
extension could lead to the dimensionality problem of the state space. Instead, the
provided exact analysis can be used for approximate analyses of longer lines,

benefiting from the advantages of longer decomposition blocks than those considered
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in the literature (Diamantidis et al., 2020; Van Vuuren et al., 2005). In addition, some
optimization routines, which maximize the throughput or minimize the system cost,

can also be structured over the developed long-run analysis.

Dynamic programming and Markov decision process enable us to solve a wide range
of optimal control problems. Alternatively, approximate solutions would be tractable
since optimal control is costly due to the curse of dimensionality. As a future research
direction, reinforcement learning (RL), one of the machine learning approaches, can
be applied to solve control problems. The key aspect of reinforcement learning is to
find an optimal way to make decisions while interacting with the environment (R.
Sutton, 2018). The goal is that an agent selects actions to maximize the total expected

future reward.

Q-learning is one of the RL approaches introduced by (Watkins, 1989), and its
convergence is proven by (Watkins & Dayan, 1992). While dynamic programming
uses state information to find the optimal action that maximizes the expected reward,
Q-learning uses state-action pairs. Q-learning is a form of model-free reinforcement
learning that constitutes an alternative to solve control problems when the model is
unavailable. In Q-learning, a Q function describes the expected reward of a system in
the long run for each state-action pair and determines the policy since a policy can be
defined as a function from state to action. On the other hand, dynamic programming
1s used to solve optimal control problems if the system has a model. A model represents
how an agent’s actions change the environment. In our environment, a model can be
represented by transition matrices, and for any state and action, immediate reward and

the next state can be obtained by the model.

In reinforcement learning, optimization of a system can be conducted by considering
the discounted (Watkins, 1989) or average (Bertsekas & Tsitsiklis, 1996; Das et al.,
1999; Sridhar Mahadevan, 1996; Schwartz, 1993) reward. The studies considering RL
techniques have been presented to the literature of production systems. (Paternina-
Arboleda & Das, 2001) apply a reinforcement learning technique for a four-station
production line to solve the control problem, assuming random processing times, times
to failures and repair times and lost sales. (Xanthopoulos et al., 2008) derive control
policies for serial production lines with backorders using an average reward RL
algorithm and show that the derived algorithm outperforms the existing approaches

such as Kanban, Base Stock and CONWIP. Additionally, scheduling problems of
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production lines (Arviv et al., 2016; Chen et al., 2015; Shiue et al., 2018) have been
studied using RL techniques.

Q-Learning can learn optimal decisions for a Markovian problem. However, function
approximation techniques are developed for the systems having larger state-action
spaces. Q-learning constitutes a base to solve the control problem for larger systems
using function approximations. Q-Learning visits certain state-action pairs and updates
their values. Then function approximation techniques benefit information due to Q-
learning to estimate the values of the unvisited state-action pairs. Function
approximations are advantageous in many ways: it provides compact state-action
value representation, reduces memory and computation requirements, can handle

continuous state spaces, and uses generalization to unvisited states.

Many function approximators are presented in the literature (Busoniu et al., 2010). For
example, linear value function approximation is based on obtaining system features
and then representing states with a function of the features. Features are mainly
functions of states and actions. In linear value function approximation, the state-action
value function (Q-function) is represented with a weighted linear combination of

features:

Q(s,a) = wifi(s,a) + wy fr(s, @) +.. +wy (s, @) (19)
where w; represents the weight of the feature f;(s,a), i = 1,..,n,when the current

state is s and action is a.

The exact Q-values are obtained by the Q-function given in (20), and the approximate

Q-values are obtained by updating the weights of features as defined in (21).

Q(s,@) « Q(5,@) + &R + ymgx{Q(s’,a)} - Qs @) (20)

wi < wi+ a [R +ymax{Q(s',a)} - (s, )| fi(s, @) (21)

In equation (6), « € (0,1] is the learning rate, R is immediate reward and y € [0,1)
is the discount rate. Q-learning uses the temporal difference (R. S. Sutton, 1988),
which is defined as the difference between the updated Q value of the current state-

action pair R +ymax{Q,(s’,a’)} and the current value of the state-action pair
a

Qi (s,a). At a given step, suppose that the current state is s and the action is a. First,
the action a is taken for state s and the next state s’ is observed. Then, the algorithm

tries to choose optimal action from state s’ from a set of possible actions a'.
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The goal is to find the parameter vector w that minimizes the error between a true
state-action value function Q and its approximation Q. In order to evaluate the error,
least-squares algorithms can be used (Bradtke & Barto, 1996). We foresee that function
approximation techniques can be used to solve control problems of longer production

lines.

The proposed policy no intentional idleness that we present in Chapter 4 relies on
obtaining optimal values of control parameters with exhaustive search. Another
solution approach to the study can be finding near-optimal results with a simulation
optimization technique. Simulation optimization seeks to find the best values of
variables without explicitly assessing every possibility (Carson & Maria, 1997). The
basic components of a simulation optimization model consist of a set of decision
variables, an objective function with constraints. (Olafsson & Kim, 2002) classify the
simulation optimization methods based on continuous and discrete decision variables.
For the models with continuous variables, stochastic approximation iterates solutions
based on gradient estimation, in which early studies of the method falls in the 1950s
(Robbins & Monro, 1951). Other methods include the simple path method (Gurkan et
al., 1994) and the response surface method (Allen & Yu, 2000). Statistical selection
(Chick & Inoue, 2000), random search and metaheuristic methods (Haddock &
Mittenhall, 1992) are proposed for the models with discrete variables.

In the production environment, simulation optimization applications include
production control mechanisms such as Kanban, Base Stock and CONWIP (Hall &
Bowden, 1996; Xanthopoulos & Koulouriotis, 2014) based on optimizing control
parameters to obtain near-optimal solutions. Moreover, reinforcement learning
approaches consider simulation optimization techniques for optimizing production
environments with Markov Decision Processes (Barde et al., 2019; S. Mahadevan &
Theocharous, 1998; Paternina-Arboleda & Das, 2001). As production lines become
longer, it would be harder to obtain optimal values of control variables with exhaustive
search. Instead, near-optimal results can be achieved with simulation optimization

techniques.
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APPENDIX 1 - An Example of Optimal Policy of the Basic Model

Table A1.1. An optimal policy of the base case (Case 0) with A=8
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X2 877777775553 3 33 3 0O0O0O0O0TO0TUO0O|55555555553 3 3 3 33000O0O0TO0TDO0

977777555533 3 33 3 00O0O0O0O0O0O|565555555533 3 3 3 33 000O0O0O0DO0
10(77755553333 3 33 300O0O0O0O0UO0O|I565555556333 3 3 3 33 00O0O0O0TDO0
11/55555533333 3 3 3 3 3 00 0O0O0O0O|I55555533333 3 33 33000O0O0TO0TDO0
12(155553333333 3 3333 0000O0O0O0|56553333333 3 33 33000O0O0O0ODO0

1355333333333 3 33 3300O0O0O0O055333333333 333 33000O0O0TO0O0

14/]33333333333 3 33 3300O0O0OO0OO0|33333333333 333 33000O0O0TO0O0

15(33333333333 333 33000O00O0O0WO0|33333333333 333 33000O0O0O0O0

16(33333333333 3 3333 000000|33333333333 3 33 33 0000O0O0C0O0
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APPENDIX 2 — The Proof of Proposition for i=2

Proposition. There is a threshold T; for x; = 0, i € {1,2} such that it is optimal not to

produce at station-i when x; > T; for all x;,j € {1,2,3} — {i}.

Proof. For i = 2, let EQO be the below equation representing the discounted DP
formulation of the system:
1
V(xq, x5, %3) = ;<h1x1 + hyxy + haxs
+ Alc-1-(x3 =0)+ V(xq, x,, max{xs — 1,0})]
+:u1mln{V(x1 + 1; X2, x3), V(xll X2, x3)}

+:u2mln{V(x1 - 1; X2 + 11 X3), V(x11x21x3)}

Fusmin{V (xq, x; — 1,x3 + 1), V(x1, X2, x3)3) (EqO)
wherev = 1 + puy + uy + u3 + @ and x4, x,, x5 = 0. a is defined as the discount rate.
Suppose for k > 0

Vk(leXZJx3) S Vk(xl - 1; xZ + 11 X3)

We need to show that V¥ (x, x5, x3) < V1 (xy — 1,x, + 1, x3).

Property is true for k=0: VO(x;,x5,x3) =0<VO9(x; —1,x, +1,x3) since

VO(Xl, X7, x3) =0 fOf a” X1,X2, X3 = 0.
Let Eql be the following equation:

VEYL(xy, x5, x3) = hyxy + hyx, + haxs
+A[c- 1 (x3 = 0) + VF(xy, x5, max{x; — 1,0})]
+uymin{V¥ (g + 1, x5, %3), VF¥(xq, %5, x3)}
+u,min{V¥(x; — 1,x, + 1,x3), VE(xy, x5, x3)}
+usmin{V¥*(xy, x; — 1,x5 + 1), V¥(xq, x5, x3)} (Eql)

Let Eqg3 be the following equation:

VE (e — 1,0, + 1,x3) = hy(xy — 1) + hy(x, + 1) + hgxs
+Alc 1 (x3=0) +V¥(x; — 1,x, + 1, max{x; — 1,0})]
+uymin{VE(xy, x, + 1,x3), VF(x; — 1,x, + 1,x3)}
+u,min{V¥(x; — 2,x, + 2,x3), VE(x; — 1, x5, + 1,x3)}
+usmin{V¥(x; — 1,x5,x3 + 1), V¥(x; — 1,x, + 1,x3)}  (Eq3)
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So, each term should separately be considered:

[5]. hyxy + hoxy + haxs < hy(x; — 1) + hy(x, + 1) + hyx; holds due to positive

holding cost rates

to the supposition
If x3 =0, then Alc +V¥*(x; —1,x,,0)] < Alc + V¥(x; — 1,x, + 1,0)] holds

due to the supposition

[71. 42V *(xq1, x5, x3) < upV*(x; — 1,x, + 1, x3) holds for Eql and

Ve — 1,x, + 1,x3) < upVE(x; — 2,x, + 2,x3) holds for Eq3 due to the

supposition

[8]. For the decisions regarding u, and us, there are 4+4=8 possible combinations of

control actions in Eql and Eqg3.

Consider control actions regarding u; :

a.

It is optimal for station-1 to produce in both Eql and Eqg3.
Eql returns V¥ (x; + 1, x5, x3) and Eq3 returns VF(xy, x, + 1, x3)

Hence, V*(x; + 1,x,,x3) < V¥(xq,x, + 1, x3) holds due to the supposition.

It is optimal for station-1 not to produce in both Eql and Eq3.
Eql returns V¥ (x,, x5, x3) and Eq3 returns V¥ (x; — 1,x, + 1, x3)

Hence, V¥ (xy, x5, x3) < V¥(x; — 1,x, + 1, x3) holds due to the supposition.

It is optimal for station-1 to produce in Eql but not to produce in Eqg3.

Eql states that VE(x; + 1, x5, x3) < V¥(xq, x5, x3)

Eq3 states that V*(x; — 1,x, + 1,x3) < VF(x; — 1, x5, x5 + 3)

Hence, VE(x; + 1,x5,x3) < V¥(x; — 1,x, + 1, x3) holds due to
VEQG +1,x5,x3) S VR, x0,x3) S VE(xy — 1,x, + 1,x3)

S Vk(.xl - 1,xZ,X3 + 3)

It is optimal for station-1 not to produce in Eql but to produce in Eqg3.
Eql states that V¥ (xy, x5, x3) < VE(x; + 1, x5, x3)
Eq3 states that V*(xq,x, + 1,x3) < VF(x; — 1,x, + 1,x3)

Hence, V¥ (x;, x5, x3) < V¥(xq,x, + 1, x3) holds similarly to the part c.

Consider control actions regarding us:

95



e. Itis optimal for station-3 to produce in both Eql and Eqg3.
Eql returns V(x;, x, — 1,x3 + 1) and Eq3 returns V*(x; — 1, x5, x3 + 1)
Hence, VF(x;,x, —1,x3+1) <V¥(x; —1,x,,x3 +1) holds due to the

supposition.

f. It is optimal for station-3 not to produce in both Eql and Eqg3.
Eq1l returns V¥ (xy, x,, x3) and Eq3 returns V¥ (x; — 1,x, + 1, x3)

Hence, V¥ (xy, x5,x3) < VF(x; — 1,x, + 1, x3) holds.

g. Itis optimal for station-3 to produce in Eql but not to produce in Eqg3.
Eql states that VF(xy, x, — 1, x5 + 1) < V¥(xy, x5, x3)
Eq3 states that V¥(x; — 1,x, + 1,x3) < VF¥(x; — 1, x5, x5 + 1)
Hence, V¥(x;,x, — 1,x3 +1) < V¥(x; — 1,x, + 1,x3) holds similarly to the

part c.

h. It is optimal for station-3 not to produce in Eql but to produce in Eqg3.

Eq1 states that V*(xy, x5, x3) < VE(xp, %, — 1, x5 + 1)

Eq3 states that V¥(x; — 1,x5,x3 + 1) S VF¥(x; — 1,x, + 1,x3)

Hence, V¥ (xy, x5, x3) < VF(x; — 1, x5, x3 + 1) holds similarly to the part c.
We can conclude that the property holds for k+1. As k — oo, value function V
converges with a given epsilon error, and the optimal value is found for the problem.

Also, the average cost is obtained while setting a to 0 and dividing the value function

by time steps.m
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APPENDIX 3 — Buffer Capacities of the Extended Models

The below table represents the optimal buffer capacities of the proposed no intentional

idleness policy for the extended models.

Table A3.1. Optimal buffer capacities of extended models

=3 Model 1 Model 2 Model 3
v=5 v=10 v=20 v=5 vy=10 v=20 v=5 v=10 v=20
B [m; ms ms|mi mg m3mi my msmi ms m3|mi ms msmy g m3|m; my m3|mi my m3m; ms ms
00|0 0 3|0 0 3/0 0 3(0 0 3/0 0 3/00 3|1 1 3|11 3|1 13
0.1/{0 0 3|0 0 3/(0 0 3(0 O 3/0 0 3/0 0 3|1 1 3|1 1 3|1 1 3
02|10 3|0 0 3/(0 0 3(0 1 3|0 0 3/0O0 3|1 1 4|1 1 3|1 1 3
03|10 3|0 0 3/(0 0 3(0 1 3|0 0 3/0O0 3|1 1 4|1 1 3|1 1 3
041 0 3|0 0 3|0 0 3(0 1 4/01 3/00 3|1 1 41 1 3|1 13
051 1 3|0 0 3(0 0 3(0 2 3/0 1 3|00 3|1 15|11 3|1 13
061 1 3|1 0 3/(0 0 3(0 3 3/0 1 3|00 3|1 15|11 4|1 13
073 0 3|1 0 3(0 0 3(0 3 3/0 1 3|00 3|1 16|11 4|1 1 3
08|/4 0 3|12 0 3/(0 0 3(0 4 3/0 1 3/0O0 3|1 16|11 4|1 13
09|/4 0 3|12 0 3/(0 0 3(0 4 3/01 3/00 3|1 17|11 4|1 13
105 0 3/1 0 3|0 0 3|1 5301 3f013j1 18114113
=4 Model 1 Model 2 Model 3
v=5 v=10 v=20 v=5 v=10 v=20 v=5 v=10 v=20

B |mi mj m3imi m3 m3mi m5 m3mi my m3|my my m3jmi my mi\mi my mi\mi m; m3|m; m; mj
00(0 1 4/01 4/01 4|01 4|01 4|01 4|1 1 4|1 1 4|1 1 4
011 1 4/0 1 4/01 4|0 15|01 4|01 4|1 15|11 4|1 1 4
02(1 1 4/1 1 4|01 4|1 2 4|01 4|01 4|1 1 5|1 1 4|1 1 4
03|12 1 4|1 1 4|0 1 412 25|11 4/01 4|1 1 6|1 15|11 4
04|13 1 4|1 1 4/0 1 421 3 5(1 1 4/01 4|1 1 7|1 15|11 4
05|/4 1 4|1 1 4|1 1 4|1 451 2 4/01 4j1 1 8|1 15|11 4
06|/6 1 4|1 1 41 1 41 551 2 4/1 1 4|1 1101 1 6|1 1 4
07(8 1 4/2 1 4|1 1 4|1 8 4|1 2 4|1 1 4|1 1 11|11 1 6|1 1 5
0812 1 4(2 1 4|1 1 42 104|1 2 5|1 1 4|1 1 14/1 1 6|1 1 5
09(18 1 4(2 1 4|1 1 4|2 14 4|1 2 5|1 1 4|1 1 17|11 7|1 1 5
10126 0 313 1 41 1 4(2194|1 3 4/1 1 4|1 1201 1 7|1 15
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Table A3.1 (cont’d). Optimal buffer capacities of extended models

Model 1 Model 2 Model 3
v=5 v=10 v=20 v=5 v=10 v=20 v=5 vy=10 v=20
my m; mz\my my; mz|my my mz\my My m3|my my; mz|my my mz\my my mz|my my mz|my mp ms
001 1 1 16(1 16|11 11 1 16]|1 6|11 1 6|1 1 6
01|22 1 6|1 2 5|1 1 6|1 2 1 2 1 25|11 7|1 1¢6|1 16
02|13 2 5|1 2 5|1 2 5|1 4 1 2 1 2 5|1 2 8|1 2 6|1 16
03|4 2 6|2 1 6|1 2 5|2 5 1 2 1 2 5|1 21001 1 7|1 16
04(7 2 6(2 2 5|1 2 5|2 7 1 3 1 2 5|1 2121 2 7|1 1 6
0512 2 53 1 6|1 2 5|3 106/|1 3 1 2 6|0 3151 2 8|1 2 6
06119 1 5|3 2 6|2 1 6|3 17 5|2 3 1 2 61 319/1 2 8|1 1 7
07(24 1 4(4 2 5/2 1 63 225|2 4 1 2 6({0 323|]1 2 9|1 17
08122 1 3|5 2 6|2 1 6|2 24 4|2 5 1 2 6|0 3 24|/1 2 1011 1 7
09116 0 3|7 1 6|2 2 5|2 23 3|2 7 1 2 6|0 2 23|1 2 11|11 2 7
10{14 0 3|9 2 5|2 2 5|2 18 3|2 8 1 3 6|0 2 22|/1 2 13|11 2 7
A=8 Model 1 Model Model 3
v=5 v=10 v=20 v=5 v=10 v=20 v=5 v=10 v=20
my my mz|my my mz|my my mz\my my Mz|my my mz|my m; mzimy my; Mz|my my msimy my ms
5 6 12|5 6 12|5 6 12|5 6 12|5 6 12|5 6 12(5 6 12|5 6 12|5 6 12
11 7 12|7 6 12(6 6 12(7 11 13|5 8 13|5 7 12|/4 8 19|14 7 15|5 6 13
26 8 11|19 7 12|16 7 12|8 24 12|6 11 13|5 8 12|4 8 32|4 7 184 7 14
25 5 81|14 8 12|7 7 12|7 25 8|7 14 13|6 8 13|3 7 27|4 7 23|4 7 16
25 3 6123 6 11|9 7 12|5 19 6|7 2312|6 1013|2 5 21|3 8 29/4 7 17
19 2 5(26 5 9|11 7 12|4 18 5|6 23 10|/6 12 13|1 5 20/3 6 25/4 7 19
16 2 4|25 4 7|14 7 12|14 15 5|6 21 8|7 1413|1 4 14/2 6 23|4 7 22
14 1 4124 3 6|19 7 12|13 12 4|5 17 7|7 1812|1 3 11|2 5 22(4 7 25
9 1 3|20 3 5|25 6 11|3 11 4|4 15 6|6 2112)1 2 10(1 5 17|3 7 27
7 1 3|20 2 5|29 5 102 8 3|4 15 5|6 221111 2 8|1 4 16|3 6 27
9 1 3/16 2 4|26 5 8|2 7 3|3 13 5|6 2591 2 8|1 3 15|3 6 27
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APPENDIX 4 — The Algorithm of Repetition Coefficients

Algorithm A recursively calculates the repetition coefficients Clj’-‘ and CZJ’-‘ , Which are

used in j" station transition calculation for the system which has k many stations.

Algorithm A
Basis Step Recursion Step
k=1; Fork=2toM
j=1; C1f = 2O 4 (14 5 (1 + M)
cik =1,
f €28 = 530 (G + D + i) + 252
c2f=1;
Forj=3tok
(Sk—js2) (1+Sk—j12)
C1f = CUf, = 4 (1 + 53 o) (CUymy s + C254)
Sk—1j 1
2k =yl (01}‘_1 KO0 4 e+ D)(CLE ymyju + (:21’.‘_1))

Figure A4.1. The algorithm of repetition coefficients - The upper bound of the
runtime of this algorithm is given by O(M? * max(sy, ..., Sy))
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Table A5.1. Nested loop blocks

APPENDIX 5 — Nested Loop Blocks with Big-O Complexity

Name Nested Loop Block Big-O Complexity
L? Forp=0tom; — 1 0o(m,)
L} Fork;=0tos; 0(s?)
Forj; =k;tos;
13 Fork; =0tos; O(sf * (Myy1 +57))
Forj; =k;tos;
Forl, =1tos; + mj,q —j;
L3 Fork;=0tos; 0(s;)
L4 Fork; =0tos; 0(s?)
Forl; =1tos; —k;
L3 Fork;=0tos; O(s; * Myyq)
Forl; = 1tom;,,
L8 Fork; =0tos; 0(s? * (ny4q + 57))
Forj; =k;tos;
Forl;=1tos;+m;, —j; — 1
L Fork;=0tos; O(s; * Myyq)
Forl;=1tom;;; — 1
L8 Fork; =1tos; O(sf * (Myy1 +57))
Forj, =k;tos;
Forl;=1tos;+my, —j; +1
L Fork; =1tos; 0(s?)
Forl;=1tos; —k;
L1 Fork;=1tos; 0(s:)
Forl; =1toC1)_;,,
L Fork; =1tos; O(s; * myyq)
Forl;=1tom;;; — 1
L2 Fork; =1tos; 0(s)
Forl; =1toC2)_ ;11
13 Fork;=1tos; 0(s{)
Forj; = k; to s;
L* Fork; =1tos; O(sf * (Myy1 + 57))
Forj, =k;tos;
Forl; =1tos; + myyq — j;
LY Fork; =1tos; 0(s;)
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Table A5.1 (cont’d). Nested loop blocks

L}* Fork;=1tos; 0(s?)

FOI’jl- = ki to Si
Forl; =1toC1¥_;,,

L:}_-j For ki =0to Si O(Si * mi+1)
Forl;=1tom;,, +1

L]L-'8 For ki =1to Si O(Slz)
For li =1to Cl%_i+1(si - ki + 1)

L%g For ki =1to Si O(Slz *
Forl, = 1to (61%_”1—“"""')(;"“"‘i) (s 41— max (M1, 5;))
KO iaamiss + C2H_i1))

[2° Fork;=1tos; O(s; * (Miy1 +57))
For l; = 110 (C1y_j41 (i = ki + Miyq) + C24_141)

L2 0(sf *xmy)

Forl,=1to <C1M@ + (s + D(C1Ym, + CZ%)) (m, — 1)
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APPENDIX 6 — Equation Details of Base Case Algorithms

Table A6.1. Equation details

eqtny = p (C1H 22 4 (s, + D1, + C21) + Tk (0 + DOmy + 1) + Z22)

eqlzy = (p—1) (cm 2D 4 (s; + D(CYm, + cz%)) + Y ((x +1)(m, + 1) + "("“))

(si—x)(sj+1—-x)

2 _ —
€di3) = |, + C2M_,, + TNC! (Clﬁ_i+1 °

+ (st 1= 0)(C1Y iy + 62%_i+1))

-
+ 200 (CLMiaa (i + Mgy — %) + €23 _41)

eqiay = li + eqiizy — C24 i1

k;
eQiS(Z) ;i — ClM i1 (M) + Zx +11(Cl —ipr(Sitm —x+ 1D+ CZ%—i+1)

eqis(?:) = eql'(z) — C2M_i41

8 _ . . 11—
edit) = 1, 4yl (m%_m CEDED b (s 4+ 1 — ) (CLY 41 + CZ%_,-H))

ZQ k; (C1y—ipa (Si + My — X) + C23_144)

(si=x)(si+1-x)

eql(z) B l + ClM i+1 + Z <61% i+1 2

+ G+ 1= O amies + €201

]L_l (Cl —ip(Sitmy —x+ 1D+ CZ%—Hl)

eqite) = i + eql's(z) — Cly_i41

—x+k)(si+1-x+k;)
2

eqlm T L+ Z]l . (61%—”1 L + (i + 1= x+k)(Cly 1My + Cz%—i+1))

ki—1 .
+Z -0 (ClM i1 (i —Jitmy +x+2)+ CZ%—Hl)

(si—x+ki)(si+1—x+ki)
2

8 = ji—1
i) = 1; + Zi:ki (C1%—H1 +(si+ 1= x + k) (CLY_ My + CZ%—L’+1))

k- .
+Cl%—i+1 +2 1:11(61%—i+1(5i —Jitmy tx+2)+ CZ%—i+1)

eqicy = L + T (CUM iy (si + myyy — %) + C2M 1)

eq?(z) =L+ Z i:_ (Clﬁ—iﬂ(si + My —x) + 62%—i+1)

eqil(ll) i — ClM i+1Mi+1 + Z (ClM i+1(Si + My —x) + Cz%—i+1)

11 _ i
eqiczy = l; — Cl%—i+1(_1 +miq) + Zx=0(C1%—i+1(Si + M —x) + CZ%—i+1)

(si—x)(si+1-x)

5 + (Sl +1- x)(ClM i+1Mi+1 +

ki
L — Cl%—i+1(_1 +miq) + Zx=o (Clﬁ—iﬂ
11 _
€qiiz) =

c2l 1)

11 _ ki—1
edisy = l; — Cl%—i+1mi+1 + le:o (Clﬁ—iﬂ(si + My —x) + CZ%—Hl)

Eqil(zl) =l - Cl%—i+1mi+1 - CZ%—L’+1 + Z (ClM i1 (Si My —x) + CZ%—i+1)

eqiy =1 — Moivr (=14 myq) — C20 4y

i—x)(s;+1-x)

ki (si
+Zx:0 (61%—141 : 2 +(si+1- x)(ClM i+1Mi+1 T CZ%—Hl))
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Table A6.1 (con’t). Equation details

€qizy = I — CUM_ oy (=1 + mypy) — C2M iy + Tl (CIM iy (sg + iy — %) + C20_i01)

eqiay = ; — C1M iy ymyyy — C2M_ 1 + Z (C1 _i1 (S F My — %) + C2_i44)

15 _ i~
eqite) = Cly—j4a(s; — ki + 1) + ZX=1 (C1y_iya (S +mppy —x+ 1)+ C2_i44)

5 _ ki
eqity = TN (C1M_ipr(si +mypy —x) + C2M_10)

(si—x)(sj+1—-x)

) = 1y T (O S

(s 1= C i + C2i1) )

+Zii=ki(C1%—i+1(5i +mi —x+ 1)+ CZ%—i+1) - Cl%—iﬂ

eqi1(62) =L+ Cl%—i+1(]l k;) + Z (Cl —ie1 (St M —x) + Cz%—i+1)

-x)(si+1-x)

= (si
ediy = l; +Z (Cl% i - +(si+1—x)(CIN_;jsimipq + CZ%_,-H))

P (CAM iy (g + My — ) + C24_i4)

te(Z) L+ Cl —iv1(Si — k) + Z (Cl —ivr(Sit M —x0) + CZ%—i+1)

€4ty = 1 + (1 > C1Y_ iy (si — k) ) (CLM_paa (=1 + M) + €2} _i4)

kl
+Yto (C1y i1 (s +myyy — %) + C24_i41)

eqiy = i + T (CAM iy (si + mypy —x + 1)+ C24_i10)

18 _ )
€di3) = l; + Clyg_s4q1 + (l > Cly_i1 (i — ks ))(Clm i1 (=1 +me) + C23_144)

+Z (Cl _iva (S My — x) + C2044)

(si—x)(sj+1—-x)
2

18 _
i) = Z (ClM i+1 +(si+ 1= 0)(CLy_ 1My + CZ%—Hl))

k; ll
+Z a (Clﬁ—iﬂ(si + M —x) + CZ%—i+1)

(si—x)(sj+1-x)

eql(l) i + Z ( M—i+1 +(si + 1 =) (CLyi_jyymyyq + Cz%—iﬂ))

(si—x)(si+1-x)

19 __
€U = L+ C2l g + TN (C1H iy O

+(si+1—x)(C1y iy Mg + CZ%—i+1)>

ki-1
+Zx= (C1%—H1(5i + My —x) + CZ%—Hl)

eqiz((;) =L+ Z (ClM i+1(Si + My —x) + Cz%—i+1)

ki1

eql-z(%) =L+ Cl%—Hlki + CZ iy T Z (Cl —it (St M —x) + CZ%—Hl)

qiy = b+ Tk (G + D, + 1) +252)

eqiy = b+ (C1H 2D 4 (5, + 1)(C1lm, + C2)) + Tk (0 + DOmy + 1) + Z2D)
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APPENDIX 7 — Algorithm Structures of Events P2, P3

Table A7.1. Algorithm structures of events P2 and P3

1 M=1
Apy,p3 (1j=1

2 M=23
APZ,P3(1j=1

3 M=2
Apy,p3 (1j=2

AgZ,P3 (112;3)

1 L

L%3 - Lk=8,16,17
2

14
Ly

®)

L3

—)Lg

L? N Lk=8,16,17
2

L

- L124'

2 Lg
b
L3

- L%S
- L%l
- L%Z

0 15 k=8,16
Li-L3? - L,

0 k=11,18
Ly - Ly

4)

L3
L3
LY

N Ll§:9,10
N Ll§:11,12

k=11,12
- L2

L3
L3
LY

N LI§:9,10
N LI;:11,12

k=11,12
- L2

(®)

LY

- 1§ - 15

Ly
L3

—>L?1’
3
- L]

N ng N LI;=8,16,17
- L124

(6)

L9

N Lz{ N LI;=9,10,11,12

LY
Ly

4
—>L1
4
—>L1

k=8,16,17
- L%S - L3

k=9,10,11
- L2

™

Ly
Ly
L3

515> L1;=9,10
S>3 o L1;=11,1z

7 k=11,12
- L - L,

Ly
L3
Ly
L3
Ly

—>L§

3
—>L1
—>L17
—>L31’
—)Lz

N LI;=9,10

N Ll§=11

N L}§=11

- L125 o L1§=8,16,17
il L125 N L§:8'16'17

A}

=)

(®)
©)

(10)
(1)

(12)

(13)
(14)

(15)
(16)

a7

(18)

(19)

(20)

Li
Ly
Ly
Li
L3
L3
Li
L3
L

- L12 - L%

- L% - Lg

- le - L%,’B

N Lg - LI§:9,15

> 13- 1%

- L3> L§

il L128 3 LI§=9,15

N Lg - LI§:9,15

8 L125 il LI§=9,15

- L5~ L§

- L% - L%s

N LZ N Ll§=9,15

- L? - Lé - L%

S Lo L5~ L3
- Li - le - L138

- L? - Lg - L]§=9’15
- Lf > 13 > L5

> Lf - L5~ L3
- L? - L‘% - L]§=9’15
- L‘i - le5 - L§=9'15
- L%S - Lg - LI§=9'15

=9,1
—)L%s—)L125—>L§ 915

=Ly~ L5~ 13

- L? - Lg - L138
>L L) - L]?f:g'ls
> L > 15 - L8

- L%S L) - LI§:9'15
> 13> 13 > L3

> 151415
S>LT L) > L]?f:g'ls
- Li - L125 - LI§=9,15

- L?l’ - L%S - LI§:9'15

—>Li —>Lg —>Lg
—>Li —>L§ —>L138
> 1515 > L§_9'15
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APPENDIX 8 — Algorithm Structure of Event D

Table A8.1. Algorithm structure of event D

A0

)

ApUM)

Q)

L3

(©)

L > 13

(8)

Li > L5 > L3

0]

Ly
Ly
Ly
13

- Li
- L%S

9
- L3
- L%s

4)

2 5
L5 - Ly ;
6 9,1
L1 - L,
1 18
L1 = L3

9)

Ly > L5 > L§
L Ly > L

1 6 k=9,15
- 18— L%

©)

Ly > Li - 13

(10)

Li - 13- 13

(6)

0 4 5
Li-> L - L}% ;
=9,1
-1 -1y
0 15 k=9,15
Li-L3? - L,

1)

i - L3 > L3

L} > L¥ - [5791°
L§ > 1y —» L5
LS > LY - L5797°

@

0 5 5
L7 - L7 > L3
-1 -L3
1§ - L] - 157"

(12)

2 5 5
Li->L5-> L3
2 3 18
L1 > L5 - Lﬁ

=9,1

Lio L) > Ly °

(13)

8-> 13 15> 12

(14)

Li - 13> 13> L3
L9131 - L8
13 - 13 > 1§ > L5

(15)

KoL -13 13

(16)

L > Ly > L3 > L

Ly 1] > L3 - L5
L9 - L9 - L5 — [X=91°
L9 — LIS > 1§ - LE=91°
L3 - L5 5 LL® - L5718

a7

-1 -15-138
L1 > 15— 138
I S A
L > 13 > 13 - 138
0 15 7 k=9,15
Li-> Ly > Ly > Ly

(18)

L -13-13 -1

(19)

L3~ L3 > 13~ L3

13- L] > L3> L5

1§ > L] - LY > 1571
L3 - L} > L - L5721

(20)

Ly~ L3~ L5~ L
L3> L3~ L5 > L3
0 5 7 k=9,15
Li->Li-Ly - L

105



